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Abstract

Over the past two decades, food packaging and packaging industry have paid close 
attention to create biodegradable and edible polymer films and coatings. In a broad 
way, edible polymers emerged as a new class of materials that garnered significant 
properties due to their advantages over synthetic petroleum-based films. When 
compared to conventional packaging materials, edible polymer films can fundamen-
tally simplify products, improving their potential to be recycled. This work aims to 
give readers a thorough introduction to edible polymer films, by discussing present 
research trends, classification, functionality and composition, fabrication, and char-
acterization. The work also emphasizes the advantages and disadvantages of edible 
polymer films based on meat, poultry, dairy products, fruits, nuts, and vegetables.

Keywords: edible polymer, coatings, food packaging, antimicrobial, functionality, 
applications

1. Introduction

Many efforts have been made to create eco-friendly packaging material in response 
to the challenges caused by plastic waste in the packaging business. Food packaging is 
critical for storing foods, protecting them from infection, and maintaining food qual-
ity throughout the packaging-to-consumption process [1]. Several types of plastics 
are being used as packaging material due to their low cost, high performance, and 
easy production. Almost half of the packaging materials used in single-use throwaway 
applications, particularly food packaging, are produced from petrochemical poly-
mers, such as plastics [2]. However, petrochemical plastics have a number of draw-
backs, including environmental challenges, health dangers, and poor food quality due 
to their non-biodegradability [3, 4]. Also, production and consumption of plastics in 
the last few decades has put enormous stress on the environment by releasing plastic 
waste. Thus, there is a need to look for alternative packaging materials that should not 
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impose any problems, renewable, disposable, recyclable, and easily degradable [5]. A 
thin coating that covers the food surface is known as an edible package.

The growing demand for high-quality products with a long shelf life has led to 
the development of new processing technologies that guarantee natural qualities 
and appearance. As a result, the packaging industry as well as a number of young 
researchers are attempting to develop edible polymer films as biodegradable packag-
ing materials [6]. In this case, edible polymer films would be an excellent choice 
for packaging. Edible polymers can be taken whole or in part by humans and lower 
animals through the oral cavity, with no negative health effects. Many advanta-
geous properties, such as non-pollutant products, since they contain natural and 
biodegradable components generated from both natural and manmade materials are 
considered. Edible polymers have emerged as a suitable candidate for food packaging 
applications and have received significant attention in recent years [7]. The require-
ments imposed on edible polymer films were exclusively based on the product’s spe-
cific qualities and changes in those attributes throughout production and storage [8]. 
Edible polymers have the ability to expand organoleptic properties of packaged foods 
materials. As the author reported, edible polymer has properties, such as flavorings, 
colorings, and sweeteners. Natural polymers and food-grade additives have become 
increasingly popular in the medical and food industries. Polysaccharides, proteins, 
and lipids, as well as plasticizers and surfactants, can be used to make these edible 
polymers. The ability of edible polymers is primarily determined by their barrier, 
mechanical, and color properties, which are influenced by the film composition and 
production procedure.

2. Edible polymer films: present research trends

In recent years, the use of edible films made from natural polymers and food-
grade additives has steadily increased. Various materials, including polysaccharides, 
proteins, lipids, and resins, can be used to make these films, either with or without 
the inclusion of other ingredients (e.g., plasticizers and surfactants) [9, 10]. The 
moisture barrier performance of polysaccharide-based films is typically subpar, but 
they exhibit selective O2 and CO2 permeability and oil resistance [11]. Edible films 
can be fabricated based on cellulose, starch (natural and modified), pectin, seaweed 
extracts (alginates, carrageenan, and agar), gums (acacia, tragacanth, and guar), 
pullulan, and chitosan [12]. Films are made harder, crisper, more compact, viscous, 
sticky, and capable of producing gels; thanks to these substances. Other significant 
sources of polysaccharide-based biomaterials have been regarded as marine crea-
tures, such as seaweed, bacteria, and microalgae [13, 14]. Moreover, edible polymers 
needed to meet a variety of requirements in order to be used as packaging and food 
components, including high barrier and mechanical efficiency, biochemical, physi-
cochemical, and microbiological stabilities, as well as being nontoxic, nonpolluting, 
and inexpensive [15]. An emerging area of study in material science is the inclusion 
of active compounds derived from industrial wastes into edible films. Furthermore, 
inclusion of active components derived from industrial wastes become a hot area in 
materials research [16]. It was discovered that edible films may operate as transporters 
of active substances, such as antioxidants, antimicrobials, and texture enhancers [17], 
and many methods of obtaining them have been published.

In the past several years, the food industry has employed a lot of edible films 
made from polysaccharides (cellulose, starch, pectin, seaweed, gums, chitosan, and 
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pullulan), but lignocellulosic materials have just recently been shown to be viable for 
making edible films. Authors Slavutsky and Bertuzzi have reported starch films rein-
forced with cellulose nanocrystals derived from sugarcane bagasse [18]. In addition, 
Shimokawa et al. used hemicellulose fractions from Pinus densiflora leaves to create 
translucent and transparent films [19]. The compounds these authors obtained have 
high promise as edible films and characteristics resembling those of xylan. By using 
acid hydrolysis to separate crystalline cellulose nanofibrils from cotton linter, compos-
ite films with pronounced improvements in optical and mechanical properties, water 
vapor barrier qualities, and thermal stability were created [20]. Alginate-carbohydrate 
solutions containing 5% alginate and 0.5% pectin, carrageenan (or), potato starch 
(modified or unmodified), gellan gum, or cellulose were used to make composite 
alginate films (cellulose extracted from soybean chaff or commercial cellulose) [21]. 
With the alginate matrix, all of those carbohydrates were able to create composite 
films. However, using the cellulose from soybean chaff could result in composite films 
or casings made of alginate that have mechanical properties comparable to those of 
microcrystalline cellulose used in commercial products. Table 1 represents the various 
edible films prepared using polymer and essential oils and other components.

Industry research futures (MRFR) predicts that the edible packaging market 
(based on protein, lipids, polysaccharides, and others) would be worth USD 2.14 
billion by 2030, up from USD 783,32 million in 2021, with a compound annual 
growth rate (CAGR) of 6.79 percent (2022–2030). Throughout the projection period, 

Matrix Polymer Essential Oil Used Targeted 

Product

Film 

Formation 

Method

Observations and Remarks Reference

Carboxymethyl 
chitosan: 
Pullulan

Galangal essential oil 
(GEO)

Mango Casting Developed film exhibited 
excellent thermal stability, 
biodegradability and 
mechanical properties and 
was able to provide good 
preservation effect on mango.

[22]

Gelatin–chitosan 
blend

Ferulago angulate 
essential oil (FAEO)

Turkey 
meat

Casting FAEO incorporated gelatin-
chitosan blend film improved 
the water solubility and WVP. 
Increased anti-microbial 
property of the film helped 
in enhancing the shelf life of 
turkey meat.

[23]

Millet starch Clove essential oil Casting Inclusion of clove oil 
enhanced the anti-oxidant 
activity and antimicrobial 
properties of the film.

[24]

SPI-gum acacia 
conjugates

Oregano essential 
oil (OG-EO), 
lemon essential oil 
(LM-EO), fruit of 
Amomum tsaoko 
Crevost et Lemaire 
(ACL-EO) and/or 
grapefruit essential 
oil (GF-EO)

Casting GF-EO contained film 
exhibited better WVP, 
mechanical properties and 
glass transition temperature 
than other EO containing 
films. However, radical 
scavenging activity and 
antimicrobial activity 
was superior for LM-EO 
incorporated films.

[25]
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north America will dominate the edible packaging market, followed by the United 
Kingdom, Japan, Indonesia, and Israel [32]. In order to enable their commercial 
implementation, researchers have been working nonstop for the past three decades 
to create edible films that can compete with traditional plastic films. Meanwhile, the 
packaging sector faces challenges in the areas of high moisture content, high pres-
sure and modified atmosphere, natural and fresh goods, among others, and with an 
environmentally friendly approach [33].

3. Classification

Films and coatings are made from edible polymers and material composition, 
as well as the material thickness, differs between the two. Bags, pouches, capsules, 

Matrix Polymer Essential Oil Used Targeted 

Product

Film 

Formation 

Method

Observations and Remarks Reference

Basil seed gum Oregano essential oil Casting The resulting film showed 
a significant reduction in 
WVP with antimicrobial and 
antioxidant activity.

[26]

SPI:Acetem: 
Tween 60

Carvacrol and 
cinnamaldehyde

Casting The addition of emulsions 
significantly reduced the 
tensile strength of the films 
and improved their EAB. An 
only slight improvement is 
reported with the addition of 
essential oils

[27]

Gelatin: MMT Ginger essential oil 
(GEO)

Casting Synergetic effect of GEO with 
MMT significantly improved 
the mechanical properties 
like EAB, puncture force, and 
puncture deformation.

[28]

Zein Zataria multiflora 
Boiss. essential oil 
(ZEO)

Minced 
meat

Casting Addition of ZEO along with 
monolaurin significantly 
improved the antioxidant 
activity and antimicrobial 
properties against Listeria 

monocytogenes and E.coli

[29]

WPI Almond and walnut 
oils

Casting Addition of oils increased 
the opacity of the film 
whereas swelling, water vapor 
permeability, and surface 
hydrophilicity were reduced.

[30]

Chitosan:MMT Rosemary essential 
oil and ginger 
essential oil

fresh 
poultry 
meat

Casting Incorporation EOs 
improved only the barrier 
to oxidation but not the 
antimicrobial properties. 
Overall performance of EOs 
in Chitosan/MMT film is not 
significant

[31]

Table 1. 
Various edible polymer films, fabrication techniques observed remarks.
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and casings are all made with films. Coatings are also applied directly to the surface 
of the meal. Hydrocolloids, lipids, and their composites are the three types of edible 
polymers. Hydrocolloids are long-chain hydrophilic polymers. The texture (chewy 
or creamy, lengthy or spreadable, and elastic or brittle) and sensory qualities (taste, 
mouth feel, and opacity) of the gel vary depending on the kind of hydrocolloid. 
Because of its hydrophilic feature, it can create viscous dispersion or gels in water. 
This is because the hydrocolloid’s hydroxyl group bonds with water molecules, 
thickening the water or forming gels. They are weak water barriers because they can 
capture or immobilize water molecules in a three-dimensional network.

Fatty acids containing carbon atoms [34–38] generated from vegetable oils and waxes 
make up the other family of lipids [3]. They are generally opaque, waxy tasting, and slip-
pery, and can be used to adjust color, flavor, sweetener, and salt concentrations, among 
other things [39]. Lipids are hydrophobic by nature, making them effective water vapor 
barriers with minimal permeability. The water permeability of edible composites made of 
hydrophilic hydrocolloids and hydrophobic lipids can be enhanced by combining them.

Based on their main components, edible films and coatings are divided into differ-
ent categories. There are four major categories of edible coatings and films, including 
polysaccharides, proteins, lipids, composites, and polymers. Figure 1 summarizes the 
classifications of edible films fabricated from various materials [40].

3.1 Polysaccharide-based edible films

The most prevalent natural polymer is polysaccharide, and in recent years, it has 
been frequently employed to create edible films or coatings. It is well known that 
polysaccharides contain a strong oxygen barrier and sites for the creation of hydro-
gen bonds, which can be exploited to incorporate functional ingredients including 
taste, coloring, and antioxidant compounds. These materials lack effective water 

Figure 1. 
Classification of edible films [40].
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vapor barriers, however, this problem can be solved by combining them with other 
hydrophobic macromolecules, such as lipids [41, 42]. Natural-based packaging has 
been created using polysaccharides [43]. Edible films and coatings are created using 
polysaccharides, including starch, pectin, cellulose, exudate gums, and seaweed 
extracts. After considering their suitability in terms of the physical, mechanical, and 
functional characteristics of edible films and coatings, these substances are chosen. 
Although polysaccharide-based films and coatings have poor moisture barrier quali-
ties, they are only slightly more permeable to oxygen and selectively permeable to 
oxygen (O2) and carbon dioxide (CO2) than other materials. Because they can alter 
the atmosphere inside the product, they are useful for the preservation of fruits and 
vegetables where they can lower the respiration rate. Pea starch-based edible films 
improved the use of pea starch in both food and non-food applications when guar 
gum and glycerol were added [44]. Edible films made of polysaccharides have a well-
organized hydrogen-bonded network, which makes them effective oxygen blockers. 
Polysaccharide coatings are used to enhance the shelf life of products without causing 
any anaerobic conditions. They are colorless, free of oil, and have no oil content [41]. 
One can prepare the polysaccharide-based film either wetly or dryly. Several authors 
created polysaccharide-based edible films and coatings. Author Arantzazu Valdes 
et al. have created the natural pectin polysaccharides as edible coatings to improve 
organoleptic and nutritional characteristics and extend shelf-life [45]. Author 
Aarushi et al. has prepared Seaweed polysaccharide-based edible coatings and films. 
Authors emphasized the structure, extraction, and gelling mechanism of the alginate 
and carrageenan with incorporation of additives, such as plasticizers, nutraceuticals, 
flavors, and surfactants in the films [46]. Also, Prerna Singh et al. have prepared 
starch-based edible films with the objective of standardizing the production method-
ology and formulation for the creation of starch-based biodegradable antimicrobial 
films to increase the shelf-life of food and food items [47]. Similarly, author Poonam 
Singh et al. have developed cellulose-based films cross-linked with citric acid for 
probiotic entrapment. Authors concluded the probiotic bacteria were successfully 
entrapped into the films with acceptable viability [48]. All of these properties of 
polysaccharide coatings and edible films can extend fruit shelf life [41]. Alginate is a 
polymer found in brown algae (Phaeophyceae). Alginate consist of α-L-guluronate 
(G) and R-D-mannuronate (M) links in th (1–4) chain [41, 49]. Pullulan, a polysac-
charide with microbial qualities comprised of maltotriose and (1,6) glycosidic units 
generated by Aureobasidium pullulans from starch [10], is another polymer with 
microbial features. Pullulan is a water-soluble, colorless, odorless, and tasteless edible 
film that is also oil permeable and heat sealable [41].

3.2 Protein-based edible films

In recent years, protein-based edible films have drawn interest due to their 
advantages over synthetic films, including their usage as edible packaging materials. 
Furthermore, protein-based edible films can be utilized for the individual packaging 
of tiny amounts of food, particularly goods that are not currently wrapped individu-
ally for practical reasons, such as beans, almonds, and cashew nuts. In addition, 
protein-based edible films can be used at the interfaces between different layers of 
components inside diverse diets. Moreover, protein-based edible films can be used 
to transport antibacterial and antioxidant compounds. In order to better protect and 
confine the food matrix, many young researchers began to examine and produce 
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nanostructured antibacterial edible coatings [28]. Protein-based packages can be 
active because the contact of the packaging with the packed food or the surrounding 
environment activates it. For illustrate Figure 2 depicts the various materials and 
technologies that improve the value of food packages with protein [50]. Having a look 
at antioxidant and antibacterial compounds, which are most often employed com-
ponents in the production of an active film or coating. The major goals of the active 
packages are to delay oxidation (by binding pro-oxidation substances or releasing 
antioxidants) and to limit pathogen development (organic acids, negatively charged 
phosphate groups, essential oils, anthocyanins, and chitosan) [51, 52]. Chemical, 
biochemical, or biological changes on the product’s surface activate the release of 
active substances, ensuring a longer freshness and shelf life. Many significant protein 
sources may be found in a variety of vegetable and animal sources. Because of the 
abundance of resources in these fundamental goods, researchers began to extract 
polypeptides from a wide range of vegetable and animal products or by-products 
[53, 54]. Many authors prepared protein-based edible films for effective packaging 
material. Among them, Seung YongCho et al. have prepared oxygen barrier bilayer 
film pouches from cron zein and soya protein isolate for olive oil packaging for use 
with instant noodles [55]. Authors Burcu Gokkaya Erdem and Sevim Kaya have 
prepared edible film by freeze-drying from whey protein isolate and sunflower oil 
and evaluated functional properties of the films. Authors noticed that oil incorpora-
tion into the film matrix has decreased lipid droplet size and increased opacity [56]. 
Another author Nevena Hromis et al. have investigated possible application of edible 
pumpkin oil cake film as pouches for flaxseed oil protection. Author concluded 
that PuOC-based pouches present good protection for flaxseed oil [57]. Similarly, 
Long-Feng Wang and Jong-Whan Rhim have fabricated and studied the applications 
of agar/alginate/collagen ternary blend functional food packaging films. Authors 
noticed that ternary blend films exhibited good antifogging properties as well 
active packaging materials for highly respiring fresh agricultural products [58]. In 

Figure 2. 
Materials and technologies that improve the value of food packages with protein [50].
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continuation of protein edible films, author Jose Maria Lagaron et al. successfully 
produced a bio-composite material by melting compounding polyhydroxyalkanoates 
with a keratin component generated from poultry feathers [59]. Also, Moreira, Maria 
del Rosario et al. have investigated the antimicrobial property of bioactive packaging 
material prepared from edible chitosan and casein polymers for carrot, cheese, and 
salami [60]. Also, Xinyu Liu et al. have conducted the review on Site-selective protein 
modification with polymers for advanced biomedical applications. Author tried to 
elaborate current achievements in site-selective protein modification with polymers 
into five sections: site-selective protein modification; site-selective polymer modifica-
tion; site-selective in situ generations of polymers from proteins; polymer biosafety; 
and biomedical applications [61]. Farhan et al. claim that a water extract from the 
germination of fenugreek seeds may be used to create an edible film of semi-refined-
carrageenan. This edible film can be utilized as an alternative to standard plastic films 
used in the packaging of chicken flesh for fresh chicken breast [62, 63]. Meanwhile, 
Furcellaran, a genus of red algae, is one of the most important carrageenan sources. 
Jamróz et al. combined furcellaean with nanofillers, maghemite nanoparticles, and 
graphene oxide to produce a film with strong antibacterial activity (for the nanofill-
ers) but not exceptional mechanical qualities [64]. Author prepared Syzygium cumini 
leaves extract doped PVA and PVA/chitosan blend films for food packaging applica-
tions. The authors attempted to investigate the physicochemical characteristics of 
created blend films using XRD, SEM, AFM, FTIR, TGA, and UTM, as well as the 
films’ antimicrobial capabilities. They determined that produced mixes might be used 
in packaging materials to extend food shelf life (Figure 2) [65].

3.3 Lipid-based edible films

Lipids are organic substances that come from living things including plants, ani-
mals, and insects. The presence of phospholipids, phosphatides, mono-, di-, and tri-
glycerides, terpenes, cerebrosides, fatty alcohols, and fatty acids make up the variety 
of lipid functional groups [66, 67]. Lipids in coatings and edible film offer a variety of 
benefits, including gloss, the reduction of moisture loss, lower costs, and less compli-
cated packaging [68]. For making lipid-based edible films and coatings more hydro-
phobic, a very wide variety of chemicals are available. Proteins, polysaccharides, 
lipids, or any combination of these substances can be used to create edible coatings 
and films, but the nature of these constituent materials has a significant impact on 
how well the coatings and films work [69]. Generally, lipids are a possible coating or 
film-forming substance in this context since the mechanical and barrier properties of 
edible films are strongly related to the polarity of film components. Lipids are defined 
as tiny, hydrophobic, naturally occurring compounds. Examples include fats, waxes, 
sterols, fat-soluble vitamins, and others. Having look at lipids, hydrophobic com-
pounds (lipids) are typically used as a barrier against the transmission of water vapor 
due to their polar property. Lipid compounds often exhibit mass transfer resistance to 
vapor and gas transport due to both their hydrophobic nature and structural makeup. 
To increase the hydrophobicity of edible films, a variety of lipid compounds can be 
utilized. The waxes of natural origin, vegetable oils, aceto-glycerides, and fatty acids 
are among the hydrophobic substances that exhibit good potential [70]. Generally, 
hydrocolloid films are frequently enhanced with lipid components, such as fatty acids 
and natural waxes, to improve their water barrier qualities [71, 72].

Triglycerides, the main component of fats and oils, are derived from plants and ani-
mals, respectively. Although this combination differs physically because fats are solids 
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and oils are liquids, it is chemically comparable [73]. In 2016, Rodrigues et al. created 
a palm fruit oil film with preferred water resistance and water vapor barrier for food 
packaging [74]. In order to improve the quality of food, Vargas et al. (2011) utilized 
sunflower oil in edible coatings and on pig meat hamburgers. This was done because it 
was crucial to oxygenate meat and control water vapor in order to avoid an unfavorable 
reaction [75]. Rice bran oil was tested by Hassani et al. (2012) to increase the shelf life 
of kiwi fruit. Fruits were mostly preserved based on flavor, color, and firmness [76]. 
Another level source for the creation of edible films is essential oils. By lowering lipid 
oxidation, essential oils obtained from diverse plants can increase the shelf-life of food. 
The water vapor permeability of the films is decreased by adding essential oils [77, 
78]. The growth of yeast, bacteria, and mold is inhibited by the use of anise oil, clove 
oil, and cinnamon oil. The shelf life of dried fish may be extended from 3 to 21 days by 
adding anise oil (4–6%) to an edible film. This prevents the formation of yeast, bacteria, 
and mold [79]. One of the main drawbacks is that strong aromas found in essential oils 
may alter the organoleptic characteristics of food items. Additionally, some essential 
oils have the propensity to cause allergic reaction issues. As a result, the concentration 
of essential oils affects their toxicity and organoleptic characteristics [80]. In talk, 
Aloe veras also considered an appreciable candidate in the food industry being edible 
material. A. vera gel’s primary applications are in the sectors of cosmetics and medicine 
because of its anti-inflammatory, antiviral, and anticancer properties. It has, however, 
recently found use as edible films for ice cream, drinks, and other liquids [81–83].

3.4 Synthetic and composite edible polymers

Diverse edible polymers that combine polysaccharides, proteins, and/or lipids may 
exist in nature. Synthetic and composite films are prepared by the use of multiple 
components. The purpose of using numerous components is to gain benefits from 
their synergistic interactions. This strategy enables one to make use of the unique 
functional traits of each type of film former. Proteins and carbohydrates, proteins 
and lipids, carbohydrates and lipids, synthetic polymers, and natural polymers can all 
be combined to make films [7]. These heterogeneous films were applied in a variety 
of ways, including consecutive layers, a solution in a common solvent, an emulsion, 
suspension, or dispersion of the non-miscible ingredients. The barrier qualities of the 
produced films are influenced by the application technique. Kamper and Fennema 
have developed emulsion films made of methylcellulose and fatty acids in order to 
enhance the vapor barrier property of cellulose film [84]. Composite edible polymer 
films exhibit good barrier qualities because a hydrophilic layer and a hydrophobic 
layer, which includes lipids, bind together [85]. Composite edible films have been 
categorized as binary or ternary based on the quantity of biopolymers, as illustrated 
in Figure 3. A binary edible film made of locust bean gum (LBG) and carrageenan is 
a famous example [87]. Many combinations of carbohydrate-carbohydrate, carbo-
hydrate-protein, and protein–protein are feasible in such systems [88–90]. There is a 
large body of literature on composite films and coatings made from the combination 
of two hydrocolloids, but the combination of three hydrocolloids for the creation of 
edible films or coatings is uncommon. A wide range of polysaccharide-based materi-
als, including tamarind starches, have lately been employed in the production of 
edible films (Chandra mohan et al. 2016). PVA/Syzygium cumini leaves extract (PSN) 
and PVA/chitosan/S. cumini leaves extract blend films were prepared as potential 
candidates in packaging material to extend the shelf life of foodstuffs [65]. In order 
to increase the mechanical, thermal, and antibacterial characteristics of chitosan 
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films, betel leaf extract (BE) was included into chitosan and chitosan/vanillin (CH/
Vn) mix films [91]. The researchers confirmed that the plant-extract-doped polymer 
material may be used as a new antibacterial agent in food packaging. Looking into 
different series, such as chitosan and its nanoparticles, cellulose derivatives, including 
methyl cellulose and hydroxyl propyl methyl cellulose, pullulan, and natural gums, 
were prepared and studied as edible packaging material [92–94]. Many natural gums 
have been extracted from different sources, such as gum ghatti, locust bean gum, and 
sage seed gum [87, 95, 96]. Furthermore, proteins and polysaccharides have found 
extensive use in the creation of edible films and coatings. Some of the model proteins 
include whey protein, sodium caseinate, soya protein isolates, and collagen [97–99].

Suppakul et al. has prepared the soy protein and corn zein bilayer edible film for 
coating olive oil condiments. Study reported that incorporation of corn zein enhanced 
the tensile strength, moisture barrier properties, reduced the elongation at break and 
oxygen barrier properties [89]. Author Gu and Wang et al. has prepared the zein/
gliadin binary film. Study reported that improved flexibility elongation at break, 
decreased brittleness and gliadin has significant impact on moisture content and 
solubility [100]. In another work, Song et al. created binary films out of scarcely bran 
protein and gelatin [101]. Authors concluded prepared films exhibited excellent film 
forming properties and composite film was complexed with grapefruit seed extract to 
enhance the antibacterial and antioxidant properties. The result of the study showed, 
when compared to the control preparation, the count of escherichia coli O157:H7 and 
listeria monocytogenes was dramatically reduced (without grapefruit seed extract). 
Similarly, salicylic acid and acetyl salicylic acid were utilized as fillers in the zein films, 
and their structure and mechanical characteristics were investigated [102]. Thakur 
et al. has formulated the bilayer film using starch combined with ι-carrageenan. Steric 
acid and glycerol were used as plasticizers [90]. Furthermore, Antoniou et al. has 
prepared binary film using chitosan nanoparticles and tara gum and characterized for 
thermomechanical, antimicrobial and barrier properties [103]. Authors confirmed 
that complexation process improved the tensile strength and elongation at break. In 
addition, Mei et al. has formulated the water chestnut starch and chitosan based bi-lay-
ered films [104]. Author concluded that addition of fruit extract has influence on the 
pH and moisture content of the film and demonstrated better mechanical properties. 

Figure 3. 
Barrier characteristics of composite edible films and coatings are shown schematically [86].
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Martins et al. has fabricated the Locust bean gum combined with κ-carrageenan edible 
films. The study revealed that the two biopolymers had a high synergy [87].

In another research work, edible films made of chitosan and fish gelatin were 
irradiated with an electron beam. Quercetin was trapped in the composite film due to 
a decreased release profile caused by irradiation [105]. The study of gelatin/chitosan 
composite edible films filled with antimicrobial extract (ethanolic extracts of cin-
namon, rosemary, guarana and boldo-do-chile) shown antimicrobial and antioxidant 
properties [106]. A number of research have concentrated on creating ternary blend 
films. Mention few, Jia et al. has ternary edible films using Konjac glucomannan, chito-
san and soy protein isolate using glycerol as the plasticizer [99]. Wang et al. has studied 
the whey protein isolate, gelatin and alginate ternary edible films and demonstrated 
the mechanical properties and barrier properties, such as water vapor permeability 
and oxygen permeability [107]. A ternary edible film made of konjac glucomannan, 
chitosan, and nisin was created, and its physical, mechanical, barrier, optical, struc-
tural, and antibacterial characteristics were investigated [108]. In the study, it was 
observed that ternary blend films exhibited high tensile strength, optimum transpar-
ency, and strong antimicrobial efficacy against S. aureus, L. monocytogenes, and B. 
cereus. Wang and Rhim formulated the ternary blend films from agar, alginate, and 
collagen. Also, blended films were successfully functionalized with silver nanoparticles 
and grapefruit seed extract as antimicrobial agents [58]. Polycaprolactone, methylcel-
lulose, and polycaprolactone were combined with several antimicrobial substances, 
including organic acids, rosmarinic acid, an Asian essential oil blend, and an Italian 
essential oil combo, to create quadruple edible films. The prepared antimicrobial films 
could significantly resist the growth of both S. aureus and E. coli [109].

4. Functionality and composition

The majority of foods are recognized to be vulnerable to mechanical harm, physi-
ological degradation, water loss, and rot when in storage. As a result of water loss, plants 
become less turgid, which accelerates the loss of nutrients and organoleptic qualities 
and is a key factor in degradation. Spoilage might be reduced by using edible coatings 
and cold storage [110]. Edible films are often used to carry active compounds, such as 
antioxidants, tastes, fortified nutrients, colorants, antibacterial agents, or spices, while 
also acting as a barrier against gases or vapor. Controlling mass transfers, providing 
mechanical protection, and enhancing sensory perception are the three most crucial 
functions of an edible film or coating. Controlling mass transfers includes keeping food 
from drying out, managing gas microenvironments around food, and limiting compo-
nent and additive migration in food systems. Edible films have two main functions: to 
maintain the food’s mechanical integrity or handling features and to act as a selective 
barrier to different gases, moisture, aromas, and lipids. Edible films and coatings can 
improve the look of coated food and govern adhesion, cohesion, and durability in addi-
tion to their barrier capabilities. Edible films act as a conduit for interactions between 
the environment, the product, and the packaging. Typically, these interactions involve 
a range of physical, chemical, and biological activities that change the natural environ-
ment in which the food is packed, improving the product’s sustainability, safety, quality, 
and shelf life [111]. Perhaps, by modifying and controlling the internal environment 
of individual items, edible coatings on fresh foods can offer an alternative to modified 
atmosphere storage by decreasing quality changes and quantity losses. Even while 
oxygen entry may lower food quality due to oxidation of the fragrance components in 
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the food, altering internal atmosphere by the application of edible coatings might exac-
erbate diseases linked to excessive carbon dioxide or low oxygen concentration [112]. 
For fresh items, edible film with higher water vapor permeability is also preferred, yet 
exceptionally high-water vapor permeability is also not preferred since it may cause 
fruit to lose too much moisture during storage. To maintain the integrity of the pack-
age throughout distribution, an edible film must have sufficient mechanical strength. 
Acceptance of finished items is largely determined by the sensory qualities of an edible 
coating or film. In conclusion, the most beneficial characteristic of edible films and 
coatings are their edibility and inherent biodegradability [113, 114].

4.1 Physical and mechanical protection

In general, edible films and coatings shield packed or coated foods from physical 
harm brought on by mechanical forces including pressure, vibration, and collision. 
The tensile strength of edible films should typically be lower than that of conven-
tional plastic films, however, their elongation at break varies greatly. The majority of 
edible and coated films are extremely moisture-sensitive [115]. However, their physi-
cal strength decreases at greater relative humidity levels because absorbed moisture 
works as a plasticizer. Consider the importance of temperature in influencing the 
physical and mechanical qualities [116–118]. When temperatures rise over the glass 
transition point, materials’ physical strength is drastically reduced.

4.2 Functions of migration, permeation, and barriers

Mass transfer events, such as moisture absorption, oil absorption, oxygen inva-
sion, taste loss, unwanted odor absorption, and migration of packing materials into 
food in general deteriorate the quality of foodstuffs [119, 120]. Deterioration mecha-
nism involves penetration of oxygen into foods, which causes the oxidation of food 
ingredients; inks, solvents, and monomeric additives in packaging materials might 
migrate into foods. Edible films and coatings prevent the migration phenomenon and 
quality deterioration [114, 116]. It is best to use stand-alone edible films to measure 
the transmission rates of certain migrants in order to define the barrier qualities of 
edible films and coatings. The majority of study has focused on the oil resistance, 
taste permeability, oxygen permeability, carbon dioxide permeability, and water 
vapor permeability of edible films.

When it comes to handling convenience, edible films and coatings provide a 
number of advantages. The reinforced surface strength of delicate items facilitates 
handling easier. Fruits and vegetables with coatings are far more resistant to bruising 
and tissue damage brought on by impact and vibration. Edible films and coatings 
serve a number of extremely important purposes, including quality maintenance and 
improvement [121]. They may prevent the microbiological degradation of food goods 
as well as surface dehydration, moisture absorption, ingredient oxidation, fragrance 
loss, frying oil absorption, and ingredient oxidation. In view of physical and chemical 
quality, edible films and coatings improve visual quality, surface smoothness, taste 
conveyance, edible color printing, and other marketing-related quality criteria [121].

4.3 Extension of shelf life and improvement of safety

Extension of shelf life and increased safety are closely connected to the improve-
ment and maintenance of quality. Food items with higher protective functions have 
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longer shelf lives and are less likely to become contaminated by foreign objects 
[120–123]. Due to the recent significant rise in the market for fresh produce and mini-
mally processed goods, it is necessary to keep these items safe and increase their shelf 
life [124, 125]. Improved systematic methods are required to preserve safety and shelf 
life due to the enormous size of modern food manufacturing, distribution networks, 
food service franchises, and fast food restaurants.

4.4 Transporters for active ingredients and controlled release

For food components, medicines, nutraceuticals, and agrochemicals, edible films 
and coatings can be used in the form of hard capsules, soft gel capsules, microcap-
sules, soluble strips, flexible pouches, coatings on hard particles, among other forms 
[120, 126]. Many food-grade preservatives and natural antimicrobials have been 
combined into edible film and coating materials. They act as successful examples of 
how to efficiently inactivate spoilage or pathogenic bacteria on the surface of sus-
ceptible food items [127, 128]. To prevent the autooxidation of high-fat food items, 
natural antioxidants have also been integrated into edible film and coating materials 
[129]. The capacity for regulated release is the most crucial factor to consider when 
evaluating the efficacy of various applications [123]. One needs to concentrate on 
this because various release rates, such as instantaneous release, gradual release, a 
particular release rate, or non-migration of active chemicals, are necessary depending 
on the application. To create controlled-release systems, a variety of different active 
ingredients can be added to film-forming polymers. Antimicrobials, antioxidants, 
bioactive nutraceuticals, medicines, flavors, inks, fertilizers, insecticides, insect 
repellents, and medical/biotechnology diagnostic agents are good examples of active 
chemicals needing certain migration rates. To inactivate contaminated spoilage or 
pathogenic bacteria, several natural phenolic compounds have been added to edible 
coating materials and applied to microbiologically vulnerable foods [130–134].

5. Fabrication of edible films

Understanding the chemical makeup and structural details of additives, biopoly-
mers, and other materials that create films is crucial for configuring them for particular 
uses [122, 135]. It is crucial to use a solvent that is both water and ethanol soluble when 
wet casting or combining active agents. There two types of film-making techniques are 
dry and wet [116]. In dry method of making edible films does not require liquid sol-
vents, such as water or alcohol. Dry techniques include molten casting, extrusion, and 
heat pressing. Generally, heat is provided to the film-forming materials during the dry 
process to raise the temperature over the melting point of the film forming ingredients, 
causing them to flow. During film preparation, it is important to note down the impact 
of plasticizers and other additives on the thermoplasticity of film-forming materials 
must be determined. Plasticizers lower the glass transition temperature.

The wet technique disperses film-forming ingredients in solvents before dry-
ing to remove the solvent and produce a film structure. One of the most significant 
components of the wet process is solvent selection. Only water, ethanol, and their 
combinations are suitable as solvents since the film-forming solution needs to be eat-
able and biodegradable [136]. To create film-forming solutions, all the components of 
film-forming materials should be dissolved or uniformly distributed in the solvents. 
By using a sprayer, spreader, or dipping roller, the film-forming solution should be 
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Edible matrix Industry waste Edible film Reference

Polysaccharides Sugarcane bagasse Starch (4%), glycerol (20% dry weight), water, and appropriate amount of cellulose nanocrystals obtained from sugarcane bagasse 
(3% dry weight)

[18]

P. densiflora leaves Hemicellulose fractions of P. densiflora leaves with 1% w/w polysaccharide) lecithin [19]

Cotton linter pulp Crystalline cellulose nanofibrils from cotton linter pulp to reinforce sodium carboxymethyl cellulose films (2% w/v) and 0.9 g of 
glycerol (30 wt %) to 150 mL of distilled water

[20]

Soybean chaff Composite alginate films obtained from alginate–carbohydrate solutions containing 5 wt % alginate and 0.25 wt % cellulose 
extracted from soybean chaff

[21]

Apple, carrot, and hibiscus Apple, carrot, and hibiscus-based pectin edible films [137]

Lime bagasse and lime pomace pectic 
extracts

Lime bagasse pectic extract and lime pomace pectic extract at 0.70, 0.85, and 1.00% pectin equivalents with Mexican lime EO and 
0.70 wt % glycerol plasticizer

[138]

Pectin from citrus Microparticles and films containing sunflower oil produced by ionic gelation with a 1:1 alginate–pectin mixture and 
electrostatically coated with whey and egg white proteins

[139]

M. stellatus seaweeds Hybrid carrageenan extracted from M. stellatus seaweeds [140]

Pyropia columbina red algae Carrageenan/porphyran-based films obtained from a P. columbina aqueous fraction formed by casting from aqueous dispersions 
with different levels of glycerol

[141]

M. stellatus seaweed Edible active films from different M. stellatus crude aqueous extracts [142]

Porphyra columbina seaweed Antioxidant phycobiliprotein/phycocolloid-based films obtained from mixtures of two aqueous fractions extracted from P. 

columbina red seaweed
[143]

Brown seaweeds Laminaria digitate 
and Ascophyllum nodosum

Film-forming carbohydrate-rich extracts from the brown seaweeds L. digitata and A. nodosum obtained with Na2CO3 or NaOH at 
different temperatures and with different acid pretreatments (H2SO4 and HCl)

[144]

Chitosan and protein concentrate 
from shrimp waste

Chitosan solution (2% w/w) dissolved in a 0.15 M lactic acid solution (pH 3.2) and sonicated [145]

Chitosan and potato and cassava 
starches

Starch and chitosan films obtained by the variation of the starch source (potato and cassava starches), starch concentration (0.5 
and 1.0 wt %), and type of plasticizer (glucose and glycerol)

[146]

Marine industry byproducts: chitosan 
and fish gelatin

Chitosan and fish gelatin (1:1 w/w), entrapping natural antioxidants [ferulic acid, quercetin, and tyrosol (~50 mg/g)], used to 
prepare edible active films by casting

[147, 148]

Chitosan and zein Composite edible films fabricated with zein and chitosan and supplemented with phenolic compounds (ferulic acid or gallic acid) 
and dicarboxylic acids (adipic acid or succinic acid)

[149]

Cashew tree gum Starch-cashew tree gum nanocomposite film; sage seed gum edible films with two different plasticizers (glycerol and sorbitol: 20, 
40, 60, 80, and 100% w/w)

[150]

Locust bean gum 0.4 and 0.6% w/v κ-carrageenan and locust bean gum suspended in distilled water under agitation for 1 h at 25°C with 0.3% w/v 
glycerol (87% v/v) in solution and homogenized at 80°C for 30 min

[151]

Basil seed gum Basil seed gum and different plasticizer concentrations added to deionized water and heated to 80°C under mild stirring [152, 153]

Brea gum Brea gum (10% w/v), glycerol (25% w/w Brea gum), water, and montmorillonite (5% w/w Brea gum) [154, 155]

Table 2. 
Several edible films prepared using polysaccharide as edible matrix and industrial waste.
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applied to flat surfaces. Once cured, the solvent should be removed to create a film 
structure. The development of uniform edible film and coating systems including 
active additives depends heavily on the components’ compatibility with the solvent. 
To create film-forming solutions, all constituents, including active additives, biopoly-
mers, and plasticizers, should be uniformly dissolved in the solvent. The coating pro-
cedure is also impacted by the film-forming solution’s viscosity. A reduced viscosity 
speeds up the film-forming solution’s separation from the flat surface, which results in 
an uneven coating on the surface and the coating solution trickling down to the floor. 
To decrease this coating phase separation, higher viscosity of the film-forming fluid 
is preferred, unless doing so results in an unacceptably thick coating thickness. The 
likelihood of a film layer developing on the flat surface during the high-speed coating 
process increases if the film-forming solution has lower surface tension and a greater 
viscosity. However, coated films’ lower surface energies after drying make it more 
difficult to remove the film off flat surfaces. Table 2 summarizes the different edible 
films prepared using polysaccharide as edible matrix and industrial waste.

System that is commercially viable includes new processing technologies, such 
as extrusion, roll orientation, conveyor drying, bath coating, pan coating, or other 
procedures, which would be needed to produce edible films and coatings. These new 
manufacturing technologies should be economically viable and compatible with the 
methods now used to produce packaging films and food coatings. Therefore, com-
position of film-forming materials should be carefully tuned, and the film-forming 
processes must be updated correspondingly, to fulfill the feasibility of new produc-
tion systems [1].

6. Characterization and performance analysis

The appropriate use of edible packaging films largely depends on their mechani-
cal and barrier properties. Therefore, it is critical to establish precise approaches for 
assessing film performances, particularly for the measurement of permeability values 
that can be effectively applied to forecast the self-life of products. The instruments 
employed to determine permeability are standardized ones and available for water 
vapor and permanent gas transfers. They were developed for use with synthetic and 
plastic packaging films. The rate of water vapor transmission per unit area of flat 
material with a unit thickness and per unit vapor pressure differential between two 
particular surfaces, under predetermined temperature and humidity conditions, is 
known as water vapor permeability (WVP). Based on infrared sensors, such as the 
Permatran-W series offered by Mocon, or WVP tester L80–4000 series of Dr. Lissy 
which works on the principle of coulombic or spectrophotometer method several 
methodologies have been refined by Holland and Santangelo [156]. In contrast to 
hydrophilic polymers, these approaches are particularly suited for high-barrier effi-
ciency polymers, such as plastics or wax-based edible films [157]. The “cup method,” 
which is based on the gravimetric methodology, is the approach most frequently 
utilized by those who work on edible packaging.

For the purposes of applying edible coatings on fruits and vegetables, it was 
frequently investigated how permeable they were to gases, especially oxygen and 
carbon dioxide. The ASTM D1434 and ISO 2556 standards’ manometric and volu-
metric methodologies were not used for edible films [158, 159]. In this regard, Oxtran 
device was the best one that could be used to measure gas permeability through 
edible films. As a result, plastic research on the gas permeability of edible packaging 
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was conducted using the gas chromatographic method created by Karel et al. and 
Lieberman et al. for collagen films [160, 161]. A gas chromatographic technique has 
recently been improved by Debeaufort and Voilley to quantify permanent gases, 
water, and organic vapor [162]. If the mechanical qualities of an edible film or coating 
do not allow for the maintenance of the film togetherness during usage, packing, and 
transport procedures, even one with excellent barrier properties may not be effective. 
Therefore, it is necessary to ascertain the mechanical strength and injury of edible 
films. To analyze the tensile strength, young’s modulus, elongation at break, and 
elasticity of edible films, instruments, such as a universal testing machine, dynamic 
mechanical thermal analyzer, and texturometer, are frequently utilized [163]. 
Numerous other aspects of films are frequently researched, particularly in order to 
comprehend their mechanical and barrier properties, such as thickness, degradabil-
ity, solubility, opacity, color, antimicrobial activity, and thermal stability.

7. Rheology of edible films

Ideally, the functional characteristics of a packaging film, more especially the 
physical and rheological characteristics of a film-forming solution, can be used to 
verify the film’s performance (FFS). In fact, rheological characteristics are crucial 
to the creation of high-quality composite films. They must be taken into account 
while enhancing the design process since they have an impact on the spreadability, 
thickness, uniformity, and functioning of FFS [164]. It is well-known fact that 
physical parameters of film plays are crucial to investigate the properties, such as 
tensile strength, Young’s modulus, and elongation at break. In addition, the physi-
cal characteristics of films were also examined, such as their shape, morphology 
(heterogeneous and homogeneous), solubility as well as their transparency, and 
light transmission. The rheological characteristics associated with the film-forming 
solutions play a crucial role in defining properties, such as thickness, dispersion, and 
uniformity of liquid coating layer, applied to the edible film by dipping brushing or 
spraying. Also, with respect to film formation, a moderate viscosity is the required 
flow property for the film-forming solution since high or low viscosities would result 
in uneven film formation [165]. For coating applications, some writers have advised a 
viscosity lower than 700 mPas; however, the proper viscosity for other film solution 
treatment circumstances, such as mixing, pumping, and transfer to the casting line, 
as well as spreading the solution smoothly, is around 1000–10,000 mPas [166, 167]. 
The behavior of the flow of film solutions has an impact on the mechanical properties 
and the optimization of the designing process during application. Additionally, it is 
claimed that rheological parameters can be used to assess how polysaccharide solution 
systems’ structure–function interaction [168]. Therefore, modification and alteration 
in the molecular structure, it is required to analyze the rheological characteristics of 
the edible film solutions in order to provide a comprehensive understanding of the 
physical characteristics of edible films.

Ideally speaking on influence of concentration degree of deacetylation (DD), for 
example, an increase in the concentration of glycerol has a significant influence on 
apparent viscosity (AV), consistency coefficient (CC), and flow behavior index values 
of deacetylation samples. In one study addition of 5% glycerol has shown descending 
order of AV and CC of prepared films. At a subsequent addition of glycerol (10%), 
these values did, however, continue to decline for only 100DD samples. The samples’ 
pseudoplastic behavior was shown by the n values, which ranged from 0.70 to 0.77 
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[169]. Principally, it was connected to the network’s polysaccharide macromolecules 
with a lot of hydroxyl groups being destroyed by shearing [170]. In terms of pseudo-
plastic flow behavior, AV, and CC values, only the 100DD-10G (n = 0.77) sample was 
less favorable. As a result, this solution disperses and flows more readily, reflecting 
the fact that glycerol has disrupted the intermolecular link among the glucomannan 
polysaccharides. Therefore, glycerol’s inhibition impact was more pronounced for 
100DD. Glycerol increase may be offered at a lower DD, preserving the properties of 
the existing hydrogen bonds while creating new ones.

In our previous work, we tried to figure out influence of Syzygium cumini (S. 
cumini) leaves extract, morphological, thermal, and mechanical as well as on anti-
microbial activity of the PVA and PVA/chitosan blend films for packaging applica-
tions [171]. The findings showed that the S. cumini leaves extract in PVA and PVA/
chitosan films had a significant physical interaction at lower concentrations, which 
contributed to the films’ smooth uniform morphology, increased degree of crystal-
linity, lower degradation temperature, and improved mechanical properties. Table 3 
depicts the mechanical properties of PVA and PVA/chitosan-doped blend films. As it 
is observed that at a lower concentration of S. cumini leaves extract, tensile strength 
increased, elongation at break and Young’s modulus decreased. Figure 4 depicts the 
SEM micrographs of pure PVA, chitosan, PSN-1, PSN-4, PCS-1, PCS-3, PCSHN-1, 
PCHSN-3, PCHS-1, and PCHS-4 blend films [171].

Figure 5 it is depicted that, binary PVA/S. cumini leaves extract showed smooth 
homogeneous morphology, whereas high concentration of S. cumini leaves extract 

Sl. No Sample Name Tensile strength 

(Ts)

Young’s modulus (Ym) Elongation at 

break (%Eb)

01 Chitosan 40.37 ± 2 1603.69 3.90

02 PVA 21.70± 24.48 394.32

03 PSn-1 24.95± 27.58 317.12

04 PSn-2 23.24 18.85 342.55

05 PSn-3 12.17 24.98 242.46

06 PSn-4 20.00 22.95 296.06

07 PchSn-1 30.81 23.18 213.10

08 PchSn-2 14.74 23.16 150.72

09 PchSn-3 19.11 19.11 135.05

10 PchSn-4 21.76 21.76 153.72

11 PCS3 62.96 18.42 11.67

12 PCS4 48.08 61.26 117.82

13 PCS5 18.83 22.59 138.97

14 PChs-1 36.14 81.781 65.43

15 PChs-2 26.41 63.66 59.11

16 PChs-3 30.26 76.25 60.51

17 PChs-4 32.32 114.30 59.10

Table 3. 
Mechanical properties of PVA, chitosan, and blend films.
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(PSN-4) showed low compatibility exhibiting strand-like appearance, indicating 
phase separation. Similarly, in another work, we tried to analyze influence of Betel 
leaves extract on chitosan/vanillin films [91].

Figure 4. 
SEM micrographs of pure PVA, chitosan, PSN-1, PSN-4, PCS-1, PCS-3, PCSHN-1, PCHSN-3, PCHS-1, and 
PCHS-4 blend films [171].
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Figure 6 presents the SEM micrographs of different Betel leaf extract (BE) doped 
chitosan blend films. At a lower concentration of BE, smooth homogeneous morphol-
ogy was observed (CBE-1), later at a higher concentration of BE immiscibility was 
noticed (CBE-4). In case of ternary blend films Chitosan/vanillin/BE, showed good 

Figure 5. 
Scanning electron microscopy micrographs of pure chitosan, vanillin, betel leaf extract, CH/BE (CBE) and CH/
Vn/BE (CVB, CVBA) blend films [91].
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miscibility and smooth homogeneous morphology (CVB-1 and CVBA-1) due to 
compatibility of BE at molecular level as chitosan is recovered by the vanillin network 
implying the appreciable adhesion and compatibility [91]. Similarly, X-ray diffracto-
gram of binary chitosan/BE films showed a significant change in 2θ value, indicating 
the decrease in degree of crystallinity (51.59, 70.89, and 31.94%) with an increase in the 
filler BE, attributed to the dispersion of BE lead to the weak interaction in the chitosan 
matrix. The diffraction model of ternary CH/Vn/BE blend films showed diffraction 
peaks at 18.50, 20.39, 28.50, 35.09 and 42.19° for CVB-1; 22.2, 31.09, 34.30 and 44.90° 
for CVB-2; and 7.06, 20.59, 22.79, 28.49 and 38.49° for CVB-3. The 2q value in each 

Figure 6. 
Edible films and coatings: schematic presentation [172].
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formulation was significantly improved by the addition of BE, lengthening the distance 
between the chitosan chains. The findings from the contact angle investigation and the 
oxygen barrier qualities may be closely connected with this [91].

8. Concerns relating to consumers

Consumer acceptability may have a considerable impact on the potential usage of 
edible materials because edible films are consumable components of food products 
[1]. Consumer acceptability, which is influenced by organoleptic characteristics, wel-
fare, selling, and cultural resistance to the use of new materials, is a comprehensive 
indicator of consumers’ subjective product preferences. However, it is important to 
note down organoleptic characteristics, including flavor, odorless, sensory feasibility 
with packed foodstuffs, texture, and appearance [135]. Innovative edible film’s poten-
tial for toxicity or allergenicity and microbiota changes in packaging stuffs are major 
safety concerns. More than consumer approval, there are several other issues that 
prevent edible films from being used commercially, including complexity associated 
with the production, huge investment to install new film manufacturing equipment, 
potential conflict with traditional packaging, and regulatory issues.

9. Applications

Heightened active packaging concept is a result of growing consumer demand for 
retaining quality and freshness of foodstuffs higher quality. A kind of packaging mate-
rial that modifies the environment around the food to preserve food quality and fresh-
ness, enhance sensory qualities, or lengthen food safety and shelf life. In this regard. 
Edible films are considered suitable candidates for packaging as they are eco-friendly 
and biodegradable in nature. Generally, edible films are used to pack vegetables, fruits, 
meat, fish, dairy products (cheese, milk, and yogurt), and poultry products. Various 
examples of packaging materials include biopolymers, bioplastics, and edible films 
prepared from natural origin raw materials from agricultural or marine sources [78].

9.1 Edible films for meat, poultry, and seafood packaging

Generally, active edible films provide a preservative barrier to products made from 
meat, poultry, and seafoods. As this food is quite perishable due to high percentage 
of water. Edible films around the meat products protect the shrinkage loss, retain 
discoloration, resist microbial attack, and oxidative off-flavor. A variety of edible 
biopolymers are employed as coatings for meat products [173, 174]. With advanta-
geous properties, such as biopolymer, hydrophilic, and good film-forming ability, 
author Kontominas MG have investigated sodium alginate-based edible films by mix-
ing active and antimicrobial agents to enhance the shelf-life of meat product [175]. 
Author Takma and colleagues prepared the alginate-based edible films using black 
cumin oil as an antimicrobial agent to pack chicken breast meat [176]. Furthermore, 
Qussalah et al. have proved sodium alginate films successfully inhibit Salmonella 
typhimurium when mixed with cinnamon, savory, and oregano oil [177].

However, Seafood is most perishable food material which has a very short shelf life 
also contamination possibilities are more during transportation due to surrounding 
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environment, which leads to the spoilage of quality and loss of nutritional values and 
may lead to foodborne diseases. To ensure quality and shelf-life use of antimicrobial 
agents in the catfish gelatin which helps to control microbial attack and enhances the 
shelf life of shrimp by nearly about 10 days. Gelatin and whey protein-based enriched 
films doped with cinnamon oil and clove essential oil as an active antimicrobial agent 
retards the microbial attack on rainbow trout fish and active agent improves the qual-
ity of chicken breast fillet’s shelf life [178, 179].

9.2 Edible films for packaging of dairy products

Every day we consume dairy products, including cheese, yogurt, and milk which 
are an essential part of our daily diet. Among others, specifically, cheese is rich in 
lipids, proteins, and vitamins. Having said that, edible films regulate and control the 
ripening process, inhibit mass transfer, and lengthen the shelf life. Different edible 
casting techniques include spraying, dipping, brushing and electrostatic brushing, 
and casting is used to prepare film. Film covered on the cheese will increase the shelf 
life, brushing is normally used for small-sized cheese packaging, and for irregular 
shape cheese dipping method is preferred. Similarly, uniform and thin layer coating 
the cheese spraying method is most preferred one. On the other hand, electrostatic 
spraying prevents solution wastage and gives higher efficiency. Films prepared from 
casting technique generally create the barrier between the cheese and surrounding 
environment [180]. When compared to polysaccharide films, films fabricated from 
whey protein sources exhibit better gas barrier characteristics. As whey protein films 
are transparent in nature which allow consumer to see the quality of the cheese. 
Speaking of other dairy products, that is, butter, which contain high fat hence more 
found of lipid oxidation, and shelf life get reduces. To protect corn starch edible 
materials prepared using ginger oil stops lipid oxidation when stored at 2 to 5°C [181].

9.3 Edible films for packaging of fruits, vegetable, nuts, and grains

Gas exchanges via respiration and transpiration occur during ripening and storage, 
as well as microbial growth, particularly molds and rots, are the main causes of fruit 
and vegetable deterioration [182]. Most commonly waxes, such as paraffin, beeswax, 
shellac, carnauba, and candellilla, are utilized as coating agents for all kinds of fruits 
[183]. Waxes and oils are very effective water barriers that can stop weight loss, whether 
they are used alone or in an emulsion with hydrocolloid or protein solutions. A thick 
wax layer coated on fruits significantly alters the CO2 leading to anaerobic storage that 
causes unequal ripening up to adulteration of fruits and vegetables [184]. Consequently, 
in order to have better control over the ripening, several edible films were created that 
increase CO2 and ethylene evaporation while decreasing oxygen penetration in the fruit. 
The inherent antifongic nature of the hydrocolloid employed or the incorporation of 
antimicrobial compounds within the film can both delay and prevent spotting. In this 
way, chitosan films encourage the fruit to produce the chitinase enzyme, a naturally 
occurring antifongic substance. Author Mazza and Qi have investigated the coatings 
prepared from gums, gelatin, and starch can prevent the non-enzymatic browning of 
peeled and blanched potatoes [185]. The bactericidal activity against escherichia coli 
(0157:H7) of apple puree-origin FFFs added with oregano, lemongrass, or cinnamon 
essential oils. They concluded that prepared materials have 50% bacteria killing prop-
erty (0.034, >0.34, and 0.28) after incubation for 3 min at 21°C [186]. As opposed to 
those with carvacrol, carrot puree edible films containing cinnamadehyde have shown 
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appreciable inhibitory activity of Staphylococcus aureus and E. coli [187]. Otoni and 
colleagues prepared papaya puree films blended with cinnamaldehyde nanoemul-
sions of various sizes. They reported all films to exhibit antimicrobial activity against 
S. aureus, E. coli, and S. enterica for fruits containing low preservative content [188]. 
Last but not least, edible films based on fruits and vegetables may also be created with 
unique health-promoting capabilities, such as probiotic or prebiotic films, by enhanc-
ing the market demand for sensory qualities and nutritious dietary components [189]. 
Therefore, applications are anticipated to be continually used in a world that is becom-
ing more and more concerned with health-related issues. Figure 7 summarizes the 
various components crucial to film formation, primary traits, and uses for edible films.

9.4 Edible films for packaging of confectionaries

Confectionary products, such as chocolates, candies, boiled sweets, toffees, and 
caramels, always require active packaging material which ensures protection from 
moisture attack, dust and dirt contaminating agents and prevents loss of sugar, fat 
bloom, stickiness, desiccation, and hardening. Generally, mindset is made to avoid 
intermixing of flavors of the various confectionary foods. In fact, milk and whey 
proteins, cellulose-based films, and shellac or wax lower the water and oil migrations, 
such as the greasy or oily feeling on fingers. Author Nelson and Fennema reported 
that methylcellulose films and coatings have shown lower lipid permeability which 
have ability to reduce fat mobility and inhibits the whitening or blooming of choco-
lates [190]. In comparison to the conventional confectioner’s glaze, zein-ethanol 
bleeding employed as film-forming solution produces better results with faster drying 
times [126]. Author Dyhr and Sorensen have concluded that sorbitol-based coatings 
have ability to replace conventional sugar coatings on chewable dragees [191]. Bilayer 
films prepared from wax and hydrocolloid have shown improved adhesiveness which 
was applied on chewing gum sheets to enhance the shelf life [192].

Figure 7. 
Components crucial to film formation, primary traits, and uses for edible films [172].
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10. The future and conclusion

The use of edible polymer films and coatings has great promise for enhancing food 
quality, shelf life, and safety. Continued study in the active packaging is justifiable 
given the potential benefits of edible polymers as carriers of antibacterial, coloring, 
antioxidant agents, vitamins, probiotics, and nutraceuticals. It has been realized 
that efficiency and active properties of edible polymers are largely influenced by the 
inherent properties of film-forming materials, such as biopolymers, plasticizers, and 
dopants. After analyzing particular functions, in both commonplace like polymers 
and specified applications, edible biopolymers are competitive. In an advantageous 
path, biopolymer can be effectively replaced by petroleum-based plastics used for 
packaging. Many studies have shown that active biopolymers, such as polysaccha-
rides, lipids, and proteins, are used to prepare biodegradable polymer films. Table 4 
list out the different functions of edible films for the packaging applications.

The use of edible polymers on numerous food products is still evolving. The future 
enhancement of food quality and preservation during operations and storage is very 
bright thanks to edible polymer films and coatings. A novel innovative edible polymer 
is under progress, to enable the inclusion or regulated release of active chemicals 
using nanotechnology solutions, such as nanoencapsulation and development of 
multifaceted systems. As edible packaging serves intelligent packaging systems due 
to both active, selective, and infinite potential usage. The future trend may allow 
using nanoscale nutrients, different active dopants, and suitable delivery systems for 
biodegradable polymeric edible films in collaboration with nanotechnologies as they 
take a promise to improve the nutritional qualities of foods. However, nanocomposite 
concepts also being the motivation for novel systems in the field of edible films. Many 
other types of materials have been realized, and many more are on the way. However, 
more research is anticipated to focus on edible films and coatings’ actual practical 
uses in the food business. Therefore, more effort is needed to manufacture desired 
edible polymer films and coatings for superior functionality and processing to com-
mercial breakthrough.

Function Properties of edible films

Edible film, coating 
for food

Protection Water and gas barrier

Protection from light and ultraviolet

Antimicrobial Prevention of microbial growth

Enhanced the food shelf-life

Antioxidant Prevents enzymatic browsing

More consumer acceptance

Shelf-life More demand in the market

Reduces food product waste

Esthetic Shiny and smooth surface

Prevents aroma loss

Sustainable Edible and bio-based

Reduces plastic waste

Table 4. 
Different functions of edible films for the packaging applications [193].
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