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Chapter

Phosphate Solubilizing 
Rhizobacteria as Sustainable 
Management Strategy in 
Agrobiology
Aqsa Tariq and Ambreen Ahmed

Abstract

Phosphorous limits agricultural productivity due to its limited plant availability. 
Use of synthetic phosphate fertilizers disturbs soil fertility and ecosystem ecology as it 
contaminates environment. Plants have developed certain mechanisms to respond to 
P-scarcity, which involve release of specific chemical messengers through root exudates 
that attract rhizospheric phosphorbacteria to colonize plant root vicinity. Thus, use 
of phosphate-solubilizing bacteria/rhizobacteria (PSB/PSR) as biofertilizers is a safer 
approach toward sustainable agrobiology. These PSR are capable of solubilizing soil 
phosphate from insoluble to plant available form. Due to instability and slow move-
ment of available phosphates in soils, they readily get incorporated with soil particles 
or chelates as metal complexes. In this scenario, PSR provide continuous chain of 
soluble phosphate to plants. PSR direct plant root system architecture toward available 
phosphate zones in soils. Moreover, there is an increased number of roots, root hair and 
lateral root, increase root absorbing surface area by increasing contact to soil particles. 
Hence, PSR-based root system morphology is a significant trait in measuring their 
agronomic efficiency. Moreover, PSB also possess phytostimulatory properties that sig-
nificantly contribute to agricultural efficiency. Hence, the use of phosphate-solubilizing 
bacteria can improve crop productivity by increasing soil P-mobility and soil fertility.

Keywords: biofertilizers, phosphate solubilizing rhizobacteria, inorganic phosphorus, 
plant growth promotion

1. Introduction

Global food security greatly depends on soil fertility and agricultural sustain-
ability. Most of the soils with high sorption capacity have finite phosphorous (P) 
resources which is far away from meeting the agricultural P demand, thereby, limiting 
agricultural fertility and productivity [1]. On the average, 0.05% (w/w) phosphorous 
is present in agricultural soils out of which only 0.1% is available to plants. Mostly 
inorganic phosphates (Pi) are present in higher concentrations but due to highly 
reactive nature of P-anions, it readily gets immobilized via complex formation with 
various mineral cations (Fe3

+, Mg2
+, Ca2

+, and Al3
+) [2]. Hence, application of animal 
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manure in traditional farming technique solves P-deficiency problems to some extend 
but this leads towards an unbalance ratio between various nutrients especially nitro-
gen and phosphorous in relation to relative crop demand and results in overfertiliza-
tion [1]. Lower plant accessible P-concentrations and higher immobility in soils make 
it an essential mineral needed to be applied exogenously in the form of fertilizers. 
Therefore, conventional agricultural practices rely on high input of chemical fertiliz-
ers to boost crop productivity. Among various fertilizers, phosphate fertilizers are the 
major contributor to environmental contamination. Concentration of various metals 
in potassium and nitrogen fertilizers is significantly low as compared to phosphate 
fertilizers therefore, these are not regarded as serious threat to soil and environ-
mental [3]. On the other hand, phosphate fertilizers contain traces of various metals 
including heavy metals i.e., cadmium (Cd), lead (Pb), arsenic (As), strontium (Sr), 
chromium (Cr), zinc (Zn) and radioactive metals such as thorium (Th), uranium 
(U), radium (Ra) etc. [4]. Consumption of such crops deteriorate our ecosystem by 
accumulating in agricultural soils and becoming part of food chain. Moreover, soil 
erosion facilitates the entry of P in waterbodies where it causes uncontrolled growth 
of algal blooms, deplete oxygen and cause risk to aquatic life. Even very low P- con-
centrations (10–20 μgPL−1) can support luxurious growth of algal bloom. In addition, 
drinking highly eutrophicated water adversely affects human health [4].

Rock phosphate is the naturally occurring source of phosphate used for the 
manufacturing of various phosphate (P) fertilizers such as triple superphosphate 
(TSP), monoammonium phosphate (MAP), diammonium phosphate (DAP), and 
NPK mixtures [5]. Apatite, basic constituent of phosphate rock, is incorporated with 
various metals and radionuclides which later become distributed in environment by 
the application and formation of these fertilizers. Sometimes, besides commercially 
available P- fertilizers, its by-product phosphogypsum (PG) is also used to fertilize 
agricultural lands having potential environmental risk [6]. This uneven distribution 
of various metals in soil adversely affects its physiological properties which, in turn, 
affect nutrient availability to plants. This, in the longer run, reduces soil biodiversity 
and fertility by disrupting soil microbiota as these are very sensitive to environmen-
tal variations. The soil microorganisms play crucial role in regulating soil fertility 
as they are involved in nutrient cycling (particularly P- cycle) hence, maintaining 
plant health and crop productivity. Hence, keeping in view all the agrobiologically 
and environmental sustainability concerns, a greener and cleaner approach should 
be needed to compete this challenge. In this regards, utilization of phosphate solu-
bilizing microbes (PSM) is the best possible solution. Phosphorous solubilization 
capacity of soil microbes have been extensively studied from the perspective of their 
utilization in agro-ecosystems and development of biological fertilizers. For this 
purpose, molecular prospects of bacterial transformation of organic phosphates 
through various mechanisms have received a great deal of attention. First ever report 
on plant growth improvement via. Inoculation using phosphate solubilizing microor-
ganisms was published in 1948. Since then, after so many decades, there is no general 
agreement among the scientific communities on the benefits of these microbes in 
crop production, hence, their use is still limited. The current chapter summarizes 
the agricultural accountability and significance of phosphate solubilizing rhizobac-
teria (PSR) and the strategies acquired by these microscopic creatures to solubilize 
phosphate and the genetic aspects for better understanding of phosphate mineral-
izing mechanisms. This would lead scientific community to understand their nature 
that would be beneficial for the development of commercially available formulations 
used in agriculture.
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2. Soil phosphorous dynamics and accessibility

Phosphorous is an important macronutrient constituting about 0.2–0.8% of plant 
dry weight [7]. Phosphorus is crucial in various plant metabolic processes includ-
ing energy generation and transformation during developmental processes such as 
germination, flowering, root expansion, photosynthetic activities, nitrogen fixation, 
carbohydrate metabolism, enzymatic activities etc. In addition, it is integral part of 
various structural and functional macromolecules such as adenosine triphosphate, 
proteins, nucleic acids, lipoproteins etc. [8]. In soil, phosphorous is present in two 
basic chemical forms i.e., organic (Po) and inorganic forms (Pi). Primary sources of 
inorganic phosphates include stable P minerals such as apatite (Ca5[PO4]3(OH,F,Cl)), 
variscite (AlPO4 2H2O) and strengite (FePO4 2H2O). These minerals have P structural 
element and are very stable and considered as huge P- reservoirs existing naturally 
in soils. However, the phosphate liberation from these minerals is a gradual process, 
regulated particularly by soil pH [9]. Optimum pH for P availability to plants is 5.5–7. 
At high or low pHs’, it forms chelates and become unavailable for plants [10, 11]. 
Under acidic conditions, adsorption of P on Fe and Al oxides and hydroxides (gibbsite 
and goethite) is increased. On the other hand, in alkaline conditions, Ca serves as 
primary P precipitated site. P can also readily bound with soil particles or adsorbed 
with cations to form complexes such as aluminum phosphate (AlPO4), iron phosphate 
(FePO4), and calcium phosphate (Ca3(PO4)2) etc. These secondary sources of Pi are 
the major phosphorus sources for young plants [12, 13].

In addition, compounds originated mainly from soil organic matter (plant and 
animal residues and manure) are the source of organic phosphates. They include wide 
range of compounds varying in terms of their bioavailability and solubility. These 
compounds are categorized as various phosphate esters such as phospholipids, sugar 
phosphates, inositol phosphates, nucleic acids; phosphonatases such as C–P bonded 
compounds; and phosphoric acid anhydrides (adenosine di- and tri- phosphates) 
[14, 15]. Important organic source of P is soil microorganisms. Soil microbes have 
potential to inlock soil phosphorous by absorbing and incorporating in their cellular 
structures such as nucleic acids, coenzymes) or stored as polyphosphates which 
temporarily act as immobilized P-pool. This temporarily locked P can later be released 
into soil solutions through mineralization process [16]. Rhizobacteria accumulate 
polyphosphates or polymers of phosphoric acids under unfavorable conditions which 
serves as P-reserves within bacterial cells. These P-reserves are considered as high 
energy reserves providing anhydrides and can easily be used as energy source by 
releasing Pi [17]. Various enzymes are involved in consumption and degradation of 
accumulated polyphosphates. Poly P kinase catalyzes the synthesis of polyphosphates 
within microbes. Similarly, polypases (exopolypase (PPX)) and polyphosphate-
specific kinases (polyP-fructokinase and polyP-glucokinase) are involved in phos-
phate utilization and degradation [9]. Bacterially mediated P-cycling process releases 
accumulated phosphorous back to the soil. However, the P- liberation from biomass 
is highly dependent on available soil carbon and phosphorous and composition 
of microbial communities [18, 19]. Po constitute almost 30–65% of the soil out of 
which 3–14% become immobilized into soil microbial biomass [20]. Plant roots can 
efficiently uptake Orthophosphates (H2PO4

−/HPO4
2–) but due to its weak stability 

and highly reactive nature, it loses its efficiency and becomes yield limiting factor in 
most of the agricultural soils [21, 22]. In addition to the microbial, plant and animal 
residues, a large quantity of xenobiotics (detergents, pesticides, antibiotics etc.) 
released in the environment also serves as source of organic P. These high molecular 
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weight organic compounds are resistant to chemical hydrolysis or biological degrada-
tion, thereby, the locked P within them is useless for plants unless converted to Pi or 
orthophosphates. However, some PSR studied have ability to degrade such complex 
compounds and release P from these sources [23].

Strong P- fixing capacity of soils and immobilization of soil P pool via precipita-
tion, chelation or complex formation causes P scarcity in soils. Despite all these fac-
tors, P availability is generally a balanced process including desorption and adsorption 
mechanisms. Various rhizospheric phenomena particularly biological processes play 
critical role in soil P dynamics and its availability to plants. Both plants and rhizo-
spheric biota contribute to bioavailability of P at root-soil interference by regulating 
specific signaling molecules such as release of H+, chelation and ligand exchange etc. 
All these rhizospheric activities contribute to P-cycling process to improve P availabil-
ity in agricultural soils [24].

3. Plant starvation responses

Plants uptake P- through roots by simple diffusion. The absorbed P- ions actively 
move across the plasmalemma against concentration gradient developed by exis-
tence of low orthophosphates. Plant response vary greatly from species to species in 
P-deficiency response. Generally, plants cannot respond and absorb soil P efficiently 
(plant P uptake rate: 10–12 to 10–15 m2s−1) due to its low mobility. This causes the 
formation of phosphate depleted areas adjacent to plant roots. Therefore, plants need 
subsidiary system that can help plants to receive optimum P requirement by develop-
ing nutrient pool around the plant roots [25]. Plants have developed generally various 
physiological, biochemical and morphological adaptations to respond P- scarcity and 
to endeavor P acquisition efficiency. These genetic modifications acquire by plants can 
be categorized as plant P- acquisition efficiency: capacity to absorb soluble P and P- 
utilization efficiency: capacity to utilize and assimilate the absorbed P. These include 
high expression of P transporters, carbon metabolism, secretion of various organic 
acids such as oxalate, citrate and malate), modification in root architecture, enhanced 
production of acid phosphatases and phytases. Modifications in root architecture is 
foremost response substantially studied in plants [26, 27]. A preferential allocations 
metabolic budget towards roots undoubtedly results in greater root hair formation 
and clustering of roots, providing greater surface area for P absorption but, on 
the other hand, it decreases root to shoot ratio resulting in reduced plant growth. 
However, greater root system allows plants for greater and easier nutrient acquisition 
[28]. Besides modifications in root architecture, root signaling is also significantly 
important parameter affecting P- acquisition efficiency. Under P-scarcity, release 
of organic acids by plant roots help to solubilize the nearby immobilized P-pool. 
Moreover, plants also release P- scavenging enzymes that also help in soil P- cycling 
mechanism. For instance, release of acid phosphatase catalyzes Pi hydrolysis process 
to release Pi from Po residues [29]. In addition, plants enhance cellular P utiliza-
tion efficiency by increasing activity of high affinity Pi/H+ symporters (PHT1 gene 
family) associated with plasma membranes [30, 31]. Plants also regulate alternate 
metabolic pathways e.g., glycolysis pathways, tonoplast pyrophosphatase, and various 
respiratory electron transport pathways [32]. Despite of all these modifications in 
plants for improved P acquisition efficiency under P stress conditions, plants still 
are unable to full fil their P- demand, therefore, plants tend to establish symbiotic 
interactions with soil microbiota especially rhizobacteria to cope up with P- scarcity.
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4. Phosphate solubilizing rhizobacteria (PSR): biological revolution

Rhizosphere is hotspot for various plant beneficial bacteria with potential to 
solubilize immobilized P sources (di- and tricalcium phosphates, hydroxyapatite, and 
rock phosphate). These rhizobacteria are known as phosphate solubilizing rhizobac-
teria (PSR). PSR are copious in nature. Various rhizobacteria belonging to genera 
Paraburkholderia, Ralstonia, Burkholderia, Curtobacterium, Arthrobacter, Cronobacter, 
Massilia, Pseudomonas, Enterobacter, Bacillus, Serratia, Pantoea, Rhizobium, Klebsiella, 
Ochrobactrum, Staphylococcus, Arthrobacter, Acinetobacter have phosphate solubiliz-
ing potential [33–40]. Visualizing the formation of clear halo zones around bacterial 
colonies on various phosphate media indicates their phosphate solubilizing ability. 
Quantitative analysis of P-solubilizing potential of PSR using rock phosphates (RP) 
and various Al-, Ca- and Fe- complexes revealed their efficiency to mobilize soil 
Phosphate for plant use. However, the extent to solubilize phosphorous is highly 
dependent on bacterial species. Agronomic efficiency of RP significantly increased 
using suitable PSR. This improvement is attributed to the positive effects of PSR on 
soil P-availability [20]. These microbes play significant role in P acquisition and nutri-
ent management in soils and hence, serve as potential biofertilizers [41]. In addition, 
PSR exhibit diverse abilities and exert synergistic effect on plant growth and develop-
ment besides solubilizing soil phosphate. They enhance plant growth by various plant 
growth promoting mechanisms including production of plant growth stimulating 
phytohormones such as auxins, gibberellins, cytokinins and various compounds such 
as siderophores, 1-aminocyclopropane-1-carboxylate (ACC) lytic enzymes, hydrogen 
cyanide (HCN), exopolysaccharides that lock up soil nutrients for plant availability 
and protect them from various unfavorable conditions [42]. Moreover, PSR also act 
as biocontrol agents protecting plants from pathogenic attacks by producing wide 
variety of antifungal compounds including certain phenolics and flavonoids [43]. The 
phosphate solubilization mechanisms are summarized in Figure 1.

4.1 Unearthing the mechanisms of P-solubilization: molecular insight

a. Inorganic phosphate solubilization

Principle mechanism of inorganic phosphate solubilization acquired by PSR is 
release of mineral dissolving compounds such as protons (H+), siderophores, organic 
acids (OAs), carbon dioxide (CO2) and hydroxyl ions (OH−). Production of low 
molecular weight organic acids is common mechanism shared by PSR. Rhizobacteria 
produce these organic acids either during carbon metabolism through intercellular 
phosphorylation or through direct oxidation of glucose to gluconic acid and sometimes 
to 2-ketogluconic acid via quinoprotein glucose dehydrogenase (GDH), an enzyme 
involved in direct oxidation pathway in periplasmic space [44]. Pyrrolo quinoline 
quinine (PQQ ) (product of pqq) acts as a cofactor which is essential for the activity 
of GDH. These organic acids lower down soil pH. Under alkaline conditions, soil P 
precipitates as Ca2+ phosphates and its solubility increase with decreasing soil pH. 
Increase in soil pH causes the formation of di- and tri- Pi (PO4

3− and HPO4
2−) [45]. The 

production of organic acids acidifies the surroundings and cellular environment by 
liberating H+ in the vicinity of plants which regulates the accumulation of other cations 
that directs to P solubilization by substitution of H+ for Ca2+. For instance, assimilation 
of NH4

+ along with H+ causes P solubilization [46]. Moreover, there is no evidence 
of a correlation between pH and solubilized P [47]. The P- solubilizing efficiency of 
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PSR greatly depends on the strength and type of acid production. Variable nature of 
OAs leads them to respond differently. For example, di- and tri forms of carboxylic 
acids are more efficient as compared to monobasic or aromatic acids. In the same 
way. Aliphatic acids are more efficient as compared to fumaric, phenolic, or citric 
acids [48]. Moreover, the quantity of OAs produced is correlated to the concentra-
tion of soluble P. Hence, OAs production in P-deficit soils is greater as compared 
to the P- sufficient soils [49]. OAs produced by majority of PSR are glutaric, citric, 
propionic, lactic, glyoxalic, malonic, glicolic, 2-ketogluconic, oxalic acid, glyconic 
acid, acetic acid, malic acid, fumaric acid, succinic acid, tartaric acid, butyric acid, 
and adipic acids [50]. Among these OAs, gluconic and 2-ketogluconic acid are most 
commonly produced OAs. Gram-negative bacteria oxidize glucose to gluconic acids for 
mineral P- solubilization. Gluconic acids chelate the cations bounded with phosphate 
via OH− or carboxyl (–COOH) groups making phosphate accessible to plants [51]. 
Pyrroloquinoline quinone-dependent periplasmic glucose dehydrogenase (PQQ-
GDH), is responsible for the production of gluconic acid from glucose. PQQ-GDH 
is also responsible to produce gluconic acid. In most of the Gram-negative bacterial 
species, biosynthesis of PQQ is regulated by five genes comprising pqq operon (pqqA-
BCDE) [52]. Until now, 11 pqq genes have discovered so far in various bacterial genera, 
however, pqqF and pqqG existing at proximal or distil end of operon are commonly 
found [53]. Various PSR genera exhibit this mechanism including Pseudomonas, 
Enterobacter, Acinetobacter, Pantoea, Klebsiella, Rahnella, Serratia, Erwinia, Citrobacter, 
Burkholderia and Gluconobacter [54, 55]. Another P-solubilizing mechanism acquired 

Figure 1. 
Rhizospheric interactions between PSR and plants and their impact on plant growth. 1- Plant releases certain 
chemical messengers ( ) that attract beneficial PSR which in turn colonize plant roots and fight off pathogenic 
bacteria (PB). 2- Bacteria receive sugar chemical messengers ( -glucose, -fructose) by sugar transporters (ST) 
which activate synthesis of phosphatases (Pase). 3- Synthesis of ALPs solubilize organic phosphate to inorganic 
phosphate that can be taken up by plants. Moreover, accumulation of H+ on bacterial surface also facilitates 
P-solubilization process by releasing Pi from various soil minerals. 4- Chemical messengers also activate pqq 
involved in sugar metabolism as a result of which it forms various organic acids (OAs). 5- Synthesized OAs 
lower soil pH which favors P-solubilization by PSR. 6- PSR also utilizes tryptophan released in root exudates to 
synthesize bacterial Indole acetic acid (IAA) that is released in the vicinity of plant roots and taken up by plants. 
7- Pi present in phosphate fertilizers interacts with soil particles and form chelates before it is taken up by plants 
thus minimizing the advantage taken by the plants from the application of phosphate fertilizers.
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by some PSR is release of H+ microbes which release H+ at their surfaces helping cation 
exchange via H+ translocation or ATPase leading to the release of P from inorganic 
minerals (Ca-P) [9]. Production of chelating compounds and inorganic acid by some 
bacteria is also source of mineral P solubilization, however, effectiveness of these 
compounds is very less compared to other mechanisms of P-solubilization [43].

b. Organic phosphate mineralization

Mineralization of organophosphates highly depends on the environmental condi-
tions. Alkaline conditions favor this process. Phosphate decomposition by PSR from 
organic substances is correlated with P- content of their biomass. This biological event 
plays an important role in solubilization of organic P and regulating P-cycling events 
in nature. These phosphate solubilizing bacteria secrete various enzymes responsible 
for organic P mineralization. Among these enzymes, phosphatases and phytases are 
important. Phosphatases (phosphohydrolases) belonging to the class phosphomonoes-
terases, dephosphorylate phosphoester or phosphoanhydride bonds present in organic 
compounds [56]. They can either be alkaline or acidic phosphomonoesterases (ALPs), 
however, acidic phosphatases are important and play significant role in decomposition 
having optimum catalytic activity. ALPs can mineralize up to 90% of organophospha-
tases, however, phytate is resistant to them [57]. The key ALPs encoding gene found 
in phosphorbacteria is pho (phoX, phoA, and phoD). Among these phoD is widely 
distributed among various PSR. However, phoD abundance has shown no correlation 
with the P-availability. phoD can mineralize phosphate even under low concentrations 
but causes immobilization of P in bacterial biomass under application of P fertilizers 
[58]. ALPs are categorized as specific acid phosphatases (SAP) and non-specific acid 
phosphatases (NSAP). Examples of SAP with different activites are: nucleotidases, 
hexose phosphatases, and phytases [59]. Several bacterial species have been known for 
their potential to produce phosphatases such as Pseudomonas sp., Klebsiella aerogenes, 
Burkholderia cepacia, Enterobacter cloacae, Pseudomonas fluorescens, Enterobacter 
aerogenes, Proteus mirabalis, Citrobacter freundi, and Serratia marcenscens [9].

The enzyme phytase is responsible for releasing phosphorous locked in soil 
organic compounds such as seeds or pollens that were stored as phytate (inositol poly-
phosphate). Phytates are great source of phosphorous containing 60–80% of soil P. 
Phytates contain strong and stable ester bonds that can easily be hydrolyzed by PSR. 
They completely hydrolyzed phytates to lower molecular weight isomers of inositol 
polyphosphate and inorganic phosphates [60]. Several phosphorbacteria have been 
known for having their potential to produce phytases such as Bacillus, Pseudomonas, 
Enterobacter, Pantoea, and Escherichia coli [61, 62]. Four types of phytases identified so 
far from PSR are: β-propeller phytase (BPP; alkaline phytases), histidine acid phos-
phatase (HAP; acid phytases), protein tyrosine phytase (PTP; cysteine phytase) and 
purple acid phosphates (PAP; metalloenzyme) [63]. Acidic nature of these enzymes 
enhances their efficiency under various pH conditions. Some rhizospheric P- solubi-
lizing Bacillus and Streptomyces also tend to produce phosphoesterases, phosphodies-
terases and phospholipases to mineralize organophosphates [64].

4.2 Impact of exogenous P on phosphobacterial activities.

Soil phosphorous status directly influences plant metabolic activities, root 
exudates and carbon availability for rhizospheric microbes. Low soil P levels causes 
plants to activate P- stress responsive mechanisms involving various transcriptional 
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and physiological changes that indirectly affect its associated rhizobacterial com-
munities [65, 66]. P- fertilizers are the yield limiting determinants of soil fertility 
which influence by disturbing soil nutrient equilibrium. The aggressive use of these 
fertilizers affects nutrient availability for biological processes and plant uptake [67]. 
Application of P- fertilizer significantly changes phosphorous turnover efficiency by 
recruiting rhizobacterial families and regulating bacterial genes involved in P cycling 
[68, 69]. P-fertilizers can shift soil microbial communities affecting soil biodiversity 
[70]. Environmental phosphate affects all the phenomena of inorganic P- solubi-
lization, organic P mineralization, P-uptake and transport and plant responses. 
Phosphorbacteria respond differently to available phosphate conditions. Shifting of 
various phosphorbacteria in response to P fertilizer indicates their P- availability based 
selection criteria. Some bacteria such as Actinobacteria prefer high P areas whereas 
Moraxellaceae and Pseudomonadaceae prefer low phosphate soils. Similarly, bacterial 
genera Bacillus, Clostrodium and Alicyclobacillus have shown negative correlation with 
soil P-content [71]. Moreover, besides affecting rhizospheric bacterial taxonomy, 
soil nutrient also affects bacterial potential to solubilize immobilized phosphate. 
Burkholderia and Collimonas exhibit nutrient poor soils having efficiency for mineral 
decomposition to fulfill their nutritional demand [72]. Burkholderia is described as 
low phosphate responsive taxon. It is abundantly present in P deficient soils where 
it switches its interactions with plants i.e., commensal to opportunistic and utilize 
the stored inorganic shoot phosphate [73]. Nutrient acquisition ability of phosphate 
solubilizing bacteria makes them more competitive in nutrient poor soils [73].

Soil P-status leads to the upregulation of various P-solubilizing enzymes. Expression 
of gene (gcd) responsible for glucose dehydrogenase synthesis is suppressed under 
greater soil P levels through feedback mechanism. Moreover, plants growing under 
P-deficit conditions release certain signals through root exudates that influence 
P-solubilizing activity of PSR. The expression of pqq genes is increased by detecting 
root signals of plant growing under P-deficient conditions [74]. Moreover, the produc-
tion of phosphatases is regulated by the availability of nitrogen and phosphorous. In 
the presence of sufficient nitrogen, their production is enhanced. On the other hand, 
phosphorous supply decreases their production [75]. This negative feedback creates 
strong correlation between exogenous P and phosphatases to increase P mineralization. 
Similarly, inorganic phosphate supply reduces the activity of phoD [76]. Under acidic 
conditions activity of acidic phosphatases and abundance of phoC are negatively cor-
related with P availability, whereas exogenous P- supply exceeds no significant effect on 
abundance and activity of alkaline phosphatases [77]. In some cases, long term P- fer-
tilization causes bacterial dormancy leading to inactivation of bacterial P-solubilizing 
potential [74]. However, there are some controversies in bacterial response to available 
phosphorous. Sometimes PSR show no response to P-fertilization and the composition 
of soil bacterial communities remain uninterrupted [78]. Moreover, shift in bacterial 
communities in response to exogenous P supply is controlled by various biotic and 
abiotic factors such as nutrient level, drought, pH etc. hence, it is considered that 
rhizospheric microbial communities are initially determined by soil conditions, then 
scrutinized by root exudates and finally shaped by alterations in soil physiology [79].

5. Agronomic efficiency of phosphobacteria

Various plant traits have been extensively studied to develop an agronomic frame-
work for the evaluation of PSR effects on crop yield parameters. These traits serve as 
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applicable indicators for evaluating the efficiency and potential of phosphorbacterial 
biofertilizers in agricultural fields (Table 1).

5.1 Plant-phosphobacterial interactions

Various plant physiological activities are involved in efficient use of soil phospho-
rous. Release of ions, organic acids and enzymes through root exudates favors plant, 
to recruit microbial communities especially PSR beneficial for their growth [88]. Soil 
microbes have affiliation with C-containing compounds, target plant root exudates 
and response chemotactically to plant chemical messengers. Several rhizobacteria 
especially phosphate solubilizing bacteria prefer to occupy the plant root zones. For 
instance, Oceanobacillus, Massilia, Arthrobacter, Lactococcus and Bacillus are recruited 
in the vicinity of wheat root zone to get benefit from organic acids released in the 
form of root exudated [89]. Similarly, some phosphorbacteria such as Bacillus sp. 
enhance root colonization in response to plant secreted organic acids. Plant root 
exudates activate root colonizing genes present in phophobacteria. This, in turn, 
significant in establishing plant-PSR interactions which is crucial in P-acquisition by 
plants [90, 91].

Phosphate solubilizing 

bacterial strains

Expected 

mechanism

Experimental 

Plant

Agronomic efficiency References

Bacillus, Pseudomonas, 

Massilia, Citrobacter, 

Arthrobacter and 

Acinetobacter

Presence of P 

cycling related 

genes (gcd, bpp)

Chinese cabbage 

(Brassica rapa)

Increased plant fresh 

weight, dry weight, 

and plant height

[80]

Phosphate solubilizing 

bacteria (PSB)

Enhanced soil P 

content

Kasumbha 

(Carthamus 

tinctorius)

Increased number 

of leaves per plant, 

leaf area, number of 

seeds per capitulum, 

increased plant height, 

number of branches, 

number of capitulum 

per plant, seed oil and 

phenolic content

[81]

Bacillus siamensis, Rahnella 

aceris, Pantoea hericii, 

Bacillus paramycoides 

(Single and consortium)

Phosphate 

hydrolyzing 

enzymes (acid 

phosphatase and 

pyrophosphatase) 

and organic acids 

(glycolic acid)

Wheat 

(Triticum 

aestivum)

Modified root 

architecture (enhanced 

root hairs length, root 

length, root inorganic 

P content, plant 

biomass plant organic 

phosphate content, P 

translocation and soil 

phosphatases

[82]

Bacillus thuringiensis and 

Pantoea ananatis

Decreased soil Pb 

phytoavailability 

through dissolution 

of insoluble 

inorganic P and 

increase water-

soluble phosphate 

concentrations

Lactuca sativa L. Promoted plant growth 

and reduced shoot Pb 

concentrations

[22]
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5.2 PSR mediated regulation of phosphate related genes in plants

Phosphate solubilizing bacteria can either directly or indirectly trigger the expression 
genes responsible for Pi movement. These PSR regulate the expression of P transporters 
either by modulating the expression of plant metabolic genes (pheromone producing 
genes) or sometimes by increased P-supply in the vicinity of plant roots. Plants have 
two types of phosphate transporters (PHT) for the regulation of intracellular optimum 
phosphate concentrations. The high affinity transporter (PHT1) activates in roots 
whereas, low affinity transporter (PHT2) is responsible for Pi transfer in shoots, flowers, 
leaves etc. [92]. Phosphorbacteria regulate various phosphate related genes within plants 
in response to environmental conditions especially during low P supply. Plants grow-
ing in P deficit soils have shown upregulation of PHT1. The PSR Pseudomonas putida 
increased the expression of AT5G43350 gene responsible of the production of PHT1 
in Arabidopsis thaliana [93]. Under combination of P and salt deficiency, PSR upregu-
lated the expression of AT1G80050 gene responsible for the production of PHT2 in A. 

Phosphate solubilizing 

bacterial strains

Expected 

mechanism

Experimental 

Plant

Agronomic efficiency References

Pseudomonas sp. (UC_1), 

Klebsiella sp. (UC_M), 

Burkholderia sp. (UC_ J), 

Chryseobacterium sp. 

(UC_3)

Regulation of 

soil microbial 

communities

Ulmus chenmoui Improved plant growth [83]

Enterobacter sp. (J49) 

Serratia sp. (S119)

Interactions of P 

solubilizing activity 

and plant root 

exudation causes 

increased pectinase 

and cellulase 

activities

Soybean 

(Glycine max) 

and maize (Zea 

mays)

Improved plant growth [84]

Bacillus mojavensis (B1), 

Bacillus megaterium (B2)

Enhanced soil 

P-solubilization

Sugarcane 

(Saccharum 

officinarum)

Increased yielding 

components such as 

increased stem height, 

internode, weight and 

diameter

[85]

Burkholderia sp. (N3) Interactions 

with plant 

immune system 

by upregulating 

129 genes and 

downregulating 

33 genes involved 

in plant resistance 

against pathogen

Melon Enhanced plant 

height, dry weight, 

leaf area, and uptake 

of nutrients of melon 

seedlings increased 

and suppression of 

bacterial fruit blotch 

in melon

[86]

Pseudomonas mallei, 

Pseudomonas cepaceae 

(Consortium)

Promotes soil 

biological activities, 

nutrient availability, 

enhanced 

productivity of 

calcareous soils

Phaseolus 

vulgaris

Increased fresh and 

dry weight of pods 

and seeds per plant, 

increases shoot fresh 

weight per plant, shoot 

dry weight per plant

[87]

Table 1. 
Phosphate solubilizing rhizobacterial efficiency in agriculture.
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thaliana. Contrary to this, the expression of gene (PHO2) responsible for Pi accumula-
tion in shoots was down regulated. This phenomenon is referred to the fact that PHO2 
is responsible for Pi signaling under low P supply [93]. Similarly, phosphate solubilizing 
Bacillus sp. enhanced P-acquisition in wheat plant by upregulating PHT1 transporter 
[94]. On the other hand, P solubilizing Pseudomonas sp., Klebsiella sp., Stenotrophomonas 
sp., Serratia sp. and Enterobacter sp. have been shown to down regulate the expression of 
Pi transporter in inoculated plants, however, plant growth is enhanced with improved P 
acquisition and biomass [95]. These changes in molecular patterns positively influence 
plant P acquisition that ultimately improved crop yield and productivity.

5.3 Effect of PSR on root system architecture

Root system is a paramount, fitness determining component of a plant. 
Phosphobacteria can modulate root system architecture through various mechanisms 
in favor of P acquisition. Modified root system stimulate enhanced root absorptive 
capacity for nutrients uptake [96]. Generally, under P scarcity, plants have adopted root 
modifications such as increased root biomass, greater number of roots, enhanced root 
length and surface area. This extensive, denser root system with larger surface area help 
plants in detecting localized higher phosphate content [97]. Moreover, spatial param-
eters in root architecture are important under P- stress. Sometimes for the P- acquisi-
tion, PSR affect plant roots to develop shallow root system by decreasing primary root 
growth and inducing laterals root formation. Thus, development of shallow and more 
proximate roots favor plants to acquire P from topsoil [98]. This phenomenon of detect-
ing local phosphate concentration by modifying root system is termed as ‘P-mining’. 
Under low P supply, inoculation of phosphate solubilizing Bacillus megaterium and 
P. fluorescens inhibited primary root formation and initiated lateral root and root hair 
formation in A. thaliana [99]. PSR also have positive influence on the development 
of root hair of inoculated plants. Plants with longer root hair are found to be more 
efficient in P- acquisition under P deficiency. Plants treated with phosphate solubilizing 
Pseudomonas sp. strongly influence root hair formation by increasing number of root 
hair and length of root hair [100]. Root functions related to phosphate foraging such as 
number of roots, root hair, lateral roots, frequency of root tips, branching intensity etc. 
have shown to be increased under the influence of PSR [101].

5.4 Mechanisms adopted by PSR for plant growth promotion

Phosphate solubilizing bacteria follow several other mechanisms influencing plant 
growth directly or indirectly such as production of phytohormones, quorum sensing 
signals, production of various enzymes etc. These mechanisms act synergistically, 
helping plant to better adopt the environmental conditions with improved growth 
yield. Some of these mechanisms affecting directly are described below.

5.4.1 Nitrogen fixation

Some phosphate solubilizing Rhizobia spp. with nitrogenase (nif) gene have 
potential to fix nitrogen. N is important macromolecule so PSR with potential 
N-fixing ability can significantly help plants to cope with its nitrogen demand 
having improved nitrogen acquisition [82]. Leguminous plants have developed 
symbiotic relation with nitrogen fixing rhizobacteria and modify plant roots by 
developing root nodules where these bacteria convert environmental nitrogen into 
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ammonia (plant available form of N) [102]. However, some non-nodule form-
ing N-fixing phosphate solubilizing bacterial species such as Pseudomonas sp. 
also regulate legume-rhizobia symbiosis for improving the plant nitrogen levels. 
Increased ACC activity in Pseudomonas sp. trigger nodulation process in rhizobia 
[103, 104].

5.4.2 Siderophore production

These are iron chelating compounds secreted by some PSR bacteria to reduce 
inter- or intra-cellular iron that can be utilized by the associated plants. Due to iron 
scarcity, Phosphate solubilizing e.g., Pseudomonas fluorescence, can produce differ-
ent kinds of siderophores i.e., pyoverdine pyochelin, and pseudobactin [105]. This 
phenomenon positively influences plant growth. For instance, Pseudomonas fluores-
cence produce pyoverdine which form complex with iron (pyoverdine-Fe) that can be 
easily taken up by plants. Iron acquisition is more important under stress conditions. 
Siderophores also help to alleviate the stress imposed on plants [106].

5.4.3 Phytohormone production

Phosphate solubilizing bacteria have potential of producing various plant 
hormones such as auxins, cytokinins, gibberellins, and ethylene. PSR release 
these hormones via interconnected series of signaling network and affect plant 
physiological activities [107]. Tryptophan present in plant root exudates acts as 
principle signaling molecule to produce bacterial Indole Acetic Acid (IAA). PSR 
generally detoxify tryptophan, or its analogs present in root exudates that cause 
IAA production [108]. Bacterial phytohormones can alter plant hormonal balance 
which is positively correlated with plant health. Many species of phosphate solu-
bilizing Bacillus and Pseudomonas exhibit potential to produce auxin that triggers 
formation of lateral root and root hair in inoculated plants [109]. Moreover, auxin 
stimulates seed germination, enhance photosynthetic rate and produce other 
plant growth related metabolites [110, 111]. Similarly, gibberellins and cytokinins 
stimulate wide variety of plant processes such as seed germination, cell elongation 
etc. which play important role in plant growth and development. Various genera 
of phosphate solubilizing bacteria can produce phytohormones such as Rhizobium, 
Pantoea, Azotobacter, Paenibacillus, Rhodospirillum, Bacillus, Pseudomonas, 
Microbacterium, Plantibacter, Sanguibacter, Buttiauxella, Microbacterium, Erwinia 
[96, 112–114].

5.4.4 ACC-deaminase production

Sometimes bacterial IAA stimulate ACC synthase enabling the of 1-aminocyclo-
propane-1-carboxylic acid (ACC) deaminase using S-adenosyl methionine precursor 
which is also the intermediate of ethylene production in higher plats. ACC deaminases 
have potential to cleave ACC to ammonia and 𝛼-ketobutyrate that act as nutrient for 
plants. This enzyme is also responsible for the reduction of plant stress ethylene, thus 
alleviating stress effects imposed on plants. Plants inoculated with ACC producing 
PSR have shown increased shoot system [115]. Moreover, ACC deaminase producing 
PSR can also stimulate nodulation process. Various PSR have potential to produce 
ACC such as Achromobacter, Azospirillum, Enterobacter, Acinetobacter, Serratia, 
Bacillus, Burkholderia, Pseudomonas etc. [105].
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5.4.5 Bacterial cyanide biosynthesis

Some phosphate solubilizing bacterial have hydrogen cyanide (HCN) production 
potential which is a volatile compound and protect plants from various biotic stresses 
including allelopathic effects. Moreover, they also protect other harmful rhizobcateria 
by colonizing plant roots. Most of the phosphate solubilizing Pseudomonas, Bacillus, 
Serratia, Enterobacter, Pantoea can produce HCN [116, 117].

5.4.6 Indirect methods of plant growth promotion

Various indirect mechanisms are also adopted by phosphate solubilizing rhizo-
bacteria such as production of various antifungal compounds, antibiotics and lytic 
enzymes. Different antifungal compounds such as proteases, lipases, cellulases and 
chitinases degrade cell wall of pathogens. Different P solubilizing Pseudomonas and 
Bacillus species can produce antifungal compounds. These compounds can protect 
plant from various plant pathogens [118]. Hence, these phosphorbacteria can also 
act as biocontrol agents in agricultural fields. Moreover, some PSR can also release 
enzymes that act as antibiotics, protecting plants from other pathogenic bacteria. 
Thus, inducing plant systemic responses (ISR). Bacillus sp. can produce various 
compounds such as difficidin, bacillaene, rhizocticinsn chlorotetain, bacilysin, and 
mycobacillin. ISR positive plants can response stronger and faster to pathogenic 
attack due to their induced defense system [119, 120].

6. Future perspectives

Efficiency of phosphate solubilizing rhizobacteria as biofertilizer, biopesticides, 
phytostimulaors and bioremidiators have now become research priority owing to their 
importances as environmentally safe plant growth promoting agents. Various genera 
of rhizospheric bacteria are capable of solubilizing soil phosphate by either releasing 
organic acids or enzymes. But there is a need to investigate further indepth mechanisms 
for bacterial phosphate solubilization and their interactions with root exudates for the 
development of suitable biofertilizer. Also, study about the knowledge of impact of 
these biofertilizers on soil microbiota is necessary as the rhizobacteria are important 
candidate of P-cycling mechanism. Moreover, plant growth promotion by rhizobacteria 
is a complex network of mechanisms functioning synergistically, thereby particular 
interaction between phosphate solubilization and its influence on root morphology 
needs to be investigated. In addition, the interactions and coordination between various 
rhizobacterial traits and their impact on agronomic parameters should be considered as 
top priority research for sustainable agriculture economically. Hence, commercializing 
these biofertilizers can be a promising tool for agricultural sustainability.
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