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ABSTRACT

In the recent years, wireless sensor network technology (WSN) has been widely
adopted in precision agriculture for determining the needs of the soil in term
of water by monitoring some environmental parameters. To do this, WSN is
constructed using several sensor nodes; these small sensing devices are prone to
failure and may produce erroneous measurements. To ensure good management
of freshwater, the network service quality is necessary. To avoid the degradation
of service, the detection of the faulty sensor in WSN is required. In this paper,
a fault detection and isolation (FDI) algorithm derived from a parity space ap-
proach and based on direct redundancy is proposed toward detecting and isolat-
ing sensor fault in WSN. In laboratory experiments, the proposed FDI algorithm
proved its effectiveness.
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1. INTRODUCTION
Nowadays, the world is experiencing a new technology which is the internet of things (IoT). In the

upcoming years, IoT promises to make a revolution in the industrial world and a transformational change in
our way of living. IoT is composed of electronic devices and sensors that communicate with each other via
the internet to perform actions or provide services without human intervention [1]. With the emergence of
the IoT technology, many domains start to adopt it and the agriculture sector is one of them. Smart irrigation
is one of the applications that works with the IoT technology and aims on making a good management of
freshwater and irrigates the farm automatically based on its needs. Much research is conducted on this topic
proved the efficiency of smart irrigation in water saving and its good impact that has on the productivity of
the crops compared to traditional irrigation [2]–[6]. Based on this, it is beneficial to adopt smart irrigation
rather than a traditional one especially for the countries where their economy depends on agriculture. Among
the components of smart irrigation is a wireless sensor network (WSN) technology which plays a great role in
this application [7]. WSN is composed of many sensor nodes that have the role of sensing, processing, and
transmitting the data. Through these sensors nodes, we can get much precise information in real time about the
need of the crops in term of water requirement. This is done by monitoring and measuring some environmental
parameters such as soil temperature and soil moisture and later forwarding this data periodically to the base
station for calculating the amount of the water needed. To get the desired goals from this application, the WSN
should operate correctly during agriculture season. The soil environment is considered a big challenge that
can affect the accuracy of the sensors nodes over a long period of time. So, these small devices are prone to
failure and require continuous monitoring and calibration to ensure the quality of the data issued by the WSN.
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Calibrating manually a large scale of sensor nodes deployed in a farm is not practical and hard in the presence
of large number of sensor nodes. To solve this issue, we opt for using the fault detection and isolation (FDI)
approach for monitoring the quality of the data gathered from sensors and detecting if they are error free before
they got used by the base station. This will ensure that we have accurate data and reliable image of our farm
for making a suitable action [8]. In general, the concept of the FDI approach is to detect and determine the
location of the possible fault in the engineering systems [9]. This approach has appeared with the increasing of
automation processes in order to ensure a high level of the process performance without the presence of human
operators. FDI methods can be categorized into two groups: the methods that require a mathematical model
of the plant and the others that do not. The choice of the appropriate method depends on the application [10].
For technical process we can get its mathematical model with controlled or measured signals inputs. Whereas,
when we have a WSN monitor natural phenomena like farmland, we cannot obtain a well pre-defined model
of the soil characteristics and because of its variant nature we can modulate the ground based on some soil
characteristics in real time through sensors and that makes not easy to detect and isolate sensor fault. For that,
we will focus on the approach of the FDI that built its model in real time based on the measurement of the
sensors as parity space approach with direct redundancy for detecting and isolating sensor fault in WSN and
try to adapt this method on our case. This approach was used in our previous work in the theoretical framework
[11], whereas in this paper, we developed it for a real implementation. We can classify sensor fault in WSN
into hard fault and soft fault, in hard fault the sensor node cannot communicates and participates in the network
activities anymore, while in soft fault, the sensor nodes still work but send erroneous data to the base station
[12]. In this paper, we address the problem of the soft fault i.e. sensor measurement faults.

This paper is organized as: section 2 presents the prior and the related work. Section 3 describes
the proposed node deployment. Then, the direct redundancy equations based on the parity space approach are
provided in section 4. Section 5 presents our proposed FDI algorithm. In section 6, we present and discuss our
laboratory experiments. Finally, conclusion is given in section 7.

2. PRIOR AND RELATED WORK
With the increased use of the WSN in many applications, the research for ensuring the reliability of

the data issued by the WSN became fundamental. In this section, we will give a review of the existing work
in the area of sensor fault detection in WSN. A survey on fault diagnosis in WSN can be found in [12]. In
[13] the authors made studies on soil sensors that are distributed in different regions in order to measure some
soil parameters for scientific purposes. In their experiment, they observed that not all information captured
by sensors are reliable. So, they proposed to use an operational range of the sensors for detecting faulty data,
the data that are fully within operational range of the sensor are usable data otherwise, they are faulty. This
method succeeded to discard some faulty data. However, not all of data that are within the operational range are
reliable. In [14] a list of common faults in sensor network is proposed for checking the gathered data against
it. The authors provide also a list of some features of data and the monitored environment that can help in fault
detecting process. In [15], the time correlation of the sensor is proposed to detect certain fault and determine
the initial state of the node and then for taking the final decision if the node is defective or not, they used the
spatial correlation. A distributed Bayesian approach used in [16], each node calculates its fault probability
using its reading and the reading of its neighbors’ nodes. This method requires enough number neighbors for
obtaining correct diagnosed probability of nodes. Voting scheme in [17]–[19] proposed for detecting faulty
sensors in WSN with distributed architecture; each node exchanges its measured values with its neighbors for
executing sensor fault detection algorithm. This method requires at least four neighbors for achieving high
detection accuracy. Trend correlation and the median are adopted in [20] for detecting sensor fault in WSN.
Each sensor node detects its faults by calculating the trend correlation between its data series and those of its
neighboring nodes. For supporting the fault detection, the sensor nodes calculate also the median value of the
sensed data received from their neighboring nodes. To trigger the fault detection process toward improving the
fault response time, there is a self-starting mechanism based on the cubic exponential smoothing prediction
method implemented in each sensor node. All calculations done at the level of each sensor node. Although,
these calculations are low in terms of complexity, they consume the low and limited energy of the nodes during
the communication and calculation process for executing fault detection algorithm. This energy consumption
makes the mechanism not efficient. Yarinezhad and Hashemi [21] considers that a sensor node is composed
of five components which are: battery, sensor, receiver, transmitter, and microcontroller circuits. The failure
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of one of these components does not mean that the node cannot be reused in network activities. Based on
hardware conditions, a cellular learning automaton that is implemented within each node assign a status to it.
This status can be normal, traffic, end or dead. Based on the status, the nodes are used in the network. This
approach succeeds to reuse faulty sensor node. However, implementing machine learning in sensor nodes is
not recommended for these devices with limited energy and computation capacity. Table 1 presents a summary
and comparison of the previous discussed works. Most of the approaches used in the previously mentioned
works require a hardware redundancy which mean, each node should have more than one neighbor and need
to communicate with their neighbors for performing a correct fault diagnosed. It is known that the critical
problem of the sensor nodes is their limited energy source and should consume it wisely [22]. The sensor
nodes consume their energy during their monitoring of the events, communication, and in data processing [23].
Adopting these approaches will drain early the batteries of the nodes. Our main contribution in this paper is to
develop an approach for sensor FDI in a WSN that is easy to implement and needs less hardware redundancy
compared to the above approaches cited, and also does not require a lot of communication between nodes to
execute a FDI algorithm, as result saves the energy of the nodes.

Table 1. Summary of the previous works
Reference Approach Require multiple sensor The communication between

nodes neighbors sensor nodes is required
Ramanathan et al. [13] Operational range No No

Jia et al.[15] Temporal- Spatial correlation Yes Yes
Yuan et al.[16] Bayesian Yes Yes
Chen et al. [17] Majority voting Yes Yes

Jiang [18] Majority voting Yes Yes
Marzat et al. [19] Majority voting Yes Yes

Fu et al. [20] Trend Correlation Yes Yes
Yarinezhad and Hashemi [21] Cellular learning automata Yes Yes

This paper Parity space No No

3. PROPOSED NODE DEPLOYMENT
The soil is a complex system characterized by the spatial heterogeneity of soil properties. Before

distributing the sensor nodes in a farm, we propose to make a study of the farm that we want to cultivate and
to divide it into equivalence zones where every zone has almost the same soil conditions [24]. In each zone we
plant two sensor nodes measuring the same quantity in soil with the same depth as depicted in Figure 1, to get
redundant measurements. The measurement of each sensor node writing as the following expression:

yj(k) = cjx(k) + fj(k) (1)

where yj(k) is the measurement vector at node j, x(k) is a vector that represents the target quantities, cj is
the measurement matrix at node j that indicates which quantities are measured at node j and fj(k) is the fault
vector.

Figure 1. Sensors nodes distribution
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4. PARITY EQUATION APPROACH
Parity space approach enables the detection and isolation of faults in a system by exploiting all use-

ful redundant information that is available in the plant. We can classify redundancy into two steps: direct
redundancy and analytical redundancy [25]. In this paper, we are focusing on direct redundancy.

We have direct redundancy when there are two or more sensors that measure the same quantity. Based
on the instantaneous redundant measurement of the sensors we formulate a mathematical model as model as in
(2):

y(k) =


y1(k)
y2(k)

...
yj(k)

 (2)

FDI process can be divided in two categories: residual generation and decision making [26].
In the first step, we generate a residual (parity vector) based on mathematical model by multiplying

the model ( 2) on the left by w:
r(k) = wy(k) (3)

where w is a projection matrix that makes the residual independent of x(k) and sensitive just to the occurrence
of the fault in sensors and it defined based on measurement matrix (c) of the mathematical model and should
satisfy the following relation:

wc = 0 (4)

4.1. Fault detection
The residual signal is a fault indicator and through it, we can detect the presence of the fault in the

WSN; when there is no fault in the WSN a residual equal to zero or near to zero and deviates from zero in the
occurrence of the fault in sensors.

if fj = 0 r = 0 (5)

if fj ̸= 0 r ̸= 0 (6)

According to ( 3) and ( 4) the residual can be expressed as (7):

r(k) = wf(k) (7)

4.2. Fault isolation
In the case of fault detection in WSN, we need to locate the presence of the fault i.e. locate the faulty

sensor. To isolate the faulty sensor we multiply the transpose of each column of the parity matrix (w) by the
generated residual as in (8):

FIk = wT
k r k = 1, 2, ...n. (8)

This function measures the correlation of the residual vector with fault signature directions. If the fault is
detected, the largest value of FIk corresponds to the faulty sensor [27].

5. PROPOSED FDI ALGORITHM
For each zone (i) we calculate its residual. We have two sensor nodes measure the same quantity

x(k). The outputs of the sensors are the state variable; then, the measurement matrix c equal [1 1]T . And the
mathematical model of each zone (i) writes as (9):

yi(k) =

[
y1i (k)
y2i (k)

]
=

[
1
1

]
x(k) +

[
f1
i

f2
i

]
(9)

y1i , y2i are the measurement of sensor 1 and 2 respectively in a zone (i) and f1
i , f2

i is the fault that can affect
sensor node 1 and 2 respectively. So according to relation 4, the parity vector w which is orthogonal to c equal
w = [1 − 1] and the residual equal:

ri = y1i − y2i (10)
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To avoid false alarm, we made some modifications on our residual. In the real implementation, the residual
value will be not null during healthy sensor operating mode, so we define the fault detection threshold by a test,
which means; the threshold is the maximum residual value in healthy sensors operating mode.

Algorithm 1 The proposed FDI algorithm
Data: y1i , y2i are the data received from sensor 1 and 2 respectively at an instant t to calculate the residual according to ( 10)
ri�y1i − y2i ;
if |ri| > hd then

/* if the residual higher than a threshold there is a fault detected and ri stills in its value
ri�y1i − y2i

else
/* if the residual lower than a threshold, ri will take the value 0 ri�0

end
/* if a fault is detected, fault isolation executed according to (8), The index of wk that give the largest value in this multiplication wT

k r,
corresponds to the index of the faulty sensor. Where wk is the kth column of parity space matrix.

6. LABORATORY EXPERIMENTS
The performance of the FDI algorithm is confirmed by the experimental prototype shown in Figure 2.

Soil temperature and soil moisture are the two variables required to be monitored for controlling the amount
of the water needed in the irrigation system [28]. In this experiment, within an iron frame containing soil, we
plant two soil temperature sensors (DS18B20) and two soil moisture sensors (YL69) in the same depth. These
sensors are connected to Arduino microcontroller board and communicate via XBee module with the main
central calculator placed near the iron frame.

Figure 2. Experimental prototype of the wireless sensor network deployed in soil for measuring soil
temperature and soil moisture

The sensors data will be sent directly to the main calculator for analysis. To analysis the gathered
data, we implement our FDI algorithm on it. Before executing the FDI algorithm, we store the data sent by the
sensors in their healthy mode for 5 hours with sampling time equals ts=60 s as it is shown in Figure 3(a) for
soil temperature and in Figure 3(b) for soil moisture, in order to define the fault detection thresholds.
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Figure 3. Soil temperature and moisture recorded by the wireless sensor network in its healthy mode
(a) soil temperature, (b) soil moisture

For each quantity x(k), we generate a residual in healthy sensors operating cases, and the maximum
level reached by the residual is the fault detection threshold. In our case, the fault detection threshold for soil
temperature and soil moisture are respectively 1°c and 11%. After defining the fault detection thresholds, we
inject a sensor fault of type ‘abrupt’ in each sensor and the FDI algorithm is used to detect and isolate the
different faults. In the first experiment, we inject a sensor fault into the soil temperature sensor 1 and in the
soil moisture sensor 1 at t= 2 h. Figure 4 shows the residual evolution of the soil temperature in Figure 4(a)
and the soil moisture in Figure 4(b). We can see the impact of the sensor fault on the two generated residuals;
the two residuals deviate from zero after fault injection. Our FDI algorithm succeeded to detect sensors faults
immediately after their injection.
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Figure 4. Residual evolution (a) soil temperature and (b) soil moisture

After fault detection, our algorithm calculates the correlation of the two residuals with each column
of its parity matrix in order to isolate faulty sensor as explained in section 4.2. In Figure 5(a) , FI1 is the
correlation of the soil temperature residual with the first column of the parity matrix while FI2 is the correlation
of the soil temperature residual with the second column. And as can be seen, after fault detection (t= 2 h), FI1
has the largest magnitude compared to FI2; which means the faulty sensor is the soil temperature sensor 1.
The same analysis for soil moisture sensors in Figure 5(b), after fault detection, FI1 has the largest magnitude
compared to FI2; which means the faulty sensor is the soil moisture sensor 1.

In the second experiment, we inject a sensor fault into the soil temperature sensor 2 and in the soil
moisture sensor 2 at t= 2 h. Figure 6 shows the residual evolution of the soil temperature in Figure 6(a) and
the soil moisture in Figure 6(b). The two residuals deviate from zero after fault injection, which means there
is a fault detected. In Figure 7(a), FI2 has the largest magnitude compared to FI1, which means the faulty
sensor is the soil temperature sensor 2. The same analysis for soil moisture sensors in Figure 7(b), after fault
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detection, FI2 has the largest magnitude compared to FI1, which means the faulty sensor is the soil moisture
sensor 2.
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Figure 5. Fault isolation process (a) soil temperature and (b) soil moisture
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Figure 6. Residual evolution (a) soil temperature and (b) soil moisture
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Figure 7. Fault isolation process (a) soil temperature and (b) soil moisture

7. CONCLUSION
In this work, we propose a sensor FDI algorithm for detecting and isolating sensor fault in WSN for

smart irrigation. Our method aims at using less hardware redundancy. Each sensor node does not require a
lot of communication between its neighbors for executing sensor FDI algorithm, as result saving the energy
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of the nodes and extending the life of the network. Our algorithm easy and fast in implementation and does
not require model of the monitored system and depend only on instantaneous measurement of the sensors that
measure the same quantity in the same zone. In our laboratory experiment, we planted two soil temperature
and two soil moisture sensors in the soil to measure and send their data wirelessly to the main central calculator
for analysis. First we define the fault detection threshold by a test for each quantity and after that we inject
abrupt fault into each sensor for testing the effectiveness of our algorithm. Experimental results proved the
effectiveness of our algorithm, each time we inject sensor fault, our algorithm immediately detect and isolate
it.
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