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Chapter

Theoretical Approach of the
Propagation of Electromagnetic
Waves through Carbon Nanotubes
and Behavior of Carbon Nanotubes
as Capacitor using Electric Hertz
Potential
Jay Shankar Kumar and Ashok Kumar

Abstract

The electromagnetic waves and its propagation through material medium
described by maxwell’s equations. We have identified that electromagnetic waves
propagate through carbon nanotubes according to electric hertz potential with solu-
tion of Helmholtz equation and satisfied by using the concept of Gaussian beam or
wave. When monochromatic electromagnetic wave propagates through a hollow sin-
gle wall carbon nanotube, its energy absorbed by walls of nanotubes just like a
capacitor because of carbon nanotubes have metallic as well as semiconductor char-
acteristic which is shown by density of state and lattice vector. It is verified by
Helmholtz equation and Schrödinger’s wave equation. Thus, the electromagnetic
waves can propagate through carbon nanotubes and carbon nanotubes absorb the
energy as a capacitor.

Keywords: carbon nanotube, electromagnetic wave, electric hertz potential,
Helmholtz equation, Schrödinger equation, Gaussian beam or wave, capacitor

1. Introduction

A new allotropes of carbon element is carbon nanotube which is in cylindrical form
and made by folding of graphene sheet of graphite. By passing time, the various types
of carbon nanotubes (carbon nano scrolls, carbon nano cones, carbon nano coils,
carbon nanoribbon, carbon nanofibers, etc.) by variousare formed by various pro-
cesses (Arc Discharge, Laser Ablation or Evaporation, Chemical Vapor Deposition
(CVD), Plasma Enhanced Chemical Vapor Deposition (PECVD), etc.). The carbon
nanotubes were discovered by S. Iijima in 1991 by fullerene synthesis [1, 2]. There are
two forms of carbon nanotube. One is single walled carbon nanotubes that made up of
rolling of graphene sheet and its dimeter vary from 0.7 to 3 nm and minimum dimeter

1



up to �0.4 nm. The other nanotubes are multiwalled carbon nanotubes that are made
up of multiple concentric cylinders and its dimeter range is of 10–20 nm and space is
available between two layers (3.4 Å).

In atomic structure of carbon, six electrons are arranged according to electronic
configuration 1s2 2s2 2p2 and designated as 1s2, 2 s, 2px, 2py, 2pz, if atoms bounded in
molecules. In graphite sheet, carbon atoms bound together by sp2 hybrid bonds and
similarly, fullerenes, carbon nanotubes, and graphene are also formed by sp2 hybrid
bonds [3]. Graphene is a single layer carbon atoms of graphite and has 1200 bond
angle in hexagons with electronic structure characterized by π-bonds linear dispersion
near Fermi surface (Figures 1–3). In a hexagonal lattice, the unit vectors a!1 and a

!
2 in

the real space can be written as:

a
!
1 ¼

1
2
a

ffiffiffi

3
p

, 1
� �

, a
!
2 ¼

1
2
a

ffiffiffi

3
p

, �1
� �

(1)

Figure 1.
Crystal structure of graphene with unit cell.

Figure 2.
Wigner-Seitz cell is a primitive cell which represents the Brillouin zone of the reciprocal lattice. To construct this
cell, at first join the lattice point passing through central point and then join the other two lattice points each sides
just like parallel the lines to both sides. The Brillouin zone of the graphene with location of the symmetrical points
K, M and Γ.
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Where, a represents the lattice constant and equal to
ffiffiffi

3
p

ac�c, here, ac�c shows the
bond length (0.144 mm) of carbon-carbon atom.

To describe quantum mechanical properties of the crystals in lattice the Brillouin
zone were introduced and we can also describe the behavior of electrons in a perfect
crystal on the concept of Brillouin zone. In reciprocal lattice space, a region where
closest lattice point of primitive cell is the origin is known as the Brillouin zone (BZ).
It is constructed by Wigner and Seitz and called Wigner-Seitz primitive cell i.e.,
Brillouin zone. In the Brillouin zone, the three symmetrical points is at the centre,
corners, and centre edge. We have

K ¼ nπ

a
,where,n ¼ �1,� 2,� 3,… :etc: (2)

The first and second Brillouin zone is defined between K ¼ � π
a to K ¼ þ π

a in which
electron has allowed energy value and K ¼ � 2π

a to K ¼ þ 2π
a which is forbidden zone.

Carbon nanotube is formed by chiral and translation vector using chiral angle with
indices (n, m) and (5, 5). Using Fourier series and transform and Schrödinger’s
equation, the Bloch theorem is determined with Brillouin zone. Bloch function helps
to determine the determinant equation for Schrödinger’s equation. The solution of this
determinant equation gives energy dispersion over tight binding which shows the
band structure of carbon nanotubes and taking wave vector components, metallic
character found near Fermi point of graphene with Fermi energy of electrons. The
density of state of carbon nanotubes is expressed by expanding the dispersion relation
[4] around the Fermi surface. We have the condition for semiconducting and metallic
carbon nanotubes near the K points that is proportional to the Fermi velocity
vf ¼ 8� 105 m=s
� �

of the electrons in the graphene.
The Helmholtz equation [5] is obtained by curl of Maxwell’s equations and its

solution gives the plane monochromatic transverse wave [6, 7]. Helmholtz equation in
cylindrical coordinate gives the Gaussian wave or beam and its spot size ensures that it
can propagate through the cylindrical carbon nanotube. A monochromatic electro-
magnetic wave as radiation is called Gaussian beam that provided by a laser source
[8]. The Gaussian wave represented by the amplitude function with very small spot
size propagates through a carbon nanotube [9]. The parameters of Gaussian wave are
the width, the divergence, the radius of curvature. The better beam quality and
intensity is represented by the smaller angle of divergence. The propagation distance
leads to intensity, spot size, radius of curvature and divergence [10].

When the wave travel through the carbon nanotube [11] then the inner surface of
the carbon nanotube absorbs the energy of the wave as a capacitor and shown by the
Schrödinger’s and Helmholtz relation using the work-energy theorem.

Figure 3.
The first two Brillouin zones of graphene for one dimensional.
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2. Chiral and translation vector

Rolling up of graphene along the chiral vector as

Ch
�! ¼ na1

!þma2
! (3)

Where, n andm are integers and a1
! and a2

! are lattice vectors. The two corners K and
K

0
are the location of Dirac cones in the Brillouin zone. In reciprocal space, K and K

0
are as

K ¼ 2π
3a

1,
1
ffiffiffi

3
p

� 	

, K0 ¼ 2π
3a

1, � 1
ffiffiffi

3
p

� 	

(4)

Where, a ≈1:42A°ð Þ is the distance of C-C.
In figure θ be the chiral angle between the chiral C

!
h and a

!
1 . The circumference of

tube equal to C
!
h given by

C
!
h ¼

ffiffiffi

3
p

2
a nþmð Þx̂þ 1

2
a nþmð Þŷ (5)

In magnitude,

jC
!
hj ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þm2 þ nm
p

(6)

The dimeter dT of the carbon nanotube obtained if ja!1j ¼ ja!2j ¼
ffiffiffi

3
p

ac�c (as)

dT ¼
ffiffiffi

3
p

ac�c

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þm2 þ nm
p

(7)

The chiral angle given as

cosθ ¼ mþ 2n
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þm2 þ nm
p (8)

And also tanθ ¼
ffiffiffi

3
p

m

mþ 2n
,0°

≤ θ≤ 30° (9)

If the chiral angle is 30° then n ¼ m and the structure is armchair. C
!
h is obtained by

the vector addition as C
!
h ¼ 5a!1 þ 5a!2 (in Figure 4) and now the translation vector T

!

is drawn perpendicular to the chiral vector Ch
�!

and expressed as (Figures 5–9)

T
!
¼ t1a

!
1 þ t2a

!
2 (10)

Where, t1 and t2 are components of vector T
!
and they are written as

t1 ¼
2mþ n

dT
, t2 ¼ �mþ 2n

dT
(11)

The Eq. (10) written as

T
!
¼ m� nð Þ

dT

ffiffiffi

3
p

2
ax̂þ 1

2
aŷ

� 	

(12)
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In magnitude,

In magnitude jT
!
j ¼ jC

!
hj
ffiffiffi

3
p

dT
(13)

In carbon nanotube the hexagons in unit cell of a n, mð Þ is given by

N ¼ 2 n2 þm2 þ nmð Þ
dT

(14)

3. Fourier series in carbon nanotubes

We have general Fourier series of sines and cosines for a periodic function f xð Þ
written as

Figure 5.
The crystal structure of the carbon nanotube with the armchair (5,5) and rectangle shows the unit cell of the

carbon nanotube and the angle between C
!
h and a

!
1 is 0< θ< 30° called the chiral angle.

Figure 4.
Rolling graphene sheet along the chiral vectors (a), (b) and (c) show the armchair (m,m) zig-zag (n,0) and the
chirl (n,m) nanotubes respectively.
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f xð Þ ¼ A° þ
X

f >0

Af cos
2πfx
a

� 	

þ
X

f >0

Bf sin
2πfx
a

� 	

(15)

Where, the f is the positive integer and Af and Bf are the real constants called

Fourier coefficients. Consider the electron number density n r
!
� �

is a periodic function

as f xð Þ in the direction of crystal axes which invariant under translation T
!
. Thus

n r
!
� �

¼ n r
! þ T

!� �

(16)

The factor 2π
a ensures that n xð Þ has a period 0a0 (Figure 6);

n xþ að Þ ¼ A° þ
X

Af cos
2πfx
a

� 	

þ
X

Bf sin
2πfx
a

� 	

¼ n xð Þ (17)

For this condition, 2fa is in Fourier space of the crystal and we can write the Fourier
transform as

n xð Þ ¼
X

f

nf e
i2πfx
a (18)

Where, the sum is over all integers: positive, negative and zero. Similarly, the

Fourier transform to periodic function n r
!
� �

in three dimensions with finding a vector

set G
!
, such as

n r
!
� �

¼
X

G

nGe
iG
!
∙ r
!

(19)

Where, G
!
is a reciprocal lattice vector and expressed as

G
!

¼ v1b
!
1 þ v2b

!
2 þ v3b

!
3 (20)

Where, v1,v2,and v3 are integers and b
!
1, b

!
2, and b

!
3 are the primitive vectors and

also axis vectors of the reciprocal lattice and have the property b
!
i ∙ a

!
j ¼ 2πδij, where,

δij ¼ 1 if i ¼ j and δij ¼ 0 if i 6¼ j.
The Fourier series for the electron density has the invariance under the crystal

translation as T
!
¼ t1a

!
1 þ t2a

!
2 þ t3a

!
3. From (19),

Figure 6.
The periodic function n xð Þ of period a for the Fourier transform.
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n r
! þ T

!� �

¼
X

G

nGe
iG
!
∙ r
!
eiG

!
∙T
!

(21)

4. The Schrödinger’s equation and the bloch theorem

We have Schrödinger’s wave equation in three dimensions as

� ℏ
2

2m
∇

2ψk r
!
� �

¼ ϵkψk r
!
� �

(22)

Where ϵk ¼ E� U , E is the kinetic energy and U is the potential energy. The
potential function U rð Þ has the period l of the lattice given as U rð Þ ¼ U rþ lð Þ . The
wave function to be periodic in three dimensions with period l as

ψ ρ, θ, φð Þ ¼ ψ rþ l, θ, φð Þ (23)

This is corresponding to ψ x, y, zð Þ ¼ ψ rþ l, y, zð Þ because of angles are made with
Cartesian axis. So, the form of a traveling plane wave given as

ψk r
!
� �

¼ eik
!
∙ r
!

(24)

Where k
!
is the wave vector and ¼ 0; � 2π

l ; � 4π
l . The solution of Schrödinger’s

wave equation for periodic potential given by Bloch as

ψk r
!
� �

¼ uk r
!
� �

eik
!
∙ r
!

(25)

Where uk r
!
� �

have the periods of the lattice with uk r
!
� �

¼ uk r
! þ T

!� �

¼ uk r
! þ l
� �

and uk is called the Bloch function. This expression (25) is the Bloch theorem
(Figure 7).

When lattice translation carries r! to r
! þ T

!
thenwe have the form of Bloch theorem as

ψk r
! þ T

!� �

¼ eik
!
∙T
!

ψk r
!
� �

(26)

Figure 7.
The periodic potential distribution for the crystal.
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The Schrödinger’s wave Eq. (22) also written as ψ ¼ ϵψ , where H,ψ , and ϵ are the
Hamiltonian, the total wave function and the total energy of electron in π-orbital of
graphene. The Bloch function uk from 2pz orbitals of atoms P and Q as

uP Qð Þ ¼
1
ffiffiffiffi

N
p

X

P Qð Þ
eik

!
∙ r
!

P Qð ÞX r
! � r

!
P Qð Þ

� �

(27)

Where X r
!
� �

is the orbital 2pz wave function for the isolated carbon atom.

5. Energy dispersion for carbon nanotubes

We have determinant equation for Schrödinger’s wave equation as

j HPP�ϵ HPQ

HQP HQQ�ϵ
j ¼ 0 (28)

Here HPP ¼
ð

X ∗ r
! � r

!
P

� �

HX r
! � r

!
P

� �

dτ ¼ ϵ0 (29)

and HPQ ¼ eik
!
∙ ρ1 þ eik

!
∙ ρ2 þ eik

!
∙ ρ3

� �
Ð

X ∗ r
!
� �

HX r� ρ1ð Þdτ

¼ γ0 e
�ikxaffiffi

3
p þ e

ikxa

2
ffiffi
3

p cos
kya

2

� 	� 	

(30)

By the symmetry of graphene lattice, HPP ¼ HQQ and HPQ ¼ HQP, now, we have
the solution of the Eq. (28) given as

ϵ ¼ HPP ∓ jHPQ j (31)

From the Eqs. (29)–(31), the obtained energy dispersion relation as follows

ϵ ¼ ϵ0 ∓ γ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4 cos
ffiffiffi

3
p

kxa

2

� 	

cos
kya

2

� 	

þ 4 cos 2
kya

2

� 	
s

(32)

Where γ0 is the tight-binding or transfer integral. The negative sign represents the
valence band of the graphene which is formed by π-orbitals bonding but the positive
sign indicates the conduction band that is formed by π

*-orbitals antibonding. The
energy dispersion of graphene is shown in Figure 8.

By expressing Kx and Ky in terms of components for band structure of carbon
nanotubes of wave vector perpendicular and parallel to the tube axis and substituting
in (32). We have

ϵ Kð Þ ¼ �



1þ 4 cos
3CxKa

2C
� 3πfaCy

C2

� 	

cos

ffiffiffi

3
p

Cyfa

2C
þ

ffiffiffi

3
p

faCx

C2

 !

þ 4 cos 2
ffiffiffi

3
p

CyKa

2C
þ

ffiffiffi

3
p

faCx

C2

 !
v
u
u
t

(33)
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Where K represents the wave vector along the axial direction and
Cx ¼

ffiffiffi

3
p

a nþ m
2

� �

and Cy ¼ 3
2 am. For carbon nanotubes, the condition to be metallic of

the allowed lines 2πf
Cy

� Cx

Cy
Kx

� �

cross one of the Fermi points of the graphene.

The band gap of the semiconducting carbon nanotubes depends on the diame-
ter as shown in Figure 9 and they are inversely proportional to each other. The
relationship between the band gap and the radius or as diameter can be obtained
in Figure 10 by closing the two lines to the Fermi point of the graphene and
given as (Figures 11–20)

ϵg ≃

ffiffiffi

a
p

RCNT
(34)

Figure 8.
Energy dispersion of the graphene in the reciprocal space along the symmetrical points.

Figure 9.
The bandgap and radius for the zig-zag carbonnanotubes. The bandgap decreases with increasing the diameter for
semiconducting carbon nanotubes.
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Figure 10.
Density of state as function of energy. The dashed curve shows the density at the finite temperature comparing with
the Fermi energy εF at the absolute temperature.

Figure 11.
Density of state for carbon nanotubes calculated from Eqs. (36) and (37) for the armchairs (11, 0) and (12, 0) of
the carbon nanotubes and computed from the tight binding.

Figure 12.
Radius of curvature around beam waist position of Gaussian wave at a distance of þzR and� zR from beam
waist. The point source is at beam waist along propagation, the radius of curvature is larger [9].
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Figure 14.
The Gaussian wave along the radial direction for various “z”.

Figure 13.
Radius of curvature of Gaussian beam as a function of the propagation distance. The radius of curvature of the
Gaussian beam is increased from 0mm to 2:99� 109mm for the propagation distance 0 mm to 12 mm.
Therefore, the radius of curvature represents the linear variation with distance [10].

Figure 15.
Guoy phase shift around the Rayleigh length on both sides of the waist if the beam is at origin. There is the π phase
shift in the Gaussian wave propagating from z ¼ �∞to z ¼ þ∞ relative to the plane wave called the Guoy effect.
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6. Fermi energy and density of state

In graphene, the energy of carbon nanotubes in the ground state of N electrons
described as the Fermi energy given as

Figure 16.
Angle of divergence with z – axis.

Figure 17.
Divergence of Gaussian beam as the function of the propagation distance. The Eqs. (58) and (59) repersents
divergence angle range 27:670 ≤ θ≤ 35:850ð Þ at the distance 3 mm to 4.5 mm. The divergence and the
propagation distance are proportional to each other [10].

Figure 18.
Figure (a) represents the intensity distribution as function of z with the spot size. Figure (b) represents the
amplitude and the intensity of Gaussian wave at beam waist with the dashed line and solid line respectively. They
have been normalized to the maximum value. Here, the value of the spot size L0 ¼ 0:1 mm. the horizontal line
shows the maximum amplitude by factor 1/e and the maximum intensity by factor 1/e2 [7, 9].
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εF ¼ ℏ
2

2m
Nπ

2l

� 	2

(35)

The Fermi function described by the probability f εð Þ for the particular energy level
ε by electron expressed as

f εð Þ ¼ 1

e
ε�μ

KBT þ 1
(36)

Where μ is a function of temperature called the chemical potential. At absolute
zero, we have μ ¼ εf if ε ¼ μ then f εð Þ ¼ 1

2 at all temperatures.
The density of states of carbon nanotubes expressed as

D εð Þ ¼
ffiffiffi

3
p

a2

2πR

X

K

ð

dK K � Kið Þj ∂ε
∂K

j�1 (37)

On expending the dispersion relation (33) around the Fermi surface, we have

Figure 20.
Plot total stored energy ϵtotal and Fermi energy εF.

Figure 19.
Plot energy ∆U verses wave vector k i.e., ∆U α k2. The construction in figure (b) represents the band structure of
crystal of carbon nanotube. The crystal potential as well as Hertzian potential

Q

e gives the band gap at A and A’
and at C.
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D εð Þ ¼ a
ffiffiffi

3
p

π2Rγ

XN

m¼1

jεj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε2 � ε2m

p (38)

Where εm ¼ j3mþ 1j aγ
2R

� �

for semiconducting carbon nanotubes and εm ¼ j3mj aγ
2R

� �

for metallic carbon nanotubes. The dispersion near K points is proportional to the
Fermi velocity of electrons in graphene, vf ¼ 8� 105 m=s as –

dε

dK
⃒K ¼

ffiffiffi

3
p

2
aγ0 ¼ ℏvf (39)

7. Maxwell’s equation and Helmholtz equation

The carbon nanotube is like hollow cylinder and the spaces are available as free
space in the carbon nanotube. So, the Maxwell’s free space equations are as

∇
!
∙D
!

¼ 0 (40)

∇
!
∙ B
!
¼ 0 (41)

∇
!
∙ E
!
¼ � ∂B

!

∂t
(42)

∇
!
∙H
!

¼ ∂D
!

∂t
(43)

Where D
!

¼ ε0 E
!

and B
!
¼ μ0 H

!
. Taking the curl of Eqs. (42) and (43) and using

(40) and (41), we have

∇
2 E
!
¼ μ0ε0

∂
2E
!

∂t2
(44)

And ∇
2 H
!

¼ μ0ε0
∂
2H
!

∂t2
(45)

These wave equations with components satisfy the eigen function wave Eq. (12);

∇
2
Y

¼ μ0ε0
∂
2Q

∂t2
(46)

The plane wave along z-direction, thus,
Q

will be the function of z and t i.e.,

Y

¼
Y

z, tð Þ ¼
Y

0

cosω t� z

C

� �

(47)

On deriving (47) and (49), we obtain

∇
2 þ k2

� �Y

¼ 0 (48)
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Where k ¼ ω
ffiffiffiffiffiffiffiffiffiffi
ε0μ0

p
and

Q

¼
Q

rð Þ is the electric Hertz vector. The Eq. (49) is
known as Helmholtz equation and the solution is given by

Y

rð Þ ¼ êze
ik
!
∙ r
!

(49)

Where êz is a unit vector along z-direction. Eq. (49) represents the plane wave in
transverse nature traveling through carbon nanotubes.

8. Gaussian wave

The Helmholtz Eq. (48) can also be written as

∂
2Q

∂x2
þ ∂

2Q

∂z2
� 2ik

∂π

∂z
¼ 0 (50)

Or

∇
2
T � 2ik

∂

∂z

� 	
Y

x, y, zð Þ ¼ 0 (51)

Where ∇2
T is the transverse gradient operator. The above Eq. (51) is termed as the

paraxial wave equation and expressed in cylindrical coordinate system as

1
r

∂

∂r
r
∂
Q

∂r

� 	

� 2ik
∂
Q

∂z
¼ 0 (52)

Where
Q

¼
Q

r, zð Þ and r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

is the transverse radial distance. The solu-
tion of Eq. (52) gives

Y

¼ e
�ikr2
2q zð Þ e�iP zð Þ (53)

Where q zð Þ ¼ q0 þ z

 �

is a complex variable within the reciprocal of Gaussian
width; q0 is the value of q at z = 0 and the imaginary number equal to izR, where
zR is a constant and a real part. So, q zð Þ is known as the complex radius of
curvature and it expressed as q zð Þ ¼ izR þ z and 1

q zð Þ ¼ z
z2þz2

R
� i zR

z2þz2
R
These are in

order for the electromagnetic wave intensity, I � j
Q

j2 to show r-dependence in

the transversal direction, if j
Q

r, z ¼ 0ð Þj2 ¼ e
�kr2
zR , where, the imaginary value of zR

has no radial dependence. zR is also called Rayleigh distance of Rayleigh range and
related to minimum spot size or minimum wave or beam waist, L0, of Gaussian
wave. P(z) gives the information to the phases of the waves. If q0 is real then we
have (Figures 12–18) [10];

Y

¼ e
�ikr2
2q rð Þ e�iP zð Þ (54)

Since e
�ikr2
2q rð Þ ¼ 1 and P(z) is not a function of r; the phase is changed fast with r and

the amplitude remains constant. We have e�iP zð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ z
zR

� �2
r

e
i tan �1 z

zR

� �

that
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represents amplitude and phase. A Gaussian wave propagating along z-direction in
single walled carbon nanotube whose distribution of amplitude on the plane z = 0 is
given by

j
Y

r, z ¼ 0ð Þj ¼ e
� r2

L2
0 (55)

Where L2
0 ¼ 2zR

k ¼ λ0zR
nπ ) L0 ¼ λ0zR

nπ

� �1
2 and zR ¼ nπL2

0
λ0

. The complete expression for
the Gaussian wave is

Y

r, zð Þ ¼
Y

0

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ z
zR

� �2
r e

� kzRr
2

2 z2þz2
Rð Þ e

�i
kzRr

2

2 z2þz2
Rð Þ e

�i kz� tan �1 z
zR

� �� �

(56)

This can be also written as

Y

r, zð Þ ¼
Y

0

L0

L zð Þ e
� r2

L2 zð Þe�i r2
2R zð Þ e�i kz� φ zð Þð Þ (57)

Where L zð Þ ¼ L0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ z
zR

� �2
r( )

is called the spot size and L0 is the minimum spot

size at the origin [7] and R(z) is the radius of curvature and equal to z 1þ z
zR

� �2
� 	

and

φ zð Þ ¼ tan �1 z
zR

� �n o

is the Guoy phase shift [12]. If ¼ zR, then we have the spot size

L zð Þ ¼ 1:414 L0. For the propagation of the Gaussian wave through the carbon nano
tube, the minimum spot size, L0, should be less than or equal to the radius of the single
walled carbon nanotube.

The minimum diameter in the terms of 1/e field points is shown by D0 ¼ 2L0. If
z≫ zR, the beam waist becomes ≃L0z=zR . In this case, the divergence angle or beam
spreading angle is found.

The divergence angle is defind (when the relation of L and z becomes linear) as;

θ0 ≃ tan θ0 ¼ L

z
¼ L0

zR
¼ λ0

nπL0
(58)

θ ¼ 2θ0 ¼ 4
π

λ0

n D0
(59)

Where θ0 is the half of the divergence angle, θ, of the beam or wave.
The intensity distribution of Gaussian wave is given by

I r, zð Þ ¼ I0

1þ z
zR

� �2 e
� 2r2

L2 Zð Þ (60)

Or I r, zð Þ ¼ I0
L0

L zð Þ

� 	2

e
� 2r2

L2 Zð Þ (61)

This represents the transverse intensity distribution. It is measured from the beam
centre perpendicular to the direction of propagation. The minimum spot size of the
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wave in the carbon nanotube at which the amplitude falls by a factor 1
e i.e., the

intensity reduces by a factor 1
e2.

9. Energy storage capacity of the carbon nanotubes

According to laws of conservation of energy, the kinetic energy of charge particle
is equal to the potential energy of charge particle. So, E� U ¼ U2 �U1 ¼ ∆U. The
Schrödinger wave Eq. (23) is also written as ∇

2 þ 2m
ℏ2 U2 � U1ð Þ

� �Q

¼ 0 and compare
with the Eq. (49). We have

k2 ¼ 2m
ℏ
2 ∆U (62)

∆U ¼ ℏ
2

2m
k2 (63)

By work-energy theorem, we have W ¼ ∆U . The distribution of charge on inner
wall of nanotube with Gaussian wave is q and Gaussian wave travels in the nanotube
with magnetic and electric field explained by Maxwell’s equation. So, we have electric
potential in terms of the electric Hertz potential

Q

e [11]. The work done by moving
charge of wave on the inner wall is given by

W ¼
Y

e

q ¼ 1
2
C
Y2

e

(64)

The total energy stored in single walled carbon nanotube is obtained as

1
2
C
Y2

e

¼ 4
π

λ

� �2 2l
Nπ

� 	2

εF (65)

This total energy also expressed as

ϵtotal ¼ 16
l

Nλ

� 	2

εF (66)

The capacitance of the carbon nanotube is expressed as

C ¼ 32
l

Nλ

� 	2

εF=
Y2

e

(67)

10. Conclusions

The crystal structure of graphene with lattice and chiral vector gives the metallic
and semiconducting character that is represented by various graphs and equation with
energy dispersion relation and density of state which are found by Bloch theorem,
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Fourier series and Schrödinger wave equation. The solution of Helmholtz equation
gives the plane monochromatic transverse wave and also Gaussian profile. We have
found the minimum spot size of Gaussian wave that ensures the propagation of wave
through the single walled carbon nanotube along the z-direction and verified by
various graphs. The Gaussian beam within the low divergence has better wave quality.
We have also found the relation between the energy and wave vector by using
Helmholtz and Schrödinger equation that gives us energy storage capacity of the
carbon nanotubes with the electric Hertz potential.

Summarizing, the plane monochromatic transvers Gaussian wave with minimum
spot size propagates through the hollow cylindrical carbon nanotube and the energy is
stored on the inner wall (or in Fermi surface of nanotube) as a capacitor. The charges
are accumulated on the surface with Hertzian potential. The stored energy is inversely
proportional to the square of the wavelength and directly proportional to the Fermi
energy. At minimum wavelength we have the higher energy.

A. Derivation of Helmholtz Wave Equation

We have ∇2Q ¼ μ0ε0
∂
2
Q

∂t2: The plane wave along z-direction, thus,
Q

will be the
function of z and t i.e.,

Y

¼
Y

z, tð Þ ¼
Y

0

cosω t� z

C

� �

Where ω ¼ 2πc
λ
then

∂
Q

∂t
¼ �ω

Y

0

sinω t� z

c

� �

or

∂
2Q

∂t2
¼ �ω2

Y

0

cosω t� z

C

� �

¼ �ω2
Y

¼ � 2πc
λ

� 	
Y

¼ �c2k2
Y

We have ∇2Q ¼ μ0ε0 �c2k2
Q� �

∇
2Q ¼ �k2

Q

since,μ0ε0 ¼ 1
c2

or ∇2 þ k2
� �Q ¼ 0This required wave equation is called the Helmholtz wave

equation.

B. Solution of Helmholtz wave equation

Let the origin of the cylindrical coordinate system rm, θm, zð Þ be located at the
point z ¼ 0 on the axis of the mth carbon nanotube in a bundle. So, the Helmholtz
wave equation in cylindrical coordinate system written as
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∂
2

∂r2
þ 1
r2

∂
2

∂θ
2 þ

1
r

∂

∂r
þ ∂

2

∂z2
þ k2

� 	
Y

m
rð Þ ¼ 0

Since
Q

m is a function of only r then 1
r2

∂
2

∂θ2
and ∂

2

∂z2
are neglected and let us

consider the solution of the above equation written as
Y

m
rð Þ ¼ R rð Þ ¼ R

Now, the Helmholtz wave equation is also written as

∂
2

∂r2
Rð Þ þ 1

r
∂

∂r
Rð Þ þ k2 Rð Þ ¼ 0

Let R ¼ eαr and differentiate it with respect to r then we have

∂R
∂r

¼ ∂

∂r
eαrð Þ ¼ αeαr

and

∂
2R

∂r2
¼ α2eαr

Putting these in the above equation and we can write

α
2eαr þ 1

r
αeαr þ k2eαr ¼ 0

or eαr α2 þ α

r
þ k2

n o

¼ 0

We have a bundle of carbon nanotubes, so, r ! ∞ and consider α
r has negligible

value. Above equation, therefore, written as

eαr α
2 þ k2


 �

¼ 0

α
2 ¼ �k2 ¼) α ¼ �ik

Now, we have

R ¼ e�ikr

Y

m
rð Þ ¼ e�ikr

In vector form

Y

m

rð Þ ¼ êze
ik
!
∙ r
!

This is solution of the Helmholtz wave equation and indicates the plane wave. It is
true for all type of the carbon nanotube. êz is the unit vector along the carbon
nanotube axis and at the right angles to the direction of propagation and shows the
transverse character of wave.
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