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Chapter

Viral Diseases of Tomato – Origins, 
Impact, and Future Prospects with 
a Focus on Tomato Spotted Wilt 
Virus and Tomato Yellow Leaf Curl 
Virus
Stephen F. Hanson

Abstract

Tomatoes are affected by a number of viruses, with tomato spotted wilt virus 
(TSWV) and tomato yellow leaf curl virus (TYLCV) being two of the most damag-
ing. TSWV and TYLCV have severely impacted tomato production worldwide for the 
past several decades at levels that led to both of these viruses being included in the list 
of top ten most important plant viruses. While they were first described in the early 
1900s, both of these viruses emerged in the 1980s to become the severe and persistent 
problems they are today. The emergence of both viruses was facilitated in part by the 
emergence and expansion of more efficient insect vectors. Natural sources of resis-
tance, especially from wild relatives of tomato, have provided some measure of control 
for both viruses to date. This chapter summarizes the origins, emergence, and impacts 
of these viruses, along with current approaches and future prospects for control, 
including both natural and engineered resistance.

Keywords: tomato spotted wilt virus, TSWV, tomato yellow leaf curl virus, TYLCV, 
RNAi, SIGS, spray-induced gene silencing, RNA interference

1. Introduction

Tomato (Solanum lycopersicum) is a member of the Solanacea family of plants that 
also includes potato, chili and bell peppers, and eggplant. Tomato is a ubiquitous crop 
produced worldwide for a variety of uses ranging from high value fresh fruit to use 
in a variety of processed products including ketchup, pastes, soups and stews, and 
canned pasta sauces. Tomatoes are grown under a variety of conditions including 
open fields, plastic or green houses, screenhouses, and indoor growth rooms.

Tomatoes are one of the most important vegetable crops in the world, valued for 
both their flavor and nutritional qualities including being rich in vitamins A and 
C as well as minerals like calcium, potassium, and phosphorus. According to FAO 
statistics, tomatoes are the most widely produced vegetable, with production levels 
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of ~170 million tons annually and accounting for ~16% of all vegetable production 
worldwide [1] coming from ~5 million cultivated hectares. Tomato production has 
been steadily increasing over recent decades, with China, the US, and India being the 
largest producers.

Tomato was likely domesticated by indigenous peoples in Mexico and became 
an important vegetable crop in Central America prior to the arrival of Europeans. 
Tomatoes were first introduced to Europe by conquistadors returning from the 
Americas then spread across Europe and the Spanish empire. Tomatoes spread quickly 
around the globe and even reached China during the 16th century [2].

Tomatoes are affected by many diseases, like all domesticated crops that have 
been extensively bred and grown in high-density monoculture. Diseases affecting 
tomato include those caused by bacteria, fungi, viruses, and nematodes. Viruses cause 
some of the most consistent and severe losses of tomato crops (reviewed in [3–5]). 
This chapter will focus on two viruses that have caused serious problems in tomato 
production for several decades, tomato spotted wilt virus (TSWV) and tomato yellow 
leaf curl (TYLCV). Both of these viruses were included in the top ten most damaging 
plant viruses, with TSWV and TYLCV occupying the second and third spots on the 
list, respectively [6].

TSWV and TYLCV provide interesting contrasts on a number of levels includ-
ing genome structure (RNA for TSWV and DNA for TYLCV), the origin of TSWV 
appearing to have been disseminated around the globe along with tomatoes and/
or peppers, while TYLCV has emerged more recently and its spread has been partly 
facilitated by humans; TSWV has an extremely broad host range that includes plants 
and animals, while the host range of TYLCV is much more limited. These two viruses 
also share some common themes including the role of insect transmission in their 
emergence as leading pathogens, the strong potential for natural resistance to play a 
role in controlling damage, and the potential for biotech/genetic engineering solu-
tions to reduce damage caused by these viruses. This chapter will examine some of 
the commonalities and differences between TSWV and TYLCV as well as current and 
potential future prospects for control of these highly damaging pathogens.

2. Tomato spotted wilt virus background

TSWV causes severe losses in tomato and many other crops worldwide. Symptoms 
of TSWV in tomato include spotting, often ring spots, and uneven ripening that 
renders the fruit unmarketable, along with bronzing and wilting of vegetative tissue 
(Figure 1). The first known report of spotted wilt disease on tomatoes was in 1915 
in Australia [7]. This spotted wilt disease was shown to be thrips transmitted in 1927 
[8] and attributed to a virus in 1930 [9]. TSWV was subsequently reported in various 
regions around the glove, including Hawaii and Europe, where it appeared sporadi-
cally for several decades until emerging as a more regular and profound problem 
in the 1980s. Since that time, TSWV has become one of the most damaging plant 
viruses in the world, being cited for regularly causing over $1 billion in annual crop 
losses worldwide since the mid-1990s [10] and being recognized as the second most 
damaging plant virus in the world [6].

TSWV is a member of the Tospovirus genus within the family Bunyaviridae. 
TSWV virions are pleomorphic pseudo-spherical, with a diameter ranging from ~70 
to 120 nm, and are enveloped in a host-derived membrane [11]. The RNA genome 
segments inside the envelope are encapsidated in N protein [12]. The virions also 
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contain the L protein, which is the viral RNA-dependent polymerase [13]. TSWV is 
mechanically transmissible to most plant species it infects, and plants can be infected 
with either virions or membrane-free ribonucleoprotein complexes that contain the N 
protein-encapsidated genome segments [14].

Tospoviruses have a tripartite negative sense (or ambi-sense) genome (Figure 2). 
The three genomic RNAs are designated by size as large (L), medium (M), and small 
(S) RNAs. The L RNA have an entirely negative sense, while the M and S RNAs have 
ambi-sense and encode genes in both the viral genome sense and viral complement 
senses [15]. The TSWV genome codes for five proteins overall [16]. The L protein is 
coded on the viral or negative sense on the L RNA and is the viral RNA-dependent 
polymerase [13, 17]. The M RNA has ambi-sense and codes for the NSm protein in 
the genome sense and the polyprotein that is processed into the two structural glyco-
proteins in the genome complement sense. The non-structural protein NSm has been 
shown to promote cell to cell and long-distance movement during infection [16, 18]. 
The glycoproteins were formerly referred to as G1 and G2 but are now denoted as Gn 
and Gc, indicating their N- or C-terminal location in the precursor polyprotein. The 
glycoproteins decorate the surface of the virions and are required for thrips transmis-
sion [19, 20]. The ambi-sense S RNA codes for the nonstructural protein NSs in the 
genome sense and the N protein in the genome complement sense. The NSs protein 
promotes thrips transmission and also functions as a suppressor of RNA silencing 

Figure 1. 
Tomato spotted wilt on tomato and chili pepper fruit. Typical symptoms of TSWV, including uneven ripening 
and spotting of fruit on tomato (left) and chili pepper (right).

Figure 2. 
Genome structure of TSWV. Cartoon representation of the tripartite TSWV genome showing the L, M, and S 
RNAs approximately to scale. Yellow boxes show positions of open reading frames in the genomic (L, NSm, NSs) 
and genome complement (glycoprotein precursor and N) senses.



Tomato - From Cultivation to Processing Technology

4

[21, 22], while the N protein is the nucleocapsid that encapsidates viral RNA to 
form RNPs [23]. The N protein is also required for local spread, suggesting that 
RNPs may be the functional viral unit involved in local spread [24].

Reverse genetic systems have been a valuable tool that enabled in vitro infection 
from cloned cDNA and DNA copies of plant virus genomes, mutational analysis of 
virus genes, evaluation of chimeric viruses, and more. Unfortunately, reverse genet-
ics systems have been unavailable or difficult to develop for viruses with negative or 
ambi-sense genomes, including TSWV. The recently reported rescue of TSWV from 
cloned cDNAs is an exciting step forward that will enable reverse genetic analysis of 
TSWV to TSWV researchers [25].

TSWV has an extremely broad host range and is a rare case of a virus that infects 
hosts in two different kingdoms as it replicates in both plants and its thrips vector 
[26]. This observation led to the speculation that TSWV may be a thrips-infecting 
virus that evolved to also infect plants, which may partially explain its severity as a 
plant virus. For plants, the host range of TSWV includes over 1000 different plant 
species in 82 botanical families encompassing both monocotyledonous and dicoty-
ledonous plants [27]. This extremely broad host range likely contributes to TSWV 
disease persistence since there is a high likelihood that alternate hosts will be present 
even when susceptible crops are not being grown.

TSWV is transmitted by at least 10 different species of thrips with Frankliniella 
occidentalis, commonly known as the wester flower thrips, being the most efficient 
vector species [28, 29]. Transmission is circulative and propagative [30, 31]. While 
adult thrips can acquire TSWV, they are unable to transmit it, and transmission 
only occurs when thrips acquire TSWV as first- or second-stage larva [29, 32, 33]. 
While adult thrips can acquire TSWV, they are unable to transmit; thus, the acqui-
sition of TSWV by adult thrips is a dead end for TSWV. Thrips larvae can acquire 
TSWV with acquisition access periods as short as 15 min although transmission 
efficiency increases with longer acquisition access periods, and an acquisition 
period of 4 days was reported to result in 74% of emerging adult thrips being 
competent for TSWV transmission [34]. Thrips that acquire TSWV remain infected 
and able to transmit TSWV for life due to the circulative propagative nature of 
transmission.

TSWV is thought to be acquired by thrips via an animal virus-like receptor-medi-
ated interaction that is rare among plant viruses. The demonstration that a truncated 
soluble form of the TSWV glycoprotein Gn interferes with thrips transmission of 
TSWV, presumably by blocking TSWV receptors in the thrips midgut, suggests that the 
glycoproteins are the viral proteins that mediate virion acquisition [35]. Identification 
of thrips receptors for TSWV has been an area of interest since it may lead to strategies 
for blocking thrips transmission of TSWV. While early reports of thrips proteins that 
interact with TSWV [36] generated some excitement, these initial leads appear to have 
been dead ends (S. Hanson, unpublished). More recent work has identified different 
thrips proteins that interact with TSWV virions or glycoproteins and are therefore 
promising candidates for receptors that mediate TSWV acquisition in thrips [37].

TSWV was described as occurring in many different parts of the world going 
back to the mid-1900s. This worldwide distribution as a minor pathogen before 
emergence as one of the most damaging agricultural viruses suggests that TSWV 
may have spread around the world with host plants like tomato and pepper as they 
were brought back from meso-America and subsequently spread around the globe. 
Molecular phylogeny studies that have shown that TSWV often exists as a stable 
populations in geographically isolated regions and may have spread around the world 
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with tomatoes and/or peppers when these plants were introduced to Europe and 
beyond by Spanish explorers returning from the Americas [38]. The emergence of 
TSWV as a more widespread and damaging disease started in the 1980s, likely due 
to the spread of the more efficient western flower thrips vector into areas that were 
already infested with TSWV.

3. TYLCV background

Serious outbreaks of tomato yellow leaf curl disease were reported in the late 1920s 
in the Jordan Valley [39]. Typical symptoms of TYLCD include mosaic chlorosis and 
stunting of affected plants (Figure 3). Since then, numerous outbreaks of TYLCD 
happened around the Mediterranean in the 1960s. From there, it spread throughout 
the Middle East to Central Asia, Africa, and the Americas. TYLCV is now considered 
to be ubiquitous across tropical, subtropical, and temperate regions [40]. During 
the 1980s, outbreaks of TYLCV became more common and widespread, with some 
being noted as causing up to 100% loss in affected areas of Italy and the Dominican 
Republic [41, 42]. All of this led to TYLCV being recognized as one of the most severe 
viral pathogens of tomato worldwide [43, 44] and to TYLCV being ranked the third 
most important plant virus in the world [6].

TYLCV is a member of the geminiviridae family, characterized as having single 
stranded genomes that replicate via a rolling circle type of mechanism and unique 
twinned icosahedral capsids (reviewed in [45]). There are nine recognized genera 
within the geminiviridae, and TYLCV is part of the begomovirus genus, which is 
characterized as being transmitted by whiteflies and infecting dicot plants [46]. The 
large number of individual viruses within the begomovirus genus has led to several 
revisions for how groupings are determined and individual viruses are named within 
this group [47, 48]. The begomovirus genus contains numerous distinct tomato-
infecting members, with the TYLCV subgroup being recognized as one of the most 
damaging to agriculture [47]. With so many closely related members, the TYLCV 
subgroup is often treated as a complex of closely related strains that are individually 
identified by including the location where the strain was recognized in the name, 
such as for tomato yellow leaf curl sardinia virus denoted as TYLCSV (recent list-
ing in table 1 of [47]). In addition to the large number of strains identified to date, 
mixed infections that produce recombinant/chimeric variants are believed to happen 
frequently [49].

Figure 3. 
TYLCV symptoms. Typical symptoms of TYLCV on tomato, including stunted plants (left) and mosaic chlorosis 
(right).
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TYLCV was the first member of the begomovirus genus with a monopartite 
genome, with most begomoviruses having bipartite genomes (Figure 4). The genome 
of TYLCV is ~2.7 Kb and codes for genes in both the viral and complementary senses 
[50]. The relatively small and simple nature of geminivirus genomes has facilitated 
extensive reverse genetic analysis via infectious DNA clones that have been obtained 
for many geminiviruses including TYLCV.

The viral sense codes for two open reading frames (ORFs), with V1 encoding the 
capsid protein and V2 coding for a multifunctional protein that functions to both 
facilitate movement and suppress RNA silencing [51, 52]. The genome complemen-
tary sense strand encodes four overlapping ORFs that have broad functions in viral 
replication, transcription, and host interactions. The C1 ORF encodes the replication-
associated protein that contains ATPase and DNA nicking domains [53]. The C1 pro-
tein promotes rolling circle replication directly by initiating and terminating rolling 
circle replication via DNA nicking and ligase activities and indirectly by recruiting 
host factors involved in viral DNA replication. The C2 ORF codes for a transcriptional 
activator protein (TrAP) that regulates early and late gene expression. The C3 ORF 
codes for a replication enhancer protein (Ren). The C4 ORF is involved in symptom 
development and movement [54]. Like all geminviruses, TYLCV contains a large 
intergenic region that facilitates bidirectional transcription and contains the origin of 
replication, including a requisite stem-loop sequence, where rolling circle replication 
begins and ends.

TYLCV, like all begomoviruses, is transmitted by whiteflies (Bemisia tabaci) 
in a circulative manner (reviewed in [55]). Acquisition and inoculation can both 

Figure 4. 
TYLCV genome. Cartoon representation of the circular ssDNA genome of TYLCV. Open reading frames are 
shown in yellow. The large intergenic region containing the origin of replication and bidirectional promoters is 
shown in red.
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be as quick as 15 minutes. While several B. tabaci biotypes are able to transmit 
geminiviruses, the emergence and spread of the B biotype that is highly efficient at 
transmitting geminiviruses played a key role in increasing the spread and severity of 
geminivirus diseases, including TYLCV, that started in the 1980s.

4. Management of TSWV and TYLCV

In spite of many differences in virus biology, the factors that lead to the emer-
gence of these viruses and measures for control share a lot of commonalities. A great 
deal of work has gone into reducing losses caused by TSWV and TYLCV over the past 
few decades, with some promising advances, although much remains to be done as 
both viruses still cause extensive losses in tomatoes at present. Standard IPM-based 
practices, especially those that limit insect vectors, are widely used for controlling 
both TSWV and TYLCV [56–58]. Although these IPM-based approaches can produce 
modest reductions in disease, they are not able to prevent all diseases. Breeding for 
disease resistance has shown some success for both TSWV and TYLCV, and thus, 
resistance breeding programs are likely to continue as a focus into the future. While 
not broadly adopted at present, genetic engineering (GE) has shown great poten-
tial for controlling both TSWV and TYLCV. The high cost of developing GE lines, 
extensive regulatory requirements, and concerns about consumer acceptance of GE 
crops have severely limited the adoption of these approaches for control of diseases 
in agricultural crops (reviewed in [59]). Thus, GE-based approaches hold great 
promise for controlling diseases if GE crops become more widely accepted for use in 
agriculture.

Since the emergence and expansion of more efficient vector species was a major 
driver in increasing damage caused by these viruses, a number of approaches, 
especially integrated disease management approaches, have focused on reducing 
populations of insect vectors or managing production aspects like time of planting to 
reduce exposure of plants to viruliferous insect populations [58, 60]. Strategies based 
on insect vector control remain challenging for several reasons, including the lack of 
effective insecticides, the rapid evolution of insecticide resistance, the fact that both 
thrips and whiteflies are successful on a number of alternate hosts, and very quick 
transmission when viruliferous insects enter agricultural fields.

5. Genetic resistance

Natural resistance has been a highly successful and long-relied-upon strategy for 
controlling many plant pathogens. Often, wild relatives are found to contain sources 
of resistance that can be introgressed back into domesticated lines where resistance 
has been lost.

Several resistance genes have been described for TSWV. These include the single 
dominant R genes like the Tsw gene from Capsicum chinense and the Sw-5 from 
Lycopersicon peruvianum that have provided commercially useful resistance to TSWV 
resistance in tomato [61–63]. Both of these genes confer a typical hypersensitive 
response (HR)-based resistance that usually prevents systemic infection by stopping 
pathogens at the site of inoculation [64]. Molecular studies on TSWV strains with 
re-assorted genomes were used to determine that the NSm gene is the avirulence 
determinant recognized by the Sw-5 gene [65].
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Natural resistance genes have also been described for several geminiviruses, with 
many of the resistance genes coming from non-domesticated relatives (reviewed in 
[66]). This is especially true for TYLCV [66]. The tomato relative Solanum chilense is 
noted as the most common source of TYLCV resistance genes identified to date [66]. 
At least twelve different sources of resistance to TYLCV were described as of 2020 
(summarized in [67]). The Ty-2 gene appears to be a canonical R gene with typical 
nucleotide binding (NB) and leucine-rich repeat (LRR) regions [68], while others 
are clearly not classical R genes, but are rather genes involved in RNA metabolism, 
basic metabolism, cell status sensing, or signaling. The Ty-1 and Ty-3 resistance 
genes appear to be alleles of a gene [69] that encodes for RNA-dependent polymerase 
and cause increased cytosine methylation in replicated genomes [70]. Members of 
the WRKY group III transcription factors have been shown to play a role in TYLCV 
defense signaling [71]. Still other genes involve in hexose transport or other metabolic 
processes [72].

Unfortunately, single dominant R genes tend to have limited durability and are 
often overcome as pathogens evolve to escape the resistance. This is the case for 
many of the resistance genes described above. Resistance breaking strains of 
TSWV that overcome the Sw-5 genes have emerged several times independently 
in different areas including Europe, the US, and Australia [73–75]. Multiple 
independent cases of resistance breaking TSWV variants have also been reported 
for the Tsw genes [61, 76]. Resistance breaking has also been observed for several 
of the described TYLCV genes. Ty-2 mediated resistance was reported to be 
overcome by TYLCV-Sardinia [77] and an isolate of the mild strain of TYLCV [78]. 
The Ty-1 gene has been shown to be overcome occasionally under high disease 
pressure [79].

The generation of resistance breaking strains does not mean that R genes are 
not useful for control of TSWV and TYLCV. On the contrary, genetic resistance has 
proven to be one of the most effective tools for limiting TSWV and TYLCV losses to 
date. And the generation of resistance breaking strains is both typical and expected 
for any single dominant R gene against any evolving pathogen. For R genes to provide 
long-term utility, they need to be cycled through, with tomorrow’s R genes being 
discovered while today’s are in use. Fortunately, wild relatives of tomato appear to 
be a robust source for the discovery of new R genes that may be able to supply novel 
sources of genetic resistance to these viruses well into the future. This is evidenced 
by one recent study that has evaluated ~700 accessions derived from 13 wild tomato 
species, where ~140 of the lines were symptom free after inoculation with TYLCV 
[66]. Based on this, it is likely that wild species will continue to be a robust source of 
natural resistance genes that will help in reducing TSWV- and TYLCV-caused losses 
for the foreseeable future.

It should also be noted that while R genes are the most common form of resistance 
gene found historically, single dominant R genes are not the only type of genetic resis-
tance to pathogens. There are several examples of multigenic resistance and tolerance 
that provide long-term stable reductions in pathogen losses. One current example is a 
multigenic field resistance that appears to be providing long-term durable control of 
TSWV in peanuts [80]. Sequence-level population analysis of multiple TSWV genes 
did not detect any resistance-related selection in TSWV populations, indicating that 
this multigenic resistance is likely to be durable. While this resistance appears to be 
based on high-level tolerance, it provides commercially useful control of TSWV in 
peanuts, a crop that suffered serious losses from TSWV prior to deployment of this 
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resistance. Future work using marker-assisted breeding and similar approaches may 
be useful for developing tomato lines with similar multigenic resistance to TSWV and 
TYLCV in the future.

6. Engineered resistance

Genetic engineering is an approach that has proven useful for developing resis-
tance to many plant pathogens including many plant viruses. This is true for TSWV 
and TYLCV, where numerous approaches for creating engineered resistance have 
been reported over the past several decades. While several approaches have been 
described, gene silencing/RNAi approaches (reviewed in [81]) are the most common. 
Despite promising research results, genetically engineered virus resistance has not 
been widely adopted due to several barriers, including the high costs for the develop-
ment of commercial lines approved for human consumption and public resistance to 
GMO crops (reviewed in [59]).

The first description of engineered resistance to TSWV was described in 1991 [82]. 
Since that time, several additional examples of engineered resistance to TSWV have 
been reported, including the use of chimeric RNAi-inducing genes that confer broad 
spectrum tospovirus resistance [83, 84]. Despite these promising results, engineered 
resistance to TSWV has yet to be deployed in commercial crops.

Numerous examples of engineered resistance have also been described for 
geminiviruses in general and TYLCV in particular (reviewed in [85]). Similar to 
TSWV, the first reports of engineered geminivirus resistance also date back to the 
1990s, with many of these attempts using virus-derived resistance targeting the 
viral genes involved in replication, movement, or encapsidation [86–88]. Examples 
also include numerous descriptions of anti-sense RNA- and RNAi-based resistance. 
There are also some interesting examples of non-pathogen-derived resistance, 
including the use of peptide aptamers that interfere with the function of geminivirus 
replication-associated proteins that were found to confer high-level tolerance to 
several diverse begomoviruses, including TYLCV and tomato mottle virus [89]. Still 
other approaches have targeted host functions like those involved in modulating 
host defenses [90, 91]. Approaches that modulate host resistance responses have also 
shown promising results.

Geminiviruses are one rare example where engineered resistance has been 
approved and deployed in crops produced for human consumption [92]. In this case, 
common beans engineered to express an RNAi construct targeting the Rep gene of 
bean golden mosaic virus (BGMV) proved to be highly resistant to begomoviruses 
affecting bean production in Brazil [93]. The lack of natural resistance sources for 
BGMV, in spite of decades of screening, made engineered resistance an attractive 
alternative for BGMV. Extensive multi-year field testing showed that this gene 
effectively protected common beans from BGMV-caused losses, which had previously 
reduced yields by 40–100% [94]. So far, this resistance is only approved for use in 
Brazil. The effectiveness of this approach for controlling BGMV-caused losses, and 
similar levels of conservation among the Rep genes of TYLCV isolates, suggests that 
this approach has strong potential for controlling TYLCV-caused losses. While genetic 
engineering holds great promise for controlling TYLCV, the substantial barriers asso-
ciated with development costs, regulatory approval, and consumer acceptance must 
still be overcome before engineered resistance approaches can be broadly utilized.
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The time, cost, and consumer acceptance barriers to deploying genetically 
engineered resistance in crop plants intended for human consumption have spurred 
innovation aimed at producing similar resistance mechanisms without using trans-
genic plants. Promising approaches in this area include the use of exogenous double-
stranded RNAs that are sprayed on plants to induce an RNAi response in a process 
referred to as spray-induced gene silencing (SIGS; [95]). SIGS has shown promise 
against several viral pathogens including TSWV [96]. Another similar approach 
uses endophytic bacteria engineered to express dsRNAs that can induce and RNAi 
response in plants. This bacterial-mediated RNAi, sometimes referred to as transk-
ingdom RNAi, has shown promise in reducing infection by fungal and viral plant 
pathogens [97]. It will be interesting to see if SIGS or transkingdom RNAi evolve into 
useful technologies that provide control of plant pathogens while successfully skirting 
the barriers that have prevented more widespread adoption of genetically engineered 
approaches for control of plant pathogens like TSWV and TYLCV.

7. Summary

Tomatoes are the most widely produced vegetable on earth, and viruses have been 
a persistent problem in tomato production for as long as tomato has been cultivated 
as a crop. TSWV and TYLCV have been serious yield-limiting constraints on tomato 
production for the past several decades. Tried and true practices like traditional 
resistance breeding and integrated disease management have allowed continued 
production of tomatoes in spite of the severe losses these viruses can cause. It is likely 
that both of these viruses will be better controlled in the future based on the rich body 
of knowledge developed to date for these viruses. In particular, the abundance of 
natural resistance sources that are known to be present in wild relatives will continue 
to be a valuable source of natural resistance genes. Biotech is also likely to play a 
bigger role in the future on several levels. Marker-assisted breeding and other related 
approaches will speed introgression of natural resistance resources into commercial 
cultivars. And if (or when) the cost and societal acceptance barriers are reduced, 
approaches like engineered resistance and technologies like SIGS are certain to reduce 
virus caused losses.

© 2022 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 
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