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Chapter

Bayesian Multilevel Modeling in
Dental Research

Edilberta Tino-Salgado, Flaviano Godinez-Jaimes,
Cruz Vargas-De-Leon, Norma Samanta Romero-Castro,
Salvador Reyes-Ferndndez and Victor Othon Serna-Radilla

Abstract

Clinical designs in dentistry collect measurements of the teeth of each subject,
forming complex data structures; however, standard statistical methods (Student’s t-
test, ANOVA, and regression models) do not treat the data as a grouped data type;
that is, the measurements are treated as independent despite not being the case. A
disadvantage of not considering the dependence on multilevel data is that if there is a
significant correlation between the observations, it is ignored by the researcher and
consequently finds statistically significant results when in fact they are not. Bayesian
methods have the advantage of not assuming normality, unlike maximum likelihood
estimation, and Bayesian methods are appropriate when you have small samples. We
showed the minimum statistical theory for the use of multilevel models in dental
research when the response variable is numerical. In this regard, it was proposed to
carry out a Bayesian multilevel analysis to determine the clinical factors associated
with the depth of periodontal probing. We adapted the bottom-up strategy to specify
a multilevel model in the frequentist approach to the Bayesian approach. We checked
the adequacy of the fit of the postulated model using posterior predictive density.

Keywords: periodontal probing depth, dental research, nested data structures,
Bayesian multilevel modeling, bottom-up methodology

1. Introduction

The most widely used statistical methods in dental research are t-test, ANOVA
(one, two and three factors), non-parametric tests, and regression models [1]. These
methods assume that the observations of the studied variables are independent.
Nested data structures are frequently found in dental research. An example is an
experimental design in which multiple measurements are performed on the same
individual. If, in addition to performing multiple measurements in an individual, we
perform multiple measurements in each tooth, we will obtain a nested data structure.
This nesting of the data results in grouped data. Typically, for clinical and dental data,
contextual variables are measured in each individual (i.e., socioeconomic level,
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educational level, etc.), and these characteristics can form another group of data.
Considering the detection of bacterial plaque in each tooth of individuals who have a
home with a high marginality index, two nested groups are distinguished, namely,
teeth nested in individuals and individuals nested at group. The word “nested” can be
understood as “within” or “contained in.” It is to be expected that items from the same
group may be more similar to each other than items from a different group; that is,
measurements from one individual are expected to be more similar to each other in
comparison with measurements from other individuals. This fact indicates that the
assumption of independence does not apply to nested data. Multilevel models take
into account the non-independence of the observations. One consequence of ignoring
the dependence of observations is that the results of some tests may be statistically
significant when, actually, they are not. Under the classical approach, the estimation
of the parameters of a multilevel model is performed using maximum likelihood,
which has optimal properties in many scenarios; however, problems such as non-
compliance with model assumptions or lack of convergence of iterative methods can
occur. The Bayesian approach has some advantages over the classical approach.

The purpose of this chapter is to show the minimum statistical theory for the use of
multilevel models in dental research when the response variable is numerical. For this,
we will remember the definitions of multilevel models and multilevel generalized
linear models (MGLM), in addition to the main Bayesian concepts and their applica-
tion to MGLM. We will use an adaptation of the bottom-up strategy to specify a
multilevel model. Our adaptation proposal tries to use the Bayesian leave-one-out
cross-validation (LOO-CV) between the different steps for the comparison of models.
We will check the adequacy of the fit of the postulated model using posterior predic-
tive density. Finally, we will provide an example of this model applied to a numerical
response variable, such as periodontal probing.

2. Multilevel models

Multilevel models partition the variance of the dependent variable at different
levels of data grouping. At least two types of variance are distinguished: intra-group
varviance ofu, or individual-level variance (level one), and between-group variance 0121,
which defines the variation at the group level (level two).

The dependency of the observations in the same group is measured with the
intraclass corvelation coefficient (ICC). Shrout and Fleiss in 1979 defined the ICC as the
ratio of the between-group variance and the total variance (the sum of the variances
between groups and in intra-groups):

2

0y

ICC = (1)

o} + o,

The ICC varies between 0 and 1, since the variance cannot be negative. Before
using a multilevel model, it is necessary to determine whether the ICC is significant at
each level of the data. To that end, using the null model (defined in the next section),
we determine whether the variance of the residuals of each level is significant. If that
occurs, the ICC is also significant, and this means that at the individual level, the
observations are dependent, and therefore, it is necessary to use a multilevel model
instead of an ordinary multiple regression model [2].

2



Bayesian Multilevel Modeling in Dental Research
DOI: http://dx.doi.org/10.5772/intechopen.108442

2.1 Two-level models

Let y; be the dependent variable measured in the i-tk individual in the j-th level-

two unit (e.g., the j-th group); i =1, ...,N, where N is the total sample size, and j =
1,...,J for J level-two units.

The simplest two-level model is the null model (intercept-only model, unconditional
means model, or one-way random-effects analysis of the variance). The model is defined
by two equations:

Vi = Boj tei

(2)
Poj = 700 + toj

Boj is the mean of y in the group j that varies across groups; e;; is the individual

variation around this mean; y, is the overall intercept, that is, the grand mean of y;
and u; is the deviation of f3;; with respect to y.

Substitution of f; in ¥;; produces the single-equation model:

Yij = Yoo T toj + € (3)

Eq. (3) is composed of a fixed part, 7, and a random part corresponding to two
random effects, uo; and e;. Assuming that e; ~ N(0, 6%) and ug; ~ N(0, 62,) and that
¢;j and ug; are independent, the variance of y; in Eq. (3) is

vav(yij) =var(yo + to; + €;f)

2 2
= u0+0

(4)

where 62, = o7 is the variance between groups, and ¢* = ¢2 is the variance within

groups in Eq. (1) to calculate the ICC.

Now, let us consider a two-level model with two level-one independent variables,
x1 with a fixed effect a1, which does not vary between groups, and x, with a random
effect f3;, which does vary between groups.

This model is defined by

Vi = Boj + aaXvi + Pojxaij + €
Poj = 700 T Yo1w1j + uoj (5)
Poj = 110 + ruwyj +

In the above equation, both f3; and f8,; depend on a level-two independent vari-
able; w1 and u,; are the deviation of the effect of the variable w; on i in the groupj
with respect to the average effect 7.

Substitution of Poj and f; in i produces the single-equation model:

Vi = Yoo + @y + yoawy + %2 + rnwyxag + (o + uyxay + e) (6)

Generalizing the above two-level model to the case where level one includes P
independent variables x,, that have a fixed effect, Q, independent variables x, that

have a random effect, and M level-two independent variables w,,, which also have a
fixed effect, we have:
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M P P+Q P+Q M
Y5 =Yoo + Z?’o;nwmj + ) pXpij + Z Yq0%qij + Z Z Y qmWmjXqij
m=1 p=1 q=P+1 q=P+1m=1 (7)
PiQ
+\| #oj + Z Xgijlhgj + €5
q=P+1

Model 7 is composed of fixed effects (the coefficients y and a) and random effects (all
terms in parentheses). Two-level models can also be expressed in a matrix form by

Y=Xp+Wu+e (8)

where Y is the vector of measurements of the dependent variable, X is the design
matrix of the fixed effect parameter vector § (containing the overall mean, main
effects, and interactions), W is the design matrix of the random effects given by the
vector U, and e is the vector of level-one residual errors.

2.2 Three-level models

Let i, j, and k indicate the observation units of levels 1, 2, and 3, respectively. In
addition, level 3 has K units, each level-three unit has J; level-two units, and the jth
level-two unit in the kth level-three unit has #;;, level-oneunits. The null model is

Yije = Poje + €ijk
Poj = Yook T Uojk 9)
Yook = 000 + Yook

In the first equation, fy, is the level-one random intercept that varies between the
groups of level two, and e;j, is the residual variance at level one with respect to f;. In

the second equation, y, is the level-two random intercept that varies between the
level-three units, and uj, is the residual variation of the group j with respect to y,qy,. In
the third equation, &, is the general intercept, that is, the grand mean of y, and vy
is the variation between the means of the level-three groups (i.e., the deviation of the
mean of group k with respect to the grand mean).

Substituting yoqy, in foj, and then Sy, in Vi yields

Yije = 000 1 Yook 1 Uojk + €ijk (10)

Assuming that e; ~ N(0, 62), ugj ~ N(O, 650> , and vgop ~ N(O, 630) and that

€ijk> Uojk> and vggy, are independent, the variance of Vi in Eq. (10) is
var(yijk> =0, + 05+ 0 (11)

One way to define the ICC at levels two and three, attributed to Davis and Scott [3], is

2

GI/()
S S— 12
Plevel 3 012/0 + 0_50 + o2 ( )
2
O
plevel 2: # (13)

2 2 27
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Now, we consider a three-level multilevel model with two level-one independent
variables, x;1 and x,; the former has a fixed effect and the latter a random effect:

Yige = Poje + a1x1ije + PopeXaiie + it (14)

Let suppose that the random coefficients fy;, and f,;, are explained by a second-
level variable, w1, by the relationships

Poji. = Yook T YouWije + Uojk

(15)
Poje = Y10k T Y11eWrjk + Uk

And the random coefficients in Eq. (15) are explained by a third-level variable, 21,
by the equations

Yoor = So000 + £00121% + Yook
= + 21 + U
Y01k £o10 + EonZ 1k 01k (16)
Y1or = $100 + £101316 + Viok
Y1e = 110 + E11121 + 1wk

Substituting Eqgs. (16) in (15) and then in Eq. (14), we have the three-level
multilevel model:

Yie = €000 + @1X1ijk + S00121k - So10Wjk T S100%2ijk T So112UW 1k
+£1018 %24k + S110W kX 21k T $1118UW 1% X2k (17)
+ (quk + Vook + V10kX2ijk + U1jkX2ik T+ V01kW1jk T V11kW1jkX 2ijk + eijk)

where the regression coefficients £ and « are the fixed part of the model, and the
residual terms of each level contained in parentheses are the random part.

We can generalize the three-level model of Eq. (17). Suppose level one contains P
independent variables x,, that have a fixed effect, a,, and Q independent variables
xsq9 = P+1,...,P + Q. Level two contains M variables w,,m = 1,... ,M. Level three
contains L independent variables 2;/ =1, ...,L.

P+Q

P M L
Yije = €ooo + D apxpie+ > EooXgik + Y Eomotomie + Y EooiZik
m=1

p=1 q=P+1 =1
P+Q L P+Q M

M L
+ Z Z SomBtkWmik + Z Z g0 X gije + Z Z EqmoWmjkeX gike

q=P+1 =1 q=P+1m=1

=1
M L p+Q
+ Z Z Z EqmiZUeWmikXgije + | Yook + oji + Z V10kXgijk
q=P+1m=1 [=1 q=P+1

P+Q M P+Q M )

(18)

+ Z UgjkX gijle ~+ Z VomkWmjk + Z Z VgmkWmikX gijle + €ijik

q=P+1 m=1 g=P+1m=1

When the three-level model includes a random slope of level one and a random
slope of level two, the model easily includes many parameters (interaction and a
residual effect by each random slope coefficient) that easily cause convergence
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problems, except for sufficiently large data sets. Therefore, most three-level models
have few random slope coefficients.
The equivalent matrix model for a three-level model is

Y=XB+Wu+2Zv+e (19)

Again, X is the design matrix of the fixed effect parameter vector  (containing the
overall mean, main effects, and interactions), W is the design matrix of the random
effects given by the vector #, Z is the design matrix of the random effects given by the
vector v, and e is the vector of level-one residual errors.

2.3 Assumptions of multilevel models

Statistical assumptions such as normal distribution, variance at each level, and
independence between errors at different levels have been mentioned in the definition
of the null multilevel model. They are explicitly defined in this section.

The dimension of the vector # depends on the number of random coefficients in
the level-one equation; for example, in Eq. (14), the dimension is two. Similarly, the
dimension of the vector v depends on the number of random coefficients in the level-

two equation; for example, in Eq. (15), the dimension is four. Let ¢ = (6111112"')T,
T 1 g .
u = (uoj Uyj-tgi) > and v = (Vook**Vork -+ Veok Vi) with dimensions N, 5, and £2,

respectively.
Multilevel models’ assumptions are:

v 0 D 0 O
u | ~N 0|, 0 G O (20)
e 0 0 0 R

where 0 is the vector of zeros with the appropriate dimension and

2 2
0,0 001 -« Ou0 0,0 Ou0l - Oyu0s
2 2
0,01 o Ot 0401 O Oyls
D= . , G= u , R=dc (21)
2 2
GDOt Gylt cee O—I/[ O—MOS Gu]_g eoe GMS

Eq. (20) says:

1.Level-one errors, e, are independent, identically normal distributed with mean

zero and variance ¢2.

2.Level-two errors, u, follow a multivariate normal distribution with mean 0 and
covariance G.

3.Level-three errors, v, follow a multivariate normal distribution with mean 0 and
covariance D.

4.Level-one and level-two errors are independent Cov(e, u) = 0.
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5.Level-one and level-three errors are independent Cov(e, v) = O.

6.Level-two and level-three errors are independent Cov(u, v) = 0.

2.4 Multilevel model estimation

The estimation of a multilevel model is complex because, in addition to the resid-
uals at the individual level in the model, there are more residual terms of random
intercepts and/or slopes of higher levels. Simultaneously, three types of parameters
need to be estimated: the fixed effects, the random effects, and the residual variance/
covariance components in matrices D, G, and R. Statistical theory and estimation
algorithms for multilevel modeling are beyond the scope of this chapter, but some
ideas are given.

When matrices D, G, and R are known, they can be used to estimate the combined
model using generalized least square (GLS). The variance of y, given that the matrices
D and G are known, is

V = WDW' + ZGZ' + R (22)

The inverse of the V matrix can be used as a weight; the regression coefficients of
the model can be estimated using GLS. However, the matrices D and G are unknown.

The maximum likelihood estimation method is the most used for estimating
multilevel models. It consists of maximizing the likelihood function that generally
involves an iterative process that takes the parameter estimates as the initial parame-
ter values for the next iteration of parameter estimation. This process is repeated until
the parameter estimates have stabilized from one iteration to the next. The default
tolerance number, which is sometimes defined by the users, is usually a sufficiently
small number, for example, 1078, The model converges if the tolerance number is
reached between two consecutive iterations. However, sometimes this does not hap-
pen. If the limit of specified iterations is reached and the tolerance number between
two consecutive iterations has not been reached, the method is said to not converge,
and this fact may indicate model specification problems or a small sample size.

Other estimation methods used in multilevel models are generalized estimating
equations, bootstrap methods, and Bayesian methods [3]. When the assumptions of the
multilevel models (Section 2.3) are not met, these methods are adequate.

2.5 Multilevel generalized linear models

Multilevel generalized linear models (MGLM) are an extension of generalized
linear models. What makes both models different is that the former assumes depen-
dence in the observations of the dependent variable and the latter assumes indepen-
dence in the observations.

A three-level MGLM of the dependent variable Y conditioned in the random
effects v and u is

gEY, u)|=n=Xp+Wu—+Zv (23)

where g(-) is the link function, which is a known monotonic, differentiable func-
tion, and 7 is the linear predictor. As in multilevel models, the random effects are

7



Medical Statistics

assumed to have a normal distribution with zero mean vector and variance/covariance
matrixes D and G, respectively. The multilevel models described in Sections 2.1 and
2.2 are a particular case of MGLM with g, the identity function.

3. Bayesian inference

Bayesian inference is a more attractive alternative to frequentist maximum likeli-
hood estimation when: (1) we have information about the parameters in the model,
(2) the frequentist estimation method does not converge, (3) the sample size is small
at the highest level of the data, or (4) nonlinear functions of the parameters are to be
estimated. With this motivation, let us define some concepts.

The heart of the Bayesian inference is the posterior distribution of 8, p(8|y), which
is defined as the joint probability distribution of the observed data y and the parameter
0,p(y, 0) = p(y|0)p(6), conditioned on the known value of y, p(y) = [p(0)p(y|0)d0).
Using Bayes’ theorem, we obtain

() 4% (24)

where p(y|0) is the likelihood of the data y, and p(0) is the prior distribution of
theta.p(y) = [ p(0)p(y|0)do with fixed y is a normalization constant not depending on
0. So, an equivalent equation to (24) is

p@ly) xp(0)p(y|0) (25)

Prior distributions can be informative or non-informative. When the researcher has
a high degree of certainty about 6, the prior distribution will have a small variance and
so will also be informative. If this fact does not happen, that is, the researcher has low
degree of certainty about 6, the prior distribution will have a large variance and so will
be non-informative. Since the prior distribution is a factor in the posterior distribu-
tion, when the prior is informative, it will have a great impact on the posterior, so the
researcher must be careful when an informative prior distribution is used.

Bayesian estimators are only mean or median vector of the posterior distribution,
that is, 0 = j@%d@. However, if 0 has high dimension, this implies to obtain
multiple integrals that usually do not have a closed solution. Sometimes, 6 = (6,, 6;)
and 6, are nuisance parameters that must be ignored. The solution is to integrate the
posterior distribution with respect to the nuisance parameters, but again, this multiple
integral may have no closed solution.

The most widely used method is Markov chain Monte Carlo to obtain means,
medians, and quantiles of the posterior distribution.

3.1 Markov chain Monte Carlo
3.1.1 Markov chain

A discrete-time Markov chain is a sequence of random variables, X,,,n > 1, that take
values in a finite or countable Q set that satisfies

8
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P(Xn+1 :j’XO = io, ceey Xn — ln) :p(XnJrl :]|Xn - Zn) (26)

for all # and any states iy, ... ,in, j in Q. Under regularity conditions, the chain will
gradually forget its initial state iy, and starting from a state ¢, p*(-|Xo = 7o) will con-
verge to a unique stationary distribution ¢(-) (invariant) that does not depend on ¢ or
10.

As the number of sampled points {X;} increases, they will look more like depen-
dent samples from ¢(-). The burn-in of an MCMC is the number of iterations, m, to
eliminate so that the rest show a behavior of dependent samples from the stationary
distribution ¢(-) [4]. When the number of burn-in samples is 7, an estimator of the
expectation of f(X) is

E[f(X)] = > fx) (27)

3.1.2 Hamiltonian Monte Carlo

The Gibbs sampling and the random walk Metropolis are methods whose distribu-
tions converge to the target distributions; however, complex models with a large
number of parameters may require an unacceptably long time to converge to the
target distribution. This problem is largely caused by inefficient random walks that
estimate the parameters’ space.

The Hamiltonian Monte Carlo (HCM) algorithm or hybrid Monte Carlo algorithm
eliminates random walks using momentum variables that transform the target distri-
bution sampling problem into the Hamiltonian dynamics simulation problem. The
Stormer—Verlet “leapfrog” (jump steps) integrator is used to simulate the time evolu-
tion of this system. Given a sample m, a step size ¢, and a number of steps L, the HMC
algorithm consists of resampling the momentum variables 7, from a standard multi-
variate normal distribution (it can be considered a Gibbs sampling update) and then
applying L “leapfrog” updates to the position and momentum variables (6 and ) to
generate a pair of proposed position and momentum variables (8, 7), which are
defined as #" = 6 and 7" = , and will be accepted or rejected according to the
Metropolis algorithm. For more details, see [5]. In general, specifying the step size (¢)
and number of steps (L) is quite difficult when the path is too short, too long, or too
straight.

This method for generating MCMC is implemented in the brms package [6] to
perform Bayesian estimation in multilevel models.

3.1.3 MCMC diagnostics

After a large enough number of iterations, the MCMC eventually converges to the
posterior distribution. A diagnostic statistic is needed to determine whether the
MCMC has already converged to the stationary distribution or more iterations are
needed. Several diagnostic statistics have been proposed, but we will use the Gelman
and Rubin and graphical diagnostics.

Gelman and Rubin diagnostic (GR) [7]. This diagnostic uses several chains,

{Xios «> Xin-1}, i =1,...,m, drawn from an overdispersed density with respect to the
target density z(-). In 1992, Gelman and Rubin defined two estimators of the variance
of X when X ~ 7(6):

9
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1. The within-chain variance: W = Z:”:lz;’:_ol (X — }_{i.)z /(m(n — 1)) and
2. The pooled variance: V = ((n — 1) /n)W + B/n.

where B/n = Y1, (X;. — X ..)2 /(m — 1) is the between-chain variance estimate, X;. is

the mean of the chaini, i = 1,... ,m, and X.. is the overall mean. The potential scale
reduction factor (PSRF) or Rhat is defined by:

v

R = W (28)

The variance in the numerator of R overestimates the target variance, while the
variance in the denominator underestimates it. This fact produces R greater than 1.
One criterion for stopping the MCMC simulation is that R~1 or R <1.1. The GR and
ESS diagnostics are implemented in the coda package [8].

Graphical diagnostics. MCMC trace plots are the most widely used diagnostic
plots to determine convergence. They are a time series that shows the behavior of the
Markov chains around their state space and their achievements at each iteration.
When the visible trends show changes in the dispersion of the chain trace, the MCMC
has not reached a stationary state. In contrast, when good mixing is observed, the
MCMC sampling is said to converge to the target distribution.

3.2 Model checking and model comparison

Any Bayesian analysis should include a check of the adequacy of the fit of the
postulated model to the data. The adequacy of the fit of a model is measured by how
well the distribution of the proposed model approximates the distribution of the data;
the better the fit of the postulated model to the data, the better the model. But if the fit
is poor, it does not mean that the model is bad, but rather that it contains deficiencies
that can be improved. This section explains a model assessment method based on the
posterior predictive distribution.

Let us define the replicated data y"? as one that could be observed tomorrow if the
experiment that produced the current data y were replicated tomorrow with the same
model and the same values of 6 that produced y. The distribution of y"? given the
current data y is called posterior predictive distribution and defined as [9].

pOPly) = JWﬂe)p(ewe (29)

If the model is accurate, that is, it has a reasonably good fit, the replicated data
should be similar to the observed data.

3.2.1 Log pointwise predictive density

The performance of the fitted model can be measured by the quality of its pre-

dictions in the new data y. Pointwise predictions are predictions of each element y’; in
9 that are summarized using an appropriate statistic.

10
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Access to yf is not always easy and sometimes impossible. Instead, performance of
the fitted model can be done using the current data y. This method for calculating
predictive accuracy and to compare models is known as within-sample predictive
accuracy.

The log pointwise predictive density (Ippd) of the fitted model to the observed data
and unknown parameter 6 is defined as

Ippd = log ﬁp(%) = Z log JP il0)p (6ly;)do (30)

In general, the expected predictive accuracy of a model fitted to new data is poorer
than the expected predictive accuracy of the same model with the observed data. With
the computed lppd (clppd), we can evaluate the expression using draws from p(6|y)
obtained with MCMC, ¢, s = 1, ...,S using sufficient draws:

n S
clppd = log (%ZP()GW )) (31)
i=1 s=1

The clppd of the observed data y is an overestimate of the clppd for future data.

A second method to assess posterior predictive expectation is the adjusted within-
sample predictive accuracy that consists of a bias correction of the Ippd estimated using
information criteria such as Akaike information criterion, deviance information crite-
rion, or Watanabe—Akaike information criterion.

A third method to assess posterior predictive expectation is the cross-validation,
which captures the out-of-sample predictive error by fitting the model to the training
data and assessing the predictive fit in the holdout data [9]. In model comparison, the
best model is the one with the lowest predictive error. Let us explain this method in
detail:

Leave-one-out cross-validation (LOO-CV) works with 7 partitions in which each
holdout set has only one observation, which generates z different inferences, Ppost(—i)>

obtained through S posterior simulations, §*.
The Bayesian LOO-CV estimate of the predictive fit out of the sample is

n n 1 S \
lppdloofcv = Z logppost(fi) (yz)z Z log <§ Zp ()’i ‘015)> (32)
i=1 i=1 s=1

Each prediction is conditioned in #» — 1 data points, which underestimates the
predictive fit. For large #, the difference is insignificant; however, for small #, a first-

order bias correction b = lppd — Ippd_; can be used, where

Nl =

ppd =~ > 1080y (3)75 D log (

S
>p (yjle”)> (33)
=1 j=1 i=1 j=1 s=1

The bias-corrected Bayesian LOO-CV is

lppdcloo—cv = lppdloo—cv + b (34)
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An estimation of the effective number of parameters is
P1oo—cv = ldpp - ldpploo—cv (35)

When comparing two fitted models, we can estimate the difference in their
expected predictive accuracy by the difference in elppd,,, . The standard error of the
difference can be computed using a paired estimate to take advantage of the fact that
the same set of # data points is used to fit both models.

Suppose we are comparing models I and II, with corresponding fit measures
I 11

1oo—cy A0d elpd, 5 then difference and its standard error are

elpd
elpd_diff = elpd] _ — elpd'

loo—cv loo—cv

$ €_diﬁc =se (elp dfoofcv - €lp dﬁofcv) = \/nvzn <€lp d{oa,i - elp dgo,i

(36)
)

When two models are compared using the LOO-CV statistic, the one with the
lowest value of this statistic is declared the best model. If elpd_diff is used with the
loo_compare function of the brms library [6], the value of the difference is reported
in the best model accompanied by its se_diff. When comparing two models, the value
of the difference is reported in the column of the best model. There is more evidence
of the superiority of one model over another when the elpd_diff is larger than the

se_diff.

4. Multilevel model methodology

To propose a multilevel model, it is necessary to determine which variables will be
in the fixed part, which in the random part, and the cross-level interactions. This task
can be complex, so we need a strategy to build the model.

4.1 Multilevel model building strategy

In this section, we show an adaptation of the bottom-up strategy to specify a three-
level multilevel model. The bottom-up methodology is used in the frequentist
approach [3]. Our adaptation proposal tries to use the Bayesian LOO-CV from Step 2
to Step 7 for model comparison.

Step 1. Fitting the intercept-only model:

Vijle = $ooo + (1/00k + Uoj + eijk) (37)

This model gives a basal line to compare with the next models.
Step 2. Add all the level-one independent variables fixed:

P P+Q
Yije = 000 + Zapxpzjk + Z Eg00%gijk + (voor + ok + €iik) (38)
p=1 q=P+1

It must be determined which level-one variable has a significant effect on y. We
will assume that all the P level-one variables are statistically significant. Models 38 and
37 must be compared.
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Step 3. Add the level-two independent variables fixed:

P P+Q M
Yie = €ooo + Z XX pijke + Z 400X gijke + Z EomoWmik + (vook + uop +e)  (39)
p=1 q=P+1 m=1

It must be determined which level-two variable has a significant effect on y. If the
variables w,, explain the variability of y, Model 39 should be superior to Model 38.
Again, we assume that all the M level-two independent variables are statistically
significant.

Step 4. Add the level-three independent variables fixed:

P P+Q M L
Yije = €000 T Z ApXpijke + Z £400%gijk + Z EomoWmik + Z SoorZilk
p=1 q=P+1 m=1 =1 (40)

+ (vook + uoje + €ijk)

It must be determined which level-three variable has a significant effect on y. If the
variables 2; explain the variability of y, Model 40 should be superior to Model 39.

Steps 1-3 consider the specification of the fixed part of the three-level multilevel
model. Now we will specify the random part of the model.

Step 5. Assessing whether any of the slopes of the independent variables at level
one has a significative variance component between groups at level two or level three.

P P+Q M L
Vi = Eooo + D tppie + D Eqoo¥gi + > Eomotomie + D oo
p=1 q=P+1 m=1 I=1

(41)

P+Q P+Q
+ | Yook + Uojr + Z VgokX gijke + Z UgikX gijke T Eijk
q=P+1 g=P+1

where u,j, are the level-two residuals of the slopes of the level-one independent
variable x,, and v’s are the level-three residuals of the slopes of the level-two inde-
pendent variable w,,.

Level-one independent variables that do not have a significant slope may have a
significant random slope. This step and the next should be carefully performed,
because the model can easily become overparameterized and/or have problems such
as non-convergence or extremely slow calculations. It is advisable to assess signifi-
cance of the slopes variable by variable. Next, the model is formulated with all the
variables with significant random slopes. If Model 41 is not better than Model 40, the
procedure for specifying a three-level multilevel model stops.

Step 6. Assessing whether any of the slopes of the level-two independent variable
has a significant variance component among level-three groups.

P+Q

P M L
Yije = $o00 + Z OpXpijle + Z £400%gijk + Z SomoWmik + Z So0iZlk

=i g=P11 m=1 =1
(42)
P+Q P+Q M )

+ | Yook + Uojk + Z Vg0kXgijle + Z UgikX gijle + Z VomkWmjk + €ijk
q=P+1 q=P+1 m=1

13
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where the s are the level-three residuals of the slopes of the level-two indepen-
dent variable w,,.

The assessment of random slopes of the level-two variables should be performed
variable by variable, and then, all these variables should be included into a model to
assess the improvement of the model with respect to Model 41.

Step 7. Adding interactions between level-three independent variables and the
level-one and level-two independent variables that have a significant slope variance in
Steps 5 and 6. This produces the full model:

P+Q

P M L
Vi = €ooo + Z OpXpijle + Z &400%gijk + Z SomoWmik + Z SoorZlk
m=1 =1

p=1 q=P+1
P+Q L P+Q M

M L
DD Eommntomie + > D EmmXgk T Y Y EamoWmikXgie

q=P+1 I=1 g=P+1m=1
P+Q

-1
M L
+ Z Z SqmiRBIkWmikXqije + | Yook + Uojk + Z Vg0kX gijk
q=P+1

P+Q M P+Q M )

(43)

+ E UgjkX gijle +§ VomkWmjk + § E VgmkWmikX gijle ~+ €ijk
g=P+1 m=1 q=P+1m=1

When explaining the variances of the random slopes in terms of contextual vari-
ables, the model automatically includes interaction terms between levels that compose
the fixed part of the model. It is recommended to add variables that explain the
variance of the random slope coefficients one by one and not as shown in this step
(this was done here to avoid specifying more equations).

When it comes to an MGLM, the methodology changes slightly; that is, instead of
defining models in terms of y, models are defined in terms of

g(ﬂijk) = g(E [Yijk v, u] ) , and the residual errors at the individual level are no longer
specified. An example of this methodology for an MGLM is illustrated below.

5. Application: periodontal probing depth

In this section, an example is given in which a multilevel generalized linear model
is used for data from a cross-sectional study conducted by Romero-Castro et al. [10].
This study was carried out among adults who reside in the state of Guerrero, Mexico,
and who went to the external dental clinical service of the Dental School of the
Autonomous University of Guerrero (UAGro) in search of treatment, during the
period from August 2015 to February 2016. The protocol was approved (registration
no. CB005/2015) by the ethic committee at UAGro.

The goal of this multilevel analysis was to determine the clinical factors associated
with the depth of periodontal probing.

Thirty-two teeth were examined in each of the 116 patients. Probing pocket depth
was recorded at six sites in each tooth, that is, mesiobuccal, mid buccal, distobuccal,
mesiolingual, mid lingual, and distolingual locations of each tooth. Pocket depth was
recorded by use of Florida probe in the six sites. The response variable was probing
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depth measured in millimeters; that is, probing depth is a continuous variable and
greater than zero (> 0). The data set consisted of 18,358 observations.

The independent variables, except the age, were all dichotomous: bleeding,
mobility, plaque, calculus, insulin resistance (fasting plasma glucose > 100 mg/dL),
smoking, root remnants, and mismatched restorations, where 0 indicated absence and 1
presence.

Figure 1 and Table 1 show the three levels of the data and the variables at each
level. The first level corresponded to the probing sites where the independent vari-
ables bleeding and furcation and the response variable probing depth were measured.
Level two corresponded to the dental piece, that is, teeth that only had the indepen-
dent variable mobility, and level three corresponded to the patients, measuring the
independent variables age, plaque, calculus, insulin resistance, smoking, root remnants,
and mismatched restorations.

A first data analysis was done using a three-level multilevel model assuming a
normal distribution for the probing depth. The frequentist fit had two problems: the
residuals did not have a normal distribution and the numerical method to obtain the
estimates did not converge.

The minimum of probing depth was 0.2 mm, Q1 was 0.8 mm, Q2 was 1.2 mm, Q3
was 1.8 and the maximum was 9 mm. In addition, its distribution was asymmetric to
the right (skewness = 1.6 and kurtosis = 8.0). Therefore, it was assumed that probing
depth had gamma distribution with mean x and variance u?/a:

fly) = (?giay“‘l exp (— ﬂ) (44)

U

It is well known that gamma regression belongs to the generalized linear model family.
But as the data studied is of hierarchical nature, the appropriate model is the multilevel

Patient
Tooth
Site 1 Site 2 Site 3 Site 4 Site 5 Site 6

Figure 1.
Multilevel structure of the probing depth of 1 tooth out of 32 teeth for each patient.

Levels Variables

Level 3: Patient Age, plaque, calculus, insulin resistance, smoke, root remnants, and
mismatched restorations

Level 2: Tooth Mobility
Level 1: Probing site Bleeding
Table 1.

Independent variables on levels.
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generalized linear model. Given that the response variable is non-negative, the link
function used was the natural logarithm to get expected probing depth greater than zero.

5.1 Bayesian estimation

Likelihood: It was assumed that probing depth follows a gamma distribution.

Prior distribution: It was defined as a product of marginal prior distributions for
each component of f in Model 23. f is composed by the overall mean, main effects,
and interactions: £y00,£,00>E0m05E0015E0miEq01Eqmo>Eqmi> and all of them had N(O, 102)
prior. brms function uses a special parameterization for matrices D and G in Eq. (21).
This parameterization is G = F(oy,)Q,F (0} ), where F(o},) is a diagonal matrix with
diagonal elements o}, ([6]). Priors for D and G needed only to specify priors for o, and
Q;,, which were 6, ~ HalfCauchy(10) and Q ~ CorrLK](1). Finally, the shape hyper-
parameter was shape ~ Gamma(0.01,0.01).

The analysis of this model was performed with the brms library ([6, 11]) that
uses the probabilistic programming language Stan ([12]) in the environment of
R Software 4.0.5.

Simulation: All the MCMC had four chains; the number of iterations and burn-in
was not the same for the models studied, but all used a final sample of 4000.

The MCMC of the models (37, 38 and 39), that is, null, with level-one, and with
level-two variables, were obtained using 4000 iterations and a burn-in of 3000.
Model 40 used 5000 iterations and a burn-in of 4000, Model 41 used 7000 iterations
and a burn-in of 6000, and Model 43 used 8000 iterations and a burn-in of 7000.

Bayesian estimators: The mean of the posterior distribution was used as the
Bayesian estimator; this is related with minimizing the squared loss function.

Models studied: We studied a three-level multilevel generalized linear model,
where i represented the level-one units, j the level-two units, and k the level-three
units. Although the values of the Rhats are not shown, all the MCMC of the studied
models converged since all the Rhats were at most 1.01.

Step 1. The null model is

log (ﬂijk) = £o00 + (voor + ojk) (45)

Columns 2 and 3 of Table 2 show the Bayesian estimations of the null model. The
credible intervals did not contain zero, so that the variances at the tooth level and at
the patient level were significant. This supports the use of MGLM.

Step 2. The model with level-one variable, bleeding, is

log (Mijk) = {00 + ableeding,;, + (vook + Uojk) (46)

The Bayesian estimations of the model showed that the bleeding coefficient was
significant (columns 4 and 5 of Table 2). The comparison of Models 45 and 46, using
LOO-CV, indicates that the model including the level-one variables was better (before
the last row and column 5 in Table 2).

Step 3. The model with level-two variable, mobility, is

log (ﬂijk) = £o00 + arbleeding;;;, + Eoyomobility,;, + (vook + Uojk) (47)
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Model 45 Model 46 Model 47 Model 48 Model 49 Model 50

Coef (95%CrI) Coef (95%CrI) Coef (95%CrI) Coef (95%CrI) Coef (95%CrI) Coef (95%CrI)
Group-level effects:
Patient (116 levels)
sd(Intercept) 020 (0.17,0.23) 020 (0.17,0.23) 0.20 (0.17,0.23) 0.19 (0.17, 0.22) 0.19 (0.17, 0.22) 0.19 (0.17, 0.22)
sd(Bleeding) 0.12 (0.02, 0.21) 0.13 (0.02, 0.23)
Patient:Tooth (3131 levels)
sd(Intercept) 0.23 (0.22, 0.24) 0.22 (0.21, 0.23) 0.22 (0.21, 0.23) 0.22 (0.21, 0.23) 0.22 (0.21, 0.23) 0.22 (0.21, 0.23)
sd(Bleeding) 0.25 (0.16, 0.33) 0.25 (0.16, 0.34)
Population-level effects:
Intercept 034 (0.30,0.37) 033 (0.29,0.37) 0.33 (0.29, 0.36) 0.29 (0.24, 0.34) 0.29 (0.25, 0.34) 0.29 (0.25, 0.34)
Bleeding 0.15 (0.11, 0.19) 0.15 (0.10, 0.19) 0.15 (0.10, 0.19) 0.13 (0.07, 0.20) 0.11 (0.02, 0.19)
Mobility 0.04  (-0.00, 0.08) 0.03 (—0.01, 0.07) 0.03 (—0.01, 0.07) 0.03 (—0.01, 0.08)
Calculus 0.10 (0.03, 0.18) 0.10 (0.03, 0.18) 0.10 (0.03, 0.18)
Smoking —-0.02 (-0.14,0.09) —-0.02 (-0.14,0.10) —0.02 (—0.13,0.09)
Bleeding:Calculus 0.06 (-0.07, 0.19)
Specific parameters:
Shape 450  (4.41,4.60) 451 (4.41,4.61) 451 (4.41.4.61) 4.51 (4.42, 4.61) 4.55 (4.45, 4.64) 454 (4.45, 4.64)
elpd_diff (se_diff) -16.2 (8.2)" -2.3(2.0)* —-3.4 (1.5)* -10.7 (7.9)* -13(1.8)

Coef: Coefficient.

*95%Crl: 95% Credible Interval. Comparisons."Model 45 vs. 46.*Model 46 vs. 47. Model 47 vs. 48.”Model 48 vs. 49. Model 49 vs. 50.

Table 2.
Bayesian estimates of Models 45-50.

ehbgor-uadoysagui/e/LS or/3a0 10p xp A1y TO
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Mobility fixed effect was not significant (columns 6 and 7 of Table 2); however, it
was retained in the model because it was the only level-two variable and to get
estimations of the effect of the third-level independent variables adjusted for the
effect of level-two variable. The LOO-CV criterion indicated that this model was
slightly better (before the last row and column 7 in Table 2).

There are seven level-three contextual variables (Table 1); before specifying the
model containing only the significant level-three variables, a forward selection of
variables was performed to avoid having an overparameterized model. Table 3 shows
the variable selection procedure where each model contains the level-one variable,
bleeding, and the level-two variable, mobility. The LOO-CV model comparison indi-
cates that the model that includes calculus and smoking variables is the best model.

Step 4. The model with level-three variables, calculus and smoking, is

log (:uijlk) = £o00 + albleedingll-jk + fommobilityljk (48)

+&gorcaleulusy, + Eggpsmoking,, + (vook + Uoje )

Columns 8 and 9 in Table 2 show that the variable smoking was not significant;
however, the model that contains smoking is better than the others. Model 48 was
better than Model 47 (before the last row and column 9 in Table 2).

Step 5. The model with a random slope for the variable bleeding.

In Eq. (49), a random slope for the variable bleeding is added that varies at patient
and teeth levels; that is, the relationship between probing depth and bleeding varied
between patients and between teeth.

log (,u,-j|k> =00 + albleedinglijk + 5010mobility1jk
+&gorcalculusy, + £oppsmoking,, (49)
+vioxbleeding,;, + uypbleeding,, + (vook + toj)

Finally, in the next model interaction, terms were added based on signs that occur
in periodontal disease.

Columns 10 and 11 of Table 2 show that the random slope of bleeding was
significant at patient and teeth levels. Again, this model was compared with Model 48
using the LOO-CV criterion, and the best model was Model 48, which contained
random slopes (before the last row and column 11 in Table 2).

Step 7. The model with cross-level interactions is

log (uiﬂk) = &p00 + albleedinglijk + fommobilityljk
+&gorcalculusy, + £ygpsmoking,, + élolbleedingh.jkcalculus1k (50)

-|—1/10kbleedinglij,€ + uljkbleedinglijk + (I/o()k + uojk)

Eq. (50) has an interaction between the level-three variable calculus with the level-
one variable bleeding. Columns 12 and 13 of Table 2 show that the interaction was not
significant (its credible interval contained zero). Finally, the comparison of models
indicated that the best model was Model 49 corresponding to the bleeding random
slope model (the last row and column 13 in Table 2). So, this model is interpreted.

Figure 2 shows the posterior predictive fit of Model 49 to the data. The replicated
data are plotted in a light color, and the observed data are plotted in black. As both
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Model elpd_diff se_diff
Comparison of models with one level-three independent variable.

Egorcalculusyy, 0.0 0.0
Egozinsulin resistances, -0.1 1.6
EgpaToot remnantsy, -0.8 1.5
Eoosplaquey, -15 1.6
£oopsmoking,, -1.7 1.6
£oosageg;, -1.8 1.5
Eooymismatched restorationsy, -2.5 1.5

Comparison of models with two level-three independent variables.

Eoorcalculusyy, + £ggpsmoking,, 0.0 0.0
Eoorcalculusy, + Eggzinsulin resistances, 21 1.5
Eoorcalculusy, + Egosage, —2.6 1.5
Soo1calculusy, + Egosplaques, -2.9 1.5
Eoorcalculusy, + Eggymismatched restorationsy, —4.4 15
Eoorcalculusy, + Eggaroot remnantsyy, —5.2 1.5

Comparison of the best models with one and two level-three independent variables

Eoorcalculusyy, + £gp smoking,, 0.0 0.0

Egorcalculusyy, -2.6 1.5

Comparison of models with three level-three independent variables

Eoorcaleulusy, + £ggpsmoking,, + £gpsrootremnantsyy, 0.0 0.0
Eoorcaleulusyy, 4 £ggpsmoking,, + £gpsage, -0.2 1.6
Eoorcalculusyy, + Eggpsmoking,, 4 Egpzinsulin resistances, -0.6 1.5
Eoorcaleulusy, + Egppsmoking,, + Egosplaques, -1.2 1.6
Eporcalculusyy, + £gg smoking,, + £goymismatchedrestorationsy, -1.6 1.5

Comparison of the best models with two and three level-three independent variables

Eoorcalculusyy, + £gp smoking,, 0.0 0.0

Eoorcalculusy, + £ggrsmoking,, + £ggsr00t remnantsyy, -2.9 1.5

"All the models have the structure: log (ﬂzﬂk) = &goo + albleedingwk + 5010mobilitylj,e + varl

+var2 + var3 + (l/ook + uojk), where varl is the independent variable that produces the best fit among all the seven
models with one independent variable. Similarly, var2 is the second independent variable that produces the best fit among
all the six models, having varl in common, with two independent variables, and so on for var3.

Table 3. X
Forward variable selection for the level-three variables .

curves agree very well, the posterior predictive density fits very well with the distri-
bution of the probing depth. Both distributions are clearly not symmetric, and they
seem to follow a gamma distribution. Definitely, normal distribution was not an
appropriate assumption for probing depth. In conclusion, the random slope

model (49) had a good fit.
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Yrep

25 5.0 7.5 10.0 12.5

Figure 2.
Posterior predictive density of Model 49 with a random slope for bleeding between teeth and patient.

Figure 3 shows the histograms of the empirical posterior distributions of the
parameters. Finally, the MCMC of Model 49 converged since all the Rhats were at
most 1.01, and the trace plots of Figure 3 show that the chains mix well.

5.2 Discussion

In this example of probing depth, the variance at the tooth level (1.59) and the
variance at the patient level (1.49) were significant (Table 2); that is, the mean of
the dependent variable varied between teeth nested in patients, and the ICC at the
tooth level (0.45) was higher than that at the patient level (0.42); that is, there was
greater dependence between the measurements of the probing sites of different
teeth than between measurements of the probing sites of different patients. This
finding probes that using a multilevel model for these probing depth data was better
than using a single-level model, and the former produced more accurate estimates
and credible intervals. In addition, the random slope of bleeding was significant
between teeth; that is, there was a positive relationship between probing depth and
bleeding that varied between teeth in the patients (probing depth between teeth
increased by an average of 1.28 mm if the site was bleeding). On the other hand,
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Figure 3.
Posterior distribution of parameters of Model 49 and time series plots showing the MCMC output.
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calculus is a form of hardened dental plaque. In the random slope model (Eq. (49)),
bleeding and calculus were significant parameters that estimated that, on average,
the depth of bleeding probing sites was 1.14 mm greater than the sites that did not
exhibit bleeding. On average, the probing depth of patients who had calculus on any
of the teeth was 1.11 mm greater than of patients who did not have calculus. The
plausible intervals for bleeding and calculus were (1.07,1.22) and (1.03,1.20),
respectively.

In the random slope model, mobility and smoking were not significantly
associated with probing depth, but if we decide to give them an interpretation, we
can say that, on average, the probing depth of patients who presented dental mobil-
ity was 1.03 mm greater than the probing depth of patients who did not have dental
mobility. Similarly, smoking patients had, on average, a probing depth 0.98 mm
greater than that in non-smoking patients. Different results and interpretations
could be obtained from measuring the independent variables at levels other than
those given in this example. Specifically, the variable calculus could have been
measured at the tooth level. Before fitting the Bayesian multilevel model, we tried to
estimate the multilevel model using restricted maximum likelihood; however, the
numerical method did not converge. More practical examples using the R Software
can be found at [13].

6. Conclusions

In certain clinical research designs, the data have a nested structure (in other
words, a hierarchical structure). The data that make up a nested structure are
modeled using multilevel models because they simultaneously estimate the effects of
the variables at the individual level and the effects of the contextual variables or
variables at the group level. A significant ICC determines whether it is necessary to
use a multilevel model. If the ICC is not significant, an ordinary regression model is
sufficient to model the nested data. A disadvantage of multilevel models is that they
easily contain a large number of parameters to be estimated. On the other hand,
modeling the data levels separately incurs a large type 1 error even when the ICC is
small. This fact causes the inferences to be incorrect. The maximum likelihood
estimation of the parameters of a multilevel model requires that the assumptions of
the distribution are satisfied. More general methods such as Bayesian estimation
make it possible to estimate the parameters without requiring that the assumptions
of the multilevel models be satisfied. In addition, the Bayesian estimation is robust to
a small sample size, a situation that is more likely to occur in higher level observa-
tions, and in general, it is able to deal with technical problems such as multicol-
linearity of the data.

In this chapter, we adapted the bottom-up strategy to specify a multilevel
model in the frequentist approach to the Bayesian approach. Our proposal was to
use the Bayesian LOO-CV between the different steps for the comparison of
models. Deviance information criterion (DIC) could also be used instead of Bayesian
LOO-CV.

Two factors had a significant association with probing depth. Bleeding (site-level
covariate) and dental calculus (patient-level covariate). At the tooth level, a factor
associated with the probing depth was not found.

The methodology set out in this chapter can be applied to other areas of the health
sciences with data with a hierarchical structure and numerical response variable.
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DIC Deviance information criterion
HMC Hamiltonian Monte Carlo

ESS Effective sample size

GEE Generalized estimating egs.

GR Gelman and Rubin diagnostic
ICC Intraclass correlation coefficient
LOO-CV Leave-one-out cross-validation
Ippd Log pointwise predictive density
MCMC Markov chain Monte Carlo
MGLM Multilevel generalized linear models
NUTS No-U-turn sampling

PSRF Potential scale reduction factor

23



Medical Statistics

Author details
Edilberta Tino—SalgadolT, Flaviano Godinez-Jaimes'', Cruz Vargas—De—Leénl’z*,
Norma Samanta Romero-Castro®, Salvador Reyes-Fernindez’

and Victor Othon Serna-Radilla3

1 Facultad de Matematicas, Maestria en Matematicas Aplicadas, Universidad
Autdénoma de Guerrero, Chilpancingo de los Bravo, Mexico

2 Divisién de Investigacién, Hospital Juarez de México, Ciudad de México, Mexico

3 Facultad de Odontologia, Especialidad en Implantologia y Rehabilitacién Bucal,
Universidad Auténoma de Guerrero, Acapulco, Mexico

*Address all correspondence to: leoncruz82@yahoo.com.mx

+ These authors contributed equally.

IntechOpen

© 2022 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly cited.

24



Bayesian Multilevel Modeling in Dental Research
DOI: http://dx.doi.org/10.5772/intechopen.108442

References

[1] Kim JS, Kim D-K, Hong §J.
Assessment of errors and misused
statistics in dental research.
International Dental Journal. 2011;61(3):
163-167

[2] Wang ], Xie H, Fisher JF. Multilevel
Models, Applications Using SAS. Berlin,
Germany: de Gruyter; 2011.

DOI: 10.1515/9783110267709

[3] Joop ] Hox, Mirjam Moerbeek y Rens
Van de Schoot. Multilevel Analysis:
Techniques and Applications. New York,
United States: Routledge; 2017

[4] Gilks WR, Richardson S,
Spiegelhalter D. Markov Chain Monte

Carlo in Practice. Florida, United States:
CRC Press; 1995

[5] Matthew D Hoffman, Andrew
Gelman y col. The No-U-turn sampler:
Adaptively setting path lengths in
Hamiltonian Monte Carlo. The Journal of
Machine Learning Research 2014;15(1):
1593-1623

[6] Biirkner P-C. brms: An R package
for Bayesian multilevel models using
stan. Journal of Statistical Software.
2017;80(1):1-28. DOI: 10.18637/
jss.v080.101

[7] Roy V. Convergence diagnostics for
markov chain Monte Carlo. Annual
Review of Statistics and Its Application.
202057:387-412

[8] Plummer M, Best N, Cowles K,
Vines K. CODA: Convergence diagnosis
and output analysis for MCMC. R News.
2006;6(1):7-11

[9] Gelman A, Carlin JB, Stern HS,
Dunson DB, Vehtari A, Rubin DB.
Bayesian Data Analysis. Florida, United
States: CRC Press; 2013

25

[10] Romero-Castro NS, Castro-Alarcon
N, Reyes-Fernandez S, Flores-Alfaro E,
Parra-Rojas I. Periodontal disease
distribution, risk factors, and
importance of primary healthcare in the
clinical parameters improvement.
International Journal of Odonto
Stomatology. 2020;14(2):183-190.

DOI: 10.4067/S0718-381X2020
000200183

[11] Biirkner P-C. Advanced Bayesian
multilevel modeling with the R package
brms. The R Journal. 2018;10(1):395-411.
DOI: 10.32614/R]-2018-017

[12] Carpenter B, Gelman A,

Hoffman MD, Lee D, Goodrich B,
Betancourt M, et al. Stan: A probabilistic
programming language. Journal of
Statistical Software. 2017;76(1):1-32.
DOI: 10.18637/jss.v076.101

[13] Holmes Finch W, Bolin JE, Kelley K.
Multilevel Modeling Using R. CRC Press;
2019



