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A B S T R A C T

Physiological models are attractive for seizure detection, as their parameters are related to physiological meanings.
We propose an algorithm to early detect epileptic seizures based on automatic estimation of average synaptic gains
(excitatory Ae, slow and fast inhibitory B and G) by combining clinical data with a neural mass model. Three indices
(Ae/B, Ae/G and Ae/(B+ G)), all related to excitation/inhibition balance, were calculated and used as cues to detect
seizures. A simple thresholding method was employed. We evaluated the algorithm against the manual scoring of a
human expert on intracranial EEG samples from 23 patients suffering from different types of epilepsy. Best perfor-
mance was achieved using Ae/(B + G) as a cue, i.e. excitation/(slow + fast) inhibition, on temporal lobe epilepsy
(TLE) patients. A leave-one-out cross-validation showed that the algorithm achieved 92.98% sensitivity for TLE
patients. The median false positive rate was 0.16 per hour, and median detection delay was 14.5 s. Of interest, the
threshold values determined by a leave-one-out cross-validation did nearly not vary among TLE patients, suggesting a
general excitation/inhibition balance baseline in TLE patients. The same approach could be used with other types of
epilepsy by adapting the neural mass model to these types.

1. Introduction

Epilepsy is one of the most common neurological disorders in the
world population and affects over 65 million people worldwide [1]. It is
characterized by recurrent and unpredictable epileptic seizures [2].
Seizures are caused by sudden, usually brief, temporary electrical dis-
turbance in the brain, which can be seen from the Electroencephalo-
graphic (EEG) recordings captured by electrodes placed either directly
on the exposed surface of the brain (i.e. intracranial EEG) or along the
scalp. The diagnosis of epilepsy often relies on visual inspection of EEG
data by an experienced neurophysiologist, which is time-consuming
and error-prone, especially in the case of long-term recordings. More-
over, disagreements among neurophysiologists on the same recording
are frequent due to the subjective nature of visual analysis and the
complexity of EEG waveforms [3]. Automatic seizure detection algo-
rithms could serve as a clinical tool for reviewing EEG data in a more
efficient and objective manner and benefit clinical staff by reducing
their work load. Moreover, although there are several treatment

options, including surgical resection and anti-epileptic drugs, up to 30%
of the epileptic patients have no positive response to medication [4].
The unpredictability of seizure occurrence is one of the most disabling
aspects of epilepsy and worsens the quality of life of epileptic patients
and their families [5]. If seizures could be detected at an early stage (i.e.
close to the onset), patients or caregivers could be alerted and potential
injuries, even death could be prevented. Alternatively, it could provide
an opportunity for on-demand seizure suppression. Together with
proper therapy, such as administration of electrical stimulation [6,7],
seizures could be stopped earlier or even prevented.

Various EEG-based seizure detection algorithms have previously
been proposed. General approach involves extraction and selection of
important features, i.e. morphological features [8], spectral features
[9], spectra-temporal features [10] such as wavelet-based features [10],
which are capable of distinguishing between EEG waveforms recorded
from seizure state and non-seizure state. Selected features are then
given to classifiers, such as neural networks [11], support vector ma-
chines [12,13], fuzzy logic [14,15] or random forests [16,17], which

https://doi.org/10.1016/j.compbiomed.2019.02.005
Received 26 October 2018; Received in revised form 18 January 2019; Accepted 8 February 2019

∗ Corresponding author. Université libre de Bruxelles, BEAMS CP165/56, Av. F.D. Roosevelt 50, B1050 Bruxelles, Belgium.
E-mail addresses: xiaoya.fan@ulb.ac.be (X. Fan), Nicolas.Gaspard@erasme.ulb.ac.be (N. Gaspard), Benjamin.Legros@erasme.ulb.ac.be (B. Legros),

Federico.Lucchetti@ulb.ac.be (F. Lucchetti), rercek@ulb.ac.be (R. Ercek), anoncler@ulb.ac.be (A. Nonclercq).

Computers in Biology and Medicine 107 (2019) 30–38

0010-4825/ © 2019 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/00104825
https://www.elsevier.com/locate/compbiomed
https://doi.org/10.1016/j.compbiomed.2019.02.005
https://doi.org/10.1016/j.compbiomed.2019.02.005
mailto:xiaoya.fan@ulb.ac.be
mailto:Nicolas.Gaspard@erasme.ulb.ac.be
mailto:Benjamin.Legros@erasme.ulb.ac.be
mailto:Federico.Lucchetti@ulb.ac.be
mailto:rercek@ulb.ac.be
mailto:anoncler@ulb.ac.be
https://doi.org/10.1016/j.compbiomed.2019.02.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compbiomed.2019.02.005&domain=pdf


output the decision of the existence or absence of an epileptic seizure
after training. These algorithms have achieved promising results. They
could be useful in clinical practice and beneficial for both patients and
clinicians. However, the selected features are representations of the
EEG waveform rather than neurophysiologically-related. Therefore,
they do not reflect the mechanism governing epileptic seizure genesis
and can be rather seen as “black boxes".

A model-based approach, on the other hand, can relate the model
parameters to neurological mechanisms. Using model parameters as
features for seizure detection therefore provides an opportunity to
overcome such limitations, allowing this way a more transparent and
understandable seizure detection methodology. Besides, advances in
our understanding of seizure genesis can be included to enhance neural
models and therefore also model-based seizure detection algorithms.
Such approaches involve estimating relevant physiological parameters
by fitting the models to EEG recordings and hold promise for detecting
seizures by analyzing the temporal change of these parameters. Our
group has established a methodology to detect seizures automatically at
an early stage based on parameter identification of a neural mass model
(NMM) from iEEG data and proved the feasibility of such approach
[18]. We further implemented a refined version of this NMM and
physiologically meaningful key parameters (i.e. average excitatory
[Ae], slow [B] and fast [G] inhibitory synaptic gain) were identified.
We have found that the excitation/inhibition ratios, i.e. Ae/B, Ae/G and
Ae/(B + G), tend to increase around seizure onset and restored before
seizure offset [19]. Here, we examined the possibility to translate these
findings to implement a model-based automatic seizure detection al-
gorithm. The proposed algorithm was assessed against the manual
scoring of an EEG expert, on various patient types, with clinically re-
levant indicators. The algorithm performance was evaluated in terms of
detection strategy, excitation/inhibition ratios used, and compared to
the state of the art.

2. Materials and methods

2.1. iEEG database

After approval from the Ethics Committee of Hôpital Erasme, a
group of 23 patients with refractory focal epilepsy who underwent in-
tracranial electroencephalography (iEEG) between May 2005 and May
2014 was retrospectively selected from our EEG database. All patients
underwent iEEG with 500 Hz sampling frequency and 16-bit resolution.
The details of the iEEG data used in this study for each patient are
provided in Table 2. In total, 386.83 h of iEEG recordings, containing
91 seizures, were analyzed. Twelve patients (1, 3, 5, 6, 15, 17, 18, 19,
20, 21, 22 and 23) were diagnosed with TLE, with a total recording time
of 237.09 h and 60 epileptic seizures. Eight patients (2, 4, 7, 8, 9, 10,
11, and 16) were diagnosed with Frontal Lobe Epilepsy (FLE), with a
total recording time of 115.53 h and 23 epileptic seizures. Patients 12,
13, and 14 were respectively diagnosed with Fronto-Temporal Lobe
Epilepsy (FTLE), Parieto-Temporal-Occipital Lobe Epilepsy (PTOLE)
and Occipital Lobe Epilepsy (OLE), respectively. The total recording
time for those patients was 34.21 h and the overall number of epileptic
seizures was 8. Patients 9, 11, and 16 were recorded by electro-
corticography (ECoG) using subdural grids and strips, while the re-
maining patients were recorded by stereoelectroencephalography
(SEEG). For each recording, one derivation, corresponding to the ear-
liest implicated electrode in the seizure onset zone, has been selected by
an expert neurophysiologist. Electrographic onsets of seizures were also
marked based on epileptic patterns preceding seizures and were re-
garded as the ground truth when evaluating the detection algorithm.

2.2. Algorithm overview

The seizure detection algorithm is based on the parameter identi-
fication of an NMM. The overview of the algorithm is illustrated in

Fig. 1. The signal was first segmented using a 2s-sliding window with
50% overlap. For each window, the key model parameters (i.e. average
excitatory synaptic gain Ae, average slow and fast inhibitory synaptic
gain B and G) were identified using the algorithm detailed in our pre-
vious paper [19,20], which allowed the simulated EEG to best fit the
recorded EEG. Afterwards, key model parameters were combined to
compute three cues, i.e. Ae/G, Ae/B, and Ae/(B + G), as they were
shown to increase during interictal to ictal transition [19]. At last, a
decision method was designed to determine whether a seizure has oc-
curred based on the temporal evolution of these cues. These steps are
detailed in the following sections.

2.3. EEG modeling and parameter identification

The NMM previously proposed [21] was implemented. It has been
validated for generating realistic intracranial epileptiform EEG signals.
It mesoscopically models the interactions among the principal cells,
excitatory interneuron population, and fast and slow inhibitory inter-
neuron populations. Mathematically, the model is described by 10 first
order differential equations [21]. All parameters were set to standard
values [22], except the average synaptic gains (i.e. the average ex-
citatory synaptic gain of the principal cells Ae, as well as the average
synaptic gains of the slow and fast inhibitory interneuron populations,
respectively B and G) that can vary, as previously proposed [22–24].
We employed a window-by-window approach to identify the key
parameters by searching the parameter space exhaustively. The iEEG
signals were first filtered below 0.16 Hz and above 65 Hz to remove
slow baseline drift and electronic noise. Second, a 50 Hz notch filter was
used to remove power line noise. After pre-processing, the clinical data
was segmented using a 2 s sliding window with a step of 1 s. For each
window, the key parameters were identified by minimizing an error
function, which was established as the Euclidean distance between the
feature vectors estimated from the synthesized and recorded signal,
respectively (for more details see Ref. [19]). We made the proposed
methodology available in a toolbox1 integrated in the Statistical Para-
metric Mapping (SPM) software package,2 which is widely used in the
neuroscience community for the analysis of brain imaging data se-
quences, such as EEG/MEG, fMRI and PET etc. [25–27]. Although ex-
haustive search was employed to identify the key model parameters,
the computational load was tremendously reduced by pre-calculating
the average feature vectors of the simulated data. The computational
complexity of the proposed method is linear with the size of the data.
The running time for estimating the synaptic gains for 1000 s iEEG data
was 180 s when ran on a Windows 7 platform with 2.6 GHz CPU, 4 GB
of memory. Therefore, it can be used in a real-time application.

2.4. Seizure detection algorithm

To estimate the occurrence of a seizure, the shift over time of
average synaptic gains (excitatory Ae, slow and fast inhibitory B and G)
was evaluated. Three cues, Ae/G, Ae/B and Ae/(B + G), were then
computed. They are directly related to the balance between excitation
and inhibition, which has been reported to play a central role in the
transition from background to epileptic activities [19,28,29]. We have
shown previously that these cues tend to increase when seizure occurs
[19]. Here, we further investigated the feasibility of using any of them
for detecting seizure onset. A simple thresholding method was em-
ployed: a seizure is detected if one of the cues (Ae/G, Ae/B or Ae/
(B + G)) crosses a predefined threshold. It therefore gives a direct in-
terpretation of the break of balance between excitation and inhibition.
As a first step, it seemed important to choose such a straightforward and
interpretable decision method to give insights into the algorithm

1 http://beams.ulb.ac.be/research-projects/synaptic-gains-tracking-toolbox.
2 http://www.fil.ion.ucl.ac.uk/spm/.
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behavior. We assumed the cues did not change abruptly and a 30-s
forward-reverse moving average filter was applied to smooth them.
Similar strategies are often used in seizure detection algorithms
[30–32], with a filter size from 30 s [30] to 5min [31]. We have shown
previously that varying the size of the moving average filter within a
certain range had minor effect on the global trend of these cues [19]. As
the recordings were processed with a sliding window, the decision was
made for each successive window, with a resulting resolution corre-
sponding to the step of the sliding window, i.e. 1s.

The threshold can be either fixed (i.e. keep constant for all patients)
or adapted to each specific patient [18,33]. The patient-specific
threshold was computed as being equal to k times the standard devia-
tion (SD) above the mean of the background baseline (calculated from
the first 5min EEG of each recording), i.e. Eq. (1).

mean C k std CT ( ) ( )s b b= + (1)

Where Ts represents patient-specific threshold and k is a fixed
parameter; Cb stands for the background baseline of any cue that is
obtained from the first 5min EEG of each recording. Since background
EEG samples are centered on the mean, with some fluctuation expressed
by their standard deviation, this threshold aims to determine when the
samples cannot express background activity anymore because they
evolve toward an epileptic seizure.

2.5. Performance analysis

Common performance metrics, namely sensitivity, false positive
rate, mean false detection duration and detection delay [34], were used
to evaluate the performance of the algorithm, which was obtained by

comparing algorithm detection with manual scoring of the expert.
The sensitivity is defined as:

TP
TP FN

sensitivity =
+

where TP (True Positive) is the number of seizures identified by both
algorithm and expert, and FN (False Negative) is the number of seizures
identified by the expert but not by the algorithm. Since this study fo-
cused on early seizure detection, i.e. the detection of the onset of the
seizure at an early stage, we chose to relate the definition of a TP to the
seizure onset. A detection made within a time window between 5 s
before seizure onset marked by the expert and 180 s after is considered
as a TP. If no seizure is detected within this horizon, it is regarded as a
FN. The choice of 5 s before seizure onset was justified and used in
previous study [17]. A seizure lasts from a few seconds to a few min-
utes, mostly less than two or 3min [35], sometimes longer than 5 [36]
(> 2min for most seizures in our database). We accounted for the
duration of a seizure and chose 180 s after seizure onset as previously
proposed [18].

The False Positive Rate (FPR) is defined as:

FP
Total Time

FPR =

Where the Total Time denotes the total recording time in hours and
FP (False Positive) is the number of seizures identified by the algorithm
but not scored as a seizure by the expert. Considering the spiky nature
of false detections [34,37], we joined all FPs lying very close (within
1min) apart from each other, as previously proposed [34].

The Mean False Detection Duration (MFDD) is the average of the

Fig. 1. Algorithm overview.

X. Fan, et al. Computers in Biology and Medicine 107 (2019) 30–38

32



durations of all false positives. It was reported as a complement of FPR
and avoid possible misleading caused by the joint of subsequent and
close false detections [34].

The detection delay is the time delay of a TP to the seizure onset
marked by the expert.

Since the sensitivity of the algorithm can be increased by decreasing
the threshold at the cost of higher FPR, and vice versa, Receiver
Operator Characteristic (ROC) curves were computed to evaluate the
algorithm globally for all threshold values. For patient-specific
threshold, the value of the threshold varied by varying k in Eq. (1) and
therefore is automatically adapted to each patient. In this study, the
value of k was varied from 0 to 40. For fixed threshold, it varied
identically for all patients. The algorithm performance was compared in
terms of area under ROC curve (AUC), between patient-specific
threshold and fixed threshold, as well as when different cues were used.
We chose to express the ROC curve in terms of sensitivity against FPR
(rather than sensitivity against specificity), as it is usually performed in
seizure detection [14,17,38]. This choice allows to avoid the arbitrary
choice of the length for non-seizure events (that is required for speci-
ficity) and to obtain balanced data (there are usually much more non-
seizure events than seizures). Please note that, since the FPR can exceed
one, the value of the AUC also can exceed one. A cut-off FPR of 5 was
used for calculating the AUC.

Our database includes patients with various types of epilepsy, thus
allows comparison of the performance of the algorithm among patient
groups. After determining the cue that achieves the best performance,
we further compared the algorithm performance on different patient
groups, i.e. TLE, FLE and the others.

A leave-one-out cross-validation (LOO-CV) was performed to assess
the performance of the system and determine the robustness of the
estimated threshold. The performance reported with LOO-CV is almost
an unbiased estimation of the performance of an algorithm would
achieve on unseen data of infinite size once it is trained on all available
data [34]. It was performed separately for each patient group, since the
cues may differ intrinsically for each epilepsy type. For each patient
group, all but one patients' data was collected for training the algorithm
to determine the threshold, and the remaining patient's data for testing.
The threshold was automatically determined such that the algorithm
achieved the highest sensitivity in the training set while minimizing the
FPR. We reported the value of the threshold for each patient and
compared them among patient groups.

3. Results

3.1. Comparison among threshold strategies

Table 1 shows the AUCs obtained using different cues, i.e. Ae/G,
Ae/B or Ae/(B + G), and the two threshold strategies, i.e. fixed
threshold or patient-specific threshold, for the three patient groups
separately and for all patients altogether. It can be seen that patient-
specific and fixed thresholds allowed comparable AUC (Wilcoxon
signed rank test: p = 0.11). Therefore, fixed threshold, considered more

objective and stable since it does not depend on the choice of the
window used to evaluate the background, was used in subsequent
analysis. Results corresponding to LOO-CV with patient-specific
threshold are given as supplementary materials (Table S1).

3.2. Comparison among cues

The algorithm performance was compared in terms of AUC when
individual cue was used. As shown in Table 1, the algorithm achieved
the best performance (highest AUC) when Ae/(B + G) was used as the
cue in TLE and FLE patients. For the “others” group (FTLE, PTOLE and
OLE patients), the algorithm achieved comparable performance when
Ae/(B + G) or Ae/G was used as a cue.

3.3. LOO-CV results

Individual results obtained from LOO-CV with Ae/(B + G) as a cue
are given in Table 2. Overall, 74 out of 91 (81.32%) seizures were
detected. The algorithm performance differed among patients. The
sensitivity varied from 0% to 100% (74.13% ± 36.61%), the FPR
ranged from 0 to 9.46 (median: 0.17, SD: 2.56) per hour and MFDD
varied from 0s to 271.5 s (median: 18.7 s, SD: 70.5 s). Results are con-
siderably better for TLE patients (sensitivity 93.33%, median FPR: 0.28
per hour, median MFDD: 19.1 s) than FLE patients (sensitivity: 60.87%,
median FPR: 0.17 per hour, median MFDD: 9.3 s) and the 3 patients
diagnosed with FTLE, POLE and OLE (sensitivity: 50%, median FPR:
0.17 per hour, median MFDD: 34.5 s). The average delay (between
seizure onset annotated by the expert and automatic detection) was also
calculated for each patient. It ranged from −217.0 s to 78.5 s (median:
1.75 s, SD: 64.5 s). Negative delay indicates the algorithm detected the
seizure before the expert. The detection delay for TLE patients varied
from −19.7 s to 80.0 s (median: 14.4 s, SD: 25.7 s). No seizures were
detected in patients 7 and 8, diagnosed with FLE. For the remaining FLE
patients, the average detection delay ranged from −217.0 s to 78.5 s
(median: -3.25 s, SD: 102.0 s). Patients 12 and 13, diagnosed with FTLE
and PTOLE respectively, showed a mean detection delay of 31.3 s and
28.0 s respectively. It was noted that patient 18, from the TLE group,
showed a much higher FPR (9.46) compared to other TLE patients
(0.65 ± 0.80). This patient was retrospectively analyzed by an expert
neurologist (B.L.). Seizures were distinct. They resembled frontal lobe
seizures although the seizures originated from temporal lobe. Also,
some clinical manifestations were reproduced by fronto-orbital stimu-
lations. Thus, it might be inappropriate to include this patient in the
TLE group due to the potential existence of a pathological network
between the temporal lobe and fronto-orbital region. We re-performed
the LOO-CV procedure after removing this patient. The performance of
the algorithm for other TLE patients did nearly not change. The median
FPR for TLE group reduced to 0.16 per hour (SD: 0.80). We excluded
patient 18 for the following analysis. Fig. 2 shows the ROC curves for
the three patient groups obtained by varying the threshold values. As
can be seen, the algorithm performed considerably better for TLE pa-
tients.

3.4. Analysis of threshold values

The boxplot of the thresholds determined by the LOO-CV procedure
(Ae/(B + G) as a cue), for each patient group, is shown in Fig. 3. The
values of the threshold did nearly not vary among TLE patients
(0.1018 ± 6.9e-5). The values of the threshold varied more for FLE
patients (0.1334 ± 0.0137) and had higher values compared to that of
TLE patients (Mann-Whitney U test: p < 0.001). The values of the
threshold for the other patients i.e. the ones diagnosed as PTOLE, FTLE
and OLE (0.1007 ± 0.0055), on the other hand, were comparable to
that of TLE patients (Mann-Whitney U test: p= 0.5604).

The values of threshold determined by LOO-CV are surprisingly
consistent across TLE patients, suggesting a general excitation/

Table 1
Area under the ROC curve (AUC): comparison between fixed threshold and
patient-specific threshold, and among the three cues for different patient groups
separately and altogether.

Ae/G Ae/B Ae/(B + G)

Fixed
threshold

Patient-
specific

Fixed
threshold

Patient-
specific

Fixed
threshold

Patient-
specific

TLE 4.36 4.37 3.55 3.55 4.60 4.58
FLE 2.89 2.94 2.88 2.93 3.05 3.15
Others 3.90 3.90 1.38 1.40 3.83 3.80
Altogether 3.91 3.91 3.18 3.19 4.05 4.11
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inhibition baseline during interictal period among them. To verity this,
we analyzed the value of Ae/(B + G) during interictal periods for each
TLE patient. The intra- and inter-patient variation in the value of Ae/
(B + G) were evaluated as coefficient of variation (CV: the ratio of SD
to the mean), expressed as a percentage. The intra-patient variation
varied from 4.96% to 8.30% (mean ± SD: 6.80% ± 1.21%) and the
inter-patient variation was 8.43%. Both intra- and inter-patient varia-
tion in the value of Ae/(B + G) were low (CV < 10%), showing that
the Ae/(B + G) interictal baseline is rather constant, both for a given

patient and across all patients. The histograms of Ae/(B + G) during
interictal periods for all TLE patients are shown in Fig. 4 (the mean
threshold for TLE patients shown in Fig. 3 is indicated by the vertical
dash line). It can be seen that inter-patient variation is similar to intra-
patient variation.

4. Discussion

We proposed a model-based approach to detect epileptic seizures at

Table 2
iEEG data and leave-one-out cross-validation results for each patient. The total recording time, total number of seizures, total number of detected seizures, overall
sensitivity, median false positive rate (FPR), median mean false detection duration (MFDD), median average detection delay and mean threshold for each patient
group were provided separately (in bold). Patients 12, 13 and 14 were diagnosed with FTLE, PTOLE and OLE, respectively. TLE: Temporal Lobe Epilepsy; FLE: Frontal
Lobe Epilepsy; FTLE: Fronto-Temporal Lobe Epilepsy; PTOLE: Parieto-Temporal-Occipital Lobe Epilepsy; OLE: Occipital Lobe Epilepsy; N/A: not applicable. The data
in parentheses represents results after excluding patient 18 (see section 3.3).

Patient Group Patient ID Recording Time (hrs) # of Seizures Detected seizures Sensitivity (%) FPR (/hr) MFDD (s) Detection delay (s) Threshold

TLE 1 35.38 10 10 100.00 2.06 25.9 1.3 0.1018
3 38.12 9 9 100.00 0.00 0.0 −4.6 0.1018
5 12.11 6 6 100.00 0.00 0.0 40.8 0.1018
6 12.25 3 3 100.00 0.16 5.5 14.3 0.1018
15 23.92 1 1 100.00 2.09 25.4 −3.0 0.1018
17 21.15 5 4 80.00 1.47 22.3 33.0 0.1018
18 10.25 3 3 100.00 9.46 36.0 −21.3 0.1018
19 6.82 2 2 100.00 0.00 0.0 14.5 0.1018
20 25.69 10 10 100.00 0.12 20.0 −0.2 0.1018
21 9.95 5 3 60.00 0.40 23.8 18.3 0.1021
22 16.77 2 1 50.00 0.00 0.0 78.0 0.1018
23 24.67 4 4 100.00 0.89 18.2 38.8 0.1018

Overall 237.09 (226.84) 60 (57) 56 (53) 93.33 (92.98) 0.28 (0.16) 19.1 (18.2) 14.4 (14.5) 0.1018 (0.1018)

FLE 2 15.78 4 1 25.00 0.00 0.0 9.0 0.1463
4 21.74 5 2 40.00 0.00 0.0 78.5 0.1463
7 5.69 1 0 0.00 0.00 0.0 N/A 0.1401
8 17.80 2 0 0.00 0.00 0.0 N/A 0.1463
9 14.17 3 3 100.00 7.62 271.5 −217.0 0.1181
10 25.85 3 3 100.00 3.37 230.8 −115.7 0.1183
11 8.76 3 3 100.00 0.34 18.7 52.3 0.1401
16 5.74 2 2 100.00 5.40 120.4 −15.5 0.1121

Overall 115.53 23 14 60.87 0.17 9.3 −3.25 0.1334

Others 12 16.16 3 3 100.00 0.06 3.0 31.3 0.1001
13 6.33 2 1 50.00 2.85 40.0 28.0 0.0943
14 11.72 3 0 0.00 0.17 34.5 N/A 0.1078

Overall 34.21 8 4 50.00 0.17 34.5 29.67 0.1007

Fig. 2. ROC curves obtained for the three patient groups, i.e. TLE, FLE and
others. TLE: temporal lobe epilepsy; FLE: frontal lobe epilepsy; FP/h: false
positive per hour.

Fig. 3. The values of the threshold determined by the LOO-CV procedure, for
each patient group, when Ae/(B + G) was used as the cue.
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an early stage based on the temporal evolution of average synaptic
gains (excitatory Ae, slow and fast inhibitory B and G) identified from
an NMM. Three cues, i.e. Ae/G, Ae/B and Ae/(B + G), all related to the
balance between the excitation and inhibition, were used for seizure
detection with a simple thresholding method. Results showed that Ae/
(B + G) achieved best performance in terms of area under the ROC
curve. The algorithm achieved comparable performance with patient-
specific threshold, or with fixed threshold for all patients. It indicates
that the inter-patient variations of the excitation/inhibition balance
baseline are small. LOO-CV was conducted separately for three patient
groups diagnosed with different types of epilepsy. Results were con-
siderably better for TLE patients than FLE patients and others (FTLE,
PTOLE and OLE patients): the sensitivity was 92.98%, the median FPR
was 0.16 per hour with median MFDD of 18.2 s and the median de-
tection delay was 14.5 s. This result is clinically interesting as TLE is the
most common form of focal epilepsy. Of interest, the threshold de-
termined by LOO-CV did nearly not vary among TLE patients, sug-
gesting a general baseline of excitation/inhibition balance (at neuronal
population level). This was further verified by analysis on the values of
Ae/(B + G) during interictal periods for TLE patients, showing that the
Ae/(B + G) interictal baseline is rather constant, both for a given pa-
tient and across all patients.

The dynamic balance between excitation and inhibition is a fun-
damental feature of normal brain activity at multiple scales, from in-
dividual neurons [39], ensembles [40] to networks [41]. In general, the
balance of excitation and inhibition at neuronal level implies a constant
ratio between excitatory to inhibitory inputs of a neuron and this bal-
ance is universal among pyramidal neurons and stabilized in time [39].
Our results suggested a general baseline of excitation/inhibition ratio
during interictal periods among TLE patients and related seizure gen-
eration to the elevation of this ratio. A simple thresholding method on
this ratio yielded therefore to good seizure detection results.

Both GABAA, slow and GABAA, fast inhibitory interneurons are in-
volved in the generation of theta and gamma rhythms [42], which can
often be observed in EEG seizure signals. It has also been shown in vitro
that global optogenetic activation of mixed interneuron populations are
more effective for seizure control, compared to targeting only one in-
terneuron population, due to a more generalized GABA release [43].
Our results demonstrated that Ae/(B + G), i.e. excitation/(slow + fast
inhibition), was more effective for seizure detection, than when only
one inhibition was involved, i.e. Ae/G and Ae/B, and are therefore in
line with these previous results.

In the first part of the study, fixed and patient-specific thresholds

were compared. Results showed that fixed threshold achieved com-
parable AUC than patient-specific threshold. In the second part of the
study, only fixed threshold was evaluated. This decision was made
because fixed threshold was considered more objective and stable.
Indeed, fixed threshold does not depend on the choice of the window
used to evaluate the background. The patient-specific threshold, on the
contrary, was set based on the first 5min of EEG. If these first 5min of
EEG contains seizure activity, it could obviously affect the threshold,
i.e. the threshold would be higher because it is based on cues that in-
crease during seizure activity [19,20]. We could have carefully selected
an EEG segment which is free of seizure activity to calculate the patient-
specific threshold. But this would require prior selection of an EEG
segment and, besides the time it requires, it also reduces the objectivity
of the procedure.

The values of the threshold determined by LOO-CV were sig-
nificantly different among different patient groups, suggesting distinct
excitation/inhibition baseline among those groups, which, in turn,
justified our cross-validation procedure by groups. However, whether
this ratio during interictal periods could potentially give an indication
about the type of epilepsy needs further investigation.

Among the 12 TLE patients in our database, 100% sensitivity was
achieved for 9 of them. For the other 3 patients, 17, 21 and 22, 80% (4/
5), 60% (3/5) and 50% (1/2) sensitivity was achieved. The 4 seizures
that the algorithm failed to detect were subclinical seizures, which
usually last for a very short duration (∼10s in our case) and do not
present any noticeable clinical signs or symptoms [44,45]. Therefore,
the changes in cues might be smoothed out by the 30-s moving average
filter used in our study. The cost of missing such seizures could possibly
be of lower importance, depending on the application. In some seizure
detection studies, subclinical seizures [14] and seizures with shorter
duration [45] were even excluded from analysis. If we exclude these
subclinical seizures from our analysis, our algorithm would have
achieved 100% sensitivity for all TLE patients. We noted that patient 18
showed much higher FPR than other TLE patients. Seizures from this
patient had distinct features. Some clinical manifestations were re-
produced by fronto-orbital stimulations and the seizures resembled
frontal lobe seizures, although they originated from temporal lobe.
Thus, there might be a pathological network between temporal lobe
and fronto-orbital region for this patient that is distinct from all other
TLE patients. Hence, it might be inappropriate to include him/her in the
TLE group. Excluding this patient from the LOO-CV procedure had
minor effect on algorithm performance for other TLE patients.

The algorithm's better performance with TLE patients was expected

Fig. 4. The histogram of Ae/(B + G) during interictal periods for TLE patients. The vertical axis represents the probability of selecting an observation within that bin
interval, and the sum over all the bins equals to 1. The vertical dash line indicates the mean thresholds for TLE patients.
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for two reasons. First, the NMM has been reported to be capable of
simulating seizures similar to the ones recorded from TLE patients [21].
Second, the implicit assumption underlying the model-based seizure
detection approach is that the dynamics of ictogenesis can be captured
by smooth variations of several system parameters, which was true in
TLE, but not in FLE [46]. It was proposed that TLE seizures were caused
by a deformation of the attractor leading to a gradual evolution onto
the ictal state, thus seizures can be detected by analyzing the gradual
change in dynamics [18]. This contrast with FLE seizures that were
reported to be caused by a perturbation in a bistable state without
change in parameters [47] and therefore might be rather difficult to
detect [46]. Regarding the third group (i.e. with FTLE, PTOLE and
OLE), individual results were also obtained by LOO-CV, even though
they were diagnosed with different types of epilepsy. More robust and
better results might be achieved, provided an appropriate model that
describes EEG dynamics of these specific types of epilepsy.

Direct comparison of results with other published seizure detection
algorithms is difficult due to the heterogeneity of datasets and metrics
to assess performance [34,48]. However, we attempted to compare our
method with other algorithms tested on continuous human iEEG re-
cordings of TLE patients that also reported their results in terms of
sensitivity, FPR and detection delay (see Table 3). It can be seen that
our algorithm achieved comparable sensitivity and FPR, with a slightly
higher detection delay (4.36 s higher on average).

Besides the divergence in datasets, the testing and performance
evaluation strategy also differ. For example, Aarabi et al. trained their
model on 40% of all iEEG data and tested it on all data rather than on
the rest of it [14], which might overestimate the performance since the
training data was also used for testing. Edakawa et al. excluded 30min
before and after the seizure from the analysis [49], which might de-
crease the FPs caused by the spikes before seizures. Aarabi et al. ex-
cluded subclinical seizures from their analysis [14] and Zheng et al.
rejected patients with shorter seizures [45]. In this regard, the com-
parison might have been disadvantageous for our algorithm.

Focusing on the detection delay, in Ref. [18], a larger detection
horizon was used, i.e. from 3.5min before seizure onset to 3.5 min
after. Furthermore, in Ref. [44], the authors used a collar technique
where each detected seizure event was extended several epochs on both
sides. Both approaches might have affected the latency of seizure de-
tection and resulted in a shorter detection delay. Therefore, such
comparison might have been disadvantageous for our algorithm. Fur-
thermore, the clinical impairment of a patient could happen up to 30 s
after the electrographic onset of a seizure, even with the most rigorous
definitions [50]. Thus, the detection delay provided by our algorithm
could be acceptable for most patients. It could also be improved at a
cost of higher FPR.

The aim of our work rather lies in relating ictogenesis with

physiological parameters change and arguing in favor of the feasibility
of such a model-based approach than proposing a detector that out-
performs the others. One distinct advantage of our methodology is that
it offers insights into epileptic seizure occurrence by linking the
mathematics of nonlinear systems and neurophysiology. In turn, any
advance in better understanding of seizure generation, can be directly
translated to this algorithm to enhance seizure detection. The dynamic
balance between excitation and inhibition is essential for neural
homeostasis and normal function of the brain, and its breakdown could
give rise to epileptic seizures [55]. Our methodology allows to track the
gradual change of average excitatory, slow and fast inhibitory synaptic
gains from the iEEG recording and relates seizure generation with the
elevation of excitation/inhibition ratio. This can be interpreted as a
path to an epileptic state space of the model.

The variability of EEG waveforms across, even within, patients,
which makes training of most conventional classifier difficult, does not
affect the choice of the threshold for TLE patients. The threshold de-
termined by LOO-CV is nearly constant for all TLE patients tested,
which permits direct use of our algorithm on unseen data without
training. Specific needs (higher sensitivity, lower false positive rate or
earlier detection) can then, if needed, be achieved easily by fine-tuning
the threshold. This greatly reduces the cost for training a detector,
which normally requires both massive data and time. Being surprisingly
simple, our algorithm achieved competitive performance and could be
improved in terms of false positive rate by including a post-processing
procedure [14,45].

To the best of our knowledge, only three model-based seizure de-
tection or prediction algorithms have been previously proposed.

A model-based seizure detection algorithm has been previously
proposed by Roessgen et al. for the newborns [56]. The authors in-
cluded a seizure-generating component in the NMM as a driver to sei-
zure activities, to describe any physiological mechanisms for generating
seizures. The EEG spectrum was divided into two separate components,
one corresponds to the background EEG, the other to the seizure EEG,
which can be estimated from EEG data. The ratio of these two com-
ponents was employed as a cue for detecting seizures. The model they
used therefore assumed an outside epileptogenic driver to account for
the general effect of various mechanisms, thus no hint about seizure
generation can be derived. In our work, we directly relate the para-
meter of a physiologically based model to neurological mechanisms.
Our algorithm relies on better understanding of ictogenesis by relating
the occurrence of a seizure to the ratio between average synaptic gains
of the excitatory and inhibitory neuronal population, i.e. excitation/
inhibition balance, which was proposed to be one of the possible me-
chanisms of ictogenesis [40,57,58].

A model-based approach has already been proposed for hippo-
campal and or neocortical seizure prediction [33]. Six contacts were

Table 3
Comparison of the performance of our algorithm for TLE group with previously published algorithms, in terms of sensitivity, false positive rate (FPR) and detection
delay.

Authors # of patients Data length (h) # of seizures Sensitivity (%) FPR (/h) Detection delay (s)

Kharbouch A et al. [51] 10 875 67 97.00 0.03 5.00
Aarabi et al. [14] 21 302.7 78 98.70 0.27 11.00
Zhang et al. [44] 21 539 59 92.06 0.34 1.2
Rabbi et al. [38] 20 112.45 56 95.80 0.26 15.80
Geng et al. [52] 20 255 55 96.67 0.27 –
Bandarabadi et al. [53] 11 1785 183 86.90 0.06 13.10
Edakawa et al. [49] 7 1546 21 92.90 0.02 –
Zhang et al. [45] 17 463 51 92.00 0.17 12.00
Donos et al. [17] 10 10 125 93.84 0.07 1.75
Grewal et al. [54] 19 389 100 89.4 0.22 17.1
Hocepied et al. [18] 5 28.58 30 96.00 0.14 14.34

Average 15 573.25 75 93.75 0.17 10.14

This paper 11 226.84 57 92.98 0.16 14.5
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selected for each patient, out of which three were inside the epilepto-
genic zone whereas three were from remote regions. For each of the six
contacts, twelve model parameters were estimated by fitting the NMM
to the power spectral and seizures were predicted by investigating
changes in parameters prior to seizures. For each patient, six contacts
were manually chosen. Out of them, the contacts and thresholds used
for seizure prediction (up to 72 thresholds, since there is 6 contacts and
12 parameters per contact) as well as their values were optimized
during the training process. The method is therefore quite complex, the
established patient-specific rules were difficult to interpret and were
rather behavioral than relying on physiological assumptions [33]. Our
method, on the contrary, detects seizures upon the elevation of ex-
citation/inhibition ratio, which corresponds to physiological advances
and has a straightforward interpretation. Of note, segments highly
contaminated by spikes had to be rejected to reduce their effect on the
total spectral power of the iEEG segments. Our algorithm is more tol-
erant to these activities.

Our group also previously proposed a model-based seizure detection
algorithm [18]. However, it used a simpler model that did not allow
simulation of more subtle neural behavior. It did not either benefit from
the analysis of ictogenesis mentioned above [40,57,58]. This notably
led to major two differences, in the seizure detection algorithm and in
the parameter identification procedure. In our previous work, the
procedure used could not propose a cue on which the seizure detection
algorithm could be based that specifically reflects the occurrence of a
seizure. The detection algorithm therefore also had to be able to face
the variation of the cue due to the other features present in the EEG.
Spikes, for instance, affected the cue more than seizures. In the present
work, the seizure detection algorithm is a simple thresholding method.
In our previous work, the parameter identification procedure included a
spike detection algorithm [59,60] to specifically focus on spikes. The
algorithm therefore had an a priori information on the presence of
spikes and some bias might therefore have been introduced. In the
present work, the model and method used do not include any a priori
information about any specific EEG feature. Also, the length of the
dataset is much larger in the present work.

We used simple thresholding method to detect seizures. More
complex decision algorithms, such as a statistical model or learning
methods (e.g. neural networks) could provide better results. However,
the interpretability of algorithm behavior could then be reduced.
Neural networks have been implemented in a trial study. We only tried
a simple network structure, with one input layer, one hidden layer and
one output layer. The input layer has three input neurons (corre-
sponding to three cues, Ae/G, Ae/B and Ae/(B + G)). The hidden layer
has 10 neurons and the output layer has 2 neurons (corresponding to
the 2 classes, seizure and non-seizure). Even with such a small feed-
forward network, 62 parameters needed to be trained and the behavior
of the network was not as straightforward as simple thresholding. This
could somewhat counterbalance the transparent approach of using a
physiological model-based approach. Leave-one-out cross-validation
results showed that the simple neural network did not improve the
seizure detection algorithm much (see the supplementary materials
Tables S2 and S3) and even sometimes showed results that were slightly
worse. In this paper, we chose to focus on a thresholding method
mainly because the behavior of the algorithm can be directly related to
neurophysiology, i.e. the elevation of the ratio of excitation and in-
hibition indicates the occurrence of a seizure.

The proposed method presents various benefits. Most importantly, it
is physiologically interpretable and extendable. It could provide in-
sights into seizure genesis, and in turn, further scientific advances can
be translated into this method to enhance seizure detection. Besides, it
is simple, straightforward, effective, and it shows positive results on
TLE patients. One limitation of the study is that the algorithm required
a prior knowledge from an expert, as one derivation, corresponding to
the earliest involved electrode, was pre-selected. This may be con-
sidered as a drawback of this method. However, routine clinical

evaluations of epileptic patients that undergo iEEG typically already
include an estimation of such a derivation. Furthermore, it is very
common, even important to select the proper channels for each in-
dividual in seizure detection applications [17,33], in order to achieve
satisfactory performance. Another limitation is that the proposed al-
gorithm has only been validated on iEEG. The proposed methodology
could be translated to scalp EEG to be used in other clinical fields (i.e.
routine scalp EEG).

The proposed method could be useful for clinical purpose. First, the
method could serve as a clinical tool that could help the clinical staff to
locate the seizure events among massive EEG data easily and provide
information about the type, location, and frequency of seizure events.
Since the tool methodology follows a model-based approach, it is
transparent and understandable, and advances in our understanding of
seizure genesis could be included to enhance seizure detection. Second,
the model used for the algorithm could also give straightforward un-
derstanding of the mechanism governing epileptic seizure genesis for a
given patient, as previously reported [19,20]. Better understanding of
seizure events promotes better decision regarding treatment strategy.
Therefore, the present method has its potential use in diagnosis of
epilepsy.

In conclusion, we have described an algorithm that relies on para-
meter identification of a physiological-based model to detect seizures.
We have shown that the seizures can be detected based on the temporal
evolution of physiologically meaningful parameters and the seizure
occurrence can be related to the elevation of the excitation/inhibition
ratio. Of interest, the threshold determined by LOO-CV was surprisingly
constant among TLE patients, suggesting a general baseline of excita-
tion/inhibition balance underlying background iEEG and the algorithm
could be used directly on unseen data without training. There are
several possibilities for future directions of the presented work. First, a
logical step is to validate this methodology for scalp EEG as it is non-
invasive and easily accessible. Second, a more complex model that
describes more subtle neuronal behavior could be implemented, for
instance, network of NMMs. Such models consider the spatiotemporal
dynamics of EEG at a larger spatial scale and allow inclusion of multiple
contacts, and thus might provide more reliable seizure detection. Third,
the proposed method works best on TLE patients since the specific
model simulated best dynamics underlying temporal lobe seizures.
Future effort could be devoted to improving algorithm performance for
other types of epilepsy, i.e. by adapting the model for better simulating
EEG dynamics of other types of epilepsy. At last, the possible physio-
logical reasons underlying both false negatives and false positives could
be further investigated. The undetected seizures might involve different
mechanisms that worth studying. Similarly, the false positives could
indicate physiological changes during interictal period, which could be
of great scientific interest. Such investigation could provide a more
rational classification of epileptic seizures and provide new insights into
multiple mechanisms underlying both interictal and ictal activities.
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