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 Abstract 

 

Plankton taxonomy is considered a multi-class classification problem. The current state-of-

the-art developments in machine learning and phytoplankton taxonomy, such as 

MorphoCluster, include using a convolutional neural network as a feature extractor and 

Hierarchical Density-Based Clustering for the classification of plankton and identification of 

outliers. These convolutional feature extraction algorithms achieved accuracies of 0.78 during 

the classification process. However, these feature extraction models are trained on clean 

datasets. They perform very well when analysing previously encountered and well-defined 

classes but do not perform well when tested on raw datasets expected in field deployment.  

Raw plankton datasets are unbalanced; whereas some classes only have one or two samples, 

others can have thousands. They also exhibit many inter-class similarities with significant size 

differences. The data can also be in the form of low-resolution, noisy images. Phytoplankton 

species are also highly biodiverse, meaning that there is always a higher chance of a network 

encountering unknown sample types. Some samples, such as the various body parts of 

organisms, are easily confused with the species itself. Marine experts classifying plankton 

tend to group ambiguous samples according to the highest order to which they are confident 

they belong. This system leads to a dataset containing conflicting classes and forces the 

feature extraction network to overfit when training. 

This research aims to address these spatial issues and present a feature extraction 

methodology built upon existing research and novel concepts. The proposed algorithm uses 

feature extraction methods designed around real-world sample sets and offers an alternative 

approach to optimizing the features extracted and supplied to the clustering algorithm. The 

proposed feature extraction methods achieved scores of 0.821 when tested on the same 

datasets as the general feature extractor. The algorithm also consists of Auxiliary SoftMax 

classification branches which indicate the class prediction obtained by the feature extraction 

models. These branches allow for autonomous labelling of the clusters formed during the 

HDBSCAN algorithm being performed on the extracted features. This results in a fully 

automated semi-supervised plankton taxonomy pipeline which achieves a classification score 

of 0.775 on a real-life sample set. 
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1. Introduction 

 

1.1 Introduction 

 

Plankton taxonomy is a field of research where marine experts collect, analyse, and annotate 

various samples of particles freely floating in aquatic systems around the globe. Plankton 

makes up almost 70% of the earth's oxygen supply. Monitoring the movement and occurrence 

patterns of this organism is crucial to understanding the world in which humans live. Plankton 

samples occur in abundance, along with other floating particles in the same environment. 

There are many methods used to observe these planktonic trends including in-field and in-

laboratory observation techniques (Bi et al., 2015). Although effective for obtaining samples, 

these methods all suffer from the lack of an efficient autonomous class identifier.  

Recently, deep neural networks such as convolutional neural networks have taken over from 

traditional computer vision techniques for plankton feature extraction and identification. 

These networks are trained under supervision and find inherent and underlying features of 

plankton without the need to hand-engineer the features as was previously done (Correa et 

al., 2016). Even more modern methodologies, such as MorphoCluster proposed by Schröder 

et al (2020), utilize an unsupervised clustering method on top of a convolutional feature 

extractor to find underlying patterns within the data, thus aiding researchers with a semi-

automated, semi-supervised approach (Schröder, Kiko and Koch, 2020). While many plankton 

taxonomic methods have been proposed, all the investigated methods suffer from a single 

drawback: they are not trained to handle real-life plankton sample sets.  

The need for an automated plankton classification algorithm robust enough to handle real-

life sample sets led to the research objective presented in Section 1.2. Section 1.3 provides a 

discussion of the research objectives for this study followed by an outline of the contributions 

envisioned in Section 1.4. Section 1.5 provides an overview of the structure of this 

dissertation, highlighting the topics in each proceeding chapter. 
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1.2 Problem Statement 

 

Deep learning algorithms for plankton taxonomy are usually trained on clean datasets and do 

not meet satisfactory performance levels when tested on real-life sample sets. This is because 

plankton datasets are noisy, unbalanced and contain many classes that exhibit similar 

features. Training a single convolutional network as a feature extractor on raw plankton 

datasets results in overfitting and poor testing performance. Convolutional neural networks 

hard classify all considered samples and therefore do not provide an indication of which 

samples the classifier does not recognize. Current systems that attempt to solve these issues 

are inefficient and require human intervention throughout the entire process. To solve these 

issues a multi-feature extraction method with an autonomous clustering and identification 

algorithm is required.  

 

This dissertation proposes, implements, and evaluates an automated semi-supervised 

plankton taxonomy pipeline for real-world applications and conditions by analysing existing 

plankton taxonomy pipelines and algorithms, determining their underlying shortcomings, and 

combining existing and novel techniques to improve performance. 
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1.3 Research Objectives 

 

The purpose of this investigation is to develop an autonomous classification algorithm for 

plankton taxonomy that is robust enough to be used on real-life sample sets. 

Before any research can be conducted to investigate an automated semi-supervised plankton 

taxonomy pipeline for real-world applications, it is vital to first investigate existing systems 

used to perform the same task and analyse why they don’t perform well in real-life situations. 

The first research objective is, therefore: 

 

1.3.1 Research objective one: Investigate existing plankton taxonomy 

pipelines 

 

Research on plankton taxonomy systems is increasing exponentially. Grasping the concepts 

that have been applied, and their advantages and relevant pitfalls, provides deep insight into 

the mismatch between reported network accuracies in training versus real-life application. 

Objective two is built upon this understanding. 

 

1.3.2 Research objective two: Determine the underlying performance lapses 

in modern plankton taxonomy techniques 

 

While modern plankton taxonomic techniques showcase relatively high laboratory results, a 

reality gap is present that renders the real-life application of the investigated automatic 

algorithms impractical. There are several algorithms available to increase the performance of 

these techniques so that they can be applied effectively. These algorithms need to be 

implemented and evaluated on real-life datasets. This leads to research objective three. 

 



19 
 

1.3.3 Research objective three: Propose, implement, and evaluate a binary 

classification CNN for detritus identification 

 

Identifying samples belonging to classes that exhibit large intra-class differences in real-life 

plankton sample sets would allow for the practical implementation of general plankton 

classification networks. Decreasing the number of learnable sample classes from a network's 

training process increases the accuracy and speed of the network in dealing with specific 

subsets. This leads to research objective four. 

 

1.3.4 Research objective four: Propose, implement, and evaluate a biological 

group-based classification CNN for plankton identification 

 

Breaking the real-life dataset into biologically related subsets would increase the ability of 

deep learning methods to distinguish between samples belonging to classes with high spatial 

similarities and those with minor inter-class differences. The combination of research 

objectives three and four is the fifth research objective. 

 

1.3.5 Research objective five: propose, implement, and evaluate the 

combination models trained with binary and subclass groupings for 

plankton identification 

 

Once the data-driven classification networks outperform the general architecture on their 

respective classes, these models need to be combined to deliver an enhanced feature 

extraction methodology. This feature extractor is envisaged to supply features with a 

clustering algorithm and will be used to supervise cluster labelling. The final research 

objective, therefore, is: 

 



20 
 

1.3.6 Research objective six: Propose, implement, and evaluate automated 

semi-supervised plankton taxonomy pipeline for real-world application 

 

Finally, the extensive feature extraction network would be used to cluster the resultant 

features and use auxiliary classification branches and their associated probability scores to 

label the resulting clusters. The final outcome should be a real-life, data-driven, automated 

plankton taxonomy pipeline.  

1.4 Contributions 

 

In addition to the overall objectives, this research sought to bridge the gaps in related 

research where similar applications in the field of plankton taxonomy failed to perform 

efficiently. The research contributed towards the furtherment of previous literature as 

follows:  

1. Created and restructured a dataset comprised of many different plankton 

classes, including all particles found in a real-life data sample. The noisy 

samples are the reason all automated plankton studies fail when used in 

real-life deployment. 

2. Trained multiple neural networks specifically designed to extract more 

relevant features from classes previously disregarded in other studies. This 

allows for distinguishable patterns even for non-plankton samples 

occurring in abundance in real-life sample sets. 

3. Stacked all the trained models into a single feature extraction model and 

clustered the resultant feature vector, similarly to how the MorphoCluster 

system uses a generalized feature extractor trained on a cleaner dataset. 

4. Utilized the classification class score obtained within the individual specific 

feature extractors to label the resultant clusters automatically. This 

resulted in a semi-supervised automatic plankton taxonomy pipeline for 

real-life applications. 
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Publication: 

du Toit, I. (2021) ‘Enhanced Deep Learning Feature Extraction for Plankton Taxonomy’, 

Proceedings of the International Conference on Artificial Intelligence and its Applications, pp. 

1–8. doi: 10.1145/3487923.3487930. 

 

1.5 Dissertation Layout 

 

This section provides a brief overview of each chapter. A graphical representation of the 

structure of this dissertation is shown in Figure 1.1. 

 

1.5.1.i Chapter 2 – Background 

 

Chapter 2 presents a study on plankton. It introduces the importance of plankton and how 

researchers collect, analyse, annotate, and store the various samples. The chapter then 

investigates the different methodologies applied in the field of plankton taxonomy as well as 

research results stemming from the turn of the century up until today. 

 

1.5.1.ii Chapter 3 – Literature Review 

 

Chapter 3 presents a review of the machine learning topics relevant to the research 

investigated. It highlights various supervised and unsupervised methodologies in a way that 

shows how they build off one another. 

 

1.5.1.iii Chapter 4 – Experimental Methodology 

 

Chapter 4 discusses the thought process behind each investigation undertaken in this study. 

It presents brief overviews of the individual studies, how they link to each other, the dataset 
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used, and the evaluation criterions used to validate the performance of the relevant 

investigations. 

 

1.5.1.iv Chapter 5 – Investigation A 

 

Chapter 5 presents results of a binary classification network for classes exhibiting large intra-

class spatial differences. 

 

1.5.1.v Chapter 6 – Investigation B 

 

Chapter 6 presents results of multiple classification networks trained on specific subsets of 

the original dataset containing classes with high inter-class similarities. 

 

1.5.1.vi Chapter 7 – Investigation C 

 

Chapter 7 presents results of clustering performances on the original dataset, comparing the 

multi-network feature extractor to a general feature extractor trained on a cleaned dataset.  

 

1.5.1.vii Chapter 8 – Investigation D 

 

Chapter 8 presents results of using the multi-network feature extractor auxiliary classification 

branches to automatically label the obtained clusters. 
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1.5.1.viii Chapter 9 – Conclusions 

 

The final chapter draws conclusions from the investigations and provides recommendations 

for future research. 

 

1.5.1.ix Appendix A 

Appendix A provides an overview and breakdown of the original real-life dataset. 

 

1.5.1.x Appendix B 

Appendix B shows extracts of the confusion matrices obtained during testing.  

1.5.1.xi Appendix C 

Appendix C contains various samples of the code used throughout the investigation. 
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Figure 1.1: Dissertation layout 
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2 Background 

 

2.1 Plankton Imaging and Acquisition Methods 

  

The acquisition of plankton image data remains a focus of marine researchers and 

technologists. Plankton occurs in abundance and is generally omnipresent in all ecological 

aquatic systems. Studying these organisms, no matter what technology is used, takes 

relatively long periods. Marine researchers have, however, developed numerous 

technologies to acquire plankton image data such as the ZooSCAN images shown in Figure 

2.1. 

These technologies generally fall within one of two categories: In situ and ex situ systems. In 

situ methods, such as the Underwater Vision Profiler (UVP) system shown in Figure 2.2, allow 

researchers to analyse plankton samples in their natural environment. Section 2.1.1 highlights 

the most commonly used In situ plankton observation technologies available.   

 

Ex situ methodologies are the main consideration of technologies used in this research. Ex 

situ technology such as the ZooSCAN, shown in Figure 2.4, allows researchers to analyse 

Figure 2.2: Underwater Vision Profiler (Underwater Vision 

Profiler (UVP) - OceanNet, 2020) 

 

Figure 2.1: ZooSCAN plankton images 
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plankton samples outside their natural environment, for example, in laboratories. These 

methods are discussed in more detail in Section 2.1.2.  

 

 

2.1.1 In situ methods 

 

In situ technologies are at the forefront of plankton image data acquisition and analysis 

studies. These methods allow for in-place monitoring of plankton, which ultimately saves a 

lot of time (Bi et al., 2015). The systems briefly discussed in this section include FlowCytobot 

and the UVP (Underwater Vision Profiler). 

The FlowCytobot, shown in Figure 2.4, generates images of particles using flow cytometry and 

video technology. Once deployed, the FlowCytobot pushes a constant stream of water 

through a thin tube. Using flow cytometry technology (McKinnon, 2018), it employs a laser 

beam to create fluorescent light signals. These light signals cause live plankton cells to 

illuminate due to the presence of chlorophyll (Matz et al., 1999). A camera records the 

illuminated cells, and the video data is sent to shore for analysis.  

Figure 2.3: ZooSCAN ( ZooSCAN | EMBRC France, 

2010) 
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The Underwater Vision Profiler, shown in Figure 2.2, uses red light emitting diodes (LED) and 

computerized optical technology to analyse plankton data at depths reaching up to 6000 

metres. The UVP makes use of 100 µs flashes to illuminate an area of 4 x 20 cm with custom 

red LED lighting and takes an image using a high-quality camera. The UVP returns a sample 

image representation equivalent to 1 litre of water (Ramondenc et al., 2016). The image data 

can then be monitored almost in real-time on the ship deploying the UVP. Image data is stored 

on hard drives for later analysis in a laboratory.  

 

In situ methods provide a less time-consuming way to analyse plankton data. However, these 

techniques are still relatively new, so their effectiveness is diminished by image quality. Low 

resolution negatively affects how well machine learning algorithms perform in the 

identification of plankton classes.  

  

Figure 2.4: FlowCytobot 
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2.1.2 Ex situ methods 

 

Ex situ methods such as the ZooSCAN system provide a better means of collecting plankton 

samples for the training and testing of machine learning algorithms. This is because the 

samples being processed are not moving and are in a closed environment allowing for high 

resolution still images. 

 

2.1.2.i Sample Acquisition 

 

For ex situ methods, marine researchers must manually catch plankton samples using various 

techniques. The most popular technique involves using a plankton net, shown in Figure 2.5. 

The netting is usually made of nylon, a material that allows water to pass through whilst being 

fine enough to capture the organisms. The net is moved through a body of water of interest 

by hand or with assistance from some form of vessel. The samples are stored in vials with a 

volume of 1 litre. Researchers in a marine science laboratory then process the vials one by 

Figure 2.5: Plankton net (‘Estuary Education Resources 

Catching Plankton Estuary Concept’, 2012) 
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one using systems like the ZooSCAN. How the ZooSCAN system processes the samples is 

explained in more detail in the following section. 

 

2.1.2.ii ZooSCAN and ZooProcess 

 

ZooSCAN and ZooProcess form an integrated system for ex situ digital plankton image 

acquisition. The ZooSCAN, shown in Figure 2.3, is the hardware component of the system and 

is comprised of two waterproof elements: the top cover and the base. The top cover is 

responsible for even illumination of the sample under consideration and measurement of the 

sample medium's resistance to the transmission of light through an optical density reference 

cell. The base of the ZooSCAN is where the sample is loaded. It contains a high-resolution 

imaging device and a drainage passage for sample recovery (Gorsky et al., 2010). 

The ZooProcess is the software component of the system. It is responsible for the scanning, 

normalization, and object detection of plankton samples. A breakdown of the process is 

shown in Figure 2.6.  

Figure 2.6: Overview of ZooProcess 
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The ZooProcess starts by calibrating and determining the grey level of the background image. 

This should be performed daily so that researchers can calibrate the ZooSCAN instrument by 

comparing new background images to those obtained previously. Once a sample is loaded 

into the ZooSCAN system, the ZooProcess measures the grey levels and compares them to 

the calibrated value. Overlapping organisms cause problems for vision algorithms, so when 

samples are loaded, researchers separate and move them using a small stick-like apparatus 

until all they are visually isolated. Particles along the sides of the frame are discarded by the 

vision algorithm.  

  

 

 

ZooProcess proceeds to extract the regions of interest (ROI) from the sample and archives 

them individually in a folder. It also associates the relevant metadata defined by the 

researcher conducting the scanning process. This metadata contains information about the 

entire sample set, including location and time data. The ZooProcess also measures the 

extracted ROI and includes this data along with the metadata in a Logfile. An example of the 

extracted ROI is shown in Figure 2.7. 

The ZooProcess then feeds a standalone application called Plankton Identifier (PkID). This 

software makes use of more traditional computer vision techniques to predict the class of 

plankton. These techniques and a more in-depth description of the plankton classes are 

Figure 2.7: Example of raw ZooSCAN image 
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discussed in the following sections. An overview of the ZooSCAN process is shown in Figure 

2.8. 

 

 

Figure 2.8: ZooSCAN dataflow overview 

 

 

2.2 What are Plankton? 

 

As an ecological contributor, plankton plays a vital role in aquatic ecosystems and falls at the 

base of the food chain. Plankton also drives carbon and nutrient cycles, thus influencing global 

biochemical processes (Keister et al., 2012). Dating back 2.4 billion years ago, they are the 

original contributors to our oxygen-rich atmosphere, giving rise to every living organism on 

Earth (Falkowski et al., 2004). 

Plankton, like plants, make their energy through photosynthesis, consuming carbon dioxide 

and producing oxygen. Their mass consumption of carbon dioxide maintains low acidity levels 
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of oceans and thus the normal function of all associated systems. They are still the number 

one contributors to the Earth’s oxygen level, contributing to an estimated 80 per cent of the 

planet’s total oxygen supply. Plankton also drives other global nutrient cycles such as the 

nitrogen, iron, sulphur, and phosphorus cycles (Falkowski, 2012). 

Plankton is the organic matter that most oceanic organisms use as their energy supply. Thus, 

it directly or indirectly affects every aquatic ecosystem. Since 1899, there has been a 

cumulative loss estimated at 40 per cent of plankton worldwide. This loss could be attributed 

to many different contributing factors, including increasing ocean surface temperatures (Loeb 

et al., 2021).  

Some plankton has a direct impact on all other creatures on earth. Dense blooms of these 

organisms can drain the oxygen from aquatic systems, in turn suffocating other organisms 

that share the same environments. Some of these blooms of plankton, known as harmful algal 

blooms (HAB), can expose humans, whales, and aquatic creatures to fatal toxins. This results 

in significant economic loss every year in the seafood industry and tourist communities 

(Schmale et al., 2019). The analysis of plankton demographics is crucial to understanding the 

current state of our world. Various methods have been proposed to acquire and analyse 

plankton samples. These methods are discussed in Section 2.1. Section 2.3 provides an 

introduction on how the various plankton organisms are categorized. 

2.3 Plankton Taxonomy 

 

Researchers in most biological fields tend to order living organisms into a Linnaean system of 

classification. In other words, researchers group living organisms based on species the 

organisms are closely related to. This grouping is called a taxon. Taxa are assigned a taxonomic 

rank and then split into smaller groups that form a tree-like structure. The overview of the 

taxonomic ranking is shown in Figure 2.9 and starts with the kingdom at the top, which for all 

multicellular living organisms on earth is the kingdom Animalia. As one progresses down the 

pyramid, the diversity of organisms at each level increases. At the base of the pyramid shown 

in Figure 2.10 is the group called species. Plankton from the same species could have evolved 

independently with different ecological adaptions. Where plankton researchers are still 
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unsure if well-defined species exist, they tend to divide them into groups at higher 

hierarchical levels. 

 

 

Plankton is divided broadly into three different phylum                                                                                                                                                                                     

. These are phytoplankton, zooplankton and bacterioplankton. The phytoplankton group 

represents approximately ten different classes from four different kingdoms and can vary in 

sizes from one millimetre to one micron in length. They also exhibit various shapes and 

textures, all of which are used to identify which species of phytoplankton they belong to. 

Zooplankton and bacterioplankton are also classified based on their varying features. The 

World Register of Marine Species (WoRMS) provides a comprehensive list of all marine 

organisms, including their scientific names and household names, to guide the interpretation 

of most taxonomic literature. WoRMS is maintained by taxonomic experts, and new 

information is added daily to keep the system up to date.  

Marine specialists utilize technology like the ZooSCAN system described in the sections above 

to collect, identify, and count plankton samples. These sample classifications are validated 

using the WoRMS platform and then stored along with their metadata in an online database 

called EcoTaxa. 

Figure 2.9: Taxonomic ranking (top-down view) 
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2.3.1 EcoTaxa 

 

EcoTaxa is an extensive online database and web application dedicated to the visual 

exploration and taxonomic annotation of planktonic biodiversity (Picheral, Colin and Irisson, 

2017). The database houses over 160 million plankton images from researchers and facilities 

all over the world. The web app allows marine researchers and general enthusiasts to explore, 

download and contribute to the database in multiple research projects. An example of the 

web app interface is shown in Figure 2.10. 

 

 

Figure 2.10: EcoTaxa Interface 

 

The EcoTaxa web application being utilized along with the ZooSCAN system is shown in Figure 

2.11. Large databases with many contributors, such as EcoTaxa, are prone to mislabelling and 

human error. Therefore, EcoTaxa and ZooSCAN come equipped with their own plankton 

identification components, which use machine learning algorithms to classify plankton ROI 
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into their respective classes. The machine learning methodologies used in these applications 

are based on more traditional hand-selected feature engineering techniques and achieve 

accuracies, on average, of about 50 per cent. These low accuracies result in researchers 

having to validate all the prediction results, essentially rendering the entire automatic 

annotation process unnecessary. This process of annotation validation is the bottleneck in 

plankton analysis related to processing time. 

 

The following sections investigate various computer vision techniques used to classify 

plankton into their relative taxonomic groupings. Starting with the more traditional hand-

selected feature-based methodologies, Section 2.4 gives insight into the algorithm 

architectures and their relative performances. Section 2.5 then introduces the newer deep 

learning and clustering methods used in current state-of-the-art systems and how they 

measure up in terms of performance. A breakdown of how modern machine learning 

techniques work is discussed further in the literature review (Chapter 3). 

Figure 2.11: ZooSCAN Workflow using 

EcoTaxa 
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2.4 Feature Engineering-Based Plankton Classification 

Techniques 

 

Before the wide adoption of modern deep learning methodologies, marine researchers used 

more traditional computer vision techniques to extract visual features from plankton image 

data. This section briefly introduces these techniques and the machine learning models that 

produce predictions based on the engineered features. This section also highlights the results 

achieved by these machine learning algorithms to compare their ability to classify plankton 

samples with modern deep learning techniques. 

 To apply more traditional machine learning methods to plankton images, a comprehensive 

amount of feature engineering must be performed. This includes extracting geometric, 

greyscale and texture features. Some geometric or morphological feature extraction methods 

include corner detection, curve fitting, and edge detection, which allow size, area, and 

elongation calculations. Greyscale feature extraction methods utilize image pixel values that 

range between 0 and 256 in intensity. Greyscale features, otherwise known as statistical 

features, include the pixel values' sum, mean, and standard deviation. Texture feature 

extraction methods, such as the Gabor filter shown in Figure 2.12, act as a bandpass filter that 

convolves an image highlight and extracts texture patterns within the original image.  

Figure 2.12: 16 Gabor filters for texture detection at different angles (Shah, 2018) 

The above-mentioned feature extraction techniques, although highly effective, require 

extensive parameter selection and are susceptible to changes in the environment processing 
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the images. Machine learning algorithms that have been used along with these hand-selected 

features in plankton classification include support vector machines (SVM) and random forest. 

2.4.1 SVM 

 

Support vector machines are versatile machine learning algorithms that perform very well in 

regression and anomaly detection as well as linear and nonlinear binary classification tasks. 

The SVMs applied in most plankton classification instances use the hand-engineered feature 

extractors as described in Section 2.4 and perform nonlinear classification on the relevant 

data points representing each sample (Hu and Davis, 2005). These data points are in the form 

of a vector representing either one of two classes. SVM is a binary nonlinear classifier trained 

to determine a nonlinear hyperplane between the two different sample types. This is 

accomplished by a generalized dot product of the two vectors projecting the nonlinearly 

separable data into a higher-dimensional space where, according to Cover’s theorem, even 

nonlinearly separable datasets have a high probability of becoming separable. This 

generalized dot product is also known as kernel tricks, where different kernel functions make 

use of these dot products to solve for the SVM hyperplane optimization.  

Hu and Davis proposed implementing an SVM classifier for plankton features extracted using 

co-occurrence matrices (COM). COM extractors use pixel brightness to localize features from 

images. Their study involved a cleaned dataset comprised of 20 000 plankton images from 

seven different categories and achieved an accuracy of 0.74 (Hu and Davis, 2005). 

Lue et al. (2005) introduced a system called SIPPER, which took advantage of a one vs all style 

SVM. Their technique accomplished an accuracy of 0.90 on six classes (Luo et al., 2005).  

Sosik and Olson (2007) proposed combining geometric, texture, orientation invariant 

moments, diffraction pattern sampling, and co-occurrence matrix features. An SVM was used 

to classify the resultant features and achieved an accuracy of 0.88 on 22 different categories 

(Sosik and Olson, 2007).  
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2.4.2 Random Forest 

 

Decision trees, such as that shown in Figure 2.13 are the building blocks of the random forest 

algorithm. Decision trees aim to build models using training data to predict the value or class 

of target by learning simple choice rules. Decision trees comprise leaf nodes, internal nodes, 

and branches. Leaf nodes correspond to the class label or outcome. Internal nodes represent 

the features of the dataset, and branches represent the decision rules. The first decision node 

in the tree is called the root node. 

 

Figure 2.13: Example decision tree 

 

Decision trees are built in a way that minimizes their size. To achieve this, the algorithm uses 

information gain to decide which features to split at each step, thus producing the purest 

child nodes. Information gain measures the importance of certain features in the 

identification of a specific class. A standard measure of information gain is known as Gini 

Impurity. 

As shown in Figure 2.14, a random forest is a supervised machine learning algorithm that 

builds an ensemble of decision trees. The difference between random forest and decision tree 

algorithms is that the random forest algorithm randomly establishes root notes and leaf 

nodes r and uses the bagging method to render predictions. The bagging method takes 

advantage of a training dataset comprised of features with labels and uses multiple decision 
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trees that respond differently depending on the data fed to them. The root of each decision 

tree corresponds to a specific set of features from the dataset. For example, a single tree in a 

random forest algorithm could predict samples based on only geometric features. The final 

prediction of the random forest algorithm is an amalgamation of the predictions of all the 

decision trees that it comprises. 

 

 

Figure 2.14: Example of a random forest algorithm 

 

Grosjean et al. (2004) proposed the implementation of a random forest algorithm trained on 

two datasets of 1000 objects each. One of the datasets was divided into eight simplified 

classes, and the other dataset was divided into 29 more detailed classes. A supplementary 

algorithm was proposed to identify which samples had produced low confidence scores and 

needed manual validation from marine experts. The algorithm classified the geometric and 

greyscale features extracted from zooplankton with an accuracy of 0.75.  

ZooImage, a random forest plankton image analysis software, was proposed by Bell and 

Hopcroft (Bell and Hopcroft, 2008). The algorithm achieved a recall accuracy of 0.817 when 

classifying a cleaned dataset split into 53 different classes. The authors noted that the 

ZooImage algorithm did not accurately identify the underlying subphylum classes within the 

test sample's numerically dominant taxon called copepods. The best performance the 
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algorithm could achieve using hand-engineered features was classifying copepods as either 

large, medium or small (Bell and Hopcroft, 2008). 

Fernandes et al. (2009) made use of ZooImage to determine how different geometric and 

greyscale features affect the algorithm. The study showed that features such as the shape of 

samples are not indicative features. On closer inspection of the confusion matrix produced in 

the study, the shape characteristic attributed to large amounts of misclassification within the 

testing dataset. 

The studies conducted by Fernandes et al. (2009), Bell and Hopcroft (2008) indicated that the 

performance of machine learning algorithms used for plankton classification was highly 

dependent on the feature sets used. The feature engineering process requires much effort 

and poses challenges to research involved with introducing the system to new environments 

or introducing new classes to an existing system. Modern machine learning algorithms such 

as convolutional neural networks (CNN) have been successfully used to overcome the issue 

of feature engineering. Section 2.5 provides an overview of the performances achieved in 

studies that utilize these algorithms (Bell and Hopcroft, 2008; Fernandes et al., 2009). 

 

2.5 Existing Deep Learning Plankton Classification Systems 

 

This section highlights the performances of various automated deep learning plankton 

classification approaches. Most of the studies investigated have convolutional neural 

networks at their core. The literature review chapter discusses a deeper insight into how 

these networks and the unsupervised methodologies that use them work. 

 

2.5.1 Convolutional Neural Network Algorithms 

 

In 2017 Iago Correa et al. proposed using convolutional neural networks to classify 

microalgae. The study achieved an accuracy of 0.886 on a dataset acquired using the 

FlowCAM device. The dataset contained 29 449 samples belonging to 19 different classes. The 

CNN architecture used in the study was built using five convolutional layers and three fully 
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connected layers. The architecture also made use of ReLU activation functions, max pooling 

and dropout. (Correa et al., 2016). 

The success garnered in early studies using CNNs and further advancements in CNN 

architectures propelled large amounts of research into using CNNs to solve the plankton 

classification problem. In the same year, Dai et al. proposed a CNN architecture called 

ZooplanktoNet (Dai et al., 2016), which outperformed AlexNet and CaffeNet on a dataset 

made up of 9460 samples from 13 different classes. Dai et al. also proposed a hybrid CNN 

architecture that utilized three different CNN architectures simultaneously. The architectures 

were trained on the WHOI-Plankton dataset, which consisted of 30 classes with 1000 samples 

each. Using an ensemble of GooLeNet CNN architectures connected via their fully connected 

layers resulted in an accuracy of 0.963 (Dai et al., 2017). 

Li and Cui proposed a deep residual network based on VGGNet. The network achieved an 

accuracy of 0.73 on a dataset consisting of 30 336 samples from 121 different classes (Li and 

Cui, 2016). Lumini et al. performed a study to test which networks performed best on the 

three most well-known public plankton datasets. The results of the ZooSCAN dataset, which 

contains 3771 images belonging to 20 classes, are shown in Table 1 (Lumini, Nanni and 

Maguolo, 2019). Other research conducted by Cheng et al. also compared the performance 

of various CNN architectures on the NDSB dataset, and the result is shown in Table 2 (Cheng 

et al., 2019).  

 

Table 1: Comparison of CNN architectures performance on ZooSCAN dataset (Lumini, Nanni 

and Maguolo, 2019) 

 

Lumini, ZooSCAN dataset, 
architecture benchmark 

No of 
Classes 

AlexNet 80% 20 
GoogLeNet 84% 20 
VGG16 85% 20 
VGG19 84% 20 
ResNet50 85% 20 
ResNet101 85% 20 

DenseNet 88% 20 
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Table 2: Comparison of CNN architectures performance on National Data Science Bowl 

dataset (Cheng et al., 2019) 

 

Cheng, National Data Science 
Bowl dataset, architecture 
benchmark 

No of 
Classes 

AlexNet 85% 7 
GoogLeNet 87% 7 
VGG16 87% 7 
VGG19 87% 7 

ResNet50 88% 7 

 

Training these CNN networks for classification can be done in many ways, but the last layer 

CNN is usually flattened and used as a classification layer at the end of the network. The 

convolutional layer weights are updated based on the loss function result achieved in the 

classification layer; this eventually yields various filters specifically trained to distinguish 

between the different phytoplankton taxa. Once the model is trained, the output layer shown 

in Figure 2.15 is removed or replaced with an Identity Matrix.  

 

Figure 2.15: Basic overview of a fine-tuned CNN architecture 

The model is then used as a feature extractor outputting a higher dimensional vector 

representing each ROI. These features can be used to cluster ROI data into groups. The 

MorphoCluster algorithm discussed in the Section 2.5.2 utilizes a CNN model as a feature 
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extractor. It applies Hierarchical Density-Based Clustering with Noise (DBSCAN) and marine 

specialist annotation to classify plankton samples. 

 

2.5.2 MorphoCluster 

 

Schröder et al. (2020) proposed an efficient and accurate plankton image annotation software 

tool called MorphoCluster, shown in Figure 2.16. This sub-section provides an overview of 

how the MorphoCluster system works. The literature review chapter provides a more in-

depth breakdown of how the algorithms and techniques used within the MorphoCluster 

system (like CNN, HDBSCAN, and transfer learning) work. 

As shown in all the investigated methodologies for plankton classification, supervised learning 

methods are only as effective as the data used to train them. In the field of plankton 

taxonomy, there are over 4000 different species. Plankton is very biodiverse with many 

different classes and minor intraclass differences. If utilizing only supervised techniques, the 

algorithm could process classes of plankton not previously encountered by your network. This 

presents the need for clustering data features extracted using convolutional networks and 

identifying outliers (Salmaso, Naselli-Flores and Padisák, 2015). 

Various clustering algorithms have been used to group the features extracted from the CNN 

models. This is accomplished by training the model to classify the dataset, putting the model 

into inference mode, and removing the final output layer of the model to yield a vector of 

features extracted by the CNN. This high dimensionality can be reduced by methods such a 

PCA or used as is with a higher dimensional clustering algorithm.  

The MorphoCluster study conducted by Schröder et al. (2020) used a large dataset of 1 million 

unlabelled images and 584 thousand labelled images. To train the feature extractor CNN, the 

584 thousand labelled images were sorted into 65 classes. The labelled dataset was also 

separated into 392 thousand samples for training and 192 thousand samples for validation. 

The chosen CNN architecture used was a ResNet18 network, which was trained on the 

ImageNet dataset and then fine-tuned to the plankton classification task. The ResNet18 

architecture achieved an accuracy of 0.738 on the validation set. 
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The MorphoCluster algorithm uses the above-mentioned feature extractor to cluster the 

entire dataset. The clustering performed is HDBSCAN, which by its nature and the selected 

clustering parameters, initially only identifies the densest cluster regions whilst rejecting most 

samples as noise. The initial detected dense regions of the feature space are used as the 

cluster seeds for the next step of the algorithm. 

 

 

Figure 2.16: Overview of the MorphoCluster algorithm (Schröder, Kiko and Koch, 2020) 

 

The next part of the algorithm is called the cluster validation stage. Users are prompted by a 

graphical user interface (GUI) to validate the cluster purities. This is accomplished by 

presenting the user with each identified cluster, one by one. The samples within the detected 

cluster are presented so that the two most dissimilar samples within the cluster are shown 

next to one another. The user can then choose to validate the cluster as pure or impure. 
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Samples within the impure cluster are returned to the unclustered set of data. An example of 

the GUI is shown in Figure 2.17. 

 

Figure 2.17: MorphoCluster validation GUI (Schröder, Kiko and Koch, 2020) 

 

The cluster growing step allows users to investigate the boundaries of the identified pure 

clusters. Objects deemed to exhibit similar features to the cluster seeds are then displayed to 

the user in descending order of similarity. The user then moves through the list of 

recommended samples until the samples no longer represent the clusters. As there are 

potentially many samples the user would have to traverse, the algorithm uses a binary search 

to speed up the process. Once the user encounters and indicates that the proposed samples 

no longer belong to the cluster, the algorithm moves to the next pure cluster seed. The 

samples associated with a cluster are removed from the unclustered set. 

In the next iteration of the algorithm, the HDBSCAN parameters are reduced to find smaller 

dense regions of data points. This more conservative clustering and the lower amount of 

samples present allow the algorithm to find more fine-grained details between the clusters. 

This process is repeated until all the samples belong to either a cluster or are deemed as noise. 
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The algorithm then presents the clusters to the user to be named and ranked hierarchically. 

The clusters with the same name are merged. 

MorphoCluster is a highly effective method for plankton annotation and achieves 95% 

accuracy on the validation set. This method outperforms any plankton classification methods 

discussed. However, it is not fully autonomous and therefore still requires the laborious task 

of researchers having to spend hours manually classifying samples (Schröder, Kiko and Koch, 

2020). 
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3 Literature Review 

 

This chapter provides an in-depth literature review of machine learning concepts researched 

in Chapter 2 and implemented in Chapter 4. Section 3.1 introduces convolutional neural 

networks. Here, the general workings, various layers, and loss functions are discussed of a 

CNN are discussed. Section 3.2 presents the problems encountered by a CNN and the 

optimization techniques used to solve them. Section 3.3 provides an overview of the current 

state-of-the-art CNN architectures used in most of the considered studies. Section 3.4 

discusses how CNNs are evolved to extract spatial features from the datasets used to train 

them. This section also highlights the effectiveness of CNNs to extract features and introduces 

the various techniques used to augment and transform image data into more consumable 

objects. Section 3.5 introduces the use of unsupervised machine learning techniques, 

including dimension reduction and clustering. Section 3.6 concludes the chapter and brings 

together all the concepts from chapters 2 and 3 to provide a basis for the investigations 

undertaken in the proceeding chapters. 

 

3.1 Convolutional Neural Networks 

 

3.1.1 Introduction 

Convolutional neural networks (CNN) are different to the more traditional feed-forward 

neural networks in that they are not only made up of fully connected (FC) layers. FC layers are 

explained in detail later in this section. Their basic principle is that the output of every neuron 

within a layer is connected to the input of every other neuron in the next layer. An example 

of a multilayer perceptron composed only of FC layers is shown in Figure 3.1. A CNN is defined 

as a neural network where at least one of the FC layers is replaced with a specialized 

convolutional layer. A typical CNN is constructed by first using convolutional layers and then 

ending the network with FC layers. These layers are also explained in further detail in Section 

3.1.2. 
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Figure 3.1: Example of a multilayer perceptron with FC layer (Zahran, 2021) 

 

In the field of computer vision, researchers attempt to bridge the gap between the human 

visual cortex and the abilities of machines to mimic this characteristic. This is done by 

visualizing all images as just a set of pixels with varying intensities, as shown in Figure 3.2. 

Initially, researchers would convert the image of interest into its relative pixel values, flatten 

the resultant matrix into a single row vector representation of the image, and then train 

multilayer neural networks on these as two-dimensional pixel vectors. The loss of spatial 

information when performing this sort of image transformation results in only simple binary 

images being classified at relatively poor levels of accuracy. In the case of images that have 

RGB (red, green and blue) channels representing the pixel values and larger dimensions, using 

multilayer perceptrons to process these images becomes exponentially more expensive to 

compute. 
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Figure 3.2: Visualizing an image of a "1" as pixel values 

 

The CNN, also known as ConvNets, was first introduced by Yann LeCun in 1980. The challenges 

experienced by the founders of the idea were linked to the limited computing power available 

at the time. The first real advancement toward achieving state-of-the-art results using 

ConvNets was when Krizhevsky et al. (2012) proposed AlexNet ConvNets, unlike the 

multilayer perceptron, make use of filters to identify features of the input image. Each CNN 

applies up to thousands of different filters and feeds them to the next layer (Krizhevsky, 

Sutskever and Hinton, 2012). An example CNN is shown in Figure 3.3.  

 

 

Figure 3.3: Convolutional neural network example (Millar et al., 2019) 
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The goal of ConvNets using this filtering methodology is to reduce the input image into a much 

simpler, processable form without losing any crucial information. ConvNets use convolutional 

layers, which use convolution operations to generate representative feature maps of the 

original image. The main advantage of using ConvNets is that they automatically learn the 

values of these filters by using the low-level features to detect higher-level features, 

eventually allowing the CNN to make predictions regarding the input image. This a known as 

compositionality. Another key benefit to the application of ConvNets is their local invariance. 

No matter the location of the object of interest within the image, the ConvNets will still be 

able to identify the regions with high responses to a certain filter. The next section explains 

what convolutions are and how the ConvNets convolutional layers work. 

 

3.1.2 Convolutional Layers 

 

Convolutional layers are the building blocks of ConvNets. They are made up of small square 

templates called convolutional kernels. These kernels are slid across the input image to detect 

certain patterns in the image’s pixel values, as shown in Figure 3.3 and Figure 3.4. To explore 

the working of convolutional layers, this section starts by covering two essential topics: 

kernels and convolutions.  

Convolutions are generally denoted by the ⋆ operator. The mathematical expression 

representing a convolution of a two-dimensional image X and a two-dimensional kernel Y is 

shown in equation 1. 

 𝑍(𝑖, 𝑗) = (𝑋 ⋆ 𝑌)(𝑖, 𝑗) ∑ ∑ 𝑌(𝑖 + 𝑚, 𝑗 + 𝑛)𝑋(𝑚, 𝑛)

𝑛𝑚

 ( 1) 

Where i and j represent the actual position of the centred pixel and m and n represent the 

size of the image. As shown in Equation 1, images convolved with kernels produce new 

representations of the original image. This can be done in many ways. Traditionally, hand-

crafted kernels are used to perform various image processing functions. Some of these 

functions include blurring, sharpening and edge detection. Figure 3.4 shows an example of 
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how convoluting a two-dimensional image of a cross with a two-dimensional kernel is built to 

detect horizontal lines. 

 

Figure 3.4: Convoluting an image of a cross with a horizontal line-detecting kernel 

 

Figure 3.5: Example showing the sliding kernel 

 

As shown in Figure 3.4, areas within the image (larger matrix on the left) that match the 

convolutional kernel return increasingly larger values based on their similarity. Areas of the 

input image that do not match the convolutional kernel template output small values or even 

zero. From Equation 1, Figures 3.4 and Figure 3.5 convolutions are the sum of element-wise 

matrix multiplication between a convolutional kernel and the area that the kernel is currently 

occupying within the target image. 

To ensure that the spatial dimension of the input image is kept in the resultant output, a 

concept called padding is applied. Pixels sitting on the edge of the input image, under normal 
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circumstances, can never be considered as the centre point of the sliding kernel. This 

ultimately leads to ever decreasing output sizes depending on the size of the kernel filter 

being applied. Padding is a technique that replicates pixels on the border of the image so that 

the relevant kernel can be applied to the edges of the original input. 

The stride of a kernel is defined as the step size of the kernel when sliding through the image. 

Equation 2 shows how the parameters such as stride, padding, input image volume and kernel 

size affect the output volume of the convolution function. 

 
𝑆𝑖𝑧𝑒(𝑍) =

𝑆𝑖𝑧𝑒(𝑋) − 𝑆𝑖𝑧𝑒(𝑌) + 2𝑃

𝑆
+ 1 (2) 

Where S represents the stride, and the padding is shown as P. In general, setting the padding 

as shown in Equation 3 and the stride as 1 ensures that the output size of Z is the same as the 

input size of X. 

 
𝑃 =

(𝑆𝑖𝑧𝑒(𝑌) − 1)

2
 (3) 

 

Convolutional layers are made up of the kernel filters described above, except that the kernels 

used in these layers are called learnable kernel filters. Each filter has a width and a height, 

and as the kernels and images are usually square, the resultant filter is also square. A set of 

filters is also known as the layer's depth. An example of this is an input image to a CNN that 

has three channels: Red, Green and Blue (RGB) has a depth of 3. For filters deeper in the 

network, the depth is dependent on the number of filters from the previous layer. Figure 3.6 

shows how the depth of the activation map is equal to the number of learnable filters in the 

current layer. 

During a forward pass of the network, every filter is convolved across the input volume, and 

as shown in Equation 1, a two-dimensional output activation map of the filter is produced. 

Every output activation map is essentially a neuron that inspects small regions of the input, 

learning new filters that activate when they encounter certain features. Earlier in the 

network, the filters may start when they encounter more rudimental features such as corners 

or edges. Deeper layers are dependent on previous layers and may activate more detailed 

features such as certain identifiable parts of the image, including the tails or legs of plankton 

samples. 
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ConvNets are built by stacking these convolutional layers within sequence with pooling layers, 

activation layers, and FC layers. When training the ConvNet, a sample labelled image is passed 

through the network. These other types of layers are described in the next section along with 

network optimization layers, namely dropout and batch normalization layers.  

 

3.1.3 Pooling Layers 

 

As described in Section 3.1.2, the convolutional layers are essentially just a stack of feature 

maps. The deeper the network, the more detailed features can be identified by the filters. 

Training ConvNets on more complicated datasets with many classes will require more filter 

Figure 3.6: Process of convolutional layers 



54 
 

maps; each filter map is responsible for finding a certain pattern in the image. Increasing the 

number of filters increases the size of the convolutional layer stack, which subsequently 

increases the dimensionality of the convolutional layers. This higher dimensionality means 

that more parameters are necessary, and this can lead to overfitting the data. The concept of 

overfitting is described in Section 3.1.8. Pooling layers are used to reduce the dimensionality 

of deeper networks. There are different types of pooling layers, the most common being the 

max pooling layer. Max pooling layers take the resultant feature maps produced by the 

convolutional layers and reduce them to smaller representative feature maps, as shown in 

Figure 3.7. 

Figure 3.7: Max pooling with a 2 x 2 window size and a stride of 2 

As with convolutional layers, max pooling layers also use a window size (like kernel size in 

convolutional layers) and a stride parameter. Starting at the top left of the input feature map, 

the max pooling layer slides a kernel over the feature map, in each step taking the maximum 

value of the containing pixels. In the case of the example shown in Figure 3.7, the resultant 

feature map is half the width and height of the original input. Other types of pooling layers 

include global pooling and average pooling. In global pooling, the average value of the entire 
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input feature map is used. Average pooling uses the same idea as max pooling except that 

instead of using the maximum value, an average value of the kernel contents is used. 

 

3.1.4 Activation Layers 

 

Activation layers are not actual layers like convolutional layers or pooling layers, as no weights 

or parameters are learnt inside these layers. However, researchers tend to include them in 

network architecture diagrams to clarify which type of activation function is being used. 

Activation functions are used to determine the output of a layer within a neural network and 

constrain the resulting value within a specified range depending on the function. ConvNets 

use nonlinear activation functions, including a rectified linear unit (ReLU), as shown in Figure 

3.8, and Leaky ReLU, as shown in Figure 3.9. Generally, these functions are applied 

immediately following convolutions. Nonlinear activation functions allow models to adapt 

better and generalize a diverse amount of data as well as differentiate between outputs 

(Millar et al., 2019). 

 

 

Figure 3.8: ReLU activation function 
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The Relu activation function shown in Figure 3.8 is the most used activation function in deep 

learning, with a range from 0 to infinity, as shown in Equation 4. 

 𝑅(𝑧) = max (0, 𝑧) ( 4) 

The activation function forces any negative values to become zero. However, sometimes this 

characteristic decreases the ability of a model to fit the dataset. The Leaky ReLU shown in 

Figure 3.9 was proposed to counteract this problem.  

The leaky ReLU function allows for a small positive gradient when the unit is not active, as 

shown in Equation 5. 

 𝑅(𝑧) = max (0.1 ∗ 𝑧, 𝑧) (5) 

The activation layer takes an input volume of feature maps and applies its designated 

activation function. The output of the activation layer is always the same size as the original 

input. 

  

Figure 3.9: Leaky ReLU activation function 
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3.1.5 Fully Connected Layers 

 

A fully connected layer's job is to connect the input it sees to a desired form of output. In the 

case of ConvNets, this means converting a matrix of image features into a feature vector 

whose dimensions are 1 x C where C is the number of classes. As an example, consider using 

an FC layer to sort images into ten classes. Given a set of pooled and activated feature maps 

as input, the FC layer uses a combination of these features (multiplying them, adding them, 

combining them, etc.) to output a 10-item-long feature vector. This vector compresses the 

information from the feature maps into a single feature vector. An example of a fully 

connected layer is shown in Figure 3.1. FC layers are typically found at the end on ConvNets 

and are used to relate the extracted feature maps from the convolutional part of the network 

to a certain output prediction. Using loss functions, the result of the last fully connected layer 

backpropagates the error between the true value and the predicted value back along with the 

entire network. 

 

3.1.6 Loss Functions 

 

Loss functions are used in supervised neural networks to provide algorithms with a method 

of dealing with deviations in the predicted output from the expected output. There are many 

different loss functions, all suited to various situations.  

The SoftMax function can take any vector of values as input and returns a vector of the same 

length whose values are all in the range (0, 1) and, together, these values will add up to 1. 

This function is often seen in classification models that must turn a feature vector into a 

probability distribution. The SoftMax loss function is also known as Cross-Entropy Loss and is 

very effective at binary and multiclass classification tasks. 

The selection of which layers to use with which loss functions are the building blocks of 

successful deep learning networks. However, neural networks still need to be optimized 

because, in most instances, there is no “one size fits all” model. Some of the significant 

problems experienced by neural networks and the techniques available to optimize them are 

discussed in the Section 3.1.6. 



58 
 

3.1.7 Vanishing and Exploding Gradients 

 

Backpropagation is the technique used in multi-layer neural networks to recursively calculate 

the contribution of each weight in every layer of the network to the total error calculated by 

the loss function in the output layer of the network. As shown in Figure 3.10, backpropagation 

uses partial derivatives to calculate the associated error with the node under consideration. 

 In larger neural networks with more than one hidden layer, the error associated with the first 

nodes in the network is calculated with respect to all the other nodes later in the network 

that feed it. This is accomplished by multiplying these partial derivatives with one another. 

The use of activation functions on every neuron saturates the output values to within certain 

ranges. Sigmoid activation functions, for example, saturate the outputs to a value between 1 

and -1. Calculating the error using the dot product of partial derivatives with values within 

that range eventually results in extremely small error gradients. This is called the vanishing 

gradient problem.  

 

Figure 3.10: Principles of forward pass vs backward pass in neural networks 

 

ConvNets typically use ReLU or Leaky ReLU activation functions to counteract the vanishing 

gradient problem. However, these functions still suffer from a similar issue as, in some cases, 
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these activation functions result in some neurons dying out, and the output of the neuron 

stays 0. Leaky ReLU negative values are saturated between 0 and -1, therefore making them 

susceptible to the vanishing gradient problem.  

The exploding gradient problem is exactly the opposite of the vanishing gradient problem. 

Activation functions such as ReLU and Leaky ReLU have a range up to infinity. Magnitudes of 

the gradients calculated during training have the potential to become unstable, as large 

numbers multiplied with large numbers result in significantly large numbers. This leads to 

poor prediction results and can sometimes render a model useless.  

Algorithmic methods such as batch normalization proposed by Ioffe and Szegedy (2015) apply 

the mean and variance of the current training batch to the output or input of a neuron's 

activation function (Ioffe and Szegedy, 2015). The effect of using batch normalization is that 

networks perform faster and converge better. Batch normalization layers also allow for much 

higher learning rates without affecting the convergence of the network in training. Batch 

normalization allows deep, traditionally unstable networks to be trainable. 

Another vital issue supervised neural networks are faced with is the overfitting or underfitting 

of the training data. This problem is discussed in Chapter 3.1.8. 

 

3.1.8 Overfitting and underfitting 

 

Using machine learning for classification tasks aims to create and train models that can 

generalize well on unseen data of the same class as its training data. Many factors influence 

how well a model performs, most of which are due to the architecture of the model, the 

hyperparameters selected, or the data used to train the model. An overview of how these 

characteristics affect the performance of a model is shown in Figure 3.11. 

Models that train for too long or have an overly complex architecture for the task at hand 

tend to start learning irrelevant information. Noise, overly complex, and incorrectly labelled 

data in the training set can also cause a model to overfit the dataset. This means the model 

loses its ability to generalize on unseen samples as it has lost understanding of the task and 

instead tries to memorize samples from the training data. A test for overfitting models is to 
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use validation sets within the training process. If the model tends to perform well whilst 

training but underperforms on the unseen validation set, then the model in question is 

deemed to have overfitted the training data.  

 

Figure 3.11: Good fit vs over and underfitting 

Reducing the training time and architecture complexity are the go-to methods for preventing 

overfitting. However, if the training is stopped too early or the network is not complex enough 

to retrieve a deep understanding of the data, the model is susceptible to underfitting the 

data. Underfitting also results in a model performing poorly when classifying unseen samples 

from the dataset. 

There are methods used to prevent overfitting and underfitting in the training process of deep 

neural networks. These methods include dropout, reduced data complexity, data 

augmentation, image transforms and ensembling networks. The concept of dropout is 

discussed in Section 3.1.9. 

 

3.1.9 Dropout 

 

Dropout randomly turns off perceptrons that make up the layers of a network, with some 

specified probability. It may seem counterintuitive to throw away a connection in a neural 

network, but as the network trains, some nodes can dominate others or end up making big 

mistakes. Dropout provides a way to balance our network so that every node works equally 

towards the same goal, and if one makes a mistake, it won't dominate the behaviour of the 
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model. Dropout can be seen as a technique that creates network resilience; it makes all the 

nodes work well as a team by ensuring no node is too weak or too strong. An example of 

dropout is shown in Figure 3.12.  

 

Figure 3.12: Example of dropout on an FC layer 

Dropout is an effective way to reduce the ConvNet's ability to overfit the data, thus increasing 

the network's likelihood of performing better when presented with unseen data. Another 

method for improving convolutional neural networks' performance is by analysing and 

transforming the data used to train the network. 

 

3.1.10 Image Transforms and Augmentations 

 

The importance of the data used to train a deep neural network cannot be understated and 

is usually the difference between excellent models and poor ones. One way of boosting the 

performance of a neural network is to increase the exposure of the network to more 

variations of a certain class. When adding more samples to the dataset is unfeasible, 

researchers use artificially created images with variances from the original image in the 
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dataset (Yaroslavsky, 2014). This is called image transformation and image augmentation. 

Training networks with more images that contain different variations produce models that 

are more robust in identifying specific classes. Some of the techniques used to accomplish 

this are shown in Figure 3.13. 

 

Image rotation is a common technique used to augment images. The benefit of applying this 

sort of transform onto a dataset is that the model learns to identify certain classes regardless 

of their orientation. A model that achieves this feature is seen to be rotationally invariant 

(Chidester et al., 2019). Other transforms such as flipping also increase the rotational 

invariance of the network. Another geometric transform typically used is known as a shifting 

transform. This transform changes the position of where the object of interest appears in the 

image and trains networks to be shift-invariant, thus increasing the robustness of the resulting 

model(Chen et al., 2019). 

Figure 3.13: Various image transformations performed on a plankton 

sample 
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Images collected from real-life sources are of different quality and resolutions. Training 

networks to identify the objects of interest and classify them in various quality samples 

increases the model's generalisation ability. Noise injection is a transform applied to images 

where samples encourage the model to learn how to separate the region of interest from the 

injected noise. The blurring transform is done by applying various filters onto the original 

image resulting in images with smoothed pixel values (Hua et al., 2006).  

Applying multiple image transforms onto a single sample image essentially converts it into a 

new image. New images can be used to increase the size of datasets and are especially useful 

in situations where a dataset has unbalanced classes. An unbalanced dataset is one where 

some classes occur in abundance while other classes have fewer samples. Transforms not 

mentioned in this section include resizing, cropping, and stretching. ConvNets use these to 

standardize the inputs to the networks to a consistent shape and size. 

Image transforms create new images from sample images and are used to increase the 

robustness and generalization abilities of the neural networks trained on them. Another 

technique used to mitigate the effects of overfitting and underfitting a given dataset is called 

ensembling. This method involves combing multiple simpler networks to achieve a larger goal 

and is discussed in the Section 3.1.11. 
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3.1.11 Ensemble Networks 

 

Ensembling is a method that combines more than one machine learning algorithm to obtain 

a collective understanding of the underlying features within the data. Figure 3.14 shows an 

overview of how most ensemble networks work. There are many different techniques used 

to ensemble learning algorithms together, and for classification tasks these techniques 

include bagging, boosting, and stacking. 

Bagging or bootstrap aggregating is the same method used in random forest algorithms 

discussed in Section 2.4.2. Each homogenous model in the ensemble is trained on a different 

subset of the data to encourage variance in what the algorithms learn. The output of each 

algorithm is then used to vote on the final output of the ensemble (Zhou, Huang and Wang, 

2019). 

Boosting has been shown to produce better results than bagging. Boosting is an ensemble 

method that enables stronger machine learning algorithms using by combining the results of 

Figure 3.14: Overview of general ensemble algorithm 
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weaker ones. This is achieved by combining the weak classification rules determined by 

predecessor algorithms, as shown in Figure 3.15. 

 

Figure 3.15: Boosting algorithm (File:Ensemble Boosting.svg - Wikimedia Commons, 2020) 

 

Another ensembling method is stacking, where several weaker heterogeneous machine 

learning models feed into one meta-model. This meta-model then returns a prediction based 

on the results from the several weaker models. 

Ensembling different types of models allow for aggregated decision-making resulting in more 

confident predictions. More traditional ensembles combine engineered feature extractors, 

whereas more modern techniques use different CNN architectures to extract diverse features 

from the dataset. Chapter 3.2 dives into some of the state-of-the-art CNN architectures 

available. 
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3.2 CNN Network Architectures 

 

This section provides insight into some of the most used and well-constructed CNN 

architectures. It also highlights some of the key techniques discovered during the inception 

of the relevant architecture. The first of the CNN algorithms of great significance developed 

was AlexNet. 

 

3.2.1 AlexNet 

 

AlexNet is a deep learning architecture consisting of five convolutional layers and three FC 

layers with varying sizes of convolutional kernel filters. It makes use of Rectified Linear Unit 

(ReLU) activation functions which are designed to train neural networks faster and do not 

suffer from the vanishing gradient problem. AlexNet introduced Local Response 

Normalization and makes use of Dropout, whereby every epoch, a random number of 

neurons are not allowed to fire. This reduces overfitting and local minima convergence 

(AlexNet: The Architecture that Challenged CNNs - Towards Data Science, 2018).  

 

3.2.2 VGG 

 

VGGNet shows many similarities to AlexNet. The one major difference is that VGG uses much 

smaller and fixed-sized kernel filters. Stacking these smaller filters increases network depth, 

allowing the algorithm to learn more complex features. Smaller kernel size also increases the 

performance of the network. VGGNet makes use of convolutional kernels of size 3 x 3 with a 

stride of one and uses max pooling kernels of size 2 x 2 with a stride of two. There are many 

variants of VGGNet, including VGG16 and VGG19, which indicate the total number of layers 

in the network. 
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3.2.3 GoogLeNet 

 

GoogLeNet builds on the previous VGG16 network. However, GoogLeNet has an inception 

module that removes redundant activations within the network. This improves the efficiency 

of the algorithm without affecting the result at all (Szegedy et al., 2015). Inception modules 

are used in CNNs to minimize computational expense and to add width but not depth to 

networks. Inception module designs are generally based on the specific objective at hand. 

Inception modules, as shown in the GoogLeNet inception module example shown in Figure 

3.16, consist of four layers on the same level, namely (1x1, 3x3, 5x5 convolutional layers and 

a 3x3 max pooling layer). 

 

Figure 3.16: Basic inception module (Szegedy et al., 2014) 

 

Adding dimension reduction, as shown in Figure 3.17, reduces the computational expense by 

using smaller 1x1 convolutional filters, increasing the model's speed. 
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Figure 3.17: Inception module with dimension reduction (Szegedy et al., 2014) 

 

GoogLeNet has 9 of these inception modules stacked onto one another. The architecture is 

shown in Figure 3.18. The network is 27 layers deep which leaves it susceptible to the 

vanishing gradient problem. To address this issue, the network introduced an auxiliary loss 

function used in conjunction with the real loss function. The new loss function is a weighted 

sum of the auxiliary loss function and the real loss function. 

 

 

Figure 3.18: GoogLeNet architecture (Szegedy, Liu, 

Sermanet, et al., 2014) 
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Newer implementations of the inception module, Inception v2 and v3, introduce convolution 

factorization, which factorizes down convolutional filers of larger sizes into smaller, less 

computationally expensive convolutional filters.  

 

3.2.4 ResNet 

 

Advancements in developing deep and converging neural networks have exposed another 

key issue called the degradation problem, where increasing the depth of a network no longer 

increases but decreases the accuracy of the network. Residual Networks (Resnet) address this 

by introducing Identity Mapping by Shortcuts whereby residual learning is applied every few 

stacks of layers. This is shown in Figure 3.19 and Equation 6 (He et al.,2014). 

 

 

 

 

 

 

 

Figure 3.19: Residual learning (He et al., 2015) 

 

Sometimes x and F(x) will not have the same dimension due to convolutional operations and 

thus, identity mapping is multiplied by a linear projection W to match the residual. 

 

 𝑦 = Ϝ(𝑥, {𝑊𝑖}) + 𝑊𝑠𝑥 (6) 
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This allows for an input x and the resultant F(x) to be combined and passed onto the next 

stage of the network. The comparison in Tables 1 and 2 compare results attained by different 

types of research in the field of phytoplankton classification, indicating which CNN 

architectures performed the best and the number of different phytoplankton classes the 

algorithm was trained on. Resnet outperformed other algorithms in most cases, indicating 

that this architecture could be better suited to phytoplankton classification datasets. 

 

 

3.2.5 DenseNet 

 

Densely Connected Convolutional Neural Network (DenseNet) works similarly to the ResNet 

architecture explained in Section 3.2.4 by utilizing shortcut connections to pass on potentially 

important information to the proceeding layers. However, in DenseNet, every layer is 

connected to every proceeding layer. The problem with connecting one layer to all the 

proceeding layers is that the feature maps are usually downsampled throughout the various 

layers to reduce the dimensionality of the network. Therefore, feature maps from all layers 

feeding each other need to be of a consistent size. DenseNet makes use of dense blocks 

shown in Figure 3.20, where all the layers in the block are connected to every other layer 

proceeding it in the block. This allows for the size of the feature maps to be kept constant as 

no downsampling is applied within the block (Huang et al., 2016). 

 

Figure 3.20: Dense block 
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Figure 3.21 shows a three dense block dense net and how pooling is performed between the 

dense blocks in layers known as transition layers. 

 

 

Figure 3.21: Overview of DenseNet architecture 

 

3.3 CNN as Classifiers and Feature Extractors 

 

ConvNets have been shown in numerous studies to outperform manual feature extraction 

techniques for image classification. This is due to the ability of ConvNets to automatically 

generate invariant features using convolutions on images and filters. It removes the 

tediousness and the influence of human bias from the feature extraction process and relies 

purely on the data at hand. A key feature of ConvNets is that they utilize parameter sharing. 

This means that filters generated in earlier layers directly or indirectly influence the filters 

generated in the proceeding layers, reducing the network's dimensionality (Guérin et al., 

2021). This is illustrated in Figure 3.22, where the deeper than network goes, the smaller the 

feature maps become. 

 

Figure 3.22: Basic CNN architecture 



72 
 

 

A CNN can ultimately be broken up into two parts, as shown in Figure 3.22. The first part is 

known as the feature extraction network. It is made up of all the convolutional, pooling, 

activation, and batch normalization layers. The second part of the network is known as the 

classifier, which usually houses the FC layers. In classification tasks, the last layer of the 

classifier network is used to indicate the network's class prediction based on the outputs of 

all the other layers that come before it.  

In most neural network architectures, as discussed in Section 3.2, the classifier layer is only 

made up of a single fully connected layer to lower the number of trainable parameters, thus 

reducing the training time of the feature extraction part of the network. However, once the 

network is trained, it is common for researchers to include more fully connected layers to the 

classification network to increase the depth of understanding of the outputs. This is done by 

retraining the network with the new FC layers while placing the feature extraction network 

into inference mode, where no backpropagation takes place. This process is known as fine-

tuning. 

After a network has been fine-tuned, the FC layers in the classifier network can be seen as 

lower-dimensional representations of the features of the entire network. In studies such as 

the MorphoCluster system discussed in Section 2.5.2, the output layer is removed, and its 

predecessor FC layer is used as a higher dimensional output feature vector. Once the entire 

network is trained, fine-tuned, and the output layer removed and placed into inference mode, 

the entire network acts as a feature extractor which unsupervised algorithms can then use to 

find inherent structures and grouping within the data. The next part of this chapter discusses 

these unsupervised methods. 

 

3.4 Unsupervised Learning 

 

In supervised learning, models are trained to find a mapping function between an input and 

an expected output. In cases where labelled data is limited, or there is uncertainty in the 

dataset, supervised methods are not viable. Unsupervised models provide a way to solve this 
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issue. Rather than explicitly being told what to learn, the algorithm find patterns within the 

input data itself (Lehr et al., 2021). This section highlights some of the key unsupervised 

algorithms used today. Section 3.4.1 introduces an unsupervised dimension reduction 

technique called principal component analysis (PCA). Section 3.4.2 discusses another branch 

of unsupervised algorithms called clustering algorithms as well as various clustering 

methodologies 

In the final part of the chapter the understanding of these clustering methodologies is brought 

together to better understand the underlying working of HDBSCAN (Hierarchical Density-

Based Clustering for Applications with Noise). 

3.4.1 Dimension Reduction 

 

Mathematician R. Bellman introduced the term “the curse of dimensionality” (Bittner, 1962), 

which proposed that for arbitrary functions to achieve high levels of accuracy, more features 

are required. This increase of features exponentially increases the potential for associated 

error. Dimension reduction techniques are used to mitigate this need for higher 

dimensionality by reducing the number of features required by an arbitrary function without 

losing the relative accuracy (Weng and Young, 2017). A common method used for dimension 

reduction is known as principal component analysis (PCA).  

 

3.4.1.i Principle Component Analysis 

 

Principle Component Analysis (PCA) is a linear dimension reduction method and seeks to 

extract features from a dataset. It involves reducing the dimensions of a dataset to its 

principal components, as shown in Figure 3.23.  
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PCA involves reducing the dimensions of the dataset while retaining as much information 

about the dataset as possible. The following equations show how PCA can be used in linear 

dimension reduction. 

Let: 

 𝒙 ∈ 𝑅𝐷 (7) 

Where: 

 x is a vector in a high dimensional space D 

The goal of PCA is to reduce this vector x to lower dimensional space. There we want to 

project it to vector z, where: 

     

 𝒛 𝜖 𝑅𝑀 (M << D) (8) 

 

Because PCA is a method of linear dimension reduction, we use a linear transform such that: 

    

Figure 3.23: Diagram showing dimension 

reduction using PCA (Kwak, 2008) 
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  𝒛 = 𝑈𝑇𝒙 𝑈 ∈ 𝑅𝐷×𝑀 (9) 

 

Where on some input x we want to reduce it to some output z in a reduced dimensionality 

space. This is, however, for one point only. Consider matrices X and Z composed of these 

points where: 

     X =  [𝐱𝟏 𝐱𝟐 𝐱𝟑 … 𝐱𝐍]T      𝑋 ∈ 𝑅𝑁×𝐷 (10) 

     Z =  [𝒛𝟏 𝐳𝟐 𝐳𝟑 … 𝐳𝐍]T       𝑍 ∈ 𝑅𝑁×𝑀 

 

(11) 

 

 𝑍 = 𝑈𝑋 (9) 

 

 

Information of the dataset is represented by the covariant matrix SZ where: 

  𝑆𝑍 =
1

𝑁
(𝑍𝑇𝑍)          𝑆𝑍 𝜖𝑅 𝑀×𝑀 (10) 

 

Because the goal is to minimize the number of dimensions while maintaining the information, 

optimization can therefore be performed: 

 

 max
𝑈

𝑆𝑍 

=  max
𝑈

1

𝑁
𝑍𝑇𝑍 

=  max
𝑈

1

𝑁
(𝑋𝑈)𝑇(𝑋𝑈) 

=  max
𝑈

1

𝑁
𝑈𝑇𝑋𝑇𝑋𝑈 

 

= max
𝑈

𝑈𝑇𝑆𝑋𝑈 

 

(11) 

 

 



76 
 

 

This maximization, however, has no upper bound on U, adding a condition that every vector 

in the matrix has a unit vector magnitude: 

 𝑈𝑇𝑈 = 𝐼  

 
(12) 

 

Lagrange multipliers can be used to solve for U as there exists an optimization problem with 

equality constraints where: 

 

 max
𝑥

𝑓(𝑥) (13) 

 

Where f is the function, we are trying to minimize with respect to a variable x under a set of 

constraints: 

 𝑔𝑖(𝑥) = 0 (14) 

 

The new set of variables, called the Lagrangian multipliers, is a set of 𝜆𝑖 where: 

 
𝐿(𝑥, {𝜆𝑖}) = 𝑓(𝑥) + ∑ 𝜆𝑖𝑔𝑖(𝑥)

𝑛

𝑖=1

 

𝜆𝑖  ≥ 0 

𝑑𝐿

𝑑𝑥
= 0 

𝑥 = ℎ({𝜆𝑖} 

 

(15) 

 

 

The original optimization can be rewritten in terms of the Lagrangian Optimization as:  

 𝐿(𝑈, 𝜆) = 𝑈𝑇𝑆𝑥𝑈 + 𝜆(𝐼 − 𝑈𝑇𝑈) 

 
𝑑𝐿

𝑑𝑈
= 0 

(16) 
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𝑆𝑋𝑈 = 𝜆𝑈 

 

 

Because of matrix equality, both sides of the equation are equal and can be rewritten as a set 

of equations: 

 𝑆𝑋𝑢𝑖 = 𝜆𝑖𝑢𝑖 

 
(17) 

 

This structure represents that of an eigenvector equation set on which eigen decomposition 

is applied and Matrix Diagonalization determines the eigenvectors. This results in a matrix of 

eigenvectors which are then sorted in descending order of eigenvalues. Only the top M pairs 

of eigenvectors are selected as this is the smallest set of the eigenvectors that can retain the 

most information about the original data. Each of these eigenvectors corresponds to ui and 

therefore the matrix U = [u1 u2 u3 … um] T is a matrix of the top M eigenvectors of Sx. The 

transformation is then:  

 𝑧 = 𝑈𝑇𝑥 

 
(18) 

(Jolliffe and Cadima, 2016) 

 

3.4.2 Clustering 

 

Clustering algorithms are a form of unsupervised learning that seek to leverage the patterns 

within the data manifolds to uncover groups of data points that share similarities. In other 

words, data points in the same group should show highly similar properties, whilst data points 

in other groups should exhibit very dissimilar properties. An example of desirable clustering 

is shown in Figure 3.24. 
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Clustering algorithms can provide deeper insight into the features of the dataset under 

analysis. Certain clustering algorithms are better suited to certain datasets than others. The 

clustering algorithms discussed in this section form part of two groups, namely Partial 

Clustering and Hierarchical Clustering, shown in Figure 3.25. K-Means clustering is the most 

popular clustering algorithm for more clearly separated manifolds such as the example shown 

in Figure 3.24.  

 

Figure 3.24: Example of ideal 

clustering 
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Figure 3.25: Considered clustering algorithms 

 

3.4.2.i K-Means 

 

K-Means clustering is a method originally used for compression in audio signal processing 

known as vector quantization. The algorithm aims to place samples into groups, where each 

sample belongs to the group based on the distance between the sample points and the cluster 

centroids. There are many variations of K-Means. However, they all stem from naïve K-Means. 

The most important part of all K-Means algorithms is how they start initializing the clusters. 

This can be done in one of three ways: Forgy Initialization, Random Partition, and the K-Means 

++ method.  

Forgy is a fast Initialization method for K-Means where, if there are N number of desired 

clusters, the method randomly selects N points from the dataset and uses their value as the 

initial cluster means. The K-Means algorithm then assigns each data point to a cluster. If each 

designated cluster centroid does not have at least one data point assigned to it then Forgy 

initialization is applied again, this time picking new random points as cluster means. This 

process is repeated until every cluster has at least one assigned data point (Peña, Lozano and 

Larrañaga, 1999). 
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In the Random Partition method, every data point is assigned to a random cluster. For each 

cluster, the initial centroid is then determined by taking the average value of points assigned 

to that cluster. This initialization results in cluster centroid values near the mean value of all 

the data points (Ahmad and Khan, 2019). Both the Random Partition and Forgy Initialization 

methods are susceptible to forcing the K-Means algorithm into finding Local Optima. David 

Arthur and Sergei Vassilvitskii (2007) proposed a different initialization method called K-

Means ++, which makes use of careful cluster seeding.  

K-Means ++ Initialization starts by selecting a random point from the data then computes the 

distance of every point in the dataset from the selected point. The next point is then selected 

from a probability distribution representing the absolute distance of all points. We select the 

new point such that the distance of the point from the initial centroid is relatively large. The 

next point is then selected based on its relative distance from a probability distribution 

representing the distance of every point from the two previously selected points. This process 

of continuously choosing relatively distant points from one another is repeated until the 

desired number of clusters has been proposed. K-Means++ is a recommended way of seeding 

for K-Means clustering and assists the algorithm in converging on the Global Minimum (Arthur 

and Vassilvitskii, 2007). 

A common approach to measuring the distances is using the Euclidean distance between the 

points and the cluster centroids. The goal of K-Means is to group a set of elements x in a D – 

dimensional space into K number clusters such that the Sum of Squared Error (SSE) of data 

points to associated cluster centre (Ci) is minimized, as shown in Equations 19 and 20. 

 
𝑺𝑺𝑬(𝑪) =  ∑ ∑ (𝒙𝒊 − 𝑪𝒊)

𝟐

𝒙𝒊∈𝑪𝒊

𝑲

𝒊=𝟏

 

 

(19) 

 

𝑪𝒊 =
𝒙𝒊 ∈ 𝐶𝑖

|𝑪𝒊|
 

 

 

(20) 
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Algorithm 1 shows the pseudocode for the general implementation of K-Means initialized 

with K-Means ++ method. After initialization of the centroids, the algorithm reassigns all the 

points to their nearest cluster centroid. Once all the points are assigned to a cluster, the 

algorithm recalculates the new cluster centroids. The algorithm terminates once the cluster 

centroid locations between iterations stay the same. 

 

Variations of the algorithm have been implemented. These variations include K-Medoids 

Clustering, K-Modes Clustering, X-Means Clustering and Kernel K-Means Clustering, all of 

which seek to optimize the clusters using the same general approach shown in Algorithm 1. 

Some of these variations of K-Means include automated methods on how the K value is 

selected, and others use different measures of the distance between points and the cluster 

centroids. 

The performance of the K-Means algorithm and all its variants wanes with increasing data 

complexity and noise. This decrease in performance can be attributed to many features of 

the algorithm's rudimental cluster identification methods. Problems include the spherical 

assumption of the data, outliers skewing data centroid calculation, and hard clustering to a 

specific K number of clusters. Figure 3.26 shows cluster centroids (indicated by the black star) 

selected undesirably. The dataset shown has two distinct clusters, but because the number 

of clusters (K) was selected as 4, and the data doesn’t have a spherical structure, the resultant 

cluster centroids are placed in undesirable locations.  

 

Algorithm 1 – K-Means 

1 Choose K points 

2 Initialize centroids using k -means++ method 

3 while previous centroids!= new centroids 

4  Assign all points to nearest cluster centroid 

5  Calculate new cluster centroids 

 end 
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The infamous trait that most well-known clustering algorithms have, including K-Means, is 

that they directly or indirectly assume that the data under consideration is from a particular 

type of probability distribution. This assumption leads to the clustering algorithms producing 

spherical groupings, whereas most real-life spatial datasets contain groups of irregular 

shapes. This phenomenon, coupled with the algorithm's lack of outlier consideration, led to 

the development of clustering algorithms more suited to spatial data. These algorithms, 

which include Density-Based and Hierarchical clustering algorithms, are discussed in the 

following sections. 

 

 

3.4.2.ii Density-Based Clustering 

 

Density-Based Clustering algorithms such as DENCLUE (Density Based Clustering) and DBSCAN 

(Density Based Spatial Clustering for Applications with Noise) form part of the group of 

Figure 3.26: Dataset clustered undesirably using 

K-Means. 
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clustering algorithms deemed density-based. These algorithms were developed because of 

the limitations of centroid based clustering techniques such as K-Means. As discussed in the 

K-Means section, these limitations include the inability to deal with arbitrarily shaped data 

manifolds and anomalous points. 

Density-based algorithms use the ε -neighbourhood, which is defined as the set of all points 

within a certain distance (ε) from a given point. Figures 3.27 and 3.28 show the effect of 

varying the ε value in a two-dimensional space. Figure 3.27 shows the ε-neighbourhood of a 

point P with ε = 0.5, which contains eight other points.  

 

 

Figure 3.27: ε-neighbourhood with ε=0.5 

In the two-dimensional case of point P in Figures 3.27 and 3.28, the volume is defined as the 

area of the resulting circular neighbourhood shape, and the mass is defined as the number of 

points inside point P’s ε-neighbourhood. The local density approximation of the point P is 

then defined as this mass divided by this volume. 
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Figure 3.28: ε-neighbourhood with ε=0.15 

Suppose the local density approximation is calculated for all the points in the dataset. In that 

case, points within the same neighbourhood and with like local density approximations could 

be considered as part of the same cluster. This definition of local density approximation and 

ε neighbourhood make up the key elements of how all density-based clustering algorithms 

operate. 

 

3.4.2.iii DBSCAN (Density-Based Clustering for Applications with Noise) 

 

In 1996 Martin Ester, Hans-Peter Kriegel, Jörg Sander and Xiaowei Xu (1996) proposed 

Density-Based Clustering for Applications with Noise (DBSCAN). The algorithm that makes use 

of non-parametric density-based clustering won the SIGKDD (Special Interest Group on 

Knowledge Discovery and Data Mining) Test of Time award and is one of the most used 

clustering algorithms available (Ester et al., 1996). The task of DBSCAN is to find clusters in 

the dataset with respect to two parameters. These parameters are ε, or the ε-neighbourhood, 

explained in the Density-Based Clustering section, and Min Points, which is the minimum 

number of points required within the ε-neighbourhood for the point under consideration to 

be deemed a core point. 
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DBSCAN introduced two key properties between points: density reachable and density 

connected. These properties are shown in Figure 3.29, where two points X and Y are 

considered density reachable as point X is within the ε-neighbourhood of core point Y. Point 

Z is also considered density reachable from core point Y. The two points X and Z are 

considered density connected. This is because there is a point Y in which both points X and Z 

are density reachable. Therefore, a cluster in DBSCAN can be understood as a set of density 

connected points that is maximal with respect to density reachability (Jungan et al., 2018).  

 

 

Figure 3.29: Density 

reachability and connection 

properties 
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The DBSCAN algorithm will eventually deem all points within the dataset as one of three types 

of points illustrated in Figure 3.30. These points are known as core points, border points and 

noise points. A point is identified as a core point if the number of points within the ε-

neighbourhood is greater than the threshold Min Points value. A point is deemed a border 

point if it is density reachable from a core point but does not have enough points within its ε-

neighbourhood to meet the Min Points threshold. Noise points are points that are not 

associated with any cluster. 

 

The DBSCAN algorithm, as shown in Algorithm 2, starts by selecting a random point p from 

the dataset. The algorithm proceeds to identify all points density reachable from p and 

decides, based on Min_Points, whether point p is a core point. The algorithm then moves 

through all the density reachable points from point p and determines their point type with 

respect to ε and Min_Points. If the randomly selected point p is not a core point, the algorithm 

classifies it as a noise point due to not having any density reachable neighbouring points. The 

algorithm is complete once all the data points are assigned to either a cluster or a noise point. 

 

Core point 

Border point 

Noise point 

ε = 3 

Figure 3.30: Identifying core, border, and noise points 
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The DBSCAN algorithm works well for datasets containing desired clusters of arbitrary shapes 

and noise but has some drawbacks. DBSCAN is non-deterministic, meaning that because of 

the arbitrary point selection, as shown in line 5 of Algorithm 4, the algorithm can produce 

Algorithm 2 - DBSCAN 

1 Choose ε value (ε-neighbourhood size) 

2 Choose Min Points (minimum number of points in ε-neighbourhood to be classified 

as a core point) 

3 Initialize Set of Identified Clusters (Ci) where (i=0) 

4 For each unvisited point p in dataset 

5  Select arbitrarily and mark p as visited 

6  Identify all points p’ density reachable from p (including p itself), such that p’ is 

an element of N 

7   If number of points in N < Min_Points 

8   mark p as a noise point 

9  Else 

10   Select next cluster Ci, where I = (i + 1) 

11   Add p to cluster Ci 

12   For each point p’ in N 

13    If p’ unvisited 

14     Mark up as visited 

15     Identify all points p’’ density reachable from p’ (including p’ itself), such 

that p’’ is an element of N’ 

16     If number of points in N’ >= Min_Points 

17      N = N + N’ 

18    If p’ not contained in any Ci then add p’ to current Ci  

19 Until all points belong to at least one cluster 
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varying outputs even on the same dataset. The algorithm also struggles with differing cluster 

densities and high dimensionality due to using a constant ε-neighbourhood size. 

 

3.4.2.iv Hierarchical Clustering  

 

Hierarchical Clustering aims to produce a dataset visualized as nested clusters (for example 

Figure 3.31) or as a hierarchical tree known as a dendrogram (for example Figure 3.32.) The 

most popular of the hierarchical clustering techniques is agglomerative clustering.  

Agglomerative clustering, shown in Algorithm 3, starts by assuming every point as part of a 

cluster, calculates the proximity between the clusters, and then merges the closest clusters. 

This process is repeated until only one maximal cluster remains. This one remaining cluster 

represents the apex of the dendrogram shown in Figure 3.32. There are different types of 

proximity measures used in agglomerative hierarchical clustering, the two main types being 

single link and complete link clustering. 

 

Figure 3.31: Example of resultant clusters using agglomerative clustering relating to the 

dendrogram in Figure 3.32 
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Figure 3.32: Dendrogram produced because of agglomerative clustering the points shown in 

Figure 3.31 

 

 

 

Complete link clustering measures the distance between clusters as the distance between the 

relative clusters' most dissimilar members. This type of clustering results in smaller, more 

compactly shaped clusters. 

Single link clustering is a form of local similarity-based clustering. This type of clustering 

considers the distance between clusters as the distance between the separate clusters two 

most similar members. Single link clustering pays more attention to the distances between 

Algorithm 3 – Agglomerative Hierarchical Clustering  

1 Choose proximity criterion 

2 Calculate and assign every data point as a cluster 

3 while the number of clusters > 1 

4  Calculate cluster distances using proximity criterion 

5  Merge the nearest clusters 

 end 
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members in the separate clusters than the actual structure of the clusters themselves. The 

advantage of this form of clustering is that it lends itself to arbitrary shaped clusters. However, 

the algorithm is highly susceptible to noise. The dendrogram shown in Figure 3.32 makes use 

of single-link clustering. 

The performance of hierarchical clustering algorithms such as agglomerative single link 

clustering suffers from the inability of the algorithm to simultaneously satisfy efficiency and 

accuracy. This, combined with the disregard for cluster shapes, leads to decreased 

performance. The K-Means algorithm described earlier in this chapter assumes that the 

underlying data patterns are in the shape of a sphere. The previous section introduced the 

DBSCAN algorithm and highlighted that the parameters used to efficiently use the algorithm 

are difficult to determine. Lv et al. (2018) proposed using the concept of a minimum spanning 

tree (MST) to alleviate the problems experienced by all the classical clustering algorithms. An 

MST is invariant to changes in the geometric boundaries of the clusters, meaning the shape 

of clusters have an insignificant impact on the performance of clustering algorithms (Lv et al., 

2018). The next part of this chapter explains one such method called Prims Algorithm. 

 

3.4.2.v Prims Algorithm 

 

Prim’s algorithm efficiently finds the minimum spanning tree (MST) of an undirected and 

connected graph. An MST is a minimum weight, connected graph with no circles. An example 

of an MST can be seen in Figure 3.33 (Berenbaum, 1998). 

 

Figure 3.33: Examples of an MST 
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Prim’s algorithm aims to build up an MST from an empty tree while maintaining two sets of 

nodes. One set includes all the nodes currently in the MST, and the other set contains nodes 

not yet considered for the MST. The algorithm iteratively picks the minimum weight distance 

connecting the two sets and includes the endpoint node into the MST set (Marpaung and 

Arnita, 2020). 

Prim’s algorithm starts by creating an empty list that keeps track of the nodes encountered 

by the algorithm. Starting with a random node, the node is added to the list, and all nodes 

reachable from the starting node are then considered. An example of this step is shown in 

Figure 3.34. 

 

Figure 3.34: Prim’s algorithm first step 

Prim’s algorithm is a greedy algorithm, which means that the algorithm selects the smallest 

edge connecting to an unvisited node. In the case of the example shown in Figure 3.34, the 

shortest edge is the one that connects A to B. B is then added to the visited list forming the 

start of the MST, as shown in Figure 3.35. 
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Figure 3.35: Prim’s algorithm second step 

When two edges have the same length, the algorithm picks one at random. Prim’s algorithm 

continues in this manner until all the nodes have been connected, resulting in the MST shown 

in Figure 3.36. 

 

 

Figure 3.36: Result of Prim’s algorithm 
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Clustering algorithms use minimum spanning trees as they can detect clusters of data with 

irregular cluster boundaries. They increase the performance of all algorithms which suffer 

from variations in cluster boundaries. The next section introduces Hierarchical Density-Based 

Clustering for Applications with Noise (HDBSCAN), which utilizes the MST in combination with 

DBSCAN and agglomerative single-link clustering. 

 

3.4.2.vi Hierarchical Density-Based Clustering for Applications with Noise 

(HDBSCAN) 

 

HDBSCAN was first introduced in 2013 by Campello et al. (Campello, Moulavi, and Sander, 

2013). It combines the ideas of DBSCAN and agglomerative clustering to analyse feature sets 

by extracting clusters of arbitrary shape, different sizes, varying densities, and noise. 

HDBSCAN, just like DBSCAN, transforms the data into density space. The HDBSCAN algorithm 

then builds an MST using Prim’s algorithm and performs single link clustering on the MST to 

get it into the form of a dendrogram, as shown in Figure 3.37 (b) and (c).  

 

Figure 3.37: HDBSCAN steps (Graphical representation of data output at key stages in the 

HDBSCAN... | Download Scientific Diagram, 2020) 
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The difference between HDBSCAN and DBSCAN is that instead of using the constant ε- 

neighbourhood value from the DBSCAN algorithm as the cut value (cluster identifier) for the 

dendrogram produced by the agglomerative clustering method, another method is used. The 

dendrogram is pruned by classifying the small groups of points which branch off as falling out 

of a cluster. This results in a smaller tree representing fewer clusters. In this way, the 

dendrogram can be utilized to extract the most indefatigable and solid clusters. This can be 

seen in Figure 3.37 (d). This methodology removes the need for ε-neighbourhood parameters 

and allows for variable density clusters. The only parameter left from the DBSCAN algorithm 

is Min_Points, which determine whether points are forming a new cluster or falling out of 

one. 

The studies undertaken in this research use most of the methodologies described in this 

chapter. The first set of studies make use of ConvNets to classify specific subsets of a broader 

plankton dataset. These trained ConvNets are then ensembled and used as a novel feature 

extractor network to feed an HDBSCAN algorithm and extract underlying groupings within the 

data. Finally, an automated cluster identification model is proposed and tested on the entire 

dataset. A breakdown of the various investigations is presented in the next chapter, Chapter 

4. 

  



95 
 

 

4 Experimental Methodology 

 

The literature review conducted in Chapters 2 and 3 provide insight into critical features in 

the field of computer vision, specifically focused on the classification and identification of 

plankton taxonomy. The purpose of this chapter is to discuss the investigations undertaken 

in this research. Section 4.2 provides an overview of the broader dataset created and used 

during the investigations. All the investigations use different types of classes. The difference 

between these class types is also discussed. All the investigations make use of the same image 

processing techniques to augment and transform the dataset. These image transforms are 

discussed in Section 4.3. The computer vision and machine learning libraries used are briefly 

discussed in Section 4.4. Section 4.5 through Section 4.8 presents an outline for each 

investigation to be considered. These definitions include a short introduction to the 

investigation, how the original dataset is augmented to train and test the respective 

algorithms, and the parameters used to compare the results. The neural network and 

clustering algorithms presented in this research are trained using an Nvidia RTX2080 Super 

GPU. 

 

4.1 Introduction 

 

Extensive research on using automated methods for plankton taxonomy has been conducted 

since the turn of the century. With exponential enhancements in technology, humans are now 

able to analyse not only samples in a laboratory but also in situ. Humans can also implement 

complex algorithms, such as the MorphoCluster algorithm, to assist marine experts in 

annotating plankton samples. While the combining these systems can drastically improve the 

way plankton data is collected, the job still requires an immense amount of time and effort. 

This is due to the inherent noise associated with monitoring any natural process which causes 

semi-supervised methods to require a lot of human input. In the case of plankton analysis, 

this noise comes from increasing levels of dead matter and other artefacts that share the 
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same world as the plankton. Environmental conditions, unseen species and poor image 

resolutions also plague the field of plankton taxonomy, decreasing the ability of humans and 

machines to interpret real-life sample sets. Chapter 2 shows that even when automated 

computer vision algorithms are applied in laboratory environments, they still don’t perform 

up to levels where researchers would not have to validate most of the samples. Most 

automated machine learning plankton taxonomic research proves that the proposed models 

are best employed using highly pre-processed and cleaned datasets and that they 

underperform when subjected to real-life sample sets. The models used in the studies shown 

in Chapter 2 use a small number of distinct classes and avoid spatially challenging samples 

such as detritus. 

This research presents a data-driven approach utilizing multiple validated, real-life datasets 

obtained using the ZooSCAN. The aim of this research was to build a plankton taxonomic 

pipeline that is a less human involved version of the successful MorphoCluster system. The 

pipeline uses an enhanced feature extractor designed to detect minor intraclass differences 

between subphylum classes and separate large noisy samples, such as detritus, from the 

dataset. It then clusters these features using the HDBSCAN algorithm and automatically labels 

the resulting clusters using an auxiliary classifier network structure. 
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4.2 Broader Dataset Overview and Class Assignment 

 

The broader dataset used in this study is an amalgamation of real-life plankton datasets 

collected and validated by the Nelson Mandela University Ocean Sciences Campus. A 

summary of the entire dataset used is found in Appendix A. This research presents an 

ensemble method utilizing multiple models built to process the subsets of the larger dataset. 

It proposes that no samples be discarded during the data cleaning process unless the class 

does not contain at least 10 ROI. This is because classes with less than 10 ROI in the combined 

raw dataset are deemed to be insignificant in this study and could force the relevant network 

to overfit those samples and underfit others. If discarded classes eventually contain enough 

samples, then the class in consideration can be added to the feature extraction network. 

Samples that belong to classes deemed “overall” in the class column, found in Appendix A, 

are removed from the original set and placed within their own overview subset set.  

With large plankton datasets, there are a few elements to consider. These elements are used 

to separate the dataset into three different types of classes, the first of which is based on an 

abundance of dead matter, otherwise known as detritus. Detritus is a very prominent feature 

of real-life plankton datasets, and the ability to correctly identify ROI of this type greatly 

increases the ability of neural network models to identify the rest of the samples. As shown 

in the dataset summary in Appendix A, detritus makes up almost a quarter of the total 

samples in the dataset. In situ methodologies have a vast amount more detritus to take into 

consideration as the net used to capture samples in ex situ methods tend to destroy a 

significant number of samples. Identifying these samples is a complex task as detritus samples 

exhibit significant spatial differences between them, occurring in any shape or form, as shown 

in Figure 4.1.  
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Figure 4.1: Detritus class (Type 1) examples 

 

Type 2 classes do not share close biological and visual similarities to other classes, but exhibit 

consistency within their own class. These classes can be in the form of living organisms such 

as Appendicularia or Cyphonaute shown in Figure 4.2 and Appendix A. They can also be in the 

form of non-living artefacts such as bubbles. 
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Figure 4.2: Type 2 Classes 

 

Other classes that occur in abundance and make up the type 2 class are the immature 

plankton classes, various body parts of different classes, and ROI containing multiples of one 

class, as shown in Appendix A. 

The third and final type of class considered are classes that ultimately form the plankton 

hierarchical structure researchers use to organise and validate the ROI. These samples belong 

to a subphylum, with other classes of the same subphylum exhibiting high spatial similarities. 

These classes are indicated in Appendix A and shown in Figure 4.3. 
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Figure 4.3: Crustacean Subphylum showing high similarities between different classes 

 

The first of the three types of classes are considered in Investigation A. The second and third 

type of class is utilized in Investigation B. Investigations C and D use all the described classes.  

Another general dataset is constructed, where objects that belong to noisy particles and ROI 

not considered in most plankton studies are removed. This cleaner dataset is comprised only 

of samples that belong to a specific subphylum.  

All machine learning algorithms require input standardization to effectively compute 

predictions in training and testing. In computer vision, this means performing image pre-

processing techniques on the ROI before they are fed to the neural network for training or 

inference. Techniques used throughout training and testing of the investigations are 

presented in Section 4.3. 
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4.3 Image Processing 

 

To successfully train and test multiple deep learning models on the amalgamated plankton 

dataset obtained from the original ZooSCAN, the ROI must go through various stages of pre-

processing. The first of these stages removes the original size scale markings on the images. 

The marking is shown in Figure 4.4 and always occurs at the same relative distance and size 

in every ROI. This marking is removed by cropping every image by a pixel value of 10 from the 

bottom of the images. 

 

Figure 4.4: Original ZooSCAN ROI 

 

The predefined neural network architectures used in the investigations are described in 

Section 3.2. These architectures mostly take in different input sizes. The ResNet architectures 

typically accept an input size of 224 x 224, whereas the Inception v3 network takes in input 

images of size 299 x 299. As some models perform better on various datasets, different 

architectures are used, and the input images must be of an acceptable size. In these 

investigations, the images are resized to 3 values higher than the required input and then 

centre cropped down to the correct size. Where images are smaller than the required size 

rescaling, they could cause skewing and bad resolution versions of the original image. Instead, 

these smaller images have their original image padded with the same colour as the 

background to a size 10 values greater than the desired input size. The resizing and cropping 
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are then performed the same way as before. All the input images have their channels reduced 

from 3 (red, green, and blue) to 1 (greyscale).  

Due to imbalance in the dataset, each investigation has its own sampling method described 

in their relevant chapters. However, one way in which the image processing pipeline assists 

with this matter is by flipping the various samples at random. 

Lastly, the image is converted into a matrix called a tensor containing values between 0 and 

256 depending on pixel intensities. The image tensor is then normalized to represent the 

same grayscale pixel ratios as values between 0 and 1. The whole image processing pipeline 

presented in this section provides the network with an easily consumable matrix 

representation of the respective plankton ROI. 

 

4.4 Computer vision and machine learning libraries 

 

Python was the language used to implement the algorithms throughout all the investigations 

undertaken in this research. Python is an OOP (object-oriented programming) language with 

many open-source libraries available for the implementation of data manipulation, computer 

vision and machine learning algorithms. This chapter briefly introduces some of the essential 

libraries utilized. 

Pytorch  

 

Pytorch is an open-source machine learning library created by Facebook’s AI Research Lab 

(FAIR). It is based on the Torch Library, which is a scripting language derived from Lua 

programming (Léonard et al., 2015). Pytorch allows for processing tensor-based matrices with 

a special focus on graphical processing unit (GPU) acceleration. Where other popular machine 

learning libraries like TensorFlow work on a pre, user-defined, static graph computation of 

the model, Pytorch is based on a dynamic graph allowing users to manipulate the graph on 

the go, i.e. implementing dynamic learning rates. Pytorch is used to define and train the 

supervised learning architectures proposed in this research. 
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Scikit-learn 

 

Scikit-learn is also an open-source machine learning library that provides various 

implementations of supervised and unsupervised methods. Scikit-learn is used in this 

research to investigate the unsupervised learning methods researched in this paper. 

 

HDBSCAN 

 

The HDBSCAN library is an open-source library designed purely for density-based clustering 

for applications with noise. 

 

Pandas Data frame 

 

Pandas is a Python package that was built to be the fundamental building block for real-life 

data manipulation and analysis in Python. Pandas is a fast and malleable data structure 

allowing easy and intuitive use of relational and annotated datasets. Pandas, like most data 

structures, is made up of data viewed in rows and columns. Pandas is used in these 

investigations to manage and store data for model analysis purposes. It also provides the 

structure for moving data from the supervised Pytorch models to Scikit-learn and HDSCAN 

libraries.  

This research makes use of many Python libraries for dataset interpretation and 

manipulation. Those mentioned above underline the essential ones utilized. Section 4.5 

introduces the first of four studies undertaken to fulfil the research objectives. 
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4.5 Investigation A: CNN Binary Classifier and Feature Extractor 

for Classes Exhibiting Low Intra Class Similarities 

 

4.5.1 Introduction 

 

One problem encountered by the current real-life implementations of vision algorithms for 

plankton classification is the abundance of detritus samples. These samples often make up to 

70% of the total sample set under consideration. Detritus does not have an exact or 

predictable shape and exhibits large intra-class differences, as shown in Figure 4.1, as 

opposed to more standard plankton classes, as shown in Figure 4.3. These low intraclass 

differences pose a challenge to traditional techniques such as random forest, but more so for 

general convolutional neural networks trained on many different classes. The nature of 

backpropagation within these general deep learning convolutional neural networks causes 

them to have decreased performance across all classes when classes such as detritus are 

included in their training set. Investigation A proposes training a CNN to identify the presence 

of a specific class in a binary classification manner, rather than classifying between more than 

two different classes.  

 

4.5.2 Dataset 

 

The classes under consideration from the original training set are shown in black in Appendix 

A. These classes are considered type 1 classes. Setting up a specialized structure for binary 

classification, as shown in Figure 4.5, allows for the training of a binary classifier to identify 

the presence of a certain class. The sampling algorithm for Investigation A is shown in 

Algorithm 5. The sampling algorithm creates a new dataset containing two classes. The first 

is the class of interest (i.e. detritus). The second is a new class made of randomly sampled ROI 

from the original plankton dataset, excluding the first class. The algorithm makes sure the 

classes are balanced by sampling the same number of random ROI as there are samples in the 

class of interest. This sampling is performed for the training, testing and validation subsets of 

the original dataset. 
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Figure 4.5: Binary classifier folder structure 

 

4.5.3 Evaluation parameters 

 

To evaluate the performance of the trained binary CNN classifier on type 1 classes, the model 

is placed into inference mode and used to predict the presence of the specific class vs the 

other class. The ability of the model to make a correct decision on whether it encounters a 

sample of interest indicates that the sample has learnable and distinguishable features even 

with its significant intra-class spatial differences.  

  

Algorithm 5 – Binary folder creation 

1 Choose class of interest 

2 While size of output < size of interest class 

3  for each element in the list of other classes (!= class of interest) 

   Pick a random sample 

Send sample to collective folder 

6 end 
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4.6 Investigation B: CNN Subphylum Classifier and Feature 

Extractor 

 

4.6.1 Introduction 

 

CNN feature extractors such as the one used for MorphoCluster are trained to classify 

between a variety of different classes. The problem with training networks in many classes is 

that the network tends to overfit or underfit. This causes the network not to recognize the 

differences between classes from the same subphylum. This is due to the large spatial 

differences between some of the classes whilst others exhibit very high similarities, as shown 

in Figure 4.3. 

This investigation proposes training individual CNN models on type 2 or 3 subsets of the 

original dataset. This approach aims at teaching the network more fine-grained differences 

between similar classes.  

 

4.6.2 Data 

 

Investigation B makes use of the original dataset except for all the type 1 classes. The 

considered classes are separated into groups based on biological feature similarities. These 

groups include seven different subphylum groups of classes, four specialized groupings, and 

the overall subphylum group as explained in Section 4.2. The folder breakdown is shown in 

Figure 4.6. 
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Figure 4.6: Folder groupings 

 

The subphylum classes are constructed using the plankton taxonomic classifications from the 

EcoTaxa and WoRMS online platforms. These subsets are unbalanced, which would cause the 

networks to overfit to the most abundant classes. This imbalance is mitigated by using a 

weighted sampling method. 

The algorithm starts by analysing the number of samples within each class and then proceeds 

to take one ROI from each class until the desired batch size is met. This means the algorithm 

resamples ROI from less abundant classes in the subset, but due to the image processing and 

augmentation techniques described in the image processing section, the resampled ROI will 

have a different appearance. The algorithm terminates once all the ROI in the considered 

subset have been sampled at least once. 
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4.6.3 Evaluation Parameters 

 

The performance of each subphylum trained model is compared to the general CNN 

architecture used in methodologies such as MorphoCluster. This is done by putting the 

subphylum models into inference mode and testing the ability of each algorithm to identify 

classes from its dedicated subphylum from the testing data. Another generalized model that 

is trained on all the data used to create the subphylum datasets is then also placed into 

inference mode and tested on each subphylum test set. The performance of each individual 

subphylum model is then compared to the ability of the generalized model to predict classes 

from its dedicated subset.  
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4.7 Investigation C: HDBSCAN of Ensembled Feature Extractors 

 

4.7.1 Introduction 

 

Modern plankton classification techniques such as MorphoCluster make use of a CNN feature 

extractor trained on the entire dataset and then proceed with unsupervised clustering of the 

visual features proposed by the CNN. The HDBSCAN algorithm aims to group samples with 

like features and identify outlier samples. This investigation aims to determine whether 

ensembling the feature extraction methodologies used in investigations A and B result in 

increased performance as opposed to using a single general feature extractor.  

 

4.7.2 Data 

 

Investigation C makes use of a stacked classification architecture that uses a stack of models 

trained in investigations A and B. These models are then compared to individual classifier 

networks trained on variations of the entire dataset. The data in this investigation is used to 

evaluate the performance of the stacked classifier network against that of the singular 

classifier network. 

 

4.7.3 Evaluation Parameters 

 

To evaluate the performance stacked classification network against that of the singular 

network, each algorithm is trained and tested on the same variation of the dataset. This 

evaluation is done by comparing the network under consideration’s predictions against the 

ground truth values. Once the best performing network is selected, the more complex data is 

injected into the dataset, and the algorithms are trained and tested again.  
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4.8 Investigation D: Automated Cluster Identification Using 

Predicted Pseudo-Labels 

 

4.8.1 Introduction 

 

The MorphoCluster methodology that represents the current state-of-the-art approach to 

plankton taxonomy uses a combination of machine learning techniques and a marine 

specialist's assistance. This hybrid approach produces results potentially unattainable by the 

machine or human counterpart alone. The use of an expert to validate and name the clusters 

based on visual perception results in high accuracy but reduces the speed at which the 

taxonomic process can be performed tenfold. This investigation makes use of an auxiliary 

branch of the feature extractors studied in investigations A and B. This auxiliary branch 

contains the soft label prediction of the CNN feature extractor before decapitation. The way 

human marine experts name the clusters using visual perception is mimicked by CNN 

networks specifically trained on a subset of classes, be they binary or multiclass classification 

networks. If more than one sample is perceived to be of a certain class with a certain 

confidence, the cluster is then renamed to be a cluster of that specified class. This 

autonomous approach, although not as accurate as using human experts, increases the 

efficiency of the plankton taxonomic system. 

4.8.2 Data 

 

This investigation uses the entire labelled dataset without separating the data into either its 

binary subsets or subphylum subsets. Like Investigation C, Investigation D is an unsupervised 

method and therefore does not require training. Instead, the dataset is used to evaluate the 

performance of the automated plankton taxonomic pipeline. 
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4.8.3 Evaluation Parameters 

 

Evaluating the performance of unsupervised algorithms is not as simple as measuring the 

performance of supervised algorithms. Where supervised methodologies utilize ground truth 

labels to determine the performance of the algorithm directly, unsupervised methods are 

usually evaluated based on some similarity or dissimilarity measure such as the distance 

between cluster points. The evaluation metrics used in this investigation include the number 

of identified clusters, the Silhouette Coefficient and Dunn’s Index. 

The Silhouette Coefficient or Silhouette Score is a method used to validate the goodness of a 

clustering algorithm. The algorithm, as shown in Equation 21, contains two variables, a and b. 

The a variable represents the average distance between data points within each cluster, and 

b represents the average distance between the clusters. 

The resultant value can range between -1 and 1, where a result of 1 means there is clear 

separation and dense clusters, and a score of -1 indicates the clusters are not assigned 

correctly. Another metric measure of fitness is known as Dunn’s Index. 

Dunn’s Index shown in Equation 22, makes use of the minimum inter-cluster distance as a 

ratio with respect to the maximum intracluster distances. 

 

A higher DI means more densely packed clusters that are well separated, meaning a higher DI 

value indicates a potentially better clustering algorithm.  

However, the two mentioned evaluation methods are more suited to non-density-based 

clustering methods as they do not take noise into account. Noise is an important characteristic 

in density-based clustering applications, as discussed in Chapter 3.4.2. To evaluate the 

performance of the automated pipeline, each sample is assigned to either a corresponding 

 
𝑺(𝒊) =

𝒃𝒊 − 𝒂𝒊

𝒎𝒂𝒙(𝒃𝒊, 𝒂𝒊) 
 

(21) 

 

 
𝑫𝑰 =

𝒎𝒊𝒏(𝑰𝒏𝒕𝒆𝒓 𝒄𝒍𝒖𝒔𝒕𝒆𝒓 𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆)

𝒎𝒂𝒙(𝑰𝒏𝒕𝒓𝒂 𝒄𝒍𝒖𝒔𝒕𝒆𝒓 𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆) 
 (22) 
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cluster or as noise. Once every sample is assigned, the algorithm starts identifying the name 

of the clusters and merging similar clusters. For every sample, the automated pipeline's 

predicted cluster label is then compared to the true label, just like when measuring the 

performance of supervised learning algorithms.  
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5 CNN Binary Classifier and Feature Extractor for Classes 

Exhibiting Low Intra Class Similarities 

 

5.1 Introduction 

 

This chapter provides a full analysis of the proposed feature extraction algorithm for classes 

that exhibit very low-class similarities (Type 1). The proposed network makes use of a binary 

classification technique, where instead of training the network on a set of different classes, 

the network is trained to identify the presence of a single class. The data and evaluation 

parameters used are discussed in Section 4.5.1. The classes considered for this investigation 

include Type 1 classes such as detritus. The implementation of the networks is explained in 

detail in the next section. 

 

5.2 Implementation Detail 

 

The implemented architectures are either ResNet18, Resnet36, WideResNet32 or DenseNet. 

Each network type is trained on the binary datasets, and their results are analysed. Once the 

best achieving architecture is selected for each class, the model is fine-tuned by adding a 

linear fully connected layer onto the network and freezing the model's original convolutional 

neural network part. The model is then retrained on the same dataset as before. The 

retraining of the model without backpropagating the convolutional part forces the network's 

new fully connected layers to be single layer representations of the network. These single 

layer representations can be seen as the features the network extracts from every sample it 

gets passed. A network that best classifies the test dataset will present better features in the 

layers before the output layer. An example of how the binary architecture is setup is shown 

in Figure 5.1. 
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Figure 5.1: Architecture showing binary classification architecture 

 

Once the model is retrained, the previous fully connected layer is used as the primary output 

in the proceeding investigations. 

 

5.3 Results and Discussion 

 

To validate the performance of the binary classification algorithm, various tests were 

conducted on a model trained to identify detritus samples. The initial test conducted 

determined whether including detritus samples in the training set had adverse effects on a 

generalized network. As explained in Chapter 4.5, most research in plankton taxonomy has 

found that detritus and other non-plankton samples, found in abundance in real-life datasets, 

negatively influence the performance of the proposed classification networks. It was found in 

this research that including only the detritus class in the cleaned dataset decreased the 

model’s accuracy by 0.014 taking its testing accuracy down to 0.64. This is because the 

samples within the class exhibit large intra-class differences and training a model to identify 

many other classes including the detritus class increased the required parameters by an 

exponential amount.  

This investigation then continued with training a binary classification model on a one vs all 

basis, where a classifier was trained to identify the presence of detritus only. Figures 5.2 and 
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5.3 show the training accuracy and validation accuracies achieved when training the 

algorithm. The step variable along the x-axis represents the number of epochs the training 

has undergone. The other class used to train the binary classifier was constructed from the 

original dataset from samples that are not part of the detritus class, as discussed in Section 

4.5.2. 

 

 

Figure 5.3: Performance of binary classification algorithm on detritus class during validation 

 

The results shown in Figures 5.2 and 5.3 indicate that there are indeed inherent features 

associated with detritus samples, such that when the transformed dataset changed the focus 

of the model to detritus identification, it achieved a validation performance of 0.92. Figure 

Figure 5.2: Performance of binary classification algorithm on detritus class during 

training 
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5.4 shows the PR curves obtained from the binary classifier. These curves trade off between 

true positives (versus false negatives as a proportion of the real positives) and false positives 

(versus true negatives as a proportion of the real negatives) and are equivalent to comparing 

Sensitivity (+ve Recall) and Specificity (-ve Recall). A greater area under the curve represents 

a higher performance.  

 

Figure 5.4: PR Curves of a model trained to identify between dead or alive samples 
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The PR curves shown in Figure 5.4 indicate that the model is robust to identifying between 

the dead and alive samples, indicating that the features extracted in the CNN are sufficient to 

identify the presence of detritus. Figure 5.5 shows the confusion matrix obtained when 

testing the matrix. 

 

 

 

Figure 5.5: Detritus classification network confusion matrix 
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6 CNN Subphylum Classifier and Feature Extractor 

 

6.1 Introduction 

 

Classes that don’t belong to type 1 can be assumed to be part of type 2 or type 3 classes. 

These classes belong to subphylum or group samples that exhibit similar features to one 

another. When training feature extractors on these plankton subphylum sets, as opposed to 

one general CNN feature extractor, the goal is that the specifically trained algorithms tend to 

learn more fine-grained features between classes. This system is especially viable for plankton 

classification as classes are quite obviously different to samples from another subphylum.  

The goal of training models based on various non-biological groupings is to show that samples 

removed from the models trained in the plankton studies discussed in Chapter 2 have 

distinguishable features and, therefore, can be learnt. The problem experienced by these 

studies is that training a single general algorithm to take care of such a spatially variant task 

results in less-than-optimal results. Further implementation details of the networks used in 

this investigation are described in Section 6.2.  

 

6.2 Implementation Details 

 

In this investigation, each of the subsets of classes considered exhibit different features. This 

suits some CNN architectures better than others. The deeper the network, the more complex 

the features extracted by the algorithm, while layers near the beginning of the network 

extract more rudimental features. Some of the groups created for this investigation contain 

only a few classes and, therefore, will be better off using shallower networks such as the 

ResNet18 architecture. 

Similarly to Investigation A’s implementation discussed in Chapter 5.2, the best achieving 

architecture is selected for each class, and the model is fine-tuned by adding a linear, fully 

connected layer onto the network and freezing the original convolutional neural network part 

of the model. The model is then retrained on the same dataset as before. The retraining of 



119 
 

the model without backpropagating the convolutional part forces the network's new fully 

connected layers to become single layer representations of the network. These single layer 

representations can be seen as the features the network extracts from every sample it gets 

passed. An example of how the architecture is set up is shown in Figure 6.1. The data and 

parameters used in this chapter are discussed in Section 4.6. 

 

 

Figure 6.1: Group/subphylum architectures 

 

6.3 Results and Discussion 

 

The ability of the networks to distinguish between classes with minor intraclass differences 

can be better seen using Precision Recall (PR) Curves. These curves trade off between true 

positives (versus false negatives as a proportion of the real positives) and false positives 

(versus true negatives as a proportion of the real negatives) and are equivalent to comparing 

Sensitivity (+ve Recall) and Specificity (-ve Recall). A greater area under the curve represents 

a higher performance.  

This section presents some of the more obvious situations where using the specifically 

designated CNN networks for certain inter-class or intra subphylum/grouping classifications 

outperformed the generalized CNN model proposed in another research. The generalized 

model used to compare the performances was trained on the cleaner dataset. Another model 
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trained on the entire dataset is also used to illustrate the effectiveness of breaking up a 

dataset into consumable subsets rather than just removing the samples. 

Figures 6.2, 6.3 and 6.4 show only a few of the PR curves obtained comparing the subphylum 

specific models to the clean generalized classifier. 

 

 

Figure 6.2: Crustacea class resultant PR curves 
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Figure 6.3: Mollusca class resultant PR curves 

 

 

Figure 6.4: Various other subphylum class resultant PR curves 

The results displayed in Figures 6.2, 6.3 and 6.4 indicate that the use of models trained on 

specific subsets of the data results in overall better recall performances than that of a single 
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generalized classification network. There is no case where the general model achieved a 

better PR curve than the relevant subphylum model. Figure 6.5 shows the PR curve results 

obtained from networks trained on subsets usually discarded in plankton research as they are 

classified as noisy samples. These PR curves are compared to the generalized classifier trained 

on the entire dataset. 
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Figure 6.5: PR curves of grouping classifier compared to the generalized classifier trained on 

the entire set 

The resultant PR curves shown in Figure 6.5 indicate that the use of subset classification 

networks can be used to identify classes that are usually discarded from the datasets to 

increase the model’s performance. 
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Overall, the cleaned, general feature extractor correctly classified 38114 out of a total of 

51930 unseen testing samples giving it a perceived accuracy of 0.73. The performance of the 

individual classification algorithms trained on subsets of the same data achieved an 

accumulative score of 43025 out of the same total 51930 testing samples resulting in a 

perceived accuracy of 0.829. This result also excludes the performance of these subgroup 

classifiers to classify samples that are not present in the cleaned, general feature extractor. 

However, introducing these more complex classes into a generalized model decreases the 

model’s ability to be trained, resulting in overfitting. 

Investigation 2 shows that feature extractors built to identify certain biological or 

physiological groupings achieve better results than a single generalized feature extractor. This 

is especially true when the training sets contain noisy samples such as organism body parts, 

eggs etc., outlined in Section 4.2 as type 2 classes.  

Chapter 7 investigates the effectiveness of combining the subgroup classifiers as feature 

extractors for clustering purposes. 
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7 HDBSCAN of Ensembled Feature Extractors 

 

7.1 Introduction 

 

This investigation explores the ability to stack the feature extraction methods presented in 

the previous two investigations, A and B. Individually, the two studies prove their 

effectiveness in classifying their specified classes and class types. This investigation brings 

these studies together to analyse the performance of a novel combined technique for 

plankton feature extraction. The performance of the previous two studies is based on the 

ability of the networks to classify their dedicated classes as compared to a general network. 

This investigation uses all the trained networks from the previous studies and decapitates 

them to become feature extractors. A new classifier network is trained using these features. 

The new stacked classifier network is then also decapitated, and the algorithm then reduces 

and clusters the resultant feature vector. Further implementation details are discussed in the 

Section 7.2.  

  

7.2 Implementation Details 

 

The feature extraction and classification pipeline presented in this investigation is composed 

of three separate stages. The first two stages are supervised methodologies, and the final 

stage is unsupervised. 

The first stage of the algorithm is training the relevant feature extractors as conducted in the 

previous two studies; this is achieved by training CNN image classifiers, using specific subsets 

of the original raw plankton dataset. Once these image classifiers are trained, they are fine-

tuned by retraining the network after adding in an extra fully connected layer before the 

output layer. These trained image classifiers serve as high dimensional feature extractors for 

the next stage of this investigation’s algorithm.  

As shown in Figure 7.1, the second stage of the pipeline that needs to be trained is the stacked 

classifier network appended onto the outputs of all the first stage's trained networks. The 
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feature extraction networks take a batch of images and produce two-dimensional feature 

vector representations of the input images. Each networks output image feature vector is 

concatenated with the same picture's output from the other networks. This produces a larger 

feature vector with a combined understanding of the input image. The image’s output 

combined feature vector and the associated image label is then used to train a multilayer fully 

connected network. The network comprises two fully connected layers, the first of which uses 

a leaky ReLU activation function and dropout. The second layer is connected to the output 

layer. In training, the loss function is calculated using cross-entropy loss. This is a loss criterion 

that combines SoftMax and the negative log-likelihood loss. The loss is backpropagated 

through only this stacked classifier network, updating only the weights of the fully connected 

layers. The output of the second FC layer represents the prediction scores for the various 

classes. The new stacked classifier network is trained using the original dataset containing 

samples such as detritus and other noisy artefacts. 

The final stage of this investigation involves removing the output layer of the stacked classifier 

network and placing the fully connected layers in inference. This output feature vector is a 

lower-dimensional representation of the original input image. The extracted features are then 

further reduced with PCA and then clustered using HDBSCAN, as shown in Figure 7.2. The 

Figure 7.1: Investigation 3 architecture 
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results obtained when comparing the performance of this combinational technique versus 

using a single large network are presented and discussed in the next part of this chapter. 

 

 

7.3 Results and Discussion 

 

To determine the performance of the stacked classification network, increasingly more 

complex datasets were used to train and test the network against the use of singular Wide-

Resnet architecture. The Wide Resnet architecture was used to obtain the best score out of 

all the algorithms tested on the dataset.  

The results for the various tests, shown in Table 2, indicate that even with more specific and 

cleaner datasets, the stacked classification network outperformed the singular network. The 

stacked classification network was trained on the subphylum dataset, which consists of all the 

same classes as the cleaner dataset, except that the classes are broken up into their respective 

subphylum, as discussed in Section 4.6.2. The stacked classification network outperformed 

the single classification network by 0.097 when tested on the cleaner unseen data. With the 

inclusion of detritus and other artefacts into the dataset, the performance of the singular 

network steeply declined, achieving the best accuracy score of 0.667 on unseen data. The 

stacked classification network, however, still managed to obtain an accuracy of 0.768.  

Figure 7.2: Investigation 3 semi-supervised architecture 
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Table 2: Performance test of a stacked classifier network against a singular network on various 

datasets. 

Model Dataset Top Accuracy 

(Train) 

Top Accuracy 

(Test) 

Classes 

Singular classifier 

network 

Clean dataset 0.750 0.731 72 

Stacked classifier 

network 

Subphylum 

datasets 

0.843 0.828 72 

Singular classifier 

network 

Clean dataset + 

detritus and noisy 

artefacts 

0.675 0.667 88 

Stacked classifier 

network 

Subphylum 

datasets + 

detritus and noisy 

artefacts datasets 

0.785 0.768 88 

Singular classifier 

network 

Original dataset 0.87 0.12 110 

Stacked classifier 

network 

Subphylum 

datasets + 

detritus, noisy 

artefacts and 

other datasets 

0.734 0.712 110 

 

The final performance test between the two architectures involved using the entire original 

dataset. This dataset is similar to what can be expected in a real-life situation and contains 

samples from all three type classes discussed in Section 4.2. In this experiment, the stacked 

classification network obtained a best test accuracy score of 0.712 while the singular classifier 

network's best performance was 0.12. 
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The high training score and low testing score obtained by the singular classifier network on 

the original dataset indicates that the network is overfitting. A section of the confusion matrix 

produced by testing the resultant single generalized feature extractor on the original dataset 

is shown in Appendix B. The resultant confusion matrix from the stacked classifier network is 

also shown in Appendix B. 

As indicated in Section 4.7.3 the use of general clustering evaluation metrics is not a good 

indicator of the performance of density-based clustering methodologies. The preferred 

metric used to evaluate the density-based clustering method performances is the 

homogeneity score. This score compares the predicted sample label to the ground-truth label, 

similarly to how supervised machine learning algorithm performances are benchmarked. 

However, to obtain a comparable prediction, the automated cluster identification algorithm 

provides a way to predict the sample’s class.  

  



130 
 

 

8 Automated Cluster Identification Using Predicted 

Pseudo-Labels 

 

8.1 Introduction 

 

This final investigation presents the implementation and results using a novel automated 

cluster identification algorithm for plankton taxonomy. This algorithm is built using all the 

techniques implemented in Investigations A, B and C. This investigation aimed to prove 

whether the trained model’s predicted labels could be used to identify the resultant clusters. 

Further details about the implementation of this algorithm are presented in Section 8.2. 

 

8.2 Implementation Details 

 

The first three investigations proposed training individual subclass feature extractors and 

then combining them with a single feature extraction network which has its output feature 

vectors further reduced by PCA. This algorithm is then used to supply features to the 

clustering algorithm, which finds underlying patterns within the data and discover outliers. 

This investigation uses the stacked classifier network's predicted labels to name clusters that 

contain a certain threshold abundance of a certain class. The proposed architecture is shown 

in Figure 8.1. 
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Figure 7.1: Autonomous feature extraction, clustering, and identification algorithm 

architecture 

All the images under consideration have their features extracted and are then clustered using 

HDBSCAN. The features used to form the clusters are obtained by routing the output of the 

first FC layer in the classifier network to the clustering algorithm without removing the 

classifiers output layer. The HDBSCAN clustering algorithm results in a cluster number to 

which the features of the respective images have been deemed to form part. The stacked 

classifier network then uses its class prediction output layer to predict the classes of the 

processed samples. If a certain cluster number contains more than the threshold ratio of 

samples with the same predicted label, then the cluster number is renamed to the abundant 

class name. Clusters with the same name are then merged.  

The automated clustering algorithm iteratively clusters the extracted datasets and assigns 

each sample either to noise or the identified cluster. The minimum cluster size parameter is 

initially set to a high value such as 128. This is so that the clustering algorithm finds the purest 

and coherent clusters. The minimum cluster size value is decreased with every iteration of 

the clustering algorithm. As the minimum cluster size decreases, so does the number of 

samples needing to be clustered. HDBSCAN also provides a membership score which indicates 

the confidence of the sample belonging to the assigned cluster. To identify the cluster name, 

the proposed algorithm identifies which sample is dominant in the cluster and assigns all the 

samples over a certain confidence score to the identified class. 
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8.3 Results and Discussion 

 

The automated plankton identification algorithm proposed presents a novel method for 

extracting specific features from plankton samples and then clustering and autonomously 

labelling the samples. The studies discussed in Section 2.5.1 used a single CNN network as a 

feature extractor trained on a clean dataset with well-defined classes. These performances 

are summarized in Table 4. To standardize the performance test, a singular classifier network 

is trained on the clean dataset proposed in this research. The performance of the automated 

identification algorithm is compared with the singular classifier model in Table 3. The 

automated classification algorithm obtained a score of 0.775 when tested on the raw 

plankton dataset shown in Appendix A. The single classification network used in other 

research would overfit when trained on the same dataset and couldn’t obtain scores higher 

than 0.12, as shown in Table 2. 

Table 3: Results obtained from using automated feature extraction, clustering, and cluster 

identification algorithm on various datasets 

Dataset Feature 

Extraction 

Network 

Total Accuracy  Accuracy of clustered 

samples 

Clean dataset Singular Classifier 

Network 

0.752 0.810 

Clean dataset Stacked Classifier 

Network 

0.828 0.875 

Clean dataset + 

detritus and 

artefacts 

Singular Classifier 

Network 

0.685 0.702 

Clean dataset + 

detritus and 

artefacts 

Stacked Classifier 

Network 

0.768 0.795 

Original 

dataset 

Stacked Classifier 

Network 

0.724 0.775 

 

The results indicate that the use of the clustering and the automated cluster identification 

algorithm increases the performance of the total dataset. The largest impact of the 
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automated clustering and identification approach is that samples with low confidence of a 

certain cluster are rejected as noise. These samples are to be hand validated by marine 

experts. With these noisy samples identified and removed from the testing set, the algorithm 

performances increase. In the case of the network implemented on the original dataset, this 

increases the accuracy by 0.051. Section 8.3.1 to Section 8.3.6 review the research objectives 

and highlight the results obtained. 

Table 4: Summary of results obtained by other researchers using CNN models to classify plankton samples 

 

  

Dataset Feature Extraction 

Network 

Total 

Accuracy  

Number of 

classes 

Author 

Clean 

dataset 

Singular Classifier Network 0.886 19 (Correa et al., 

2016) 

 

Clean 

dataset 

Singular Classifier Network 0.934 13 (Dai et al., 2016) 

Clean 

dataset 

Singular Classifier Network 0.963 30 (Dai et al., 2017) 

Clean 

dataset 

Singular Classifier Network 0.73 121 (Li and Cui, 2016) 

Clean 

dataset 

Singular Classifier Network 0.88 20 (Lumini, Nanni 

and Maguolo, 

2019) 

Clean 

dataset 

Singular Classifier Network 0.85 7 (Cheng et al., 

2019a) 
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8.3.1 Research objective one: Investigate existing plankton taxonomy 

pipelines. 

 

The literature review conducted in Chapter 2 investigated existing plankton taxonomic 

techniques and discussed their functionality, effectiveness, and shortfalls. The research 

identified that many modern machine learning techniques used for plankton classification, 

such as ZooplanktoNet (Dai et al., 2016) are only well adapted to clean datasets. This is due 

to the inability of purely supervised algorithms to overcome this reality gap. Clustering 

techniques such as the HDBSCAN clustering algorithm used in the MorphoCluster (Schröder, 

Kiko and Koch, 2020) implementation provide a theoretically sound way to solve the reality 

problem. HDBCSAN is used to augment the supervised neural network's architectures 

presented in Chapters 5, 6 and 7. The implementation of the HDBSCAN algorithm is discussed 

in Chapter 8. 

 

8.3.2 Research objective two: Determine the underlying performance lapses 

in modern plankton taxonomy techniques. 

 

Morden plankton taxonomy techniques are not considered viable for deployment on realistic 

datasets. As datasets become more complex, the performance of the investigated algorithms 

such as ZooplanktoNet (Dai et al., 2016) deteriorates. Several algorithms that could increase 

the performance of the existing techniques mentioned in Section 8.3.1 were explored and 

effectively implemented.  

The implemented algorithms include the binary classification algorithm discussed in Chapter 

5, where a CNN is trained to classify whether a sample is detritus. The subphylum 

classification algorithm discussed in Chapter 6 proved to be more effective in fine-grained 

classification than a general all-in-one classifier. In Chapter 7 a stacked classification network 

was built by adding a fully connected layer on top of the pre-trained models from the first 

two algorithms investigated in Chapters 5 and 6. 
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8.3.3 Research objective three: Propose, implement, and evaluate a binary 

classification CNN for detritus identification 

 

The study of using binary classification techniques for classes such as detritus is introduced in 

Section 4.5. The full study of the implementation and effectiveness of the techniques is 

discussed in detail in Chapter 5. The study conducted in Chapter 5 involved constructing a 

binary neural network architecture that achieved a 0.92 predictive accuracy when classifying 

between dead and alive samples. Detritus samples make up more than half of most real-life 

samples. The ability to identify and separate the dead from alive samples allows for better 

suited implementation of a generalized classification network. This investigation prompted a 

deeper investigation into whether training networks on specific subsets of data would result 

in classifiers that perform better than a single generalized network. This is discussed further 

in Section 8.3.4.  

 

8.3.4 Research objective four: Propose, implement, and evaluate a biological 

group-based classification CNN for plankton identification 

 

The implementation and results obtained from the study of using group-based classification 

techniques for all classes instead of one singular network was undertaken in Chapter 6. This 

investigation separated the larger dataset into biologically grouped subsets. It then measured 

the performance of individual classifiers trained on the subsets and compared the overall 

findings against those obtained when training a single classifier on the entire dataset.  

Overall, the cleaned, general feature extractor achieved an accuracy of 0.73. The performance 

of the individual classification algorithms trained on subsets of the same data achieved a 

perceived accuracy of 0.83. This showed that feature extractors built to identify certain 

biological or physiological groupings achieve better results than a single generalized feature 

extractor. This is especially true when the training sets contain noisy samples such as 

organism body parts, eggs etc.  
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8.3.5 Research objective five: propose, implement, and evaluate the 

combination models trained with binary and subclass groupings for 

plankton identification 

 

Chapter 7 discusses the stacked classification network, which involves training a classification 

algorithm that uses the outputs of the pre-trained, subclass models mentioned in Sections 

8.3.3 and 8.3.4 as inputs. This study showed that the stacked classification network could 

extract features about plankton samples that singular classification networks could not. A test 

accuracy of 0.71 was achieved when trained on the uncleaned, full dataset. Whereas for the 

singular classification architecture, the complex uncleaned dataset forced the network to 

overfit, resulting in an incomparable outcome. 

 

8.3.6 Research objective six: Propose, implement, and evaluate automated 

semi-supervised plankton taxonomy pipeline for real-world application 

 

The results from the complete semi-supervised plankton taxonomic pipeline were presented 

in Chapter 8. The autonomous labelling of the clusters formed from the features extracted by 

the feature extraction algorithm resulted in a minimum increased accuracy score of 0.065. 

The automatic plankton taxonomy pipeline implemented outperforms algorithms used in 

previous studies (discussed in Chapter 2) such as ZooplanktoNet. 

. Although the approach taken is similar to that used in MorphoCluster (Schröder, Kiko and 

Koch, 2020), the novel feature extraction and autonomous cluster labelling algorithm 

provides augmentations that accelerate the process by not requiring constant human 

assistance. 

 

 

  



137 
 

 

9 Conclusions and Future Work 

 

All modern plankton classification techniques underperform when tested on real-life 

datasets, and this is because plankton sample sets are very biodiverse and noisy. Deep 

learning techniques such as MorphoCluster use a single convolutional network as a feature 

extractor and then cluster the resultant features using HDBSCAN. Although this method 

achieves state-of-the-art results, it is very human dependant and requires manual validation 

throughout the entire process. This research proposed a novel technique for plankton 

taxonomy which incorporates the methods used in the MorphoCluster algorithm augmented 

with enhanced feature extraction and an automated cluster identification technique. 

The proposed classification pipeline was built by combining a set of models pre-trained on 

specific subsets of the data instead of a single network trained on one large dataset. The use 

of a stacked classification network increased the predictive capabilities of the feature 

extractor by 0.095, in some cases achieving an accuracy of 0.83 on cleaner datasets. In other 

cases, such as the real-life dataset, the stacked feature extractor provided a way to achieve 

an accuracy of 0.71 even when the singular classification could not be trained without 

overfitting. The autonomous clustering and cluster identification algorithm increased this 

performance on the raw dataset to 0.789 by rejecting unrecognized and noisy samples for 

manual classification.  

The results achieved in this study indicate that combining models trained on specific subsets 

of data realized a greater recall accuracy than an individual network trained on the full 

dataset. Combining this feature extraction technique with a density-based clustering 

algorithm such as HDBSCAN further increased the recall accuracy and provides a way to 

identify samples that the algorithm is unsure about. 

To further increase the effectiveness of the autonomous taxonomic algorithm, some 

recommendations for further research include incorporating the “Top 5” score of the 

classification algorithm into the autonomous cluster identification algorithm discussed in 

Chapter 8. This score represents the confidence of a network's prediction of each sample's 

class to the most probable top 5 classes. Instead of just using the top sample, one could form 
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a new cluster identity ranking system where the cluster's dominant class is built from the top 

5 scores of each sample in the cluster's prediction. Another suggestion for further research is 

that of implementing a deep clustering network that interlocks the clustering process with 

the supervised feature extraction process. Every training iteration produces cluster seeds that 

influence both the feature extractor itself and the clustering algorithm. These techniques 

would further the autonomation of the entire pipeline, allowing for a self-tuning feature 

extraction and clustering algorithm. 
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 Appendix A: Dataset 

 

Class Grouping Count 
Class Type (Classes are defined in 
Chapter 4.2) 

Abylidae Cnidaria 89 3 

Acantharea Harosa 844 3 

Acartiidae Crustacea 1612 3 

Actinopterygii Actinopterygii 314 2 

Actinula_Hydrozoa NEC 4 0 

Aetideidae Crustacea 248 3 

Aglaura Cnidaria 114 3 

Alciopidae Annelida 74 3 

Amphipoda Overall 37 2  

Annelida Overall 214 2 

Antenna_Crustacea Parts 176 2 

Appendicularia Appendicularia 6244 2 

Bivalvia_Mollusca Mollusca 366 3 

Bubble Other 36 2 

Calanoida Overall 74617 2 

Calocalanus Crustacea 751 3 

Calocalanus plumulosus Crustacea 136 3 

Calyptopsis_Euphausiacea Absorbed in Euphausiacea 1853 2 

Candaciidae Crustacea 521 3 

Cavoliniidae NEC 1 0 

Centropagidae Crustacea 242 3 

Cephalochordata NEC 16 0 

Cephalopoda Mollusca 17 3 

Chaetognatha Chaetognatha 9402 2 

Cladocera Crustacea 238 3 

Cnidaria_Hydrozoa Young 145 2 

Cnidaria_Metazoa Young 91 2 

Copepoda Removed 406 0 

Copilia Crustacea 241 3 

Corycaeidae Crustacea 8425 3 

Coscinodiscus Harosa 29 3 

Creseidae Mollusca 403 3 

Cyclopoida Overall 98 2 

Cyphonaute Artefact 433 2 

Cypris Crustacea 41 3 

Dead_Copepoda Other 821 2 

Decapoda Overall 52 3 

Detritus Detritus 67102 1 

Diphyidae Cnidaria 874 3 
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Doliolida Thailiacea 3965 3 

Echinodermata Overall 173 2 

Egg sac_egg Egg 30 2 

Egg_Actinopterygii Egg 34 2 

Ephyra_Scyphozoa Cnidaria 8 3 

Eucalanidae Crustacea 397 3 

Euchaetidae Crustacea 706 3 

Euphausiacea Crustacea 3169 3 

Euterpina Absorbed Harpacticoida 19 2 

fiber_detritus Other 1709 2 

Firola NEC 2 0 

Foraminifera Harosa 2154 3 

Gammaridea NEC 10 0 

Haloptilus Crustacea 1016 3 

Harosa Overall 1091 2 

Harpacticoida Crustacea 1144 3 

Harpacticoida X sp Young 91 2 

Heterobranchia Mollusca 61 3 

Heterorhabdidae Heterorhabdidae 58 2 

Hydrozoa Overall 202 2 

Hyperiidea Amphipoda 190 2 

Labidocera NEC 4 0 

larvae_Annelida Young 126 2 

larvae_Holothuroidea Young 133 2 

larvae_Mysida Young 28 2 

leg_Crustacea Parts 653 2 

like_egg Other 1723 2 

Limacinidae Mollusca 1639 3 

Lubbockiidae NEC 5 0 

Lucicutiidae Crustacea 948 3 

Mecynocera Crustacea 301 3 

Megalopa NEC 7 0 

Metanauplii_Crustacea Young 23 2 

Molt Other 59 2 

Multiple_Acantharea Multi 432 2 

Multiple_Copepoda Multi 191 2 

Multiple_other Other 936 2 

Mysida Crustacea 269 3 

Narcomedusae NEC 5 0 

Nauplii_Cirripedia Young 25 2 

Nauplii_Copepoda Young 4668 2 

Nauplii_Crustacea Young 1616 2 

Neoceratium Harosa 169 3 

Nereiphylla Absorbed into Phyllodocidae 54 2 

Noctiluca sp Harosa 102 3 
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Noctiluca_Noctilucaceae Harosa 514 3 

Oithonidae Crustacea 14116 3 

Oncaeidae Crustacea 23639 3 

Ostracoda Crustacea 7507 3 

Part_Annelida Parts 38 2 

Part_Cnidaria Parts 120 2 

Part_Copepoda Parts 1574 2 

Part_Crustacea Parts 302 2 

Part_other Other 130 2 

Part_Siphonophorae Parts 118 2 

Part_Thaliacea Parts 12 2 

Phaeodaria Cercozoa 48 2 

Phaeogromida Harosa 1081 3 

Phrosinidae Absorbed in to Hyperiidea 41 2 

Phyllodocidae Annelida 254 3 

Phyllosoma NEC 2  

Pleuromamma Crustacea 630 3 

Pluteus_Echinoidea Echinodermata 278 3 

Pluteus_Ophiuroidea Echinodermata 146 3 

Poecilostomatoida Crustacea 174 3 

Polydora Annelida 38 3 

Pontellidae Crustacea 1138 3 

Protozoea_Penaeidae NEC 2  

Protozoea_Sergestidae NEC 1  

Pyrocystis Harosa 116 3 

Pyrocystis noctiluca Harosa 2170 3 

Rhincalanidae Crustacea 1058 3 

Salpida Thailiacea 865 3 

Sapphirina Crustacea 397 3 

Scolecitrichidae Crustacea 186 3 

Sergestidae Crustacea 68 3 

Siphonophorae Absorbed Hydrozoa 1105 2 

Spongodiscidae Cnidaria 269 3 

Spumellaria Polycystinea 170 2 

Squillidae Crustacea 5 3 

Subeucalanidae Crustacea 2263 3 

Tail_Appendicularia Parts 2375 2 

Tail_Chaetognatha Parts 967 2 

Temoridae Crustacea 436 3  

Tomopteridae Annelida 130 3 

Trachymedusae Absorbed Hydrozoa 28 2 

Trichodesmium Cyanobacteria 61 2 

Zoea_Brachyura Young 19 2 

Zoea_Decapoda Young 56 2 
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Zoea_Galatheidae Young 25 2 

 Total Number of Samples 272344  
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 Appendix B: Confusion Matrix Extracts 

 

Table 5: Extract of confusion matrix obtained testing the performance of a singular 
classification network trained on a raw plankton dataset. (Overfit) 
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Table 6: Extract of confusion matrix obtained testing the autonomous plankton taxonomy 
pipeline trained on a raw plankton dataset. 
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 Appendix C: Samples of Code 

Appendix C presents some highlights of the code used to implement the unsupervised 

autonomous clustering algorithm.  

The square pad method is an image transform used to resize images without changing the 

aspect ratio or trimming it.  

 

Padding and other image transforms are used to standardize the inputs to the network. 

 

 

  

class SquarePad: 

    def __call__(self, image): 

        w, h = image.size 

        max_wh = np.max([w, h]) 

        hp = int((max_wh - w) / 2) 

        vp = int((max_wh - h) / 2) 

        padding = (hp, vp, hp, vp) 

        return transforms.functional.pad(image, padding, 256, 'constant') 

dataDir = 'D:/MastersData/Final Datasets/CleanedSet1' 

test_dir = dataDir + '/val' 

dirs = {'val': test_dir} 

 

#data transforms for test set 

datatransforms = { 

    'test': transforms.Compose([ 

        SquarePad(), 

        transforms.Resize(226), 

        transforms.CenterCrop(224), 

        transforms.Grayscale(num_output_channels=3), 

        transforms.RandomHorizontalFlip(), 

        transforms.RandomVerticalFlip(), 

        transforms.ToTensor(), 

        transforms.Normalize([0.485,0.456,0.406], 

                             [0.229, 0.224, 0.225])]), 

} 
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The make weights for balanced classes method are implemented to mitigate the unbalanced 

nature of the dataset. This method is used to evenly select samples from each class in the 

dataset and pass the to the DataLoader object. 

 

 

 

 

 

def make_weights_for_balanced_classes(images, nclasses): 

    count = [0] * nclasses 

    for item in images: 

        count[item[1]] += 1 

    weight_per_class = [0.] * nclasses 

    N = float(sum(count)) 

    for i in range(nclasses): 

        weight_per_class[i] = N/float(count[i]) 

    weight = [0] * len(images) 

    for idx, val in enumerate(images): 

        weight[idx] = weight_per_class[val[1]] 

    return weight 
} 
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Pytorch makes use of DataLoader objects which combine the dataset and sampler and 

provides an iterable over the dataset. 

 

 

  

imagedatasets = {x: datasets.ImageFolder( 

    dirs[x], transform=datatransforms[x]) for x in [ 

        'train', 

        'val', 

        'test']} 

weights = {x: torch.DoubleTensor( 

    make_weights_for_balanced_classes( 

        imagedatasets[x].imgs, 

        len(imagedatasets[x].classes)) 

    ) for x in ['train', 'val', 'test']} 

samplers = {x: torch.utils.data.sampler.WeightedRandomSampler(weights[x], 

len(weights[x])) for x in ['train', 'val', 'test'] } 

batch_size = args.batch 

train_loader = torch.utils.data.DataLoader( 

imagedatasets['train'], batch_size=batch_size, shuffle=False, 

sampler=samplers['train'],  drop_last= True) 

valid_loader = torch.utils.data.DataLoader( 

imagedatasets['val'], batch_size=batch_size, shuffle=False, 

sampler=samplers['val'], drop_last= True) 

test_loader = torch.utils.data.DataLoader( 

imagedatasets['test'], batch_size=batch_size, shuffle=False, 

sampler=samplers['test'], drop_last= True) 

dataLoaders = {'train': train_loader, 

               'val': valid_loader 

               'test': test_loader} 
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The custom multi-layer network takes the standard image size and a list of frozen pretrained 

models as input parameters and returns a prediction and set of extracted features.  

 

  

class multilayerNet(nn.Module): 

    def __init__(self, inputSize, listofmodels): 

        super(multilayerNet, self).__init__() 

        self.net1 = listofmodels[0] 

        self.net2 = listofmodels[1] 

        self.net3 = listofmodels[2] 

        self.net4 = listofmodels[3] 

        self.net5 = listofmodels[4] 

        self.net6 = listofmodels[5] 

        self.fc1 = nn.Linear(inputSize, 128) 

        self.fc2 = nn.Linear(128, 98) 

        self.drop = nn.Dropout(0.4) 

 

    def forward(self, x): 

        x1 = self.net1(x) 

        x2 = self.net2(x) 

        x3 = self.net3(x) 

        x4 = self.net4(x) 

        x5 = self.net5(x) 

        x6 = self.net6(x) 

        x = torch.cat((x1, x2, x3, x4, x5, x6), dim=1) 

        x = F.leaky_relu(self.fc1(x)) 

        x_feat = self.drop(x) 

        x_pred = self.fc2(x_feat) 

        return [x_pred, x_feat] 
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A feature and label dataset are built and stored as a pandas DataFrames. 

  

classes = imagedatasets['val'].class_to_idx 

def get_key(val, dict): 

    for key, value in dict.items(): 

         if val == value: 

             return key 

 

  

    return "key doesn't exist" 

print(classes) 

featuresset = [] 

net = fcnet 

predslist = [] 

pathlist = [] 

net.eval() 

with torch.no_grad(): 

    print("extracting features. . .") 

    count = 56842  

    for images, labels, paths in dataLoaders['val']: 

        images = images.to(device) 

        labels = labels.to(device) 

        preds, outputs = net(images) 

        for index, tensor in enumerate(outputs): 

            outs = preds[index] 

            path = paths[index] 

            pred_probs = [F.softmax(outs,dim=0)] 

            _, predicted = torch.max(outs, 0) 

            predicted.cpu() 

            predslist.append(predicted.item()) 

            pathlist.append(path) 

            theLabel = labels[index].cpu() 

            featurebuild = [theLabel.item()] 

            featurebuild.extend([predicted.item()]) 

            featurebuild.extend([path]) 

            featurebuild.extend(tensor.cpu().numpy()) 

            featuresset.append(featurebuild) 

df = pd.DataFrame(featuresset)  

print('features extracted') 

print(df) 

pd.to_pickle(df, "./featuresFinal2710.pkl") 
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The appropriate scaling and dimension reduction is applied to the set of features to reduce 

the size of the feature set. These features, the scaling algorithm and the dimension reduction 

algorithm are saved for consistency in future usage.   

import pandas as pd 

Feats = pd.read_pickle("./featuresFinal2710.pkl") 

df = pd.DataFrame(Feats) 

labels = Feats[:][0] 

predict = Feats[:][1] 

pathway = Feats[:][2] 

data_values = df.iloc[:,3:] 

 

features_np = np.array(data_values) 

scaler = MinMaxScaler() 

features_np = scaler.fit_transform(features_np) 

transformer = PCA(n_components=80) 

featuresPCA = transformer.fit_transform(features_np) 

dfFeat = pd.DataFrame(featuresPCA) 

dfPCA = pd.DataFrame(list(zip(labels, predict, pathway))) 

dfOut = pd.concat([dfPCA, dfFeat], axis=1) 

print(dfOut) 

with open('PCA_scaled_1027.pkl', 'wb') as fp: 

    pickle.dump(dfOut, fp) 

dump(transformer, open('transformer1027.pkl', 'wb')) 

dump(scaler, open('scaler1027.pkl', 'wb')) 
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The reduced feature set is then clustered using HDBSCAN and autonomously labelled as a 

certain class based on their feature similarities to other samples in the same cluster. If 

samples are not classified or are rejected as noise, they are to be re-clustered with less 

stringent hyper parameters. 

Feats = pd.read_pickle("PCA_scaled_1027.pkl") 

df = pd.DataFrame(Feats) 

cluster_sizes = [128] 

min_sample = 1 

counter = 1 

assigned_cluster = [] 

thresh = 0.96 

scaler = StandardScaler() 

assignedDF = pd.DataFrame() 

for size in cluster_sizes: 

    labels = df[:][0].values.tolist() 

    predict = df[:][1].values.tolist() 

    pathway = df[:][2].values.tolist() 

    data_values = df.iloc[:,3:] 

    if size == cluster_sizes[0]: 

        features_np = scaler.fit_transform(data_values) 

    else: 

        features_np = scaler.transform(data_values) 

         

    cluster_dominants = {} 

    cmodel = hdbscan.HDBSCAN( 

min_cluster_size = size, min_samples=min_sample).fit(features_np) 

    clusters = Counter(cmodel.labels_) 

    keyList = getList(clusters) 

    doms = common_pred(predict, keyList, cmodel.labels_) 

    for index, cluster in enumerate(cmodel.labels_): 

        dom_in_assigned_cluster = doms.get(cmodel.labels_[index]) 

        label,_ = labels[index] 

        preds,_ = predict[index] 

        if (cmodel.probabilities_[index] >= thresh) or  

(predict[index] == dom_in_assigned_cluster): 

            assigned_cluster.append(cmodel.labels_[index]) 

            element = list(zip(labels[index],  

predict[index], 

pathway[index], 

[dom_in_assigned_cluster])) 

            dfElement = pd.DataFrame(element) 

            assignedDF = assignedDF.append(dfElement) 

            df = df.drop(labels=index, axis=0) 

        else:   

            assigned_cluster.append(-1) 

df.reset_index(drop=True, inplace=True) 
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Custom method implementations are used to determine the dominant class in each cluster. 

def most_common(List): 

    counter = 0 

    num = List[0] 

      

    for i in List: 

        curr_frequency = List.count(i) 

        if(curr_frequency> counter): 

            counter = curr_frequency 

            num = i 

  

    return num 

 

def getList(dict): 

    return dict.keys() 

 

def common_pred(preds_list, cluster_keys, cluster_assignments): 

    cluster_dominants = {} 

    for key in cluster_keys: 

        assigned = [] 

        for index, assignment in enumerate(cluster_assignments): 

            if cluster_assignments[index] == key: 

                assigned.append(preds_list[index]) 

        most_com, _ = most_common(assigned) 

        cluster_dominants[key] = most_com 

    return cluster_dominants 

 


