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Abstract

Plankton taxonomy is considered a multi-class classification problem. The current state-of-
the-art developments in machine learning and phytoplankton taxonomy, such as
MorphoCluster, include using a convolutional neural network as a feature extractor and
Hierarchical Density-Based Clustering for the classification of plankton and identification of
outliers. These convolutional feature extraction algorithms achieved accuracies of 0.78 during
the classification process. However, these feature extraction models are trained on clean
datasets. They perform very well when analysing previously encountered and well-defined

classes but do not perform well when tested on raw datasets expected in field deployment.

Raw plankton datasets are unbalanced; whereas some classes only have one or two samples,
others can have thousands. They also exhibit many inter-class similarities with significant size
differences. The data can also be in the form of low-resolution, noisy images. Phytoplankton
species are also highly biodiverse, meaning that there is always a higher chance of a network
encountering unknown sample types. Some samples, such as the various body parts of
organisms, are easily confused with the species itself. Marine experts classifying plankton
tend to group ambiguous samples according to the highest order to which they are confident
they belong. This system leads to a dataset containing conflicting classes and forces the

feature extraction network to overfit when training.

This research aims to address these spatial issues and present a feature extraction
methodology built upon existing research and novel concepts. The proposed algorithm uses
feature extraction methods designed around real-world sample sets and offers an alternative
approach to optimizing the features extracted and supplied to the clustering algorithm. The
proposed feature extraction methods achieved scores of 0.821 when tested on the same
datasets as the general feature extractor. The algorithm also consists of Auxiliary SoftMax
classification branches which indicate the class prediction obtained by the feature extraction
models. These branches allow for autonomous labelling of the clusters formed during the
HDBSCAN algorithm being performed on the extracted features. This results in a fully
automated semi-supervised plankton taxonomy pipeline which achieves a classification score
of 0.775 on a real-life sample set.
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1. Introduction

1.1 Introduction

Plankton taxonomy is a field of research where marine experts collect, analyse, and annotate
various samples of particles freely floating in aquatic systems around the globe. Plankton
makes up almost 70% of the earth's oxygen supply. Monitoring the movement and occurrence
patterns of this organism is crucial to understanding the world in which humans live. Plankton
samples occur in abundance, along with other floating particles in the same environment.
There are many methods used to observe these planktonic trends including in-field and in-
laboratory observation techniques (Bi et al., 2015). Although effective for obtaining samples,

these methods all suffer from the lack of an efficient autonomous class identifier.

Recently, deep neural networks such as convolutional neural networks have taken over from
traditional computer vision techniques for plankton feature extraction and identification.
These networks are trained under supervision and find inherent and underlying features of
plankton without the need to hand-engineer the features as was previously done (Correa et
al., 2016). Even more modern methodologies, such as MorphoCluster proposed by Schroder
et al (2020), utilize an unsupervised clustering method on top of a convolutional feature
extractor to find underlying patterns within the data, thus aiding researchers with a semi-
automated, semi-supervised approach (Schréder, Kiko and Koch, 2020). While many plankton
taxonomic methods have been proposed, all the investigated methods suffer from a single

drawback: they are not trained to handle real-life plankton sample sets.

The need for an automated plankton classification algorithm robust enough to handle real-
life sample sets led to the research objective presented in Section 1.2. Section 1.3 provides a
discussion of the research objectives for this study followed by an outline of the contributions
envisioned in Section 1.4. Section 1.5 provides an overview of the structure of this

dissertation, highlighting the topics in each proceeding chapter.
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1.2 Problem Statement

Deep learning algorithms for plankton taxonomy are usually trained on clean datasets and do
not meet satisfactory performance levels when tested on real-life sample sets. This is because
plankton datasets are noisy, unbalanced and contain many classes that exhibit similar
features. Training a single convolutional network as a feature extractor on raw plankton
datasets results in overfitting and poor testing performance. Convolutional neural networks
hard classify all considered samples and therefore do not provide an indication of which
samples the classifier does not recognize. Current systems that attempt to solve these issues
are inefficient and require human intervention throughout the entire process. To solve these
issues a multi-feature extraction method with an autonomous clustering and identification

algorithm is required.

This dissertation proposes, implements, and evaluates an automated semi-supervised
plankton taxonomy pipeline for real-world applications and conditions by analysing existing
plankton taxonomy pipelines and algorithms, determining their underlying shortcomings, and

combining existing and novel techniques to improve performance.
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1.3 Research Objectives

The purpose of this investigation is to develop an autonomous classification algorithm for

plankton taxonomy that is robust enough to be used on real-life sample sets.

Before any research can be conducted to investigate an automated semi-supervised plankton
taxonomy pipeline for real-world applications, it is vital to first investigate existing systems
used to perform the same task and analyse why they don’t perform well in real-life situations.

The first research objective is, therefore:

1.3.1 Research objective one: Investigate existing plankton taxonomy

pipelines

Research on plankton taxonomy systems is increasing exponentially. Grasping the concepts
that have been applied, and their advantages and relevant pitfalls, provides deep insight into
the mismatch between reported network accuracies in training versus real-life application.

Objective two is built upon this understanding.

1.3.2 Research objective two: Determine the underlying performance lapses

in modern plankton taxonomy techniques

While modern plankton taxonomic techniques showcase relatively high laboratory results, a
reality gap is present that renders the real-life application of the investigated automatic
algorithms impractical. There are several algorithms available to increase the performance of
these techniques so that they can be applied effectively. These algorithms need to be

implemented and evaluated on real-life datasets. This leads to research objective three.
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1.3.3 Research objective three: Propose, implement, and evaluate a binary
classification CNN for detritus identification

Identifying samples belonging to classes that exhibit large intra-class differences in real-life
plankton sample sets would allow for the practical implementation of general plankton
classification networks. Decreasing the number of learnable sample classes from a network's
training process increases the accuracy and speed of the network in dealing with specific

subsets. This leads to research objective four.

1.3.4 Research objective four: Propose, implement, and evaluate a biological

group-based classification CNN for plankton identification

Breaking the real-life dataset into biologically related subsets would increase the ability of
deep learning methods to distinguish between samples belonging to classes with high spatial
similarities and those with minor inter-class differences. The combination of research

objectives three and four is the fifth research objective.

1.3.5 Research objective five: propose, implement, and evaluate the
combination models trained with binary and subclass groupings for

plankton identification

Once the data-driven classification networks outperform the general architecture on their
respective classes, these models need to be combined to deliver an enhanced feature
extraction methodology. This feature extractor is envisaged to supply features with a
clustering algorithm and will be used to supervise cluster labelling. The final research

objective, therefore, is:
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1.3.6 Research objective six: Propose, implement, and evaluate automated

semi-supervised plankton taxonomy pipeline for real-world application

Finally, the extensive feature extraction network would be used to cluster the resultant
features and use auxiliary classification branches and their associated probability scores to
label the resulting clusters. The final outcome should be a real-life, data-driven, automated

plankton taxonomy pipeline.

1.4 Contributions

In addition to the overall objectives, this research sought to bridge the gaps in related
research where similar applications in the field of plankton taxonomy failed to perform
efficiently. The research contributed towards the furtherment of previous literature as

follows:

1. Created and restructured a dataset comprised of many different plankton
classes, including all particles found in a real-life data sample. The noisy
samples are the reason all automated plankton studies fail when used in
real-life deployment.

2. Trained multiple neural networks specifically designed to extract more
relevant features from classes previously disregarded in other studies. This
allows for distinguishable patterns even for non-plankton samples
occurring in abundance in real-life sample sets.

3. Stacked all the trained models into a single feature extraction model and
clustered the resultant feature vector, similarly to how the MorphoCluster
system uses a generalized feature extractor trained on a cleaner dataset.

4. Utilized the classification class score obtained within the individual specific
feature extractors to label the resultant clusters automatically. This
resulted in a semi-supervised automatic plankton taxonomy pipeline for

real-life applications.
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Publication:

du Toit, I. (2021) ‘Enhanced Deep Learning Feature Extraction for Plankton Taxonomy’,
Proceedings of the International Conference on Artificial Intelligence and its Applications, pp.

1-8. doi: 10.1145/3487923.3487930.

1.5 Dissertation Layout

This section provides a brief overview of each chapter. A graphical representation of the

structure of this dissertation is shown in Figure 1.1.

1.5.1. Chapter 2 — Background

Chapter 2 presents a study on plankton. It introduces the importance of plankton and how
researchers collect, analyse, annotate, and store the various samples. The chapter then
investigates the different methodologies applied in the field of plankton taxonomy as well as

research results stemming from the turn of the century up until today.

1.5.1ii  Chapter 3 — Literature Review

Chapter 3 presents a review of the machine learning topics relevant to the research
investigated. It highlights various supervised and unsupervised methodologies in a way that

shows how they build off one another.

1.5.1iii  Chapter 4 — Experimental Methodology

Chapter 4 discusses the thought process behind each investigation undertaken in this study.

It presents brief overviews of the individual studies, how they link to each other, the dataset
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used, and the evaluation criterions used to validate the performance of the relevant

investigations.

15.1iv  Chapter 5 —Investigation A

Chapter 5 presents results of a binary classification network for classes exhibiting large intra-

class spatial differences.

1.5.1v  Chapter 6 — Investigation B

Chapter 6 presents results of multiple classification networks trained on specific subsets of

the original dataset containing classes with high inter-class similarities.

15.1vi Chapter 7 —Investigation C

Chapter 7 presents results of clustering performances on the original dataset, comparing the

multi-network feature extractor to a general feature extractor trained on a cleaned dataset.

1.5.1.vii Chapter 8 — Investigation D

Chapter 8 presents results of using the multi-network feature extractor auxiliary classification

branches to automatically label the obtained clusters.
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1.5.1.viii Chapter 9 — Conclusions

The final chapter draws conclusions from the investigations and provides recommendations

for future research.

1.5.1ix  Appendix A

Appendix A provides an overview and breakdown of the original real-life dataset.

1.51.x Appendix B

Appendix B shows extracts of the confusion matrices obtained during testing.

1.5.1.xi Appendix C

Appendix C contains various samples of the code used throughout the investigation.
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2 Background

2.1 Plankton Imaging and Acquisition Methods

The acquisition of plankton image data remains a focus of marine researchers and
technologists. Plankton occurs in abundance and is generally omnipresent in all ecological
aquatic systems. Studying these organisms, no matter what technology is used, takes
relatively long periods. Marine researchers have, however, developed numerous
technologies to acquire plankton image data such as the ZooSCAN images shown in Figure

2.1.
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Figure 2.1: ZooSCAN plankton images

These technologies generally fall within one of two categories: In situ and ex situ systems. In
situ methods, such as the Underwater Vision Profiler (UVP) system shown in Figure 2.2, allow
researchers to analyse plankton samples in their natural environment. Section 2.1.1 highlights

the most commonly used In situ plankton observation technologies available.
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Figure 2.2: Underwater Vision Profiler (Underwater Vision

Profiler (UVP) - OceanNet, 2020)

Ex situ methodologies are the main consideration of technologies used in this research. Ex

situ technology such as the ZooSCAN, shown in Figure 2.4, allows researchers to analyse
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plankton samples outside their natural environment, for example, in laboratories. These

methods are discussed in more detail in Section 2.1.2.

Figure 2.3: ZooSCAN ( ZooSCAN | EMBRC France,
2010)

2.1.1 In situ methods

In situ technologies are at the forefront of plankton image data acquisition and analysis
studies. These methods allow for in-place monitoring of plankton, which ultimately saves a
lot of time (Bi et al., 2015). The systems briefly discussed in this section include FlowCytobot

and the UVP (Underwater Vision Profiler).

The FlowCytobot, shown in Figure 2.4, generates images of particles using flow cytometry and
video technology. Once deployed, the FlowCytobot pushes a constant stream of water
through a thin tube. Using flow cytometry technology (McKinnon, 2018), it employs a laser
beam to create fluorescent light signals. These light signals cause live plankton cells to
iluminate due to the presence of chlorophyll (Matz et al., 1999). A camera records the

illuminated cells, and the video data is sent to shore for analysis.
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The Underwater Vision Profiler, shown in Figure 2.2, uses red light emitting diodes (LED) and
computerized optical technology to analyse plankton data at depths reaching up to 6000
metres. The UVP makes use of 100 us flashes to illuminate an area of 4 x 20 cm with custom
red LED lighting and takes an image using a high-quality camera. The UVP returns a sample
image representation equivalent to 1 litre of water (Ramondenc et al., 2016). The image data
can then be monitored almost in real-time on the ship deploying the UVP. Image data is stored

on hard drives for later analysis in a laboratory.

Figure 2.4: FlowCytobot

In situ methods provide a less time-consuming way to analyse plankton data. However, these
techniques are still relatively new, so their effectiveness is diminished by image quality. Low
resolution negatively affects how well machine learning algorithms perform in the

identification of plankton classes.
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2.1.2 Ex situ methods

Ex situ methods such as the ZooSCAN system provide a better means of collecting plankton
samples for the training and testing of machine learning algorithms. This is because the
samples being processed are not moving and are in a closed environment allowing for high

resolution still images.

2.1.2.i Sample Acquisition

For ex situ methods, marine researchers must manually catch plankton samples using various

techniques. The most popular technique involves using a plankton net, shown in Figure 2.5.

Key ring

String

Figure 2.5: Plankton net (‘Estuary Education Resources

Catching Plankton Estuary Concept’, 2012)

The netting is usually made of nylon, a material that allows water to pass through whilst being
fine enough to capture the organisms. The net is moved through a body of water of interest
by hand or with assistance from some form of vessel. The samples are stored in vials with a

volume of 1 litre. Researchers in a marine science laboratory then process the vials one by
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one using systems like the ZooSCAN. How the ZooSCAN system processes the samples is

explained in more detail in the following section.

2.1.2.ii Z00SCAN and ZooProcess

Z00SCAN and ZooProcess form an integrated system for ex situ digital plankton image
acquisition. The ZooSCAN, shown in Figure 2.3, is the hardware component of the system and
is comprised of two waterproof elements: the top cover and the base. The top cover is
responsible for even illumination of the sample under consideration and measurement of the
sample medium's resistance to the transmission of light through an optical density reference
cell. The base of the ZooSCAN is where the sample is loaded. It contains a high-resolution

imaging device and a drainage passage for sample recovery (Gorsky et al., 2010).

ZooProcess

‘ Scan and process the blank background

l

Scan sample

l

Mormalize raw sample image

l

Subtract blank background from sample image

l

Extract and measure samples

Figure 2.6: Overview of ZooProcess

The ZooProcess is the software component of the system. It is responsible for the scanning,
normalization, and object detection of plankton samples. A breakdown of the process is

shown in Figure 2.6.
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The ZooProcess starts by calibrating and determining the grey level of the background image.
This should be performed daily so that researchers can calibrate the ZooSCAN instrument by
comparing new background images to those obtained previously. Once a sample is loaded
into the ZooSCAN system, the ZooProcess measures the grey levels and compares them to
the calibrated value. Overlapping organisms cause problems for vision algorithms, so when
samples are loaded, researchers separate and move them using a small stick-like apparatus
until all they are visually isolated. Particles along the sides of the frame are discarded by the

vision algorithm.
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Figure 2.7: Example of raw ZooSCAN image

ZooProcess proceeds to extract the regions of interest (ROI) from the sample and archives
them individually in a folder. It also associates the relevant metadata defined by the
researcher conducting the scanning process. This metadata contains information about the
entire sample set, including location and time data. The ZooProcess also measures the
extracted ROI and includes this data along with the metadata in a Logfile. An example of the

extracted ROl is shown in Figure 2.7.

The ZooProcess then feeds a standalone application called Plankton Identifier (PkID). This
software makes use of more traditional computer vision techniques to predict the class of

plankton. These techniques and a more in-depth description of the plankton classes are

30



discussed in the following sections. An overview of the ZooSCAN process is shown in Figure

2.8.
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Figure 2.8: ZooSCAN dataflow overview

2.2 What are Plankton?

As an ecological contributor, plankton plays a vital role in aquatic ecosystems and falls at the
base of the food chain. Plankton also drives carbon and nutrient cycles, thus influencing global
biochemical processes (Keister et al., 2012). Dating back 2.4 billion years ago, they are the
original contributors to our oxygen-rich atmosphere, giving rise to every living organism on

Earth (Falkowski et al., 2004).

Plankton, like plants, make their energy through photosynthesis, consuming carbon dioxide

and producing oxygen. Their mass consumption of carbon dioxide maintains low acidity levels
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of oceans and thus the normal function of all associated systems. They are still the number
one contributors to the Earth’s oxygen level, contributing to an estimated 80 per cent of the
planet’s total oxygen supply. Plankton also drives other global nutrient cycles such as the

nitrogen, iron, sulphur, and phosphorus cycles (Falkowski, 2012).

Plankton is the organic matter that most oceanic organisms use as their energy supply. Thus,
it directly or indirectly affects every aquatic ecosystem. Since 1899, there has been a
cumulative loss estimated at 40 per cent of plankton worldwide. This loss could be attributed
to many different contributing factors, including increasing ocean surface temperatures (Loeb

etal., 2021).

Some plankton has a direct impact on all other creatures on earth. Dense blooms of these
organisms can drain the oxygen from aquatic systems, in turn suffocating other organisms
that share the same environments. Some of these blooms of plankton, known as harmful algal
blooms (HAB), can expose humans, whales, and aquatic creatures to fatal toxins. This results
in significant economic loss every year in the seafood industry and tourist communities
(Schmale et al., 2019). The analysis of plankton demographics is crucial to understanding the
current state of our world. Various methods have been proposed to acquire and analyse
plankton samples. These methods are discussed in Section 2.1. Section 2.3 provides an

introduction on how the various plankton organisms are categorized.

2.3 Plankton Taxonomy

Researchers in most biological fields tend to order living organisms into a Linnaean system of
classification. In other words, researchers group living organisms based on species the
organisms are closely related to. This grouping is called a taxon. Taxa are assigned a taxonomic
rank and then split into smaller groups that form a tree-like structure. The overview of the
taxonomic ranking is shown in Figure 2.9 and starts with the kingdom at the top, which for all
multicellular living organisms on earth is the kingdom Animalia. As one progresses down the
pyramid, the diversity of organisms at each level increases. At the base of the pyramid shown
in Figure 2.10 is the group called species. Plankton from the same species could have evolved

independently with different ecological adaptions. Where plankton researchers are still
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unsure if well-defined species exist, they tend to divide them into groups at higher

hierarchical levels.

Suborder

Family

/ Sub- Family \

Genus

Species

Figure 2.9: Taxonomic ranking (top-down view)

Plankton is divided broadly into three different phylum
. These are phytoplankton, zooplankton and bacterioplankton. The phytoplankton group
represents approximately ten different classes from four different kingdoms and can vary in
sizes from one millimetre to one micron in length. They also exhibit various shapes and
textures, all of which are used to identify which species of phytoplankton they belong to.
Zooplankton and bacterioplankton are also classified based on their varying features. The
World Register of Marine Species (WoRMS) provides a comprehensive list of all marine
organisms, including their scientific names and household names, to guide the interpretation
of most taxonomic literature. WoRMS is maintained by taxonomic experts, and new

information is added daily to keep the system up to date.

Marine specialists utilize technology like the ZooSCAN system described in the sections above
to collect, identify, and count plankton samples. These sample classifications are validated
using the WoRMS platform and then stored along with their metadata in an online database

called EcoTaxa.
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2.3.1 EcoTaxa

EcoTaxa is an extensive online database and web application dedicated to the visual

exploration and taxonomic annotation of planktonic biodiversity (Picheral, Colin and Irisson,

2017). The database houses over 160 million plankton images from researchers and facilities

all over the world. The web app allows marine researchers and general enthusiasts to explore,

download and contribute to the database in multiple research projects. An example of the

web app interface is shown in Figure 2.10.
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Figure 2.10: EcoTaxa Interface

The EcoTaxa web application being utilized along with the ZooSCAN system is shown in Figure

2.11. Large databases with many contributors, such as EcoTaxa, are prone to mislabelling and

human error. Therefore, EcoTaxa and ZooSCAN come equipped with their own plankton

identification components, which use machine learning algorithms to classify plankton ROI
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into their respective classes. The machine learning methodologies used in these applications
are based on more traditional hand-selected feature engineering techniques and achieve
accuracies, on average, of about 50 per cent. These low accuracies result in researchers
having to validate all the prediction results, essentially rendering the entire automatic
annotation process unnecessary. This process of annotation validation is the bottleneck in

plankton analysis related to processing time.
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Figure 2.11: ZooSCAN Workflow using

EcoTaxa

The following sections investigate various computer vision techniques used to classify
plankton into their relative taxonomic groupings. Starting with the more traditional hand-
selected feature-based methodologies, Section 2.4 gives insight into the algorithm
architectures and their relative performances. Section 2.5 then introduces the newer deep
learning and clustering methods used in current state-of-the-art systems and how they
measure up in terms of performance. A breakdown of how modern machine learning

techniques work is discussed further in the literature review (Chapter 3).
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2.4 Feature Engineering-Based Plankton Classification

Techniques

Before the wide adoption of modern deep learning methodologies, marine researchers used
more traditional computer vision techniques to extract visual features from plankton image
data. This section briefly introduces these techniques and the machine learning models that
produce predictions based on the engineered features. This section also highlights the results
achieved by these machine learning algorithms to compare their ability to classify plankton

samples with modern deep learning techniques.

To apply more traditional machine learning methods to plankton images, a comprehensive
amount of feature engineering must be performed. This includes extracting geometric,
greyscale and texture features. Some geometric or morphological feature extraction methods
include corner detection, curve fitting, and edge detection, which allow size, area, and
elongation calculations. Greyscale feature extraction methods utilize image pixel values that
range between 0 and 256 in intensity. Greyscale features, otherwise known as statistical
features, include the pixel values' sum, mean, and standard deviation. Texture feature
extraction methods, such as the Gabor filter shown in Figure 2.12, act as a bandpass filter that

convolves an image highlight and extracts texture patterns within the original image.

Figure 2.12: 16 Gabor filters for texture detection at different angles (Shah, 2018)

The above-mentioned feature extraction techniques, although highly effective, require

extensive parameter selection and are susceptible to changes in the environment processing
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the images. Machine learning algorithms that have been used along with these hand-selected

features in plankton classification include support vector machines (SVM) and random forest.

241 SVM

Support vector machines are versatile machine learning algorithms that perform very well in
regression and anomaly detection as well as linear and nonlinear binary classification tasks.
The SVMs applied in most plankton classification instances use the hand-engineered feature
extractors as described in Section 2.4 and perform nonlinear classification on the relevant
data points representing each sample (Hu and Davis, 2005). These data points are in the form
of a vector representing either one of two classes. SVM is a binary nonlinear classifier trained
to determine a nonlinear hyperplane between the two different sample types. This is
accomplished by a generalized dot product of the two vectors projecting the nonlinearly
separable data into a higher-dimensional space where, according to Cover’s theorem, even
nonlinearly separable datasets have a high probability of becoming separable. This
generalized dot product is also known as kernel tricks, where different kernel functions make

use of these dot products to solve for the SVM hyperplane optimization.

Hu and Davis proposed implementing an SVM classifier for plankton features extracted using
co-occurrence matrices (COM). COM extractors use pixel brightness to localize features from
images. Their study involved a cleaned dataset comprised of 20 000 plankton images from

seven different categories and achieved an accuracy of 0.74 (Hu and Davis, 2005).

Lue et al. (2005) introduced a system called SIPPER, which took advantage of a one vs all style

SVM. Their technique accomplished an accuracy of 0.90 on six classes (Luo et al., 2005).

Sosik and Olson (2007) proposed combining geometric, texture, orientation invariant
moments, diffraction pattern sampling, and co-occurrence matrix features. An SVM was used
to classify the resultant features and achieved an accuracy of 0.88 on 22 different categories

(Sosik and Olson, 2007).
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2.4.2 Random Forest

Decision trees, such as that shown in Figure 2.13 are the building blocks of the random forest
algorithm. Decision trees aim to build models using training data to predict the value or class
of target by learning simple choice rules. Decision trees comprise leaf nodes, internal nodes,
and branches. Leaf nodes correspond to the class label or outcome. Internal nodes represent
the features of the dataset, and branches represent the decision rules. The first decision node

in the tree is called the root node.
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Figure 2.13: Example decision tree

Decision trees are built in a way that minimizes their size. To achieve this, the algorithm uses
information gain to decide which features to split at each step, thus producing the purest
child nodes. Information gain measures the importance of certain features in the
identification of a specific class. A standard measure of information gain is known as Gini

Impurity.

As shown in Figure 2.14, a random forest is a supervised machine learning algorithm that
builds an ensemble of decision trees. The difference between random forest and decision tree
algorithms is that the random forest algorithm randomly establishes root notes and leaf
nodes r and uses the bagging method to render predictions. The bagging method takes

advantage of a training dataset comprised of features with labels and uses multiple decision
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trees that respond differently depending on the data fed to them. The root of each decision
tree corresponds to a specific set of features from the dataset. For example, a single tree in a
random forest algorithm could predict samples based on only geometric features. The final
prediction of the random forest algorithm is an amalgamation of the predictions of all the

decision trees that it comprises.
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Figure 2.14: Example of a random forest algorithm

Grosjean et al. (2004) proposed the implementation of a random forest algorithm trained on
two datasets of 1000 objects each. One of the datasets was divided into eight simplified
classes, and the other dataset was divided into 29 more detailed classes. A supplementary
algorithm was proposed to identify which samples had produced low confidence scores and
needed manual validation from marine experts. The algorithm classified the geometric and

greyscale features extracted from zooplankton with an accuracy of 0.75.

Zoolmage, a random forest plankton image analysis software, was proposed by Bell and
Hopcroft (Bell and Hopcroft, 2008). The algorithm achieved a recall accuracy of 0.817 when
classifying a cleaned dataset split into 53 different classes. The authors noted that the
Zoolmage algorithm did not accurately identify the underlying subphylum classes within the

test sample's numerically dominant taxon called copepods. The best performance the
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algorithm could achieve using hand-engineered features was classifying copepods as either

large, medium or small (Bell and Hopcroft, 2008).

Fernandes et al. (2009) made use of Zoolmage to determine how different geometric and
greyscale features affect the algorithm. The study showed that features such as the shape of
samples are not indicative features. On closer inspection of the confusion matrix produced in
the study, the shape characteristic attributed to large amounts of misclassification within the

testing dataset.

The studies conducted by Fernandes et al. (2009), Bell and Hopcroft (2008) indicated that the
performance of machine learning algorithms used for plankton classification was highly
dependent on the feature sets used. The feature engineering process requires much effort
and poses challenges to research involved with introducing the system to new environments
or introducing new classes to an existing system. Modern machine learning algorithms such
as convolutional neural networks (CNN) have been successfully used to overcome the issue
of feature engineering. Section 2.5 provides an overview of the performances achieved in

studies that utilize these algorithms (Bell and Hopcroft, 2008; Fernandes et al., 2009).

2.5 Existing Deep Learning Plankton Classification Systems

This section highlights the performances of various automated deep learning plankton
classification approaches. Most of the studies investigated have convolutional neural
networks at their core. The literature review chapter discusses a deeper insight into how

these networks and the unsupervised methodologies that use them work.

2.5.1 Convolutional Neural Network Algorithms

In 2017 lago Correa et al. proposed using convolutional neural networks to classify
microalgae. The study achieved an accuracy of 0.886 on a dataset acquired using the
FlowCAM device. The dataset contained 29 449 samples belonging to 19 different classes. The

CNN architecture used in the study was built using five convolutional layers and three fully
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connected layers. The architecture also made use of ReLU activation functions, max pooling

and dropout. (Correa et al., 2016).

The success garnered in early studies using CNNs and further advancements in CNN
architectures propelled large amounts of research into using CNNs to solve the plankton
classification problem. In the same year, Dai et al. proposed a CNN architecture called
ZooplanktoNet (Dai et al., 2016), which outperformed AlexNet and CaffeNet on a dataset
made up of 9460 samples from 13 different classes. Dai et al. also proposed a hybrid CNN
architecture that utilized three different CNN architectures simultaneously. The architectures
were trained on the WHOI-Plankton dataset, which consisted of 30 classes with 1000 samples
each. Using an ensemble of GooLeNet CNN architectures connected via their fully connected

layers resulted in an accuracy of 0.963 (Dai et al., 2017).

Li and Cui proposed a deep residual network based on VGGNet. The network achieved an
accuracy of 0.73 on a dataset consisting of 30 336 samples from 121 different classes (Li and
Cui, 2016). Lumini et al. performed a study to test which networks performed best on the
three most well-known public plankton datasets. The results of the ZooSCAN dataset, which
contains 3771 images belonging to 20 classes, are shown in Table 1 (Lumini, Nanni and
Maguolo, 2019). Other research conducted by Cheng et al. also compared the performance
of various CNN architectures on the NDSB dataset, and the result is shown in Table 2 (Cheng

etal., 2019).

Table 1: Comparison of CNN architectures performance on ZooSCAN dataset (Lumini, Nanni

and Maguolo, 2019)

Lumini, Z00SCAN dataset, [ No of

architecture benchmark Classes
AlexNet 80% 20
GoogleNet | 84% 20
VGG16 85% 20
VGG19 84% 20
ResNet50 | 85% 20
ResNet101 | 85% 20
DenseNet | 88% 20
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Table 2: Comparison of CNN architectures performance on National Data Science Bowl

dataset (Cheng et al., 2019)

Cheng, National Data Science

Bowl dataset, architecture | No of

benchmark Classes
AlexNet 85% 7
GoogleNet | 87% 7
VGG16 87% 7
VGG19 87% 7
ResNet50 | 88% 7

Training these CNN networks for classification can be done in many ways, but the last layer
CNN is usually flattened and used as a classification layer at the end of the network. The
convolutional layer weights are updated based on the loss function result achieved in the
classification layer; this eventually yields various filters specifically trained to distinguish
between the different phytoplankton taxa. Once the model is trained, the output layer shown

in Figure 2.15 is removed or replaced with an Identity Matrix.
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Figure 2.15: Basic overview of a fine-tuned CNN architecture

The model is then used as a feature extractor outputting a higher dimensional vector
representing each ROI. These features can be used to cluster ROl data into groups. The

MorphoCluster algorithm discussed in the Section 2.5.2 utilizes a CNN model as a feature
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extractor. It applies Hierarchical Density-Based Clustering with Noise (DBSCAN) and marine

specialist annotation to classify plankton samples.

2.5.2 MorphoCluster

Schroder et al. (2020) proposed an efficient and accurate plankton image annotation software
tool called MorphoCluster, shown in Figure 2.16. This sub-section provides an overview of
how the MorphoCluster system works. The literature review chapter provides a more in-
depth breakdown of how the algorithms and techniques used within the MorphoCluster

system (like CNN, HDBSCAN, and transfer learning) work.

As shown in all the investigated methodologies for plankton classification, supervised learning
methods are only as effective as the data used to train them. In the field of plankton
taxonomy, there are over 4000 different species. Plankton is very biodiverse with many
different classes and minor intraclass differences. If utilizing only supervised techniques, the
algorithm could process classes of plankton not previously encountered by your network. This
presents the need for clustering data features extracted using convolutional networks and

identifying outliers (Salmaso, Naselli-Flores and Padisak, 2015).

Various clustering algorithms have been used to group the features extracted from the CNN
models. This is accomplished by training the model to classify the dataset, putting the model
into inference mode, and removing the final output layer of the model to yield a vector of
features extracted by the CNN. This high dimensionality can be reduced by methods such a

PCA or used as is with a higher dimensional clustering algorithm.

The MorphoCluster study conducted by Schroder et al. (2020) used a large dataset of 1 million
unlabelled images and 584 thousand labelled images. To train the feature extractor CNN, the
584 thousand labelled images were sorted into 65 classes. The labelled dataset was also
separated into 392 thousand samples for training and 192 thousand samples for validation.
The chosen CNN architecture used was a ResNetl8 network, which was trained on the
ImageNet dataset and then fine-tuned to the plankton classification task. The ResNet18

architecture achieved an accuracy of 0.738 on the validation set.
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The MorphoCluster algorithm uses the above-mentioned feature extractor to cluster the
entire dataset. The clustering performed is HDBSCAN, which by its nature and the selected
clustering parameters, initially only identifies the densest cluster regions whilst rejecting most
samples as noise. The initial detected dense regions of the feature space are used as the

cluster seeds for the next step of the algorithm.
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Figure 2.16: Overview of the MorphoCluster algorithm (Schrdder, Kiko and Koch, 2020)

The next part of the algorithm is called the cluster validation stage. Users are prompted by a
graphical user interface (GUI) to validate the cluster purities. This is accomplished by
presenting the user with each identified cluster, one by one. The samples within the detected
cluster are presented so that the two most dissimilar samples within the cluster are shown

next to one another. The user can then choose to validate the cluster as pure or impure.
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Samples within the impure cluster are returned to the unclustered set of data

the GUI is shown in Figure 2.17.
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Figure 2.17: MorphoCluster validation GUI (Schréder, Kiko and Koch, 2020)

The cluster growing step allows users to investigate the boundaries of the identified pure

clusters. Objects deemed to exhibit similar features to the cluster seeds are then displayed to

the user in descending order of similarity. The user then moves through the list of

recommended samples until the samples no longer represent the clusters. As there are

potentially many samples the user would have to traverse, the algorithm uses a binary search

to speed up the process. Once the user encounters and indicates that the proposed samples

no longer belong to the cluster, the algorithm moves to the next pure cluster seed. The

samples associated with a cluster are removed from the unclustered set.

In the next iteration of the algorithm, the HDBSCAN parameters are reduced to find smaller

dense regions of data points. This more conservative clustering and the lower amount of

samples present allow the algorithm to find more fine-grained details between the clusters.

This process is repeated until all the samples belong to either a cluster or are deemed as noise.
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The algorithm then presents the clusters to the user to be named and ranked hierarchically.

The clusters with the same name are merged.

MorphoCluster is a highly effective method for plankton annotation and achieves 95%
accuracy on the validation set. This method outperforms any plankton classification methods
discussed. However, it is not fully autonomous and therefore still requires the laborious task

of researchers having to spend hours manually classifying samples (Schréder, Kiko and Koch,

2020).
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3 Literature Review

This chapter provides an in-depth literature review of machine learning concepts researched
in Chapter 2 and implemented in Chapter 4. Section 3.1 introduces convolutional neural
networks. Here, the general workings, various layers, and loss functions are discussed of a
CNN are discussed. Section 3.2 presents the problems encountered by a CNN and the
optimization techniques used to solve them. Section 3.3 provides an overview of the current
state-of-the-art CNN architectures used in most of the considered studies. Section 3.4
discusses how CNNs are evolved to extract spatial features from the datasets used to train
them. This section also highlights the effectiveness of CNNs to extract features and introduces
the various techniques used to augment and transform image data into more consumable
objects. Section 3.5 introduces the use of unsupervised machine learning techniques,
including dimension reduction and clustering. Section 3.6 concludes the chapter and brings
together all the concepts from chapters 2 and 3 to provide a basis for the investigations

undertaken in the proceeding chapters.

3.1 Convolutional Neural Networks

3.1.1 Introduction

Convolutional neural networks (CNN) are different to the more traditional feed-forward
neural networks in that they are not only made up of fully connected (FC) layers. FC layers are
explained in detail later in this section. Their basic principle is that the output of every neuron
within a layer is connected to the input of every other neuron in the next layer. An example
of a multilayer perceptron composed only of FC layers is shown in Figure 3.1. A CNN is defined
as a neural network where at least one of the FC layers is replaced with a specialized
convolutional layer. A typical CNN is constructed by first using convolutional layers and then
ending the network with FC layers. These layers are also explained in further detail in Section

3.1.2.
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Figure 3.1: Example of a multilayer perceptron with FC layer (Zahran, 2021)

In the field of computer vision, researchers attempt to bridge the gap between the human
visual cortex and the abilities of machines to mimic this characteristic. This is done by
visualizing all images as just a set of pixels with varying intensities, as shown in Figure 3.2.
Initially, researchers would convert the image of interest into its relative pixel values, flatten
the resultant matrix into a single row vector representation of the image, and then train
multilayer neural networks on these as two-dimensional pixel vectors. The loss of spatial
information when performing this sort of image transformation results in only simple binary
images being classified at relatively poor levels of accuracy. In the case of images that have
RGB (red, green and blue) channels representing the pixel values and larger dimensions, using
multilayer perceptrons to process these images becomes exponentially more expensive to

compute.
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Figure 3.2: Visualizing an image of a "1" as pixel values

The CNN, also known as ConvNets, was first introduced by Yann LeCun in 1980. The challenges
experienced by the founders of the idea were linked to the limited computing power available
at the time. The first real advancement toward achieving state-of-the-art results using
ConvNets was when Krizhevsky et al. (2012) proposed AlexNet ConvNets, unlike the
multilayer perceptron, make use of filters to identify features of the input image. Each CNN
applies up to thousands of different filters and feeds them to the next layer (Krizhevsky,

Sutskever and Hinton, 2012). An example CNN is shown in Figure 3.3.

Convolutional Layer
(Four Filters)

Fully-Connected

Local Receptive Layer

Field 4 “:jl\ .
Pooling(a;ar N ~~ﬁ

Feature Extraction Prediction

Figure 3.3: Convolutional neural network example (Millar et al., 2019)
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The goal of ConvNets using this filtering methodology is to reduce the input image into a much
simpler, processable form without losing any crucial information. ConvNets use convolutional
layers, which use convolution operations to generate representative feature maps of the
original image. The main advantage of using ConvNets is that they automatically learn the
values of these filters by using the low-level features to detect higher-level features,
eventually allowing the CNN to make predictions regarding the input image. This a known as
compositionality. Another key benefit to the application of ConvNets is their local invariance.
No matter the location of the object of interest within the image, the ConvNets will still be
able to identify the regions with high responses to a certain filter. The next section explains

what convolutions are and how the ConvNets convolutional layers work.

3.1.2 Convolutional Layers

Convolutional layers are the building blocks of ConvNets. They are made up of small square
templates called convolutional kernels. These kernels are slid across the input image to detect
certain patterns in the image’s pixel values, as shown in Figure 3.3 and Figure 3.4. To explore
the working of convolutional layers, this section starts by covering two essential topics:

kernels and convolutions.

Convolutions are generally denoted by the *operator. The mathematical expression
representing a convolution of a two-dimensional image X and a two-dimensional kernel Y is

shown in equation 1.

260 = XN ) Y Vitmj+mXmn)

Where i and j represent the actual position of the centred pixel and m and n represent the
size of the image. As shown in Equation 1, images convolved with kernels produce new
representations of the original image. This can be done in many ways. Traditionally, hand-
crafted kernels are used to perform various image processing functions. Some of these

functions include blurring, sharpening and edge detection. Figure 3.4 shows an example of
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how convoluting a two-dimensional image of a cross with a two-dimensional kernel is built to

detect horizontal lines.
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Figure 3.4: Convoluting an image of a cross with a horizontal line-detecting kernel
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Figure 3.5: Example showing the sliding kernel

As shown in Figure 3.4, areas within the image (larger matrix on the left) that match the
convolutional kernel return increasingly larger values based on their similarity. Areas of the
input image that do not match the convolutional kernel template output small values or even
zero. From Equation 1, Figures 3.4 and Figure 3.5 convolutions are the sum of element-wise
matrix multiplication between a convolutional kernel and the area that the kernel is currently

occupying within the target image.

To ensure that the spatial dimension of the input image is kept in the resultant output, a

concept called padding is applied. Pixels sitting on the edge of the input image, under normal
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circumstances, can never be considered as the centre point of the sliding kernel. This
ultimately leads to ever decreasing output sizes depending on the size of the kernel filter
being applied. Padding is a technique that replicates pixels on the border of the image so that

the relevant kernel can be applied to the edges of the original input.

The stride of a kernel is defined as the step size of the kernel when sliding through the image.
Equation 2 shows how the parameters such as stride, padding, input image volume and kernel
size affect the output volume of the convolution function.
Size(X) — Size(Y) + 2P

5 +1

Where S represents the stride, and the padding is shown as P. In general, setting the padding

Size(Z) = @)

as shown in Equation 3 and the stride as 1 ensures that the output size of Z is the same as the

input size of X.

p (Size(lzf) -1

(3)

Convolutional layers are made up of the kernel filters described above, except that the kernels
used in these layers are called learnable kernel filters. Each filter has a width and a height,
and as the kernels and images are usually square, the resultant filter is also square. A set of
filters is also known as the layer's depth. An example of this is an input image to a CNN that
has three channels: Red, Green and Blue (RGB) has a depth of 3. For filters deeper in the
network, the depth is dependent on the number of filters from the previous layer. Figure 3.6
shows how the depth of the activation map is equal to the number of learnable filters in the

current layer.

During a forward pass of the network, every filter is convolved across the input volume, and
as shown in Equation 1, a two-dimensional output activation map of the filter is produced.
Every output activation map is essentially a neuron that inspects small regions of the input,
learning new filters that activate when they encounter certain features. Earlier in the
network, the filters may start when they encounter more rudimental features such as corners
or edges. Deeper layers are dependent on previous layers and may activate more detailed
features such as certain identifiable parts of the image, including the tails or legs of plankton

samples.
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l N, number of kernel filters

g Every kernel gets convolved with input image
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Figure 3.6: Process of convolutional layers

ConvNets are built by stacking these convolutional layers within sequence with pooling layers,
activation layers, and FC layers. When training the ConvNet, a sample labelled image is passed
through the network. These other types of layers are described in the next section along with

network optimization layers, namely dropout and batch normalization layers.

3.1.3 Pooling Layers

As described in Section 3.1.2, the convolutional layers are essentially just a stack of feature
maps. The deeper the network, the more detailed features can be identified by the filters.

Training ConvNets on more complicated datasets with many classes will require more filter
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maps; each filter map is responsible for finding a certain pattern in the image. Increasing the
number of filters increases the size of the convolutional layer stack, which subsequently
increases the dimensionality of the convolutional layers. This higher dimensionality means
that more parameters are necessary, and this can lead to overfitting the data. The concept of
overfitting is described in Section 3.1.8. Pooling layers are used to reduce the dimensionality
of deeper networks. There are different types of pooling layers, the most common being the
max pooling layer. Max pooling layers take the resultant feature maps produced by the
convolutional layers and reduce them to smaller representative feature maps, as shown in

Figure 3.7.
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Figure 3.7: Max pooling with a 2 x 2 window size and a stride of 2

As with convolutional layers, max pooling layers also use a window size (like kernel size in
convolutional layers) and a stride parameter. Starting at the top left of the input feature map,
the max pooling layer slides a kernel over the feature map, in each step taking the maximum
value of the containing pixels. In the case of the example shown in Figure 3.7, the resultant
feature map is half the width and height of the original input. Other types of pooling layers

include global pooling and average pooling. In global pooling, the average value of the entire
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input feature map is used. Average pooling uses the same idea as max pooling except that

instead of using the maximum value, an average value of the kernel contents is used.

3.1.4 Activation Layers

Activation layers are not actual layers like convolutional layers or pooling layers, as no weights
or parameters are learnt inside these layers. However, researchers tend to include them in
network architecture diagrams to clarify which type of activation function is being used.
Activation functions are used to determine the output of a layer within a neural network and
constrain the resulting value within a specified range depending on the function. ConvNets
use nonlinear activation functions, including a rectified linear unit (ReLU), as shown in Figure
3.8, and Leaky RelU, as shown in Figure 3.9. Generally, these functions are applied
immediately following convolutions. Nonlinear activation functions allow models to adapt
better and generalize a diverse amount of data as well as differentiate between outputs

(Millar et al., 2019).
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Figure 3.8: ReLU activation function
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The Relu activation function shown in Figure 3.8 is the most used activation function in deep

learning, with a range from 0 to infinity, as shown in Equation 4.

R(z) = max (0,2) (4)
The activation function forces any negative values to become zero. However, sometimes this
characteristic decreases the ability of a model to fit the dataset. The Leaky ReLU shown in

Figure 3.9 was proposed to counteract this problem.
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Figure 3.9: Leaky RelLU activation function

The leaky ReLU function allows for a small positive gradient when the unit is not active, as

shown in Equation 5.

R(z) = max (0.1 * z,z) )
The activation layer takes an input volume of feature maps and applies its designated
activation function. The output of the activation layer is always the same size as the original

input.
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3.1.5 Fully Connected Layers

A fully connected layer's job is to connect the input it sees to a desired form of output. In the
case of ConvNets, this means converting a matrix of image features into a feature vector
whose dimensions are 1 x C where C is the number of classes. As an example, consider using
an FC layer to sort images into ten classes. Given a set of pooled and activated feature maps
as input, the FC layer uses a combination of these features (multiplying them, adding them,
combining them, etc.) to output a 10-item-long feature vector. This vector compresses the
information from the feature maps into a single feature vector. An example of a fully
connected layer is shown in Figure 3.1. FC layers are typically found at the end on ConvNets
and are used to relate the extracted feature maps from the convolutional part of the network
to a certain output prediction. Using loss functions, the result of the last fully connected layer
backpropagates the error between the true value and the predicted value back along with the

entire network.

3.1.6 Loss Functions

Loss functions are used in supervised neural networks to provide algorithms with a method
of dealing with deviations in the predicted output from the expected output. There are many

different loss functions, all suited to various situations.

The SoftMax function can take any vector of values as input and returns a vector of the same
length whose values are all in the range (0, 1) and, together, these values will add up to 1.
This function is often seen in classification models that must turn a feature vector into a
probability distribution. The SoftMax loss function is also known as Cross-Entropy Loss and is

very effective at binary and multiclass classification tasks.

The selection of which layers to use with which loss functions are the building blocks of
successful deep learning networks. However, neural networks still need to be optimized
because, in most instances, there is no “one size fits all” model. Some of the significant
problems experienced by neural networks and the techniques available to optimize them are
discussed in the Section 3.1.6.
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3.1.7 Vanishing and Exploding Gradients

Backpropagation is the technique used in multi-layer neural networks to recursively calculate
the contribution of each weight in every layer of the network to the total error calculated by
the loss function in the output layer of the network. As shown in Figure 3.10, backpropagation

uses partial derivatives to calculate the associated error with the node under consideration.

In larger neural networks with more than one hidden layer, the error associated with the first
nodes in the network is calculated with respect to all the other nodes later in the network
that feed it. This is accomplished by multiplying these partial derivatives with one another.
The use of activation functions on every neuron saturates the output values to within certain
ranges. Sigmoid activation functions, for example, saturate the outputs to a value between 1
and -1. Calculating the error using the dot product of partial derivatives with values within
that range eventually results in extremely small error gradients. This is called the vanishing

gradient problem.
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Figure 3.10: Principles of forward pass vs backward pass in neural networks

ConvNets typically use ReLU or Leaky RelLU activation functions to counteract the vanishing

gradient p