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1Department of Theoretical Physics, Budapest University of Technology and Economics,
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We study the decay of the false vacuum in the scaling Ising and tricritical Ising field theories
using the Truncated Conformal Space Approach and compare the numerical results to theoretical
predictions in the thin wall limit. In the Ising case, the results are consistent with previous studies
on the quantum spin chain and the ϕ4 quantum field theory; in particular we confirm that while
the theoretical predictions get the dependence of the bubble nucleation rate on the latent heat
right, they are off by a model dependent overall coefficient. The tricritical Ising model allows us on
the other hand to examine more exotic vacuum degeneracy structures, such as three vacua or two
asymmetric vacua, which leads us to study several novel scenarios of false vacuum decay by lifting
the vacuum degeneracy using different perturbations.

I. INTRODUCTION

The decay of the false vacuum is a fundamental and
paradigmatic prediction of quantum field theory since the
ground-breaking work by S. Coleman [1] which consid-
ered the process in a semi-classical approach, followed by
including leading quantum corrections in [2]; for a very
recent introduction on the topic see [3]. Such decay pro-
cesses are hypothesised to have taken place in the early
universe, and interest in this subject has been recently
rekindled by the possible metastability of the electroweak
vacuum [4].

Another reason for renewed interest on false vauum
decay is provided by the advances of experimental tech-
niques which promise to make accessible such a phe-
nomenon in condensed matter laboratory experiments
[5–9]: these advances have motivated recent theoretical
studies both in the context of spin chains [10–12] and
1+1-dimensional ϕ4 quantum field theory [13], establish-
ing that in one-dimensional systems the phenomenon can
indeed be studied with sufficiently efficient methods to
verify theoretical predictions for the bubble nucleation
rate. These previous studies, however, were limited to
the simplest scenario of an explicitly broken Z2 symme-
try, where one starts from a model which has two degen-
erate vacua due to spontaneous symmetry breaking, with
their degeneracy lifted by adding an explicit symmetry
breaking external field.

In this paper, the simplest scenario of false vacuum
decay is realised in terms of the scaling Ising quantum
field theory. However, we will go beyond that scheme
by considering vacuum decay in relevant perturbations
of the tricritical Ising conformal field theory, a model
which allows us to realise much more complex vacuum

structures [14] and therefore to induce various scenarios
of vacuum decay. These include vacuum degeneracy un-
related to any spontaneous symmetry breaking, and also
phases with three degenerate vacua. The scaling tricrit-
ical Ising field theory has recently been revisited by the
authors of the present paper in relation, in particular,
of two topics: the study of the Kramers-Vannier duality
using the form factor bootstrap and the integrability of
the model [15], and also the confinement phenomenon of
the kink excitations into mesons [16]. We note that kink
confinement is another facet of lifting vacuum degener-
acy, and so the study in this paper can also be viewed as
complementary and a natural extension of [16].

Following [11, 13] we study the decay of the false vac-
uum as a quantum quench corresponding to a sudden
change in the Hamiltonian of the quantum field the-
ory. The resulting time evolution is simulated using the
Truncated Conformal Space Approach (TCSA) [17] from
which we can extract the dependence of the bubble nu-
cleation rate on the latent heat, a quantity which we
compare then with the theoretical predictions.

The outline of the paper is as follows. Section II de-
scribes the necessary theoretical background and the re-
alisation of the false vacuum decay as a quantum quench.
Section III addresses the simplest example of such a sce-
nario, i.e. the case of the Ising field theory. We then turn
to the description of various deformations of the tricrit-
ical Ising model and their vacuum structures in Section
IV. The numerical results obtained for various scenarios
in the tricritical Ising model and their comparison to the
theoretical expectations are presented in Section V, while
Section VI contains our conclusions and outlook. Tech-
nical details of the TCSA simulations and the continuum
limit of the bubble nucleation rate predicted for the spin
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chain are relegated to the Appendix.

II. FALSE VACUUM DECAY: THEORY AND
QUENCH PROTOCOL

A. Theoretical predictions

A metastable (false) vacuum state in quantum field
theory decays via bubble nucleation initiated by quantum
fluctuations: this is the scenario advocated by Coleman
[1, 2]. In the semi-classical approximation, barrier pen-
etration is dominated by the instanton bounce and the
bubble nucleation rate, which is defined as the tunnelling
rate per unit volume V , is given by

γ =
Γ

V
= A exp

[
−1

~
SE

]
(1)

where SE is the Euclidean action of the instanton, while
the prefactor A can be computed as a determinant of
quantum fluctuations in the instanton background: this
latter quantity requires a careful treatment of zero modes
which results in the tunnelling rate being proportional to
the volume.

Due to the energy cost of forming the walls (a.k.a. sur-
face tension), bubbles smaller than a critical size only ap-
pear as short-lived quantum fluctuations. Bubbles larger
than the critical radius, however, undergo an accelerat-
ing expansion driven by the liberation of the latent heat
∆E , i.e., the difference between the energy densities of
the false and the true vacua.

In the thin wall limit of small ∆E , i.e., when the thick-
ness of the walls is much smaller than the radius of the
critical bubble, an explicit formula (which also includes
the quantum corrections) was derived by Voloshin for
1+1 dimensional quantum field theories [18]. In one spa-
tial dimension, thin wall bubbles are eventually a kink-
antikink pair with the true vacuum in their interior, and
the critical diameter is

a∗ =
2M

∆E , (2)

where M is the kink mass computed in the limiting case
when the vacua are degenerate i.e. ∆E = 0. Then the
predicted nucleation rate is [18]

γ =
∆E
2π

exp

[
−πM

2

∆E

]
. (3)

Similar results were obtained for tunnelling in the quan-
tum Ising spin chain [10]. However, the continuum limit
of the latter result (c.f. Appendix B)

γ =
π∆E
18

exp

{
−πM

2

∆E

}
(4)

differs from (3) by a dimensionless numerical coefficient,
signalling somehow that our theoretical understanding of
the nucleation rate is still incomplete.

Indeed, the recent numerical simulation studies per-
formed on the Ising spin chain [11] and the 1 + 1-
dimensional ϕ4 scalar field theory [13] confirm that the
bubble nucleation rate is described by a formula whose
general expression is

γ = C∆E exp

[
−πM

2

∆E

]
(5)

with a dimensionless coefficient C to be determined. Fi-
nally we note that in the 1 + 1-dimensional ϕ4 scalar
field theory C turns out to depend on the self-interaction
strength [13].

B. Vacuum decay as a quantum quench

Let’s now turn to the description of the protocol used
to investigate the vacuum decay, which is a quantum
quench [19] corresponding to a sudden change in the
Hamiltonian at initial time t = 0. The idea is to con-
sider a system with degenerate vacua described by some
action A0 and perturb it by means of an additional op-
erator which lifts the degeneracy

Aε = A0 − ε
∫
d2xΦ(x) . (6)

For the corresponding Hamiltonian we have

Hε = H0 + ε

∫
dxΦ(x) . (7)

When the vacuum degeneracy is a consequence of spon-
taneous symmetry breaking, Φ(x) can be chosen as a
field which explicitly breaks the symmetry but, in the
following, we will also consider situations which are more
general. Since we will work in the thin wall regime, ε has
to be considered small and therefore the latent heat can
be computed in first order perturbation theory as

∆E = ε (〈+ |Φ(x) |+〉 − 〈− |Φ(x) | −〉) (8)

where |+〉 and |−〉 denote respectively the false and true
vacuum states in the limit ε→ 0. An important common
aspect of the unperturbed models analysed in this paper
(listed in Section IV) is that all of them are integrable,
and therefore the expectation values of relevant perturb-
ing fields are known exactly [20, 21]. In addition, due to
their integrability, the various kink masses present in the
different phases of the model reached in the ε = 0 limit
are also exactly known [22], which permits the explicit
evaluation of the predicted bubble nucleation rate (3).

The protocol is set up as follows. For a given value
of ε, the initial state |Ψ(0)〉 is determined as the ground
state for −ε, and is then evolved by the Hamiltonian for
+ε:

|Ψ(t)〉 = e−iHεt |Ψ(0)〉 . (9)
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To track the vacuum decay, it is necessary to compute
the time evolution of some observable:

O(t) = 〈Ψ(t)|O|Ψ(t)〉 (10)

For instance, in the simple case of vacua corresponding to
a broken Z2 symmetry, the observable can be chosen as
the corresponding order parameter σ, since by definition
its sign distinguishes between the vacua:

〈+ |σ |+〉 = −〈− |σ | −〉 for ε = 0 . (11)

For any suitable observable O(t), the combination

fO(t) =
〈O(t)〉+ 〈O(0)〉

2〈O(0)〉 (12)

is a very convenient quantity, since initially it satisfies
fO(0) = 1 and (neglecting corrections due to explicit
symmetry breaking ε 6= 0) it vanishes in the true vacuum,
so the transition corresponds to fO(t) changing from 1
to 0. For the sake of uniformity we track the evolution of
the combination (12) in all cases, including those where
the vacuum structure is not determined by a broken Z2

symmetry.
The time evolution of the system consists of three

regimes [11, 13] which lead to the following behaviors
of fO(t)

• Initial transient: for short times the evolution of
fO(t) is quadratic

fO(t)− 1 ∝ t2 + . . . (13)

corresponding to the quantum Zeno regime [23, 24].

• Nucleation: for intermediate times the evolution of
fO(t) is dominated by the bubble nucleation rate
and the time dependence has the form

fO(t) ∝ e−Γt , (14)

with Γ = γR in terms of the volume R of the sys-
tem.

• Thermalisation: for longer times the evolution of
fO(t) becomes very complicated due to several pro-
cesses including the expansion of nucleated bubbles
and their collisions, ultimately leading to thermal-
isation of the system.

The above considerations imply that the decay rate of
the false vacuum can be extracted identifying the inter-
mediate time regime where the exponential dependence
(14) holds. This can be found by analysing the time de-
pendence of fO(t) which we compute by simulating the
time evolution using the Truncated Conformal Space Ap-
proach invented by Yurov and Zamolodchikov [17], and
later applied to the scaling Ising [25] and tricritical Ising
[14]. The numerical computations were carried out us-
ing a recently developed package which utilises the chiral

K01

K10
0 1

(a) The two vacua in the ferromagnetic phase of the Ising model
labelled by 0 and 1, with the kinks interpolating between them
depicted as arrows.

∆E �
� Φ

V (Φ)

(b) Ginzburg-Landau potential for h = 0 (solid black curve) and
h 6= 0 (dashed red curve). The false/true vacua are indicated
with the musical notes �/� respectively, and the difference in
their energy density ∆E is also shown.

FIG. 1: (a) Vacua and kink structures, and (b) sketch of
the Ginzburg–Landau potential in the thermal perturba-
tion of the Ising, with Φ denoting the order parameter.

structure of conformal field theory with periodic bound-
ary conditions [26].

The TCSA simulates the quantum field theory in finite
volume and with an energy cut-off, which impose limita-
tions on the range of latent heat ∆E for which vacuum
decay can be studied. In particular, the finite volume in-
troduces a lower limit on ∆E so that bubble nucleation is
not affected by finite size effects, while the energy cut-off
results in an upper limit on this quantity [13]. A de-
tailed discussion of these conditions is given in Appendix
A 1. In addition, obtaining sufficiently precise results re-
quires extrapolation in the cut-off. Presently, for non-
equilibrium time evolution this can only be carried out
partially, and our procedure together with its limitations
are described in Appendix A 2.

III. WARMING UP: VACUUM DECAY IN THE
ISING QFT

The simplest example of false vacuum decay is ob-
tained considering the scaling Ising CFT of central charge
c = 1/2 with a Hamiltonian H∗, perturbed by the energy
density operator ε with conformal weights (1/2, 1/2) lead-
ing to the Hamiltonian

H0 = H∗ −
M

2π

∫
dx ε(x) . (15)
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1
/
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h = 0.34

0 2 4

Mt

h = 0.36

FIG. 2: The time evolution of 〈σ(t)〉 in the Ising model
for various h → −h quenches, ranging from hM−15/8 =
0.26 to 0.36 in dimensionless volume MR = 30. Con-
tinuous lines are the raw TCSA data (blue, red, brown
and black for cutoffs 16, 18, 20 and 22 respectively), while
the dotted blue lines are extrapolated, with shaded areas
indicating the uncertainty of the extrapolation.

The (-) sign in front of the perturbation corresponds
to the ferromagnetic phase where the model has two
degenerate ground states |±〉, which are connected by
kinks/antikinks of mass M , as shown in Fig. 1a. The or-
der parameter is the spin field σ with conformal weights
(1/16, 1/16), and its exact expectation value is

〈±|σ|±〉 = ±〈σ〉 , 〈σ〉 = 21/12e−1/8A3/2M1/8 , (16)

where A = 1.2824271291 · · · is Glaisher’s constant.
Adding a nonzero magnetic field

Hh = H0 + h

∫
dxσ(x) , (17)

lifts the degeneracy, leading to a system with a false and
a true vacuum with the energy density difference:

∆E = 2h〈σ〉 = 2.7156766834 · · ·hM1/8 , (18)

as shown in Figure 1b. This model can be viewed as the
continuum limit of the spin chain considered in [11], and
it is in the same universality of the ϕ4 theory for which
the false vacuum decay was studied in [13].

As described in Subsection II B, we start the time evo-
lution from the ground state of the Hamiltonian with
magnetic field −h (this ground state determined numeri-
cally by TCSA) and then evolve the system by the Hamil-
tonian with field +h. The observable used to follow

0 2 4 6

0.71

0.79

0.89

1

1.12

h = 0.26− 0.36

Mt

f
σ

FIG. 3: A few samples of the time evolution of
the quantity fσ in the Ising model together with
curves fitted to the exponentially decaying part for
MR = 30 and for longitudinal fields hM−15/8 =
0.26, 0.28, 0.30, 0.32, 0.34, 0.36.

the time evolution is the order parameter σ, and the
results are illustrated in Fig. 2. We extrapolated the
time-dependent expectation value in the cut-off using the
procedure introduced in [27]; for a description and limi-
tations of this approach c.f. Appendix A 2. Using these
data, the quantity

fσ(t) =
〈σ(t)〉+ 〈σ(0)〉

2〈σ(0)〉 (19)

can be plotted on a logarithmic scale as shown in Fig. 3,
and the decay constant Γ = γ R can be extracted from
the flat region of the curves, as a function of h. Figure 4
shows the resulting values for γ as a function of 1/∆E on
a logarithmic scale. In dimensionless units, (5) predicts
the relation

log γ̄ = log C + log
∆E
M2
− πM2

∆E (20)

where

γ̄ =
γ

M2
(21)

is the dimensionless bubble nucleation rate (in units of
the sqaure of the kink mass M), and the prefactor C is
1/2π according to (3). It turns out that the agreement
is very good over more than one decade of γ except for
the value of the prefactor, which we used as a fitting
parameter separately for data from each volume. The
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1 2 3 4
10−5

10−4

10−3

10−2

M2/∆E

γ̄
MR = 28
MR = 30
MR = 33

C∆Ee−πM2/∆E

FIG. 4: The dimensionless bubble nucleation rate γ̄ in
the Ising model extracted from the time evolution of the
expectation value of σ, as a function of the latent heat
in different volumes.

values obtained from the fit are C = 0.053(5), 0.057(8)
and 0.057(7) for the volumes MR = 28, 30 and 33, show-
ing no significant dependence on the volume. Note that
the necessity of adjusting the prefactor as a fit parame-
ter was already noticed in the case of the spin chain [11]
as well as for the ϕ4 theory [13], and that the volume
independence is consistent with the results of the latter
study.

Deviations between the theoretical prediction
(amended by fitting the prefactor) and numerical
results for the nucleation rate are expected from fi-
nite size effects for small values of ∆E such that the
dimensionless size of the resonant bubble

Ma∗ =
2M2

∆E , (22)

is of order MR. However, the numerically observed de-
viations clearly visible in Fig. 4 appear when the bubble
size is still much smaller than the volume, and originate
from the unreliability of extracting the slope from the
time evolution which shows no discernible sign of expo-
nential decay for too small values of h, c.f. Fig. 3.

In the present case of the Ising model the quality of the
data even allows us to numerically determine the coeffi-
cient of the leading term of the ∆E dependence in (20).
Fitting the data with the function

log γ̄ = c+ log
∆E
M2
− aM

2

∆E (23)

MR 28 30 33

a 3.2(4) 2.9(5) 3.1(4)

TABLE I: Fitted values for the parameter a in (23), for
different values of the volume parameter MR. The ex-
pected result is π.

in terms of the parameters c and a, the expected value π
for a is reproduced reasonably well as shown in Table I.

IV. VACUUM STRUCTURES IN THE
TRICRITICAL ISING MODEL

Here we outline the vacuum structure of three different
perturbations of the tricritical Ising model. For a general
understanding of how these arise in perturbed CFT we
refer the reader to [28]. We note that all these perturbed
CFT are integrable, which allows us to extract the pa-
rameters needed as inputs for the theoretical prediction
of the bubble nucleation rate.

A. Thermal deformation

The thermal perturbation is defined by the formal ac-
tion

Aε = ATIM + g

∫
d2x ε(x) , (24)

where ATIM corresponds to the unique unitary confor-
mal field theory with central charge c = 7/10, and the
perturbing field ε is the primary field of conformal weights
(1/10, 1/10). This model is integrable and its spectrum
consists of 7 excitations, whose scattering is described
by the E7 S matrix [29, 30]. This direction describes
the phase transition related to the Z2 symmetry, with g
positive / negative corresponding to the paramagnetic /
ferromagnetic phase, respectively. In the ferromagnetic
phase, Z2 is spontaneously broken, and the vacua are
connected by topological excitations with the structure
shown in Fig. 5a. The kink mass can be computed ex-
actly in terms of the coupling constant [22]:

M = 3.745372836 · · · · |g|5/9 . (25)

In the paramagnetic phase there is a single vacuum and
all 7 excitations are topologically trivial. We recently
examined this model in detail [15], and the interested
reader is referred to this work for more details and further
references.

In the ferromagnetic phase the vacuum degeneracy
can be lifted by adding either the leading magnetisa-
tion σ with dimensions (3/80, 3/80), or the subleading
σ′ with dimensions (7/16, 7/16), both of which lead to
confinement of the topological excitations with similar
phenomenology [16].
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K01

K10
0 1

(a) Kink structure for the thermal perturbation, with the two
vacua labelled by 0 and 1.

K̃01

K̃10

K̃11

0 1

(b) Kink structure for the subleading magnetisation perturba-
tion, with the two vacua labelled by 0 and 1.

K01

K10

K12

K21
0 1 2

(c) Kink structure for the vacancy density perturbation, with
the two vacua labelled by 0, 1 and 2.

FIG. 5: Vacua and kink structures for different pertur-
bations of the tricritical Ising model

B. Sub-leading magnetization deformation

Interestingly enough, perturbing the model by the
subleading magnetisation operator of conformal weight
(7/16, 7/16) as

Aσ′ = ATIM + h′
∫
d2xσ′(x) , (26)

results in a phase of the model where there are two degen-
erate vacua despite the absence of any broken global sym-
metry. These two vacua are physically different, which
is manifested also by the structure of kinks as shown in
Fig. 5b, with their exact scattering amplitudes derived
in [31], and the exact relation of the kink mass to the
coupling is given by [22]

M = 4.927791224 · · · · |h′|8/9 . (27)

We note that in this case the physical behaviour of the
model is independent of the sign of the coupling h′.

The degeneracy between the vacua can be lifted by
adding the thermal perturbation ε, with very different
effects depending on the sign of the thermal coupling, as
described in relation to confinement in [16]. The effect of
the ε perturbation in the context of vacuum tunneling is
discussed in Subsection V B.

C. Vacancy density deformation

The perturbation by the vacancy density operator t of
conformal dimensions (3/5, 3/5)

At = ATIM + µ

∫
d2x t(x) , (28)

has a very different behaviour depending on the sign of
the coupling:

• For µ < 0 the system develops a mass gap, with
the fundamental excitation being kinks interpolat-
ing between three degenerate vacua. The degener-
acy is partially related to a broken Z2 symmetry
which makes two of the vacua equivalent, while the
third one is physically different. The kink structure
is shown in Fig. 5c and the corresponding exact S-
matrix can be obtained from a restriction of the
sine-Gordon model [32, 33]. The mass of the kinks
interpolating between neighbouring vacua is related
to µ as[34]

M = 10.829980 · · · |µ|5/4 (29)

• For µ > 0 the model describes a famous massless
flow ending in the critical Ising CFT with central
charge 1/2 [35]. The low energy excitations are
massless kinks and the vacuum structure is similar
to the one of the E7 model shown in Fig. 5a.

V. VACUUM DECAY IN PERTURBATIONS OF
THE TRICRITICAL ISING CFT

A. Vacuum decay in the thermal deformation
induced by magnetisation or subleading

magnetisation

The vacuum degeneracy in the model (24) can be lifted
by adding either the leading magnetisation σ with dimen-
sions (3/80, 3/80), or the subleading σ′ with dimensions
(7/16, 7/16):

H = Hε + h

∫
dxσ(x),

H ′ = Hε + h′
∫
dxσ′(x). (30)

For small couplings h, h′ (which can be assumed positive
without loss of generality) both perturbations lead to the
Ginzburg–Landau potential depicted for h < 0 in Fig. 6,
which is qualitatively identical to the Ising case discussed
in Section III. The latent heat is given by

∆E = 2h〈σ〉,
∆E ′ = 2h′〈σ′〉, (31)

with

〈σ〉 = 1.5927 · · · · (−g)1/24

〈σ′〉 = 2.45205 · · · · (−g)35/72 , (32)
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� Φ

V (Φ)

FIG. 6: Sketch of the Ginzburg–Landau potential in the
thermally perturbed tricritical Ising model (solid black
curve) and its deformation induced by the magnetiza-
tion (dashed red curve). The location of the false/true
vacuum are denoted by �/� respectively. The energy dif-
ference is also indicated between them.

1.5

1.55

1.6

1.65

1.7

〈σ
(t
)〉
/M

3
/
8
0

g = 0.04 g = 0.08

0.8

1

1.2

1.4

1.6

〈σ
(t
)〉
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3
/
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0

g = 0.12 g = 0.16

0 2 4 6 8
0.5

1

1.5

Mt

〈σ
(t
)〉
/M

3
/
8
0

g = 0.2

0 2 4 6 8

Mt

g = 0.24

FIG. 7: Extrapolation of the time evolution of the expec-
tation value 〈σ(t)〉 calculated for quenches with flipping
the sign of the magnetic field at MR = 35. The ex-
trapolation is very accurate in this case. However, it is
impossible to reliably fit the exponential decay due to
large oscillations.

while the relation of the kink mass M to the coupling g
can be found in Eq. (25). The change in the (finite vol-
ume) spectrum induced by adding the perturbation σ is
shown in Fig. 8. Note the presence of degenerate vacua
for h = 0, all of which have a corresponding copy of the
Z2 even particle excitations of mass m2 = 2M cos 5π/18
and m4 = 2M cosπ/18 (there are no one-kink levels as
these are excluded by periodic boundary conditions). Af-
ter adding the perturbation, the false vacuum gains an

energy which increases linearly with the volume signaling
a metastable state, with the slope being the latent heat
∆E . Note that of the two copies of the one-particle exci-
tations, one remains stable over the true vacuum, while
the other gains a linear contribution identical to that of
the false vacuum and becomes a metastable excitation.

Examples of the time evolution for the case of per-
turbation with the leading magnetisation σ operator for
various values of h are presented in Fig. 7, where the
quantity followed in time is the expectation value of the
leading magnetisation operator σ. The numerical data
obtained for different cut-offs can be reliably extrapo-
lated using the procedure described in Appendix A 2. For
small values of h, one observes large oscillations, with the
dominant frequency matching the value m2, i.e. the mass
of the lowest even particle. The origin of these oscilla-
tions is that the quench excites the metastable particle
states over the false vacuum discussed above. The pres-
ence of such oscillations in expectation values of local op-
erators can be regarded as a generic feature of quantum
quenches when there is a one-particle contribution to the
time evolution and it can be established by using first
order perturbation theory [36–38]; such oscillations were
also observed in the time evolution of entanglement [39].
We note that, contrary to the results obtained in first
order perturbation theory, these oscillations are in gen-
eral exponentially damped, as shown by explicit simula-
tions of the time evolution [27]; however, the exponential
damping can only be obtained by summing up the con-
tribution of kinematic poles to all orders [40, 41] and is
therefore inaccessible in leading order perturbation the-
ory. Unfortunately, these oscillations tend to mask the
characteristic exponential decay of the false vacuum and
prevent us from extracting easily the bubble nucleation
rate. For larger values of the magnetic field, the par-
ticle excitation above the false vacuum disappears from
the spectrum, however the vacuum structure drastically
changes and the false vacuum disappears, which can be
seen from the absence of any time intervals in which the
exponential decay is valid. Note that in the case of the
Ising model considered in Section III, there is no particle
excitation on top of the two vacua, and so the vacuum
decay can be seen for a finite range of the magnetic field
enabling the extraction of the bubble nucleation rate.

For the case of the subleading magnetic (σ′) perturba-
tion, the situation is similar as for the leading magnetic
perturbation, with the different false vacuum survives for
much larger values of the magnetic field h′, as discussed
in [16], and the same is true for the particle excitation
on top of the false vacuum. As a result, the large os-
cillations persist and prevent the determination of the
bubble nucleation rate. We return to discussing the ef-
fect of particle excitations on top of the false vacuum in
Subsection V B.
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FIG. 8: Finite volume energy levels in Hε and its per-
turbation with σ, relative to the lowest level. Left: for
h = 0 there are two vacua which become degenerate for
R → ∞, and accordingly all even particles appear in
two copies, as can be seen for the particles of mass m2

and m4. The red/green lines show the exact values of
the masses predicted by the integrable E7 scattering the-
ory. Right: for h > 0 the vacuum degeneracy is lifted
and the false vacuum acquires a slope given by (31) rel-
ative to the true vacuum, together with the particle ex-
citations associated to them. The mass relative of the
metastable particle excitation to the false vacuum was
extracted from the frequency of the post-quench oscilla-
tions and is shown by the blue dotted lines. Note that
this value fits very well the energy level corresponding
to the metastable particle state, confirming the origin of
the post-quench oscillations discussed in the main text.
In addition, the masses of the stable particles also acquire
corrections compared to their original values, as shown
by the displacement of the red and green lines compared
to the left panel. Particles on the true vacuum get mass
corrections (fit to TCSA data indicated).

B. Subleading magnetisation deformation
perturbed by the energy density operator

In the deformation of the tricritical Ising model with
the subleading magnetisation (26), the vacuum degen-
eracy can be lifted by adding the thermal operator:

H = Hσ′ + g

∫
dxε(x), (33)

where g < 0 corresponds to the ferromagnetic, while g >
0 to the paramagnetic phase. In both cases the latent
heat is

∆E = |g(〈ε〉1 − 〈ε〉0)|, (34)

where [21]

〈ε〉1 = 2.0445 . . . |h′|8/45
,

〈ε〉0 = −0.78093 . . . |h′|8/45
. (35)

∆E
��

∆E
� � Φ

V (Φ)

FIG. 9: Qualitative Ginzburg–Landau potential in Aσ′
(solid black) and its ε deformations with g > 0 (dashed
blue) and g < 0 (dashed red). The location of the
false/true vacuum are denoted by �/� respectively. The
energy difference is also indicated between them.

The corresponding Ginzburg–Landau potential is illus-
trated in Fig. 9. Once again, the time evolution is fol-
lowed by evaluating the expectation value of the leading
magnetisation operator σ. The relation of the kink mass
M to the coupling h′ is given in Eq. (27).

As discussed in Subsection IV B, the vacuum structure
of the unperturbed theory has no global symmetry, which
leads to a physical situation very different from that of
thermal deformations of the Ising and tricritical models.
Concerning vacuum decay, there are now two different
scenarios depending on the sign of the perturbing cou-
pling g.

Somewhat surprisingly, despite the physical difference
between the vacua, the theoretical result (3) predicts
that, in the thin wall limit, the bubble nucleation rate
is independent of the direction of the tunneling provided
we compare the two directions for equal values of the la-
tent heat ∆E . However, we know that such a prediction
must be corrected to (5) which leaves in principle open
the possibility that an asymmetry may arise from the co-
efficient C. Nevertheless, in Appendix C we demonstrate
that the two bubble nucleation ratio is independent in
the thin wall limit when computed up to one-loop order
using Coleman’s instanton approach [1, 2], and it is likely
that this result persists to all orders.

Despite the fact that it is possible to argue that the
thin-wall limit of the bubble nucleation rate is expected
to be identical in the two directions, there is still a
marked difference in the dynamics. This asymmetry can
be seen from the dependence on the spectrum on the sign
of the perturbing coupling g, illustrated in Fig. 10.

• For g < 0, there is a particle on the top of the
false vacuum corresponding to K̃11 depicted in 5b,
as shown by the corresponding spectrum in Fig.
10b. Similarly to the discussion in Subsection V A,
when quenching from g > 0 to −g this produces
large oscillations which make impossible to extract
the exponential decay of the false vacuum.
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(a) Finite volume spectrum of Hσ′ . Note the presence of two
degenerate vacua, however there is just a single neutral particle

level since K̃11 is only present above one of them. The kink
mass M coincides with the exact mass gap (27) predicted by
integrability (which is 1 in our units).
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(b) Finite volume spectrum of Hσ′ perturbed with ε with g < 0,

with the neutral excitation K̃11 shown as a blue line running
parallel to the false vacuum.
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(c) Finite volume spectrum of Hσ′ perturbed with ε with g > 0,

with the neutral excitation K̃11 shown as a blue line running
parallel to the true vacuum.

FIG. 10: Finite volume spectrum of the Hamiltonian Hσ′

(a) and its perturbation by ε for g > 0 (b) and g < 0 (c).
The slope of the false vacuum shown by the correspond-
ing black line is computed from (34). For g > 0 the
neutral excitation is over the false vacuum and it there-
fore metastable, while for g < 0 it is over the true vacuum
and corresponds to a stable neutral particle excitation.
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(t
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8
0

g = 0.23

0 2 4
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g = 0.24

FIG. 11: The time evolution of 〈σ(t)〉 in the Aσ′ model
perturbed by the energy density operator ε, for various
g < 0 → −g quenches from the ferromagnetic to the
paramagnetic phase, ranging from g = 0.19 to 0.24 in
dimensionless volume MR = 35 and with time measured
in units given by the kink mass M . Continuous lines are
the raw TCSA data (blue, red, brown and black for cut-
offs 15, 16, 17 and 18 respectively), while the dotted blue
lines result from extrapolation in the cut-off, with shaded
areas indicating the uncertainty of the extrapolation.

• For g > 0, there is no particle excitation over the
false vacuum as shown on Fig. 10c. Therefore the
related oscillations are absent, and the decay of the
one-point function can be clearly identified for the
quench from g < 0 to −g.

Even in the second case, the TCSA extrapolation pro-
cedure has errors comparable to or even larger then the
cut-off dependence which it is supposed to be removed,
as visible in Fig. 11. Nevertheless, the extrapolated data
still allow us for a crude estimate of the bubble nucle-
ation rate, illustrated in Fig. 12, with the results for γ
presented on Fig. 13 for two different volumes. For the
larger volume MR = 35, they are qualitatively consis-
tent with the theoretical expectation, apart from a few
outliers corresponding to values where the exponential
decay could not be fit reliably. For the smaller volume
MR = 30 the agreement is much less precise, so one can-
not really draw any conclusions concerning the volume
(in)dependence of the fitting coefficient C.
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FIG. 12: The time evolution of log fσ (defined as in (19))
in the Aσ′ model perturbed by the energy density oper-
ator ε, for various g < 0 → −g quenches from the fer-
romagnetic to the paramagnetic phase, with g ranging
from 0.19 to 0.24, in dimensionless volume MR = 35
and with time measured in units given by the kink mass
M . We extract the bubble nucleation rate by fitting the
slope of the linear part. In some cases (e.g. g = 0.23)
this is obviously not reliable, c.f. the discussion in the
main text.

C. Vacancy density deformation perturbed by
energy density

Here we consider the energy perturbation of the va-
cancy density deformation (28):

H = Ht + g

∫
dx ε(x). (36)

The vacancy chemical potential µ in Ht is taken to be
negative. As discussed in Section IV, the unperturbed
model (g = 0) has three degenerate ground state in the
massive direction with kinks of mass M which is given in
terms of µ in Eq. (29). Compared to the simple Z2 vac-
uum structure of the thermal perturbation, the vacancy
perturbation has a novel vacuum structure consisting of
three degenerate vacua. The perturbation ε partially lifts
the degeneracy due to the difference of the vacuum ex-
pectation value in the ground states labelled by 0, 2 and
1 [21]:

〈ε〉0,2 = 2.707495 . . . |µ|1/4 ,
〈ε〉1 = −2.707495 . . . |µ|1/4 . (37)

As illustrated in Fig. 14, switching on g > 0 lifts up
vacua 0 and 2, while g < 0 lifts 1, allowing the study

1.5 2 2.5 3 3.5 4
10−5

10−4

10−3

10−2

M2/∆E

γ̄

MR = 30
MR = 35

C∆Ee−πM2/∆E

FIG. 13: Dependence of the dimensionless bubble nu-
cleation rate γ̄ extracted from the time evolution of the
expectation value of σ, on the latent heat ∆E in different
volumes in the Aσ′ model perturbed by the energy den-
sity operator ε, after quenching from the ferromagnetic
phase to the paramagnetic phase. The value of the coef-
ficient C was estimated as 44(7) for MR = 30 and 87(18)
MR = 35; the theoretical curve shown in the plot uses
the latter value. Due to the poor quality of the numer-
ical determination of the nucleation rate, the difference
between the two values carries no significance.

∆E
�

� �
∆E �

� �
Φ

V (Φ)

FIG. 14: Qualitative Ginzburg–Landau potential in Aσ′
(solid black) and its ε deformations with g > 0 (dashed
blue) and g < 0 (dashed red). The location of the
false/true vacuum are denoted by �/� respectively. The
energy difference is also indicated between them.
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FIG. 15: Dependence of the dimensionless bubble nucle-
ation rate γ̄ extracted from the time evolution of the
expectation value of ε, on the latent heat ∆E in dif-
ferent volumes in the A4 model perturbed by ε after
quenches from the phase with two stable vacua to the
phase with a single stable vacuum, where the initial state
is chosen to be the symmetric combination. The values
obtained for the coefficient C were 0.8(2); 0.6(1); 0.7(2)
in MR = 25; 30; 35 respectively; the theoretical curve
shown on the plot corresponds to the one with C obtained
for MR = 35. Note that quenches in the opposite direc-
tion i.e. starting from the phase with a single ground
state lead to exactly the same results.

of various decay scenarios. For the quench from g < 0
to −g, the false vacua in finite volume correspond to
even/odd combinations of 0 and 2, with a gap which van-
ishes exponentially with volume. Therefore, selecting the
lower/higher of these finite volume levels as initial states
corresponds to starting from the even/odd combination
of the vacua 0 and 2, both of which then decay to the
true vacuum corresponding to 1.

For the opposite direction of quenching from g > 0 to
−g the initial false vacuum state corresponds to 1 which
then decays to the symmetric combination of the true
vacuum states 0 and 2. It turns out that g < 0 → −g
starting from the symmetric combination leads to the ex-
act same time evolution as g > 0 → −g starting from 1
due to the respective Hamiltonians being related by a Z2

symmetry; however, starting from the odd combination
of 0 and 2 is a different scenario. As a result, it is suffi-
cient to consider quenches g < 0→ −g to cover all phys-
ically different scenarios. We track the time evolution of
the system by following the time evolution of the expec-

1 2 3 4 5 6
10−5

10−4

10−3

10−2

M2/∆E

γ̄

MR = 25
MR = 30
MR = 35

C∆Ee−πM2/∆E

FIG. 16: Dependence of the dimensionless bubble nu-
cleation rate γ̄ extracted from the time evolution of the
expectation value of ε, on the latent heat ∆E in different
volumes in the A4 model perturbed by ε after quenches
from the phase with two stable vacua to the phase with
a single stable vacuum, where the initial state is cho-
sen to be the antisymmetric combination. The values
obtained for the coefficient C were 0.6(1); 0.7(2); 0.6(1)
in MR = 25; 30; 35 respectively; the theoretical curve
shown on the plot corresponds to the one with C obtained
for MR = 35.

tation value of the energy density operator ε and extract
the bubble nucleation rate by the same method as for
the Ising model discussed in Section III. Fortunately, for
these quenches the cut-off extrapolation is reliable and,
due to the absence of neutral particle excitations in the
model At, there are no oscillations to mask the exponen-
tial decay, allowing us for a precise determination of the
bubble nucleation rate as long as the volume range satis-
fies the conditions discussed in Appendix A 1. As shown
in Figs. 15 and 16, the value numerically extracted from
the time evolution matches very well the theoretical ex-
pectation (5), with the coefficient C displaying no signif-
icant dependence on the volume.

We close this section by observing that it is also pos-
sible to lift completely the degeneracy of the vacua per-
turbing with either of the leading/subleading magnetic
fields, resulting in a novel interesting scenario of cascad-
ing decays. However, in all of these cases the cut-off
dependence was found to be very strong, preventing the
extraction of any reliable data regarding the false vacuum
decay.
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VI. CONCLUSIONS AND OUTLOOK

In this work we have considered the decay of the false
vacuum in 1+1-dimensional relativistic quantum field
theories obtained as relevant perturbations of the scaling
Ising and tricritical Ising conformal field theories. Formu-
lating the vacuum decay as a quantum quench, we have
followed the time evolution using the Truncated Confor-
mal Space Approach (TCSA). This makes it natural to
study the regime called the thin wall limit, since the mag-
nitude of latent heat that can be handled is limited by
the cut-off inherent in the TCSA method. In fact, this
limitation is a bonus since vacuum decay allows us for an
analytic treatment in the thin wall limit [1], and indeed
there are explicit predictions for the bubble nucleation
rate for general 1+1-dimensional QFT by Voloshin [18],
as well as for the case of the Ising spin chain by Rutke-
vich [10].

The first model considered in this work is the scaling
Ising field theory. Here it is important to note that pre-
vious studies of vacuum decay [11, 13] performed using
models in the same universality class have found that,
while the dependence of the bubble nucleation rate on
the latent heat was correctly predicted by the theoretical
approaches, there is still a mismatch by a model depen-
dent coefficient C defined in Eq. (5). In particular, for
the ϕ4 QFT studied in [13], the quantity C was found
to depend on the strength of the bosonic self-interaction.
The Ising QFT studied here is eventually the straight-
forward scaling limit of the Ising chain considered by
Lagnese et al. [11], and our findings are fully consistent
with those found on the spin chain, including the exis-
tence of the mismatch of the bubble nucleation rate by
an overall constant coefficient. We also showed that the
continuum limit of the Ising spin chain prediction [10]
does not agree with the result claimed by Voloshin in the
continuum limit [18]. We also note that none of these pre-
dictions can match the numerically extracted coefficient
of the bubble nucleation rate, therefore it is an interest-
ing question to find a theoretical description which gives
a fully correct prediction for the nucleation rate.

Then we have turned our attention to models obtained
as deformations of the tricritical Ising field theory. These
deformations provide interesting situations since, apart
from the simple scenario of vacua related to breaking of
a Z2 symmetry as in the Ising class of models, there are
also situations where the degenerate vacua are not re-
lated to any symmetry (this circumstance arises with the
subleading magnetic deformation), or three degenerate
vacua (associated to the vacancy density deformation):
altogether, these theories give rise to more general sce-
narios of vacuum decay.

In the case of the subleading magnetic deformation the
interesting issue is the relation between the vacuum de-
cay for the two possible directions. Voloshin’s predic-
tion [18] is that in the thin wall limit the nucleation rate

is identical for the two directions, apart from a potential
difference in the factor C which is necessary for matching
it with the numerical results. As shown by an explicit
calculation, the general instanton calculation shows that
the two nucleation rates agree to one loop order, leading
to the counter intuitive suggestion that they agree to all
orders. However, limitations of the simulations prevented
us from testing this idea with TCSA, due to the existence
of a neutral excitation over one of the vacua which leads
to large oscillations for one of the quench directions that
obscures the decay dynamics.

For the case of the vacancy density deformation, lifting
the deformation by the energy density operator leads to
a vacuum structure with two of the three remaining de-
generate, and so there are either two degenerate false and
one true vacua or vice versa. It turns out that tunneling
from the symmetric combination of false vacua 0 and 2 to
true vacuum 1 is identical to the opposite quench by flip-
ping the sign of the energy coupling, while the tunneling
from the antisymmetric combination of 0 and 2 to true
vacuum 1 is a different case. Nevertheless, the depen-
dence on the latent heat is identical for these cases which
is consistent with Voloshin’s theoretical prediction [18].
The only potential difference between the rates of the
symmetric/antisymmetric case is in the factor C, how-
ever the numerics found no significant deviation between
the extracted values C.

An interesting open direction for the future is to find
out the reason for the mismatch between the theoret-
ical predictions [10, 18] present in the literature. An-
other interesting issue concerns the improvement of the
numerical simulations so that one can study the differ-
ence between tunneling directions in the case when there
are asymmetric vacua, an effect which is certainly ex-
pected to be present beyond the thin wall limit. In ad-
dition, such improvements can help us realise scenarios
with cascading false vacuum decays, which is the case
for the vacancy deformation of the tricritical Ising mod-
els when vacuum degeneracy is lifted by the leading or
subleading magnetisation operators.
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and G. Takács, “Hamiltonian truncation approach to
quenches in the Ising field theory,” Nucl. Phys. B 911
(2016) 805–845, arXiv:1607.01068
[cond-mat.stat-mech].
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Appendix A: Vacuum decay in TCSA

1. General conditions for the TCSA simulation of
vacuum decay

To simulate the vacuum decay in TCSA, the following
conditions need to be fulfilled:

1. The finite volume should be large enough to accom-
modate the critical bubble:

R� 2M

∆E (A1)

2. The energy cut-off Λ should be high enough to allow
for states with energies comparable to the latent
heat:

Λ� ∆ER (A2)

For a given choice of the cut-off Λ and the volume R, the
above two conditions limit the range for the latent heat
available for the simulation:

2

MR
� ∆E

M2
� Λ

M2R
, (A3)

which implies that ideally both the volume and the cut-
off must be chosen as large as possible. However, the
dimension of the Hilbert space grows as [42]

∝ exp

{
4π

√
cΛR

24π

}
, (A4)

so a compromise must be struck that allows for a long
enough range for the latent heat within the limitation of
computer memory.

Another important consideration is that due to the fi-
nite volume the simulation time is limited to t < R to
avoid revival effects, and in order to extract the nucle-
ation rate with high enough precision it is necessary that
the probability of decay during this time frame is not too
small.

2. Cut-off dependence and extrapolation

The TCSA simulations were performed with the pack-
age developed in [26], with the time evolution carried out
by numerically solving the time-dependent Schrödinger
equation using Matlab’s [43] ode45 solver. The dimen-
sions of the truncated Hilbert spaces used in our calcu-
lations are listed in Table II.
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Truncation level dimHIM dimHTIM
13 1994 25040

14 3023 41310

15 4476 66628

16 6654 106914

17 9615 168041

18 14045 263697

19 20011

20 28624

21 40353

22 56867

TABLE II: Hilbert space dimensions in the truncated
spaces at different descendant level cut-offs.

Model O V A νO

IM,ε,σ σ (1/16) ε (1/2) σ (1/16) −1

TIM,ε,σ σ (3/80) ε (1/10) σ (3/80) −9/5

TIM,ε,σ′ σ (3/80) σ′ (7/16) ε (1/10) −5/4

TIM,t,σ, σ (3/80) t (3/5) σ (3/80) −4/5

TIM,t,σ, ε (1/10) t (3/5) ε (1/10) −4/5

TIM,t,ε ε (1/10) t (3/5) ε (1/10) −4/5

TABLE III: Leading exponents νO used in the cut-off ex-
trapolation of the time evolving expectation value 〈O(t)〉,
with the operators V and A corresponding to the lead-
ing exponent shown together with their (chiral) confor-
mal weights. The models are specified by giving the UV
CFT Ising (IM) / tricritical Ising (TIM), the deformation
leading to the degenerate vacuum structure, and the per-
turbation lifting the degeneracy.

vacuum or a low-energy eigenstate the leading cut-off de-
pendence is of the form

〈O〉Λ = 〈O〉∞ + CΛνO (A5)

where the exponent νO is determined by the most singu-
lar term in the operator product expansion between the
observable O and the interaction Hamiltonian density V

O(x)V (0) ∼ A(0)

|x|αOV
+ . . . (A6)

as νO = αOV −2 [44]. The νO exponents for the different
quantities with respect to various interaction terms used
in the main text are summarized in Table III.

Note that the above result only accounts for the cut-
off dependence resulting in the static case for states much
below the cut-off, and does not take into account cut-off
dependence resulting from the time evolution with the
truncated Hamiltonian. The latter can be partially im-
proved by using the running coupling determined from
the TCSA renormalisation group [45–48]. For a Hamil-

tonian of the form

H =
2π

R

(
L0 + L̄0 −

c

12

)
+
∑

a

λa

∫ R

0

dxΦa(x) (A7)

where the perturbing fields Φa have conformal weights
ha = h̄a, the leading order RG equations in terms of the
dimensionless couplings

λ̃a =
λaR

2−2ha

(2π)1−2ha
(A8)

take the form [49]

λ̃c(n)− λ̃c(n− 1) =

1

2n− d0(r)

∑

a,b

λ̃a(n)λ̃b(n)Ccab
n2habc−2

Γ(habc)2
(1 +O(1/n))

habc = ha + hb − hc (A9)

where the Ccab are the CFT operator product expansion
coefficients:

Φa(z, z̄)Φb(0, 0) =
∑

c

CcabΦc(0, 0)

zha+hb−hc z̄h̄a+h̄b−h̄c
, (A10)

and

d0(r) =
R

2π
E0(R) (A11)

is the vacuum scaling function given in terms of the finite
volume vacuum energy E0(R), which can be estimated by
its TCSA value at the starting cutoff for the RG run. In
general, this prescription also gives a running coupling for
the identity, which leads to an additive renormalisation
universal for all energy levels that can be omitted in our
simulations.

Nevertheless, it must be noted that during the course
of time evolution further deviations accumulate from the
truncation of the Hilbert space, resulting from the omis-
sion of states over the cut-off which increase with time
and are not taken into account by the above improve-
ments. As a result, albeit the extrapolation procedure
based on (A5) can be very efficient [27], it is at best a
useful heuristics whose validity must always to be veri-
fied. The rule of thumb we used in our calculation was to
accept the extrapolated result when the fit error result-
ing from the extrapolation was significantly smaller than
the cut-off dependence it was meant to eliminate.

Appendix B: Continuum limit of the decay width for
the Ising quantum spin chain

The quantum Ising spin chain

H =− J
N∑

n=1

(
σxnσ

x
n+1 + hzσ

z
n + hxσ

x
n

)
(B1)

σaN+1 ≡ σa1
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in the ferromagnetic phase with the transverse field hz <
1 is a lattice system with two vacua for hx = 0 which
become degenerate for the thermodynamic limit N →∞.
Its excitations are domain walls (kinks) which are free
fermions with the dispersion relation

ω(k) = 2J
√

1 + h2
z − 2hz cos k (B2)

with gap M = 2J |1− hz|. Switching on the longitudinal
field hx the vacuum degeneracy is lifted, and the theoret-
ical decay amplitude of the false vacuum was computed
by Rutkevich [10] with the result

Γ =
π

9
JN |hx|µg (hx) exp

{
−|f (θ0)|
|hx|µ

}
(B3)

where

f (θ) =
2

J

∫ θ

0

dkω(k) ,

g (hx) = Im cot

[
f(π)− iπα

2 |hx|µ

]
, (B4)

with α describing phenomenologically the decay rate of

one-domain states, µ =
(
1− h2

z

)1/8
is the spontaneous

magnetisation on the chain, while θ0 = i |log hz| is the
zero of the function ε(k) in the upper half plane.

The continuum limit of various quantities on the spin
chain can be computed exactly [27]. Introducing a lattice
spacing a = 1/2J and the physical momentum p = k/a,
and using hz = 1− aM , the dispersion relation becomes

ω(p) =
1

a

√
1 + h2

z − 2hz cos pa =
√
M2 + p2 +O

(
a3
)

(B5)
which is the correct result for relativistic kinks with mass
M . The continuum order parameter field is defined by

σ(na) =s̄J1/8σxn

s̄ = 21/12e−1/8A3/2 , (B6)

where A = 1.2824271291 . . . is Glaisher’s constant. The
continuum magnetic field is related to the lattice longi-
tudinal field hx as

h =
2

s̄
J15/8hx . (B7)

These relations allow us to recover (16)

σ̄ = s̄M1/8 . (B8)

Note that

hσ(na) = 2J2hxσ
x
n =

1

a
Jhxσ

x
n (B9)

resulting in the correct identification
∫
dxh(x)σ(x) = a

∑

n

hσ(na) = J
∑

n

hxσ
x
n . (B10)

Turning to the continuum limit of the nucleation rate,
using hz = 1− aM results in θ0 = iaM and therefore

f (θ0) =
2

J

∫ θ0

0

dkω(k) = 4

∫ θ0

0

dk
√

1 + h2
z − 2hz cos k

≈ 4

∫ iaM

0

dk
√
a2M2 + k2

= 4i

∫ aM

0

dκ
√
a2M2 − κ2 = iπa2M2 (B11)

We also have J |hx|µ = a |h| σ̄ where σ̄ is the expectation
value of the continuum order parameter. Furthermore,
the vacuum energy density difference is ∆E = 2 |h| σ̄ so

|hx|µ =
1

J
a

∆E
2

= ∆Ea2 (B12)

As a result, the exponential factor in the nucleation rate
(B3) has the continuum limit

exp

{
−|f (θ0)|
|hx|µ

}
= exp

{
−πM

2

∆E

}
. (B13)

Turning to the prefactor, the hz → 1 limit gives

f (π) = 4

∫ π

0

dk
√

2− 2 cos k = 8 , (B14)

resulting in

g (hx) = Im cot

[
8− iπα
2∆Ea2

]
→ 1 as a→ 0 . (B15)

Using that the physical volume is R = Na leads to
N |hx|µ = V∆Ea, which results in the following expres-
sion for the bubble nucleation rate

γ =
Γ

R
=
π∆E
18

exp

{
−πM

2

∆E

}
, (B16)

which is to be contrasted with Voloshin’s result (3):

γ =
∆E
2π

exp

{
−πM

2

∆E

}
. (B17)

Clearly, the two results are identical except for a constant
overall factor that is independent of both the kink mass
M and the latent heat ∆E .

Appendix C: Ratio of the tunneling rates in the two
directions in the case of asymmetric vacua

Here we briefly consider the case of asymmetric vacua
illustrated in Fig. 9, and show that the vacuum decay
is independent of the direction in the thin-wall approxi-
mation, in the one-loop approximation. We assume that
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the model is described by a Ginzburg-Landau action con-
taining a scalar field φ(t, x):

A =

∫
dtdx

[
1

2
(∂tφ)

2 − 1

2
(∂xφ)

2 − V0(φ)

− η∆V (φ)

]
(C1)

where in the case η = 0 the potential has two degener-
ate vacua V0(φ+) = V0(φ−). This degeneracy is assumed
to persist at the quantum level, and it is only lifted by
switching on the perturbing potential ∆V . The ± in-
dex of the vacua is chosen so that φ± becomes the false
vacuum for η positive/negative, respectively [50]. Using
the semi-classical formalism, the bubble nucleation rate
in the one-loop approximation is given by [2]

Γ±
V

=
S0

2π
e−S0

∣∣∣∣∣
det′

[
−∂2

τ − ∂2
x + U ′′ (φ1)

]

det [−∂2
τ − ∂2

x + U ′′ (φ±)]

∣∣∣∣∣

−1/2

e−S
(1)(φ1)+S(1)(φ±) , (C2)

where τ = −it is Euclidean time, U = V0+η∆V is the full
potential, and φ1 is the classical instanton configuration,
which solves the Euclidean equation of motion

∂2
τφ1 + ∂2

xφ1 = V ′(φ) (C3)

and has finite Euclidean action

S0 =

∫
dτdx

[
1

2
(∂τφ1)

2 1

2
(∂xφ1)

2
+ V0(φ1)

+ η∆V (φ1)

]
(C4)

In the thin wall limit of small η φ1 is given by

φ1(τ, x) = φK(ρ−R) , ρ =
√
τ2 + x2 , (C5)

where φK(x) is the static kink solution at η = 0. De-
noting its mass by M , the radius of the bubble can then
be determined as R = 2M/∆E where ∆E ∝ η is the dif-
ference in the energy densities of the false and the true
vacua a.k.a. the latent heat. The thin wall limit means
that the radius R is much larger than the characteristic
spatial extension of the kink solution φK , which can al-
ways be achieved for sufficiently small η. The classical
Euclidean instanton action in the thin wall limit can be
easily computed following [1] with the result

S0 =
πM2

∆E (C6)

and is independent of the sign of η, i.e., of the direction of
tunneling. Finally, the contribution S(1) is the Euclidean
one-loop counter term action.

The ratio of the two tunneling amplitudes is then given
by

Γ+

Γ−
=

∣∣∣∣∣
det
[
−∂2

τ − ∂2
x + V ′′0 (φ−)

]

det [−∂2
τ − ∂2

x + V ′′0 (φ+)]

∣∣∣∣∣

−1/2

eS
(1)(φ+)−S(1)(φ−) .

(C7)

Note that when the two vacua are related by a Z2 sym-
metry this ratio is trivially 1. For the general case we
can reason as follows. Since the φ± are constant config-
urations, the relevant counter terms are the ones for the
effective potential

S(1) (φ±) = −Ω ∆V (1) (φ±) , (C8)

where Ω denotes a finite space-time box introduced to
regulate the computation. This leads to the expression

log
Γ+

Γ−
=− 1

2
Tr log

[
−∂2

τ − ∂2
x + V ′′0 (φ+)

]
− Ω ∆V (1) (φ+)

+
1

2
Tr log

[
−∂2

τ − ∂2
x + V ′′0 (φ−)

]
+ Ω ∆V (1) (φ−) .

(C9)

The combinations

1

2Ω
Tr log

[
−∂2

τ − ∂2
x + V ′′0 (φ±)

]
+ ∆V (1) (φ±) =

1

2

∫
d2k

(2π)
2 log

[
k2 + V ′′0 (φ±)

]
+ ∆V (1) (φ±) (C10)

are just the renormalised 1-loop contributions to the ef-
fective potential evaluated at the field values φ±, which
cancel due to the assumed exact degeneracy of the two
(generally asymmetric) vacua. Therefore at the one-loop
order one has

Γ+ = Γ− . (C11)

According to Voloshin’s result Eq. (3) this equality is
expected to hold in the thin wall limit to all loop orders.
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