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Chapter

Sensitivity Analysis and Modeling
for DEM Errors
Mohammed El-Diasty and Rifaat Abdalla

Abstract

The Digital Elevation Model (DEM) can be created using airborne Light
Detection And Ranging (LIDAR), Image or Synthetic-Aperture Radar (SAR)
mapping techniques. The direct georeferencing of the DEM model is conducted using
a GPS/inertial navigation system. The airborne mapping system datasets are processed
to create a DEM model. To develop an accurate DEM model, all errors should be
considered in the processing step. In this research, the errors associated with DEM
models are investigated and modeled using Principal Component Analysis (PCA) and
the least squares method. The sensitivity analysis of the DEM errors is investigated
using PCA to define the significant GPS/inertial navigation data components that are
strongly correlated with DEM errors. Then, the least squares method is employed to
create a functional relationship between the DEM errors and the significant GPS/
inertial navigation data components. The DEM model errors associated with airborne
mapping system datasets are investigated in this research. The results show that the
combined PCA analysis and least squares method can be used as a powerful tool to
compensate the DEM error due to the GPS/inertial navigation data with about 27% in
average for DEM errors produced by the direct georeferenced airborne mapping
system.

Keywords: sensitivity, PCA, least squares, DTM errors, navigation

1. Introduction

The Digital Elevation Model (DEM) can be created using airborne Light
Detection And Ranging (LIDAR), Image or Synthetic-Aperture Radar (SAR) map-
ping techniques. The direct georeferencing of DEM model is conducted using GPS/
inertial navigation system. The accuracy of the developed DEM model is strongly
dependent on the mapping system and the georeferencing system grades. The
selection of the mapping system and the georeferencing system grades is carried
out in the planning stage based on the accuracy requirements of the required DEM
model.

The previous literatures focused and heavily investigated the DEM model
generation based on LIDAR, Images, and SAR data cleaning and filtering tech-
niques such as Triangulated Irregular Network (TIN)-based filtering, slope-
based filtering, mathematical morphological filtering, interpolation-based
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filtering, and Machine-learning-based filtering. The original TIN-based filtering
was developed based on the classical progressive TIN densification (PTD) and
was implemented effectively in the commercial software TerraScan [1, 2]. Then,
the revised PTD was investigated and reduced the total errors by about 8% when
compared with classical PTD method [3]. Afterwards, a Parameter-Free PTD
(PFPTD) algorithm was developed and outperforms the classical and revised
PTD methods [4]. The original slope-based filtering was derived based on height
differences in the training dataset [5, 6]. Then, adaptive slope-based filtering
algorithm was developed to improve the accuracy in urban applications when
compared with the original slope-based filtering algorithm [7]. The original
mathematical morphological filtering was proposed to filter LIDAR data [8].
Then, the progressive morphological filtering algorithm was developed to
improve the original method by applying threshold condition based on the ele-
vation differences and proposed increasing gradually the filtering window size
[9]. Afterward, the spline iteration method was introduced to improve the mor-
phological filtering algorithm [10]. All mathematical morphological filtering
methods outputs are strongly dependent on adapting the filtering window size.
The original interpolation-based filtering method was proposed to deal with the
steep areas [11]. Then, the interpolation-based DEM generation method was
developed where one of the Inverse Distance Weighted, Kriging, and Natural
Neighbor (NN) can be employed for DEM generation [12]. The Natural Neigh-
bor (NN) method was proven to provide most efficient results. Finally,
Machine-learning-based filtering was investigated where this method depends on
topographic characteristics of the areas under investigation [13]. The deep
convolutional neural network (CNN) was proposed for develop accurate DEM
model [14]. The Machine learning method was optimized using windowing
method to improve the DEM model generation [15].

However, the above-mentioned methods are mainly dependent on the data
cleaning and filtering techniques of the heights to develop the DEM model. These
methods are associated with errors that are not considered in the DEM modeling and
could be corelated with system navigation data. Therefore, this research investigated
the sensitivity analysis modeling of DEM errors that are potentially correlated with
navigation data to improve the overall accuracy of the DEM model.

2. Combined PCA and least squares method

The sensitivity and modeling of DEM errors are investigated in this research using
PCA and least squares function modeling. The system navigation data (position,
velocities, attitudes, accelerations and dopplers) are considered the inputs to the
model and the DEM height error is considered the desired output of the model.

PCA is a numerical technique used to study multidimensional processes that can be
used to (1) reduce the dimensionality of a dataset and (2) identify relationships
between the underlying variables of the process. PCA is based on eigen or singular
value analysis of the process correlation or covariance matrix. The goal of PCA is to
determine the minimum number of eigenvectors that best describe the key features of
the process correlation matrix. This results in a reduced-dimensionality model for the
matrix which can be used for data analysis, reduction, and model synthesis. Singular
value decomposition (SVD) is fundamental to PCA. More details on PCA and SVD can
also be found in Jolliffe [16].
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2.1 PCA analysis

Let X denote an m x nmatrix. For convenience, we assume m ≥ n. The elements of
the ith row of X form the n-dimensional vector gi. The elements of the jth column of X
form the m-dimensional vector aj. The general singular value decomposition (gSVD)
of X can be written as:

X ¼ UΣVT (1)

where U is an m x m matrix, Σ is an m x n matrix containing the singular values,
and VT is an n x nmatrix. The columns of U are called the left singular vectors, {uk}, and
form an orthonormal basis for the range space, so that ui�uj = 1 for i = j, and ui�uj = 0
otherwise. The rows of VT contain the elements of the right singular vectors, {vk}, and
form an orthonormal. U and V are orthonormal so that their inverses exist and are
their transposes. The matrix Σ can be decomposed as:

Σ ¼ S

0

h i

(2)

where S is an m x n diagonal matrix in which only the diagonal elements are non-
zero, S = diag(s1,...,sn) where the diagonal elements are zero. If the rank of X is r, sk > 0
for 1 ≤ k ≤ r, and si = 0 for (r + 1) ≤ k ≤ n. [For problems like the one we are interested
in, noise generally ensures that r = n.] By convention, the ordering of the singular
vectors is determined by high-to-low sorting of singular values, with the highest
singular value in the upper left index of the S matrix. Note that for a square, symmet-
ric matrix X, SVD is equivalent to eigenvalue decomposition. In PCA, the right singu-
lar vectors are frequently called the components. While the scaled left singular vectors
{siuk} are called the scores.

Note thatU can be decomposed into two submatrices, anm x nmatrix UR and anm
x m-n matrix UN where U = [UR UN]. UR defines the range space of U, while UN

defines the null space. Note that X = URSV
T so that XV = URS. This provides the

reduced form of SVD often used in PCA. In practice this is the form generally used;
hence, we often drop the R subscript on U. Figure 1 illustrates the various reduced-
form matrices. Note that the right singular vectors span the space of the row vectors
{gi} and the left singular vectors span the space of the column vectors {aj}.

Several relationships can be derived. The SVD equation for gi is:

gi ¼
X

r

k¼1

uikskvk (3)

which is a linear combination of the right singular values {vk}. The i
th row of U, g’i,

contains the coordinates of the ith entry in the coordinate system (basis) of the scaled
right singular values, skvk. If r < n (or if we truncate the singular values to r = l), this
computation requires fewer variables using g’i rather than gi, thus reducing the
dimension of the problem. Similarly, the SVD equation for aj (the j

th column of X) is:

aj ¼
X

r

k¼1

vjkskuk (4)

which is a linear combination of the left singular values {uk}. The j
th column of VT,

a’j (see Figure 1), contains the coordinates of the jth column of X in the coordinate
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system (basis) of the scaled left singular vectors (the scores), skuk. By using the vector
a’j, the analysis may be captured by r ≤ n variables, which is always fewer than the m
elements in the vector aj, thus SVD reduces the number of variables required. Essen-
tially, there are only r (which we can truncate to eliminate small singular values and
further reduce the dimensionality) component vectors (the corresponding right sin-
gular vectors) which explain the behavior of X. The application of PCA often use the
SVD property:

X lð Þ ¼
X

l

k¼1

ukskv
T
k (5)

where X(l) is the closest rank-l matrix to X, i.e., X(l) minimizes the sum of
the squares of the difference between the elements of X and X(l),
diff =

P

ij|xij – x(l)ij|
2.

We can define the covariance matrix as XTX = Σigigi
T. SVD analysis of XTX yields

VT, which contains the principal components of {gi}, i.e. the right singular vectors
{vk} are the same as the principal components of {gi}. The eigenvalues of X

TX are
equivalent to sk

2, which are proportional to the variances of the principal compo-
nents. The matrix XXT = Σjajaj

T is proportional to the covariance matrix of the
variables of aj. The left singular vectors {uk} are the same as the principal compo-
nents of {aj}. The sk

2 are proportional to the variances of the principal components.
The diagonal values of S (i.e., sk) are the “singular value spectrum”. The value of a
singular value is indicative of its importance in explaining the data. More specifi-
cally, the square of each singular value is proportional to the variance explained by
each singular vector.

In PCA, X is defined and the SVD is computed. The singular values sk are then
plotted versus k. A reduced dimensionality approximation to X is computed by trun-
cating the singular value series, i.e. by setting sk = 0 for k > K where K is the chosen
threshold value, and using Eq. (3). Note that the squared singular values s2k are a

Figure 1.
Illustration of reduced SVD matrices. The right singular vectors have often termed the components while the left
singular values are the scaled scores.
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measure of the variability or “power” in the corresponding signal component specified
by the corresponding to singular vector (like the frequency component in Fourier
analysis).

2.2 Least squares functional modeling with PCA optimization

We ultimately seek a model that relates the inputs (navigation parameters) to the
height error. The least squares method is used to model DEM errors. More details on
the least squares method can also be found in Ghilani [17]. Assuming a linear forward
model:

Xh ¼ e (6)

The set of navigation data parameters is used to form the h vector. We will assume
that the corresponding DEM height errors form the e vector. For each epoch, we form
a single h and e vector. Since the model parameters vary with time, vectors are created
by stacking the values as a function of time.

Using the matrix form, the X matrix in Eq. (6) represents the mapping between
the model parameters and the height. This mapping is what we want to estimate from
the DEM error training set. While there are several approaches, the following
approach is attractive. Since Eq. (6) must apply for all realizations we create matrices
H and E by combination of all the vectors of h and e, i.e., H = [h1|h2| … hn] and
similarly for E. We can then write:

XH ¼ E (7)

Shifting the mean and scaling the vector elements affects the performance of the
estimate. Assuming we have enough realizations, we can write a least-squares empir-
ical estimate of X, Xe, as:

Xe ¼ EΗ
T HHT
� ��1

(8)

While we can use Xe directly, SVD analysis of Xe provides us with a powerful tool
to understand the relationship between H and E. The SVD analysis of X is:

Xe ¼ UΣVT (9)

The singular value spectrum of Σ tells us the dimensionality (say l) of the
model parameter vector (h) are “useful” while the first l column vectors of V
provide a basis for the space of “useful” subspace of model parameters. (In the ideal
case, a retained column vector of V that contained a single 1 in a particular location w
and zero elsewhere would suggest that only the wth component of model vector needs
to be used. In general, the l useful columns of V provide a mapping (rotation and
scaling) from the original model parameter space to a restricted model parameter
space. As noted previously, the value of l is either the rank or is selected by
truncating the singular value spectrum. The first l columns of U form a basis of
the output or the range space of Xe, that is, of the height error function. The columns
of U and V greater than l can be discarded, which simplifies usage of the truncated
model.
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Note that while the order of the model parameters or error values within the
vectors is not important, the range of cases included does matter. The model may be
unable to adequately represent a case not included in the training set. Also, the model
can only represent linear functions of the input model parameters. (Recall, that we
can produce non-linear responses by including non-linear transforms of model
parameters in the model parameter vector.)

Let Xr be the singular value reduced estimate of Xe, i.e. Eq. (9) where the diagonal
elements of Σ are set to zero beyond the lth element. To apply a height correction, we
form an h vector of the model parameters from a new data take, and compute an
estimate of the height error vector e:

Xfh ¼ e (10)

The error e is subtracted from the height map to remove the height error. Note that
due to our formulation of the original model and height vectors that this is done
“block-wise”.

In this research, the sensitivity analysis is carried out using PCA and the modeling
is investigated the least squares function modeling where the system navigation data
are considered the inputs to the model and the DEM height error is considered the
desired output of the model.

Figure 2.
DEM error map along with the locations of the across-track sections in purple solid lines (1, 2, and 3).

Figure 3.
Combined PCA analysis and least squares methodology.
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3. Data and methodology

The DEM model errors associated with airborne mapping system datasets are
investigated in this research. Figure 2 shows an example of DEM errors case study.
It can be seen that the DEM errors map shows large errors in the left side associated
with low depression angles and small errors in the right side associated with high
depression angles. The across-track DEM errors sections at three different depression
angles are investigated (sections 1 to 3) as shown in Figure 2 where the DEM errors
are the highest in these locations.

The methodology for the proposed combined PCA analysis and least
squares method is shown in Figure 3. The PCA analysis is utilized to identify
the significant inputs from multiple navigation data and the least squares method is
implemented to estimate the DEM errors models. The root mean squares (RMS) errors
are used to quantify the accuracy of the developed DEM errors models.

4. Results and discussion

Three across-track sections (1 to 3) as shown in Figure 2 have been investigated
to test the performance of combined PCA analysis and least squares method. The
navigation data (3 positions, 3 velocities, 3 attitudes, 3 accelerations, 3 attitude
rates, 3 attitudes accelerations, 1 doppler, and 1 doppler rate) represent the input
parameters for DEM errors modeling were investigated using PCA analysis
method. Out of 20 inputs, 10 inputs were found significant (2 positions, 2 acceler-
ations, 2 attitudes, 2 attitude rates, 1 doppler and 1 doppler rate) in the three
across-track sections.

Then the least squares were employed to model the functional relationship
between the 10 significant navigation inputs and the targeted DEM error output. The
RMS errors were estimated before and after modeling to test the performance of the
developed model to compensate the DEM errors. Figure 4 shows the targeted DEM
errors and the modeled DEM errors where Figure 5 shows the differences between the

Figure 4.
Section (1) DEM errors where blue line represents the targeted DEM error and red lines represents the modeled
DEM error.
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targeted and modeled DEM errors for section (1) case. In section (1) case, the esti-
mated RMS error before modeling is 0.59 m and after modeling is 0.44 m which
means that about 25% of DEM errors can be compensated in section (1) case. Figure 6
shows the targeted DEM errors and the modeled DEM errors where Figure 7 shows
the differences between the targeted and modeled DEM errors for section (2) case. In
section (2) case, the estimated RMS error before modeling is 0.45 m and after model-
ing is 0.33 m which means that about 27% of DEM errors can be compensated in
section (2) case. Figure 8 shows the targeted DEM errors and the modeled DEM errors
where Figure 9 shows the differences between the targeted and modeled DEM errors
for section (3) case. In section (3) case, the estimated RMS error before modeling is
0.35 m and after modeling is 0.25 m which means that about 28% of DEM errors can
be compensated in section (3) case.

Figure 6.
Section (2) DEM errors where blue line represents the targeted DEM error and red lines represents the modeled
DEM error.

Figure 5.
Section (1) difference between the targeted DEM error and modeled DEM errors.
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Table 1 and Figure 10 summarize the RMS errors and the percentage of DEM
error compensation from the three sections where the overall percentage of DEM
error compensation is about 27% on average. The results show that the combined PCA

Figure 7.
Section (2) difference between the targeted DEM error and modeled DEM errors.

Figure 8.
Section (3) DEM errors where blue line represents the targeted DEM error and red lines represents the modeled
DEM error.

Section RMS error before

modeling (m)

RMS error after

modeling

Percentage of DEM error

compensation (%)

Section (1) 0.59 0.44 25

Section (2) 0.45 0.33 27

Section (3) 0.35 0.25 28

Overall percentage of DEM error compensation 27

Table 1.
RMS errors for all sections before and after DEM error modeling.
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analysis and least squares method can be used as a powerful tool to compensate the
DEM error produced by the navigation data with about 27% in average for the case
study investigated in this research.

5. Conclusions and recommendation

The sensitivity analysis of DEM errors to the GPS/inertial navigation data was
investigated in this research. It was concluded that the sensitivity analysis of the DEM
errors can be performed using the PCA to identify the significant GPS/inertial navi-
gation data components that are strongly correlated with DEM errors. Also, it is
concluded that the least squares method can be rigorously utilized to establish the
functional relationship between the DEM errors and the significant GPS/inertial nav-
igation data components. The combined PCA and least squares method were validated
using the DEM model errors associated with airborne mapping system datasets using

Figure 9.
Section (3) difference between the targeted DEM error and modeled DEM errors.

Figure 10.
RMS errors for all sections before and after DEM error modeling.
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three across-track sections of the DEM errors datasets. The results show that the
combined PCA analysis and least squares method can be used as a powerful tool to
compensate for the DEM error produced by the GPS/inertial navigation data with
about 27% on average. Therefore, it is recommended to use the combined PCA anal-
ysis and least squares method to reduce the DEM errors associated with the DEM
model produced by the direct georeferenced airborne mapping system.
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