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Chapter

Neuronal Architecture  
and Functional Organization  
of Olfactory Glomeruli
Thomas Heinbockel

Abstract

In the antennal lobes of insects and olfactory bulbs of vertebrates, the pri-
mary processing of olfactory information occurs within specialized units, called 
glomeruli. Glomeruli are discrete areas of densely packed, fine neuropil, usually 
ensheathed in glia cells. Glomeruli are the sites of synaptic interaction between 
axons of olfactory receptor cells and dendrites of central olfactory neurons. This 
chapter reviews the functional significance of this neuronal architecture, the 
glomerulus, with particular emphasis on results obtained in the sphinx moth, 
Manduca sexta. How is neuronal circuitry of olfactory glomeruli functionally 
organized, what attributes of olfactory stimuli are analyzed in glomeruli and how 
are these attributes processed and encoded in them? Glomeruli have been found in 
different invertebrate groups, such as crustaceans and insects with the glomeruli in 
the antennal lobes and the deutocerebrum, and molluscs with subepithelial glom-
eruli in the tentacle, as well as in different vertebrate groups such as amphibians, 
birds, fish, and mammals with glomeruli in the olfactory bulb. The organization of 
primary olfactory centers into glomeruli in diverse species suggests that glomeruli 
have a common and fundamental function in the processing of information about 
chemosensory stimuli and that glomeruli across taxa may share similar means of 
processing olfactory input.

Keywords: antenna, behavior, brain module, CNS, insect, Manduca sexta,  
neural coding, olfaction, orientation, pheromone, smell, synaptic integration

1. Introduction

Glomeruli in the brains of insects and vertebrates are the morphological and 
physiological structures where the primary processing of olfactory information takes 
place [1]. Glomeruli are housed in the olfactory centers of insects, the antennal lobes, 
and in the olfactory bulbs of vertebrates. Their widespread presence in different taxa 
has been interpreted to suggest common functionality. Experimental evidence based 
on recordings from principal output neurons in olfactory glomeruli of vertebrates 
and invertebrates supports this notion [2, 3]. The striking structural similarity, as well 
as the similarity of the responses to odor stimulation between neurons in the insect 
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antennal lobe and vertebrate olfactory bulb, suggests that glomerular microcircuits 
across taxa may share similar means of processing olfactory input [1, 4, 5]. Studies on 
glomerular circuitry address the central question of the functional organization of 
olfactory glomeruli.

The antennal lobes of the sphinx moth M. sexta have emerged as a model system to 
determine mechanisms underlying olfactory information processing in early olfac-
tory centers such as the glomerular microcircuits. (1) In M. sexta, the antennal lobes 
house a male-specific olfactory subsystem. This subsystem is specialized to process 
information about the female sex pheromone [6]. Input and output relationships in 
this experimentally advantageous model system can be precisely defined. (2) Other 
glomeruli in the antennal lobes of M. sexta are clearly different in both function 
and morphology compared to the male-specific subsystem that comprises the mac-
roglomerular complex (MGC). The MGC consists of three glomeruli, the toroid-1, 
toroid-2, and the cumulus [7, 8]. (3) The MGC receives input from antennal sensory 
neurons [9] that are specifically tuned to one of the two essential components of the 
female sex pheromone [10].

The glomeruli of the MGC process information about the two essential pheromone 
components of the female sex pheromone. The components of the odor stimulus 
released by the female have been determined in terms of the concentration and ratio 
of the pheromone components. The number of neurons projecting from the MGC to 
higher brain centers is relatively limited. About 30 to 40 projection neurons (PNs) 
innervate the MGC, and about 860 PNs innervate all the glomeruli in the AL [11]. 
Many local interneurons (LNs) and PNs in the ALs have been described both morpho-
logically and physiologically [3, 8, 12, 13].

The goal of research on olfactory glomeruli is to understand the role(s) of indi-
vidual glomeruli, for example, the glomeruli that constitute the MGC in olfaction, 
namely, the toroid-1, toroid-2, and the cumulus, by analyzing how the neural circuits 
associated with these glomeruli process pheromonal information. The functional 
organization of the MGC can be studied by means of single-unit intracellular record-
ing, staining and laser scanning confocal microscopy, and more recently, imaging 
techniques, multi-unit recordings, and computational models [14–22]. This line of 
research attempts to address several topics: How do features of the stimulus determine 
pheromone-evoked response characteristics of MGC interneurons? How do MGC 
interneurons discern pheromone components in a complex odor blend? Can MGC–
PNs resolve and encode the naturally intermittent temporal structure of pheromonal 
stimuli? Do the two essential pheromone components serve specific and different 
roles? Answers to these questions will help define the functional role of glomeruli in 
olfaction and will aid our understanding of how different features of an odor stimulus 
are processed in the brain.

2. The chemical senses

The chemical senses are the oldest senses. The earliest living organisms monitored 
their environment with chemoreception in order to sense the availability of nutrients 
[23, 24] and thus to respond to different chemicals. Higher organisms face the chal-
lenge of reacting to various internal and external chemicals, for example, hormones, 
neurotransmitters, neural recognition molecules, and intra- and interspecific olfac-
tory, and gustatory signals [24, 25].
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The olfactory pathway starts with peripheral structures. In the case of vertebrates, 
olfactory receptor cells are located in the nasal cavity in the olfactory epithelium. In 
insects, sensilla on the antennae of insects houses olfactory receptor cells [26]. Two 
areas in olfactory research have been under heavy investigation: (a) the transduction 
mechanisms taking place at the olfactory receptor cells and (b) the synaptic mecha-
nisms acting at the first synaptic relay in the olfactory pathway, including synaptic 
plasticity and learning, that is, in the olfactory bulb (OB) of vertebrates and the 
antennal lobes (ALs) of insects [1, 27–30].

3. The glomerulus in olfaction

The structural unit of organization in the AL or OB is the glomerulus [24, 31–37], 
that is, the neuropil is arranged into discrete areas ensheathed by a glial envelope 
[38, 39]. In M. sexta, glial cells play an important role in the sculpturing of glom-
eruli, since early removal of glial cells results in an absence of these subunits [38]. 
Glomeruli are the sites of synaptic interaction between primary olfactory axons and 
dendritic arborizations of central olfactory neurons [40]. Unlike that observed in 
vertebrates, evidence for moths and cockroaches suggests that in insects, few or no 
synaptic interactions take place in the neuropil outside the glomeruli [41, 42].

The brain and nervous system can be considered as arrangements of modular 
structures. Glomeruli are a prime example of such modular structures that are 
repeated in a specific brain region. It was Camillo Golgi (1874, cited in [34]) who 
first noted glomeruli. Since his early discovery, other modular structures have 
been described. Examples include columns, barrels, barreloids, and blobs [33, 34]. 
Considerable variation has been described for these modular structures in different 
species. In closely related species, one of them can lacks such an iterated module of 
brain organization but still achieves the same behavioral functions as the species that 
has them [34].

Glomeruli have also been found in the cerebellar cortex and the thalamic regions 
of vertebrates [25, 43]. Olfactory glomeruli have a long evolutionary history as they 
have been described in phylogenetically old animal groups. These groups include 
marine crustacea, fishes, onychophora, myriapoda, and mollusca. Glomeruli 
appeared before animals transitioned from marine to terrestrial life forms [25].

Glomeruli are not only structural modules but also functional units [33, 44]. 
2-deoxyglucose (2-DG) studies in neonatal rat pups established a focal point in the 
dorsal part of the olfactory bulb, the modified glomerular complex. This is a small 
group of glomeruli involved in processing of suckling odor cues. In Drosophila 
melanogaster, 2-DG mapping of odor-induced neuronal activity in the ALs labeled 
distinct and histologically identified glomeruli [45, 46]. In insects, the macroglo-
merular complex has been established as the first central site where information 
about the female sex pheromone is processed [6, 47]. During odor stimulation of the 
rat olfactory epithelium, neighboring mitral/tufted cells, that is, the output neurons 
of the olfactory bulb that innervate the same glomerulus in the olfactory bulb, were 
frequently simultaneously excited or inhibited compared to cells that innervated 
different glomeruli [48].

The existing data indicates that glomeruli are functional units such that informa-
tion about odorants is represented in a spatial manner among glomeruli. When the 
olfactory epithelium is stimulated with most odorants, the resulting responses in the 



Neurophysiology - Networks, Plasticity, Pathophysiology and Behavior

4

AL or olfactory bulb are spatial gradients or patterns of activity in more than one 
glomerulus [23, 45, 46, 49–51]. Three measures of neural activation (voltage-sensitive 
dyes, the 2-DG method, and c-fos expression) have revealed that in mammals, dif-
ferent odors elicit overlapping but distinctly different patterns of glomerular activity 
[51–54]. In the cockroach Periplaneta americana, stimulation with the female sex 
pheromone evokes responses in a very limited number of neurons and glomeruli, 
whereas general odorants result in responses in different output neurons representing 
more than 10 out of 130 glomeruli [55]. In D. melanogaster, stimulation with complex 
odors as well as with individual odors results in a spatial pattern of 2-DG activity in 
different specific subsets of antennal lobe glomeruli [45, 46].

A synthesis of the diffuse as well as specific aspects of the primary olfactory 
projections to central sites came from Ken Mori et al. [56, 57]. They characterized 
individual mitral/tufted cells based on the range of odor molecules effective in 
activating each cell. Individual mitral/tufted cells showed excitatory responses to 
groups of molecules with similar chemical structure [57]. Imamura et al. [56] devel-
oped a model for the activation of individual mitral/tufted cells by a range of odor 
molecules. In the model that takes into account work in different research groups, 
an olfactory sensory neuron expresses one or, at most, a few different types of 
receptor proteins. Subsequently, a neuron is activated by odor molecules with simi-
lar structure. The olfactory pathway is thought to work with a one cell-one receptor 
rule [58] such that a sensory cell expresses only one among hundreds of possible 
molecular receptors [59]. Neurons with the same or similar receptor proteins send 
one axon each to one or a few glomeruli and thus define glomerular function [60, 
61]. The tuning specificity of the mitral/tufted cells thus reflects the specificity of 
the receptor protein [54, 56]. Recent studies have indicated that individual receptor 
probes hybridize to a small number of olfactory glomeruli. This suggests that axons 
of sensory neurons expressing the same olfactory receptor protein converge on 
only a small number of glomeruli [60, 61]. Together with the notion that individual 
mitral/tufted cells arborizing in single glomeruli have similar response specificities, 
the resulting picture is that each glomerulus appears to have a unique mixture of 
inputs [52]. This input, in turn, limits its odor specificity, also known as its molecu-
lar receptive range.

4. The antennal lobes of the Sphinx Moth M. sexta

The insect antenna consists of three segments, namely, the scape, pedicel, and 
flagellum. The entire length of the antenna has hairs or sensilla on its surface. On the 
first two segments, the sensilla houses mechanosensitive neurons. These project to 
mechanosensory centers in the deutocerebrum [62]. In the sphinx moth M. sexta, 
the long flagellum, divided into 85–90 annuli, is equipped with about 4x105 sensilla. 
These represent several modalities, such as mechanosensation, hygroreception, and 
olfaction [10, 63–65]. The sensory neurons in olfactory and possibly other anten-
nal sensilla send their axons to the antennal lobes (Figure 1). The sensory neurons 
converge onto central interneurons. In P. americana, the convergence ratio between 
olfactory sensory neurons and projection neurons can be as high as 5000 to 1, and in 
rabbits, the ratio between sensory neurons and mitral cells is about 1000 to1 [40, 67]. 
The antennal lobe of M. sexta contains about 64 spheroidal glomeruli [68, 69]. In male 
M. sexta, a macroglomerular complex located near the entrance of the antennal nerve 
into the antennal lobes has been identified (Figure 1) [6].
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The first glomeruli in insects were described in the deutocerebrum of the bee by 
Kenyon [25, 70, 71]. In M. sexta, a closer anatomical analysis of glomeruli revealed a 
complex substructure of discrete domains and laminae within individual glomeruli 
[7, 72]. In bees, however, glomeruli have a relatively simple organization [73].

In contrast to the large differences in the number of glomeruli among different ani-
mal species, insect antennal systems present highly invariant glomerular organizations 

Figure 1. 
This figure shows how antennal sensory neurons project to glomeruli in the antennal lobes of Manduca sexta. 
Sensory neurons were anterogradely labeled with rhodamine dextran. The diagram and images show frontal 
views. (a) Olfactory receptor neurons in long antennal trichoid sensilla project to the three glomeruli of the 
macroglomerular complex (MGC: C-cumulus, T1-toroid-1, and T2-toroid-2). (b) a schematic diagram illustrates 
how receptor neurons project to the antennal lobe. Receptor neurons from a trichoid sensillum project to the three 
glomeruli of the macroglomerular complex. (c) if receptor neurons in long trichoid sensilla and other antennal 
sensilla were labeled, axonal projections would go to the macroglomerular complex and ordinary glomeruli in 
the antennal lobes. Optical sections were taken at different depths in anterior to posterior direction through the 
antennal lobes shown from left to right. C – Cumulus, do – Dorsal, la – Lateral, T1 – Toroid-1, T2 – Toroid-2. 
Scale bar: 100 μm. From [66].
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with regard to shape, size, location, and number within a species [74]. This has been 
shown for a variety of species including the fruit fly Drosophila melanogaster [75, 76], 
sphinx moth M. sexta [68], moth Mamestra brassicae [31], bee Apis mellifera [77], and 
cockroach Blaberus craniifer [78]. This invariance was also found to be true for the iulid 
Cylindroiulus punctatus (Diplopoda) [79] and in a vertebrate, the zebrafish (Brachydanio 
rerio) [80]. The number of glomeruli in all of these species is relatively small (18 for 
C. punctatus to 174 in worker bees). It is more difficult to verify numerical invariance 
in vertebrates with several thousand glomeruli [55]. The only identified vertebrate 
glomerulus is the modified glomerular complex for detection of the maternal suckling 
pheromone in rats [81].

5. Morphology and immunocytochemistry of neurons in the antennal lobe

Three classes of interneurons are present in the antennal lobes [11, 82]: (1) local, 
amacrine interneurons (LNs), with arborizations limited to the antennal lobe; (2) 
projection neurons (PNs) that send axons to higher order brain centers; and (3) 
centrifugal neurons that send axons from higher order brain centers into the anten-
nal lobe (Figures 2 and 3). Sensory neurons from the antenna send their axon into 
one glomerulus only [9, 62] where it forms synapses with LNs, presumably mediated 
by acetylcholine [83]. The somata of antennal lobe LNs and PNs form three groups 
(lateral, medial, and anterior) [82]. There are about 360 LNs in each antennal lobe 
of M. sexta. They can innervate many, and perhaps all, glomeruli and appear to be 
mostly GABAergic [84, 85]. Different neurophysiological categories of local inter-
neurons have been observed with respect to patterns of postsynaptic activity [13]. 
Evidence for unidirectional synaptic interactions between local interneurons and 
projection neurons as well as for disinhibitory pathways between these two types 
of neurons was found [13]. About 860 PNs project axons out of the antennal lobe 
through various antenno-cerebral tracts to different parts of the protocerebrum, 
for example, the calyces of the mushroom body and the lateral horn of the protoce-
rebrum [11]. The third group of neurons, centrifugal neurons, is small in number 
and consists of a variety of cell types with unique morphologies, some of which 
innervate all glomeruli of one or both antennal lobes [82, 86]. The antennal lobe 
possesses a single serotonin-immunoreactive neuron [86]. This neuron has its soma 
in one antennal lobe, which innervates all glomeruli in the contralateral antennal 
lobe where it forms and receives synapses and has arborizations in the ipsilateral and 
contralateral protocerebrum [87].

Acetylcholine and GABA are the most prominent neurotransmitters in the 
antennal lobe [83]. Evidence that acetylcholine may serve as a transmitter has been 
reported for antennal sensory neurons [88] and some classes of projection neurons 
[89]. Acetylcholine may be released by primary afferent axons synapsing onto AL 
neurons [88, 90–93]. GABA is prominent in local interneurons and is also present 
in a subset of PNs [84]. GABA has an important role in the synaptic inhibition 
of PNs [85]. An IPSP is evoked when the antenna is stimulated with an odor. The 
IPSP is mediated by a chloride conductance and is sensitive to reversible blockade 
by picrotoxin and bicuculline. GABA hyperpolarizes neurons and inhibits their 
spontaneous nerve impulse firing. Several antennal lobe neurons are immunoreac-
tive for biogenic amines. These neurons have wide dendritic arborizations and 
are thought to have widespread effects. Possibly, these neurons mediate central 
modulation of synaptic activity or threshold levels within the antennal lobe [86]. 
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In LNs and PNs, several putative neuropeptides appear to be colocalized with clas-
sical transmitters [89].

6. The male-specific macroglomerular complex

In male M. sexta, the approximately 42,000 long trichoid sensilla commonly each 
contain two bipolar olfactory-sensory neurons that project to the macroglomerular 
complex (MGC) in the AL [9, 63–65]. Each of these two neurons is very sensitive 

Figure 2. 
Diagrammatic representation of sexually isomorphic glomeruli (G) and sexually dimorphic glomeruli in (a) 
male and (b) female Manduca sexta. (c) Laser-scanning confocal micrograph of an antennal lobe projection 
neuron in the moth antennal lobe of M. sexta. Image of a projection neuron in the macroglomerular complex 
(MGC-PN) with arborizations confined to the cumulus. The inset illustrates the organization of the antennal lobe 
with the macroglomerular complex (MGC) and other glomeruli (G). latLFG – Lateral large female glomerulus, 
medLFG – Medial large female glomerulus, smallFG – Small female glomerulus, C - cumulus, T1 - toroid-1, 
T2 - toroid-2, G – glomerulus, MGC – Macroglomerular complex, la – Lateral, do - dorsal. Scale bar: 100 μm. 
Modified from [66].



Neurophysiology - Networks, Plasticity, Pathophysiology and Behavior

8

Figure 3. 
The figure shows the intracellularly recorded physiological responses of labeled projection neurons in the antennal 
lobes of the sphinx moth Manduca sexta during antennal stimulation with pheromone. (a) this C15-specialist 
neuron responded with membrane potential inhibition to a stimulus that contained C15. This was followed by 
strong depolarization and again inhibition (third and fourth trace). Likewise, antennal stimulation with the 
pheromone blend of C15 + BAL evoked a mixed response. In contrast, stimulation with bombykal (BAL) evoked 
an inhibitory response. The antenna was stimulated with five 50-ms stimulus pulses at 5 Hz. The stimulus markers 
are depicted as black boxes beneath the records. (b) the membrane potential of the neuron was depolarized by 
injecting current through the recording electrode. As a result, the nerve impulse firing frequency increased, whereas 
the first stimulus pulse of BAL induced a membrane hyperpolarization and reduction in firing (inhibition). (c) 
the laser scanning confocal micrograph shows the morphology of two projection neurons in the antennal lobe. The 
neuron labeled in red, stained with biocytin, is described in figure panels (a) and (b), whereas panels (d) and 
(e) show the responses of the green, uniglomerular projection neuron, which is in Lucifer yellow (frontal view). 
C15-specialist neuron, the red neuron, has dendritic branches in the cumulus glomerulus of the macroglomerular 
complex and not in the toroid-1 or any other glomerulus. The green neuron sent dendritic branches into only 
one ordinary glomerulus. (d) Electrophysiological recordings from an antennal lobe projection neuron that 
innervated one of the ordinary glomeruli. When the antenna was stimulated with bomybkal, C15, or a blend 
of both pheromone components, the neuron responded with a reduction of the firing rate. As in panels (a) and 
(b), five identical stimulus pulses were delivered to the ipsilateral antenna at a frequency of 5 Hz. (e) Antennal 
stimulation of the same neuron with the pheromone blend resulted in inhibition, even when the membrane 
potential of the neuron was depolarized through current injection. The first antennal pheromone stimulus resulted 
in membrane hyperpolarization. C - cumulus; do - dorsal; G - ordinary glomerulus; la - lateral; me - medial; 
T1 - toroid-1; T2 - toroid-2. Scale bar = 100 μm. From [66].
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to stimulation with one of the two major female sex-pheromone components, 
bombykal ((E,Z)-10,12-hexadecadienal) and a hexadecatrienal ((E,E,Z)-10,12,14-
hexadecatrienal) [10]; that is, they have narrow molecular receptive ranges and 
constitute highly specific input channels.

In addition to the 64 spheroidal, ordinary glomeruli, the antennal lobe of M. sexta 
houses the sexually dimorphic MGC [69]. The MGC consists of at least three glom-
eruli (Figures 2 and 3) [7, 8, 16, 66]. One is donut-shaped (the “toroid-1”), and the 
other has a more globular structure (the “cumulus”). The third one (the toroid-2) is of 
unknown function and appears to have a donut shape as well. The cumulus is situated 
on the toroid and closer to the entrance of the antennal nerve. Projection neurons 
(PNs) with arborizations in the toroid-1 respond preferentially to antennal stimula-
tion with the principal pheromone component bombykal (Bal-specialist MGC-PNs), 
whereas PNs arborizing in the cumulus respond preferentially to the second key 

Figure 4. 
Laser scanning confocal images illustrating the morphological diversity of projection neurons in the antennal 
lobes of the sphinx moth Manduca sexta. (a) Two C15 (E,Z-11,13-pentadecadienal) -specialist MGC-PNs 
(projection neurons of the macroglomerular complex) with arborizations confined to the cumulus. While the 
branches of the two neurons apparently overlapped in certain parts of the cumulus (indicated in yellow), other 
parts were innervated by just one of the two neurons. (b) One C15 specialist MGC-PN arborizing in the cumulus 
(green), and one bombykal (Bal) -specialist MGC-PN arborizing in the toroid-1 (red). (c) One bombykal (Bal) 
-specialist MGC-PN arborizing in the toroid-1 (red), and two projection neurons (red and green) innervating 
ordinary glomeruli adjacent to the MGC. (d) Several MGC-PNs innervating either the cumulus (red) or the 
toroid-1 (green). C – Cumulus, T1 – Toroid-1, T2 – Toroid-2, G – Ordinary glomerulus, do – Dorsal, la - lateral. 
Scale bar: 100 μm. Modified from [16].
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component of the pheromone, a hexadecatrienal [8]. These neurons also respond to 
E,Z-11,13-pentadecadienal (C15), a chemically more stable mimic of the second key 
component of the sex pheromone E,E,Z-10,12,14-hexadecatrienal [10, 94] and are 
referred to as C15-specialist MGC-PNs.

Many AL neurons in M. sexta have been characterized morphologically and 
physiologically (Figures 3–5) [3, 4, 6, 11, 12, 85]. Neurophysiological studies of the 
pheromone-specific olfactory subsystem in male moths have focused on three proper-
ties of the sex-pheromone stimulus and on how these properties affect the central 
processing of sex-pheromone information [4, 12, 83]. The properties are the quality 

Figure 5. 
Morphology (frontal view) of antennal lobe projection neurons. (a) a C15-specialist MGC-PN sent dendrites 
into the cumulus, while the branches of another MGC-PN were confined to the toroid-2. (b) the axons of the 
neurons shown in (a) left the antennal lobe and projected via the inner antenno-cerebral tract to the ipsilateral 
protocerebrum where they sent collaterals into the calyces (Ca) of the mushroom body and (c) terminated in the 
lateral horn (LH). (d) another PN showed branches in an ordinary glomerulus adjacent to the MGC. Do - dorsal, 
la - lateral, C – Cumulus, G – Ordinary glomerulus, T1 – Toroid-1, T2 -toroid-2. Scale bar: 100 μm.
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or chemical composition of the pheromone blend, the quantity or concentrations of 
individual pheromone components, and the temporal structure of the stimulus or its 
intermittency. Odor stimuli such as pheromones exist in wind plumes in the form of 
filaments and blobs of different concentration.

7. Conclusions

An important issue in the organization and operation of the insect olfactory 
system is the functional significance of glomeruli in the antennal lobes. Research on 
the sphinx moth Manduca sexta has provided a firm foundation of technical experi-
ence and knowledge about an experimentally favorable model system that allows 
the study of glomerular structure and function with greater precision than has been 
possible in other species [95–97]. Specifically, glomeruli in the olfactory subsystem of 
male M. sexta, which are designated for pheromone processing with its anatomically 
and functionally identified, male-specific neuropil, contribute to our understanding 
of the neuronal architecture and functional organization of olfactory glomeruli.
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