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Chapter

ARIMA Models with
Time-Dependent Coefficients:
Official Statistics Examples
Guy Mélard

Abstract

About 25 years ago, effective methods for dealing with time series models that
vary with time appeared in the statistical literature. Except in a few cases, they have
never been used for economic statistics. In this chapter, we consider autoregressive
integrated moving average (ARIMA) models with time-dependent coefficients
(tdARIMA) applied to monthly industrial production series. We start with a small-
size study with time-dependent integrated autoregressive (tdARI) models on Belgian
series compared to standard ARI models with constant coefficients. Then, a second,
bigger, illustration is given on 293 U.S. industrial production time series with
tdARIMA models. We employ the software package Tramo to obtain linearized series
and model specifications and build both the ARIMA models with constant coefficients
(cARIMA) and the tdARIMA models, using specialized software. In these tdARIMA
models, we use the simplest specification for each coefficient: a simple regression with
respect to time. Surprisingly, for a large part of the series, there are statistically
significant slopes, indicating that the tdARIMA models fit better the series than the
cARIMA models.

Keywords: nonstationary process, time series, time-dependent model, time-varying
model, local stationarity

1. Introduction

About 25 years ago, effective methods for dealing with time series models that vary
with time appeared in the statistical literature. Except in a few cases, like Van
Bellegem and von Sachs [1] for marginal heteroscedasticity in financial data or
Kapetanios et al. [2], they are not used for economic statistics. In this chapter, we
consider autoregressive integrated moving average (ARIMA) models with time-
dependent coefficients (tdARIMA) that provide a natural alternative to standard
ARMAmodels. Several theories appeared in the last 25 years for parametric estimation
in that context, including Dahlhaus’ approach based on locally stationary processes,
see Dahlhaus [3, 4]. To simplify the presentation of the method in Section 2, we first
focus on autoregressive integrated (ARI) models before going to the general case of
ARIMA. Section 3 is devoted to illustrations of official time series, more precisely
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industrial production series. We start with a small-size study on Belgian monthly
industrial production and show an improvement for time-dependent autoregressive
integrated (tdARI) models with respect to standard ARI models with constant coef-
ficients. Then, a second, bigger, illustration of tdARIMA models is given on 293 U.S.
industrial production time series, already used by Proietti and Lütkepohl [5], with a
different objective. We employ the software package Tramo from Gómez and
Maravall [6] to obtain linearized series and model specifications, and we built both
ARIMAmodels with constant coefficients (cARIMA) and tdARIMA models based on
the Tramo specifications. This is done in specialized software since no existing
package can cope with these tdARIMA models. In these tdARIMA models, we use
the simplest specification for each coefficient: a simple regression with respect to
time, hence two parameters, a constant and a slope. Indeed, this is the closest
departure from constancy, and this seems natural in an evolving world. We will see
that, for a large part of the series, there are statistically significant slopes, indicating
that the tdARIMA models fit better the series than the cARIMA models. In the
second step, since many of the slopes introduced as additional parameters in the
model are not significantly different from 0, they are omitted one by one, starting
with the least significant one, until all the remaining slopes are different from 0 at
the 5% level. Most of the summary results are improved. Section 4 contains our
conclusions.

2. Methods

We consider the well-known class of multiplicative seasonal ARIMA models, see
e.g. Box et al. and Gómez and Maravall [7, 6]. Models with time-dependent coeffi-
cients appear often in econometrics but not in ARIMA models. For a very long time
series, there is no reason that the coefficients would stay constant. They can be
supposed to vary slowly with time although breaks could also be considered. This is
the reason why linear (or other) functions of time replace the constant coefficients.
Time series models with time-varying coefficients have been studied, mainly from a
theoretical point of view. In addition to [3, 4], several papers [8–10] provide condi-
tions for the asymptotic properties, hence the justification for statistical inference.
Otherwise, our tests on slopes would have no foundation. These conditions are of
course enforced in the estimation procedure.

2.1 The model

To illustrate a simple ARIMA model with a time-dependent coefficient, we can
consider the ARMA(1,1) model. Let the series be denoted by y = (y1, y2, … , yn). Then a
tdARMA(1,1) model is described by the equation as follows:

yt ¼ ϕ
nð Þ
t yt�1 þ et � θ

nð Þ
t et�1, (1)

where the et are independent random variables with mean zero and with standard

deviation σ, and the time-dependent coefficients ϕ nð Þ
t and θ

nð Þ
t depend on time t, also

on n, the length of the series, and also on a small number of parameters stored in am�
1 vector β. The simplest specification for ϕ nð Þ

t , for example, is as follows:
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ϕ
nð Þ
t βð Þ ¼ ϕþ 1

n� 1
t� nþ 1

2

� �

ϕ0, (2)

where ϕ is an intercept and ϕ0 is a slope, and a similar expression for θ nð Þ
t βð Þ using

two other parameters θ and θ0. The vector β contains all parameters to be estimated,

those in ϕ
nð Þ
t βð Þ (like ϕ and ϕ0, here) and θ

nð Þ
t βð Þ (θ and θ0), but not the scale factor σ

which is estimated separately. For the corresponding cARIMA model, there is of
course no slope, i.e., ϕ0 = θ0 ¼ 0. For a lag k instead of 1, we add a subscript k to the
coefficient symbols.

Let us now consider a general tdARMA(p, q) model. It is defined by the equation

yt ¼
X

p

k¼1

ϕ
nð Þ
tk βð Þyt�k þ et �

X

q

k¼1

θ
nð Þ
tk βð Þet�k, (3)

where the coefficients ϕ nð Þ
tk βð Þ, k = 1, … , p, and θ

nð Þ
tk βð Þ, k = 1, … , q, are

deterministic functions of t and, possibly, of n. The et, t ¼ 1,2,… , are like before. We
suppose that the additional number of parameters is small. Practically, for economic
time series, linear or exponential functions of time, like in Eq. (2), seem to be
enough instead of constant coefficients, but there is no problem to use other func-
tions, up to some point. In other cases, see Alj et al. [11], periodic functions can be
considered. In practice, we suppose that the coefficients are constant before the first
observation.

Adding marginal heteroscedasticity should also be tried. Van Bellegem and von
Sachs [1] had already shown the usefulness of a time-dependent variance. Indeed,
there is no reason why the innovation standard deviation is constant. We replace et�k,

k = 0, 1, … , q, in Eq. (3) with g
nð Þ
t�k βð Þet�k, where g nð Þ

t βð Þ is a (strictly positive)
deterministic function of t and, possibly, of n, depending on the parameters, so that

the standard deviation becomes g nð Þ
t βð Þσ >0. Adding g

nð Þ
t βð Þ is also covered by Azrak

and Mélard [8, 12]. In practice, we used an exponential function of time for g nð Þ
t βð Þ.

Since the series are nonstationary, we need to consider also regular ∇ and seasonal
differences ∇s, where s is the seasonal period (s = 12, for monthly data), on the
possibly square roots or log-transformed observations. Furthermore, the series is not
seasonally adjusted, so the so-called seasonal multiplicative models of Box et al. [7] are
also needed.

2.2 The estimation method

For any tdARIMA model, we can estimate the parameters by maximizing the
logarithm of the Gaussian likelihood. Time Series Expert [13], and more precisely its
computational engine ANSECH is used for that purpose. It is based on an exact
algorithm for the computation of the Gaussian likelihood [14] and an implementation
of a Levenberg–Marquardt nonlinear least-squares algorithm. Under some very gen-

eral conditions [8, 12], it is shown that the quasi-maximum likelihood estimator β̂

converges to the true value of β, and β̂ is asymptotically normal, more precisely

√n β̂ � β
� �

!D N 0, V�1
� �

, when n ! ∞ where !D indicates convergence in distribu-

tion, and V�1 is the asymptotic covariance matrix. Moreover, V can be estimated as a

3

ARIMA Models with Time-Dependent Coefficients: Official Statistics Examples
DOI: http://dx.doi.org/10.5772/intechopen.108789



by-product of estimation. Let us denote its estimator by V̂n. The Student t statistics
shown in the next section make use of the standard errors deduced from the estima-
tion of V. Using the asymptotic covariance matrix, it is also possible to design a Wald
test for a subset b of r among the m parameters in β, for example, to test that all the
slopes are equal to 0, using a χ2 distribution. Let R be a r�m restriction matrix
composed of the rows of the m�m identity matrix that correspond to the parameters
in the subset b. Then, b ¼ Rβ. The Wald statistic for testing that b ¼ 0 is then

nb̂0 RV̂nR
0� ��1

b̂, where b̂ is the estimate of b and 0 indicates transposition. Under the
null hypothesis, the statistic converges in distribution to a χ2 distribution with r
degrees of freedom when n ! ∞.

Note that centering of time around its mean (n + 1)/2 in Eq. (2) improves the
statistical properties of the estimators by reducing the amount of correlation between
their elements and that the factor 1/(n–1) is there to avoid explosive behavior when
n ! ∞.

Note also that the conditions for convergence and asymptotic normality are satis-
fied in the present case because a sufficient condition [15] is that the AR and MA
polynomials have their roots outside the unit circle at all times and that condition is
checked during estimation.

An asymptotic theory for locally stationary processes due to Dahlhaus [3, 4] can
also be used. There seems to exist only one software implementation, the R package
LSTS (for Locally Stationary Time Series) by Olea et al. [16] to support the estima-
tion of locally stationary ARMA models, see also Palma et al. [17]. Since it does not
cope with the multiplicative seasonal models necessary to deal with seasonally
unadjusted time series, we have preferred to use Azrak and Mélard [8] with Time
Series Expert for estimation. See Azrak and Mélard [18] for a comparison of the
existing theories.

2.3 The datasets

In the first empirical analysis, the number of series is limited, and simple pure
autoregressive models are used. The purpose is to show the basic elements of the
methodology. We used a dataset of indices for the monthly Belgian industrial pro-
duction for the period 1985–1994 by the various branches of activity, 26 in all. Nine
years are used for fitting the models and a tenth year is used to compute ex-post
forecasts and the mean absolute percentage error (MAPE). An automatic procedure
is applied to fit ARIMA models and we retained the 20 series out of 26 for which
pure integrated autoregressive or ARI p, dð Þ P, Dð Þ12 models are fitted to the series of
108 observations. Let us remind that these models are defined by the equation as
follows:

ϕp Lð ÞΦP Lsð Þ∇d∇D
12yt ¼ et; (4)

where L is the lag operator, such that Lyt ¼ yt�1,ϕp Lð Þ and ΦP Lsð Þ are, respectively,
the regular autoregressive and the seasonal autoregressive polynomials, of degree p
and 12P in L. The model can include transformations and interventions (additive or on
the differenced series) which are not detailed here. The fit is characterized by the
value of the SBIC criterion. For using time-dependent ARI, or tdARI, models, slope
parameters are added for each of the existing coefficients, like ϕ0 for ϕ in Eq. (2). The
models have therefore coefficients that are linear functions of time. For models in
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multiplicative seasonal form, the product of the regular and seasonal polynomials is
first computed and slope parameters are added to each lag, but only to lags smaller
than 14, for practical reasons. For example, for the AR 2ð Þ 1ð Þ12 model, with the poly-
nomial in the lag operator L

1� ϕ1L� ϕ2L
2

� �

1� Φ1L
12

� �

¼ 1� ϕ1L� ϕ2L
2 �Φ1L

12 þ ϕ1Φ1L
13 þ ϕ2Φ1L

14
� �

,

(5)

the specification is 1� ϕ
nð Þ
t1 L� ϕ

nð Þ
t2 L2 � ϕ

nð Þ
t,12L

12 � ϕ
nð Þ
t,13L

13 þ ϕ2Φ1L
14

� �

, where ϕ nð Þ
t1

is like in Eq. (2), and

ϕ
nð Þ
t2 ¼ ϕ2 þ

1

n� 1
t� nþ 1

2

� �

ϕ0
2, ϕ

nð Þ
t,12 ¼ Φ1 þ

1

n� 1
t� nþ 1

2

� �

ϕ0
12,

ϕ
nð Þ
t,13 ¼ �ϕ1Φ1 þ

1

n� 1
t� nþ 1

2

� �

ϕ0
13,

with seven parameters instead of the full form 1� ϕ
nð Þ
t1 B� ϕ

nð Þ
t2 B2 � ϕ

nð Þ
t,12B

12
�

�ϕ
nð Þ
t,13B

13 � ϕ
nð Þ
t,14B

14
�

that would involve 10 parameters in all. This is enforced to

restrict the number of parameters and avoid numerical problems. Note that the factor
1= n� 1ð Þ is there only for the asymptotic theory and will be omitted in practice.

In the second empirical analysis, we use a big dataset of U.S. industrial production time
series, already used by Proietti and Lütkepohl [5] for assessing transformations in fore-
casting. See http://www.federalreserve.gov/releases/g17/ipdisk/ip_nsa.txt. These are now
293 time series from January 1986 to December 2018 at least. Most series start before and
they are even a few ones starting in 1919. The models were fitted until December 2016
leaving the remaining months to compare the data to the ex-post forecasts, using either a
fixed forecast origin for several horizons or rolling forecasts each for given horizons.

We employ the software package Tramo described by Gómez and Maravall [6] to
obtain partially linearized series by removing outliers and trading day effects. Indeed,
the presence of outliers and trading day effects can distort the analysis, as could be
seen in preliminary analyses. Selecting the cARIMA models in an automated way is
also done using Tramo. Then we replace the constant coefficients by linear functions
of t for order k ≤ 13, giving tdARIMA models, like in Eq. (2) for each lag k coefficient
in the model. At this stage, we do not omit nonsignificant parameters. The cARIMA
and tdARIMA models are fitted using the same specialized software package ANSECH
included in Time Series Expert, to facilitate the comparison. See Figure 1 for a
schematic representation of the whole automatic procedure. For more complex time
dependency, an automatic selection procedure like the one exposed by Van Bellegem
and Dahlhaus [19] is possible.

We compare the results of tdARIMA versus cARIMA models using the following
criteria:

• Is the highest t statistic of the td parameters, the slopes, in absolute value, larger
than 1.96?

• Is the p-value of the global χ2 statistic for the Wald test on the slopes smaller than
0.05?
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• Is tdARIMA SBIC smaller than the corresponding cARIMA SBIC?

• Is tdARIMA residual standard deviation smaller than the corresponding cARIMA
one?

• Is the tdARIMA P-value of the Ljung-Box (LB) statistic for residual
autocorrelation (with lag 48) larger than the corresponding cARIMA one?

• Is tdARIMA MAPE in percent for 1 year (2017) and all horizons from 1 to 12
smaller than the corresponding cARIMA one?

• similarly, for rolling forecasts from December 2016, for several horizons 1, 3, 6, and
12, are tdARIMA MAPE in percent smaller than the corresponding cARIMA one?

In the early stage of this project, the data were limited to 2016 and without a
correction for outliers or trading days, and only fixed origin forecasts were consid-
ered. This gave worse results that were indicative, and not conclusive.

Note that one can object against the use of the Ljung-Box test statistic to compare
models, especially here because there is no foundation to its limit behavior for
tdARIMA models. Like the other criteria, we use it as a descriptive indicator.

3. Empirical results

3.1 Two examples

Before showing the results, we will consider two examples, to justify the recourse
to the class of tdARIMA models which is the object of this chapter.

Figure 1.
Schematic representation for the whole automatic treatment.
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The first example is taken from the first dataset: the index of land transportation
(series TRTER) for Belgium for the period from January 1985 to December 1994, see
Figure 2. Two additive interventions were automatically considered, respectively, in May
1986 and in February 1992. Let I8605 and I9202 denote, respectively, the corresponding
binary variables. Otherwise, the series is taken in square roots and seasonally differenced.
Let us denote the transformed series TRTER_TF after all these operations. It equal to

∇12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TRTER
p

� bI8605I8605� bI9202I9202
� �

, up to a normalizing factor, and shown in
Figure 3. The partial autocorrelations of that series shown in Figure 4 show a truncation
after lag 12. The usual Box and Jenkins analysis lead to the suggestion of a seasonal AR
model. Then adding time dependency to the AR coefficient leads to the following model:

1�Φt,12Bð Þ ∇12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TRTER
p

� bI8605I8605� bI9202I9202
� �

� μ
h i

¼ et,

where the Φt,12, is estimated by �0.686 + 6.47 10�03 (t – 60.5), and the estimates
of bI8605, bI9202, and μ are, respectively, equal to �30.9, 24.8, and 4.23. The standard
error corresponding to the slope of Φt,12 is equal to 1.70 10�03, so the associated
Student statistic is equal to 3.8, hence the slope is significantly different from 0. To
explain that significance, let us look at the partial autocorrelation at lag 12 for the
transformed series TRTER_TF: for the first 4 years it is �0.488 and for the last 4 years
it is �0.391. That explains the significantly positive slope for Φt,12

Figure 2.
The original series, the index of land transportation (TRTER).

Figure 3.
The transformed series (TRTER_TF).
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The second example is taken from the second dataset: the U.S. production index of
clothing (B51212) for the period from January 1986 to January 2019, see Figure 5.

Tramo has adjusted the series for outliers and proposed a logarithmic transform,
and both a regular and a seasonal difference, giving the transformed series BS51212DS
shown in Figure 6.

Figure 4.
The partial autocorrelation function of the transformed series.

Figure 5.
The original series, the U.S. production index of clothing (B51212).

Figure 6.
The transformed B51212 series (B51212DS).
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Subsequently, Tramo has suggested modeling the series by a seasonal ARIMA
model with a regular autoregressive polynomial of degree 3 and a seasonal moving
average. We fitted that model using ANSECH and obtained

1þ 0:035L� 0:142L2 � 0:249L3
� �

∇∇12 log B51212tð Þ ¼ 1� 0:850L12
� �

et:

Then, we replaced the constant coefficients with linear functions of time and
replaced the constant innovation variance with an exponential function of time.
Omitting one by one the nonsignificant parameters at the 5% probability level, we
obtained finally the following heteroscedastic model but with constant autoregressive
and moving average polynomials:

1þ 0:041L� 0:142L2 � 0:228L3
� �

∇∇12 log B51212tð Þ ¼ 1� 0:855L12
� �

gtet,

where gt is given by gt ¼ exp 0:001753 t� 193ð Þð Þ:

3.2 First empirical analysis

In the first experiment, the number of series is small and simple pure integrated
autoregressive models are used.

Table 1 shows the main results, including those tdAR coefficients for which the
test of zero slope leads to a rejection at the 5% level, and the corresponding t-statistic.

For example, the AR 2ð Þ 1ð Þ12 model in Eq. (5) which was shown in Section 2.3 is
used for nonmetallic manufacturing, in addition to a regular and a seasonal difference.
In that case, the standard ARI model is better than the tdARI model for SBIC (826
versus 830) and provides also betters forecasts (MAPE = 5.5% versus 9.4%) although
there is one significant slope for lag 12 with a Student statistic of 3.6. Even if tdARI
models are not systematically better, they often produce better forecasts and some-
times show a better fit or at least some statistically significant slope parameters at the
5% level. All the nonsignificant slopes were left in the model and that can explain why
the SBIC criterion was generally worse for tdARI models. Since that analysis was
promising, we were led to consider a bigger dataset.

3.3 Second empirical analysis

The second empirical analysis bears on 293 seasonally unadjusted time series in a
dataset of U.S. industrial production. We will show three tables of results. Table 2
presents a summary of the dataset resulting from Tramo. For example for 280 series
out of 293, a regular difference was used, which accounts for 96% of the dataset. As
said above, we preserved this and all parameters in our cARIMA and tdARIMA
models. For the tdARIMA models, slopes were added to all autoregressive and moving
average coefficients for lag less or equal to 13.

Table 3 is based on the initial tdARIMA models, with possibly nonsignificant
parameters. We show the percentages for each criterion across the 293 series. For
example, more than 50% of the dataset had at least one of the slopes with a Student t
value greater than 1.96. If we use the Wald test, which should show a better view, for
more than 44% of the series, the hypothesis of null slopes leads to a rejection at the 5%
level. If the series were randomly drawn from cARIMA processes, we should expect
5% of rejections, on average. Of course, because of the multiple-test argument, the
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Branch (Name) Orders ARI tdARI

(p, d)

(P, D)

SBIC

MAPE

SBIC

MAPE

parameter t-Value

Food, beverages

(ALIBOR)

(3, 0)

(0, 1)

655

4.0

669

3.9

none

Other extraction of minerals

(AUEXTR)

(2, 0)

(0, 1)

904

10.5

910

9.4

AR2 2.8

Wood-processing, furniture

(BOIME)

(3, 1)

(1, 1)

778

6.4

792

5.9

AR12 2.6

Hosiery

(BONNE)

(2, 0)

(1, 1)

702

9.1

692

5.5

AR1

AR2

AR12

2.9

8.7

11.0

Commerce

(COMME)

(3, 0)

(1, 1)

553

1.7

557

2.4

AR12 3.7

Construction

(CONST)

(3, 0)

(0, 1)

827

8.0

830

23.6

AR2 2.8

Petrol derivatives

(DERPE)

(1, 1)

(0, 0)

888

5.2

891

5.2

none

Petrol distribution

(DISPE)

(1, 0)

(1, 0)

941

10.8

951

10.7

none

Metal processing

(FABME)

(2, 0)

(0, 1)

682

6.6

681

7.2

AR2 �2.1

Manufacture of textiles

(FILAT)

(2, 1)

(0, 1)

739

5.5

749

6.4

none

Gas production/distribution

(GAZ)

(3, 0)

(1, 1)

897

2.1

891

2.0

AR2

AR3

�2.8

�4.5

Construction materials

(MATCO)

(1, 1)

(1, 1)

809

4.3

807

5.7

AR13 �3.3

Nonmetallic manufacturing

(NONFE)

(2, 1)

(1, 1)

826

5.5

830

9.4

AR12 3.6

Paper/paperboard industry

(PAPCA)

(3, 0)

(1, 1)

746

5.9

758

5.8

AR2 �2.1

Iron and steel

(SIDER)

(3, 0)

(1, 1)

833

5.9

836

9.2

AR1

AR12

4.0

3.6

Manufacture of tobacco

(TABAC)

(3, 0)

(1, 1)

778

10.9

791

13.2

AR3

AR12

3.1

5.4

Aviation

(TRAER)

(3, 1)

(1, 1)

746

8.8

753

8.7

AR12 6.3

Maritime transportation

(TRMAR)

(2, 1)

(1, 1)

732

3.6

740

2.6

AR12

AR13

2.3

3.6

Land transportation

(TRTER)

(0, 0)

(1, 1)

854

12.1

849

12.5

AR12 �2.6

Manufacture of clothing

(VETEM)

(2, 1)

(0, 1)

757

26.7

767

26.7

none

Table 1.
For each branch of the economy,we give the orders (p,d)(P,D) of themodel, SBIC andMAPE (in italics) for the rawARI
model and for the tdARImodel (results in bold type are better), the statistically significant slopes (ARk denotesϕ0

k)and the
corresponding t-value.
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Student tests on the slopes would give a higher proportion of rejections. A simulation
study will confirm this later. The use of the Wald test in the present context is
therefore essential. Some results are partially deceptive but can be explained: only
about 4% of the series have a smaller SBIC for the tdARIMA but this is mainly due to
the useless parameters. About one-half of the series have a smaller residual standard
deviation, but for more than 57% the test on residual autocorrelation, based on the
Ljung-Box test with 48 lags, gives a better result.

If we retain only the series where the Wald test rejected the constancy of the
coefficients, the percentage of smaller SBIC for tdARIMA models is only slightly
higher at about 9% and reaches 61% for the residual standard deviation. The percent-
age for the Ljung-Box test is lower. Indeed, the theory for that test was never under-
taken for tdARIMA models. Forecasting performance was evaluated using the MAPE
criterion. For fixed origin forecasts, about 47% of the series have a smaller MAPE for
the tdARIMA models rather than for the cARIMA models. Among the series for which

Specification #series % Note

Levels vs. logs 70/223 24/76

Regular diff. vs. none 280/13 96/4 4% with 2 differences

Seasonal diff. vs. none 279/14 95/5 0% with 2 differences

Stationary vs. nonstationary 0/293 0/100

Airline model vs. other 84/209 29/71

Outliers vs. none 79/21 0–20, on average 2.63

Trading day effect vs. none 47/53

Easter effect vs. none 40/60

ARMA parameters vs. none 100/0 1–7, on average 3.12

Table 2.
Summary of the model selections made by Tramo on the 293 U.S. industrial production series.

Criteria Percentage Notes Percentage if td significant

Highest |t| statistic of td parameters >1.96 50.17 (*)

p-value of global test of stationarity <0.05 44.71 100.00

tdARIMA SBIC < cARIMA SBIC 04.10 (**) 9.16

tdARIMA residual std. dev < cARIMA 49.15 61.83

tdARIMA LB P-value > cARIMA 57.68 54.20

tdARIMA forecasting MAPE < cARIMA 47.44 45.04

tdARIMA h = 1 rolling forecasts MAPE < cARIMA 32.76 31.30

tdARIMA h = 3 rolling forecasts MAPE < cARIMA 32.42 29.01

tdARIMA h = 6 rolling forecasts MAPE < cARIMA 37.88 40.46

tdARIMA h = 12 rolling forecasts MAPE < cARIMA 36.86 37.40

Notes: (*) Statistically significant slope parameters at the 5% level, (**) Nonsignificant parameters were not omitted.

Table 3.
For each criterion, the percentages of improvement from cARIMA models to tdARIMA models are given over the
293 U.S. series.
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time dependency is retained, only 45% of them benefit from better forecasts. For
rolling forecasts for various horizons, the percentages are even smaller, in particular
for horizons of 1 and 3 months. The percentages are about the same if the Wald test
rejects constancy or not. That means that, even if the introduction of time-
dependency improved the fits, it does not improve the forecasts. Let us remind that, at
this stage, the tdARIMA may have many statistically nonsignificant slopes.

For Table 4, starting from the full tdARIMA models of Table 3, we omitted, one
by one, the most nonsignificant slope at the 5% level, see Figure 1. In the end, all
remaining slopes are thus significantly different from 0. This was done in an auto-
mated way in order to avoid mistakes. We will refer to these models as parsimonious
tdARIMA models. Of course, the cARIMA models are the same as previously, essen-
tially the same as given by Tramo, but estimated with more digits of accuracy. We
notice that the percentage of at least one statistically significant slope, 54.61%, differs
slightly from the percentage of rejection of the Wald test on all the slopes, 54.27%.
Indeed, for one series (G325A4, Chemicals except for pharmaceuticals and medi-
cines), there are two slightly significant slopes but the global test does not reject their
nullity, although the p-value is close to 0.05. Anyway, these percentages of improved
tdARIMA models are slightly higher than in Table 3.

The fitting results are partially better withmore than 18% smaller SBIC for tdARIMA
models (respectively 34% if we condition on the rejection of the Wald test). Some are
worse, however, with 38% for the residual standard deviation instead of 49% for the
fully parameterized model (respectively 70% and 61%, if we condition on the rejection
of the Wald test), and 27% for the residual autocorrelation instead of 57% for the full
model (respectively 50% and 54%, if we condition on the rejection of the Wald test).

Strangely, the forecasting performance with a fixed origin is worse for the parsi-
monious model than for the full model with the percentage of improvement of
tdARIMA models with respect to cARIMA models equal to 28%, instead of 47%
(respectively 51% and 45%, if we condition on the rejection of the Wald test). That
means that the omitted slopes seem to contribute to the forecasting performance but

Criteria Percentage Notes Percentage if td significant

Highest |t| statistic of td parameters >1.96 54.61 (*)

p-value of global test of stationarity <0.05 54.27 100.00

tdARIMA SBIC < cARIMA SBIC 18.77 (**) 34.59

tdARIMA residual std. dev < cARIMA 38.23 70.44

tdARIMA LB P-value > cARIMA 27.65 50.31

tdARIMA forecasting MAPE < cARIMA 28.33 51.57

tdARIMA h = 1 rolling forecasts MAPE < cARIMA 20.48 37.74

tdARIMA h = 3 rolling forecasts MAPE < cARIMA 17.75 32.70

tdARIMA h = 6 rolling forecasts MAPE < cARIMA 18.77 34.59

tdARIMA h = 12 rolling forecasts MAPE < cARIMA 21.84 40.25

Notes: (*) Statistically significant slope parameters at the 5% level, (**) Contrarily to Table 3, nonsignificant slope
parameters are omitted one by one until all were statistically significant.

Table 4.
For each criterion, the percentages of improvement from cARIMA models to tdARIMA models are given over the
293 U.S. series. The last column contains percentages conditional to the rejection of nullity of all the slopes by the
Wald test.
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that, among the series with time-dependent coefficients, about one-half have pro-
vided better forecasts. The picture for rolling forecasts is again worse for the parsi-
monious models with smaller percentages of improvement in the range of 17-22%,
according to the horizon, instead of 32-37% for the full models, but again similar
under the condition of rejection of the Wald test (respectively 32-44% instead of
29-40%). Surprisingly, the percentages are systematically higher for horizons 6 and 12
months rather than for those of 1 and 3 months.

One can object that introducing time dependency can introduce some over-fitting:
a certain proportion of the tests of nullity of the slopes ϕ0

k or θ
0
k can lead to rejection,

about 5% when there is only one slope, more otherwise.
To try to answer that natural question, we generated artificially 320 series using

cARIMA models, with the same length of 372, again leaving the last 12 values. We
have used an airline model for that purpose instead of the large variety of models
fitted by Tramo-Seats. Then we added time dependency and proceeded exactly like
before. The results are shown in Table 5. The percentage of 14.06 for the first
criterion (instead of five) shows that our rough examination of the largest |t| value
should be better replaced by a simultaneous test on the td parameters, as we did. For
SBIC, there are many superfluous parameters, as could be guessed. But about one-half
of the tdARIMA models give smaller residual standard deviations, less residual auto-
correlation, and smaller forecast errors than their cARIMA counterparts, as expected.

The results show that for a majority of series there is (i) at least one statistically
significant slope parameter at the 5% level, (ii) rejection of the nullity of all the slopes
using a Wald test that provides better-founded results than the t-tests, (iii) smaller
residual standard deviation, and (iv) less residual autocorrelation. This is true for the
full tdARIMA model specifications but also, at least partly, with more parsimonious
tdARIMA models obtained by omitting, one by one, the statistically nonsignificant
slopes. At least it is true conditionally on significant time dependency, i.e. when the
Wald test rejects the constancy of the coefficients.

The results for the SBIC criterion are not good. For the full tdARIMA model, an
explanation is the presence of nonsignificant slope parameters. It remains, however,
for the parsimonious models. The only unsatisfactory aspect of tdARIMA models is
that they fail to improve the forecasts for a majority of the series. Indeed, they confirm
that only one-third of the “time-dependent series”, i.e. those series which have at least
one statistically significant slope parameter, provide better forecasts with a tdARIMA
model than with a cARIMA model.

We had already observed similar results with slightly shorter series of the big
dataset when the outliers and trading day effects were not handled. Consequently, the

Criteria Percentage Artificial series Percentage U.S series

Highest |t| statistic of td parameters >1.96 14.06 50.17

tdARIMA SBIC < cARIMA SBIC 00.00 04.10

tdARIMA residual std. dev < cARIMA 42.81 49.15

tdARIMA LB P-value > cARIMA 43.75 57.68

tdARIMA forecasting MAPE < cARIMA 47.81 47.44

Table 5.
For each criterion, the percentages of improvement from going from cARIMA models to tdARIMA models are given
over the 320 artificial series. The last column contains the corresponding percentages obtained for the U.S. series
taken from Table 3.
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presence of outliers or trading day effects is not the cause of better fits by tdARIMA
models, as we feared. A common feature is nevertheless that the forecasts are not
better by replacing the cARIMA models with tdARIMA models. This is surprising
although we know that a better fit is not a guarantee for better forecasts. It should be
investigated why the forecasts seem to be worse in the U.S. series for tdARIMA
models. Of course, it can be due to a global change in 2016.

4. Conclusions

It took several decades to go from ARIMA models with constant coefficients to
suitable and powerful generalizations with time-dependent coefficients that vary
deterministically. We showed the usefulness of the approach for dealing with official
statistics time series that have generally a seasonal component.

We used linear functions of time. We do not hope that other functions than linear
functions should be useful with the inconvenience to add many parameters, except if
we exploit the fact that since 2019 most of the series in the dataset are available before
1986, often since 1972, or sometimes earlier.

Finally, one weak point in the analysis is due to the detection of outliers and trading
day effects, and the time series linearization is based on cARIMA models. If the time
dependency of the coefficients becomes serious for very long official time series, it would
be worth trying to extend Tramo features to tdARIMA models, e.g. to detect outliers
simultaneously with the estimation of time-dependent coefficients for the ARIMAmodel.

On the other side, it would be also interesting to conclude that traditional cARIMA
models are enough to forecast very long time series and that no substantial gain can be
obtained by considering tdARIMA models.

It can be interesting to repeat the analysis with other datasets, quarterly or prefer-
ably monthly, like those maintained by Eurostat. Good candidates would be in the
industry, trade, and services, short-term business statistics, production, turnover, etc.
A U.S. database like FRED (https://research.stlouisfed.org/econ/mccracken/fred-da
tabases/) could also be considered.
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