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Abstract
Based on increasing global energy demand, electric power generation from Internal Combustion Engines (ICE) has increased 

over the years. On this idea, the industries have adopted different methods and procedures to prevent failures in these engines, 
achieve an extension of the life cycle of the machines, improve their safety, and provide financial savings. For this reason, this work 
implements a methodology for detecting and identifying failures in a natural gas engine (JGS 612 GS-N. L), based on the integration 
of Principal Component Analysis (PCA) and alarm streak analysis.

A method used to describe a data set in terms of new uncorrelated variables or components. The components are ordered by 
the amount of original variance they describe, making the technique useful for reducing the dimensionality of a data set.
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Technically, PCA searches for the projection according to which the data are best represented in terms of least squares, using 
the T2 and Q statistics. In the initial stage, a PCA-based algorithm was developed to detect abnormal process trends and identify the 
variables of greater impact when these anomalies arise. In the next stage, an algorithm was developed and implemented, based on the 
analysis of alarm streaks, to identify the system’s behavior and thus classify fluctuations into either normal operating condition drifts 
or system failures. The application of the proposed methodology with real operation data of the engine (JGS 612 GS-N. L) shows that 
the method outperforms operators in detecting and identifying faults, as it performs these tasks considerably earlier than operators.

Keywords: Principal Component Analysis, Fault Detection, Fault Diagnosis, Internal Combustion Engine.

DOI: 10.21303/2461-4262.2022.002701

1. Introduction
A fault is defined as an impermissible deviation in an observed variable from a nominal 

reference range [1]. Fault detection determines whether or not a fault has occurred, while fault 
diagnosis determines the type of fault that occurred [2].

Industrial plants in modern industries, including the automotive and ICE power genera-
tion industries, are large scale, highly complex, and operate with many variables in closed control 
loops [3]. Also, all processes are susceptible to experiencing inadequate operating conditions or 
failures. If these processes are not continuously monitored, faults will only be detectable once they 
have derived into major issues affecting the operation and generating economic losses [4]. The tra-
ditional approach to process monitoring is through control charts, which supervise each variable’s 
behavior individually and establish operating limits for them, considering any violation of these 
limits as an atypical behavior or fault [5]. However, these techniques do not consider correlations 
between the different variables and their autocorrelations, so they do not allow processes with 
strongly correlated variables and non-linearities to be adequately monitored [6].

Given the inherent complexity of some processes or plants in the industry, the use of  
model-based fault detection approaches is impractical to implement, given that the accuracy of 
these models is compromised [7]. Multiple monitoring methods based on multivariate statistical 
analysis have been used for FDD [8]. These data-driven approaches have ensured that operation is 
safe and efficient in many industrial processes. Some of those methods are Principal Component 
Analysis (PCA) [9], Independent Component Analysis (ICA) [10], Neural Networks (ANN) [11], 
Fuzzy Logic (FL) [12], among others. 

Specifically, in internal combustion engine research, a variety of multivariate techniques 
have been used for different purposes [13]. For example, principal component analysis (PCA) is 
popular as it allows a description of the data in terms of uncorrelated variables in a multivariate 
normal distribution to build predictive models of machine conditions [14]. PCA is advantageous 
because it simplifies a complex data set by reducing the dimensions of the original data into  
smaller sets of variables (principal components) that contain most of the information of the unique 
data set [15]. Some studies have used PCA to analyze internal combustion engines based on the 
evaluation of emissions produced by the engine [16].

However, no literature investigates the correlation between combustion elements (such 
as spark plugs) and engine failures [17]. Nevertheless, there are researches, such as that of [18] 
which address the automatic detection and identification of process measurement equipment or 
sensor faults through a statistical approach, featuring PCA-based algorithms. Additionally, in their 
work [19] presented the combination of an exponentially weighted moving average control scheme 
with the PCA model to improve engine fault detection performance. PCA was used in this study 
to provide a modeling framework for the development fault detection algorithm, where the results 
show the effectiveness of the developed algorithm based on the moving average [20] briefly pre-
sented the application of the standard PCA technique for fault detection in ICE, omitting the study 
of fault sensitivity, where fitting and scaling faults are considered [21] showed the application of 
the standard PCA technique for the design of fault diagnosis systems developed under a failure 
isolation approach with the plausibility ratio test [22] proposed an improved formulation of PCA; 
it provides a dynamic and decentralized analysis of the main components (DDPCA) using a va
riable weighting method [23] developed an adaptive fault detection scheme based on recursive PCA  
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analysis, which addressed false alarms due to regular changes in the actual process. Addition-
ally, the study developed a fault isolation approach based on Generalized Probability. The ratio 
test (GLR) and Single Value Decomposition (SVD) are one of the general PCA techniques, in 
which the displacement and scaling error can be easily isolated with a fault model [24].

This article proposes the design of an FDD method, implemented for a 2 MW natural 
gas engine, based on PCA integrated to a false alarm reduction method. With the methodology 
proposed in this research, the improvement of DDF is sought, through an alarm streak analysis,  
to identify faults or operation drifts in the process. For the analysis developed in this work, histo
rical data of the operation of the Jenbacher JMS 612 GS-N engine, used to generate electricity in  
a company of the industrial sector, was used.

2. Materials and methods
2. 1. PCA algorithm
The PCA algorithm is used in this research as the fault detection technique. Moreover, 

the algorithm proposed by [25] is used to determine sample-wise contributions of the individual 
variables to arising faulty conditions as a means to identify those variables that are most likely 
affected by or causing the abnormal operating condition. The off-line stage of the PCA algorithm 
Fig. 1, which includes data pre-treatment and training. On the other hand, subsection 2.1.2. ad-
dresses the on-line stage, addressing the fault detection approach and presenting the contribution 
algorithm proposed by [25], which will be used to identify the signature variables (i.e., fault- 
related variables).

Fig. 1. Calculation algorithm sequence: a − Fault Detection; b − Diagnosis Algorithms

2. 1. 1. Off-line stage
Historical process data corresponding to normal operating conditions must be gathered and 

available prior to the implementation of this stage. This historical dataset, referred to as the training 
set, must be arranged into a matrix:

a

b
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where n is the number of samples or observations gathered in the training set, while m is the num-
ber of variables.

Once the training set is created, the off-line stage is carried out. This stage comprises two 
sub-stages, accordingly: Data pre-processing and Training. These sub-stages are explained in de-
tail in this subsection.

Data pre-processing. The first task in this sub-stage is to ensure that the number of obser-
vations, n is large enough to produce a detection threshold sufficiently closed to that obtained by 
assuming infinite data in the training set. Given a level of significance, α, and a dataset size (n, m), 
equation (2) [26] computes the relative error for the detection threshold:
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where Fa and xa
2 are the Fisher and Chi square distributions, respectively.

Within the training set, there may be variables that do not provide information for process 
monitoring [27] due to null variance, signal loss issues, or reading errors, among other reasons. 
Therefore, these variables must be removed.

Similarly, measurements isolated from the rest of the group can be considered as out-of-con-
trol measurements, referred to as outliers. If not removed, the influence of these outliers on the esti-
mation of the statistical parameters can be significant and affect the normal process behavior [28]. 
Thus, the data preprocessing described here must be carried out prior to the training stage, which 
is further explained in detail.

Training: consider the training dataset as defined in equation (1) after the data preprocessing 
has been carried out. This training set must be normalized to avoid biased measurements due to un-
evenly sized variables. This normalization comprises the subtraction, from each variable, of the cor-
responding mean and dividing it by its respective standard deviation. If the mean vector, d, is defined 
as a column array containing the means of all the variables, it can be computed as in equation (3):

	 d
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Furthermore, the standard deviations of the variables are stacked in a diagonal matrix, as 
shown in equation (4):
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Then, data standardization is carried out as follows:

	 X X I d Rn
T nXm= −( ) ∈−∑0

1 .	 (5)

The covariance matrix is now defined [29] as:

	 S
n

X X RT mXm=
−

∈
1

1
. 	 (6)

A spectral decomposition of S is carried out. The eigenvalues, λ, can be determined with 
the equation (11):
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where I is the identity matrix. The eigenvalues must be sorted in decreasing order, i.e.:

	 λ λ λ1 2≥ ≥ ≥... .m 	 (8)

The eigenvectors, v1, are determined from equation (9):
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Once the spectral decomposition is performed, it yields the eigenvalue matrix Λ and the 
eigenvector matrix V, as follows:
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mXm= [ ] ∈1 2  . 	 (11)

Then, the covariance matrix, S can be re-written as follows:

	 S V V T= Λ .	 (12)

The reduction of variability is based on optimally capturing the data variability while avoid-
ing the effect of noise. Therefore, a dimensionality reduction is required. The number of principal 
components, a, can be determined so that a percentage of the data’s variability is retained (typi
cally 95 %) [30], i.e.:
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The use of the eigenvalues as a proxy to the dataset’s variability is allowed as the data has 
been transformed (by the PCA algorithm) into a space where these eigenvalues are directly related 
to the variability in the direction spanned by their corresponding eigenvectors.

Once the number of principal components is determined, the eigenvector matrix, V, must 
be reduced by retaining only its first a column, becoming the so-called loading matrix, P∈RmXn, 
as follows:

	 P v v va= [ ]1 1  .	 (14)

Moreover, a matrix Γa RaXa must be created containing the first a columns and rows of 
matrix Γ∈RmXn, so that: Λ = ΓT Γ, i.e., Γ is a diagonal matrix containing the squared roots of all  
the λj as (non-null, diagonal) entries.

Finally, the score matrix is defined as:

	 T XP RnXa= ∈ . 	 (15)

2. 1. 2. On-line stage
In this stage, the process is monitored in real-time, receiving one observation per time sample. 

Two tasks are performed in this stage: Fault Detection and Signature Variables Identification.
Fault detection: given a current observation, x∈Rm, it must be normalized using the means 

and standard deviations obtained during the training (off-line) stage, and two statistics are to be 
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computed to perform the fault detection task, accordingly. The Hoteling’s T 2 [31] and the Q statistic. 
The T2 statistic is computed as follows:

	 T x P P xT T2 2= −Γ , 	 (16)

where Γa contains the first a rows and columns of Γ.
The detection threshold for the T 2 statistic is defined by equation (17):

	 δT a
a n n

n n a
F a n a2

1 1
=

−( ) +( )
−( ) −( ), . 	 (17)

The above threshold is a multivariate generalization of the Fisher’s test statistic pro-
posed  by [32]. 

Any observation rendering a T2 value greater than the detection threshold is considered an 
abnormal sample or fault with respect to the process’s normal behavior in the principal space. Ad-
ditionally, the behavior of the (m−a) eigenvalues, corresponding to the residual space, can be moni-
tored using the Q statistic, also known as SPE (Squared Prediction Error) as shown in equation (18):

	 Q r rT= , 	 (18)

where r is calculated as shown in equation (19):

	 r I PP xT= −( ) . 	 (19)

The detection threshold for the Q statistic is given by equation (20) [33]:
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And ca is the normal deviate corresponding to the (1−α) percentile.
Whenever a threshold violation occurs for Q, it means the observation exhibits a residual 

space behavior different from that of the training set. 
Signature Variables Identification: when either detection threshold δT 2( )  or (δQ) is violat-

ed, the contribution of each variable to such an out-of-control event should be determined. The 
approach used in this paper, proposed by [34], is based on quantifying each process variable’s 
contribution to the individual representative PCA scores.

Miller et al. proposed a sample-wise procedure to estimate the contribution of each vari-
able x j mj =( )1,...,  to produce a threshold violation. The calculation of the contribution measure 
involves the following steps:

− check the standardized scores, t i mi iσ = =( )1,..., , where t is the column j-th column of the 
score matrix, T. Record the scores that meet the condition t Ti i a

a
σ( ) > ( )2 2 1/

;
− calculate the contribution of each variable, xj, to scores out of control δT 2 :

	 cont
t

P xi j
i

i
i j j j, , ,= −( )σ

µ2 	 (23)

where Pi,j are the loading matrix entries. If conti,j is negative; it is considered as a zero value.
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Finally, the overall contribution of the variable xj is calculated as:

	 CONT contj i j
i

r

=
=
∑ , .

1

	 (24)

Fig. 1, a shows an operation diagram of both the off-line and the on-line PCA stages.

2. 2. False alarm Reduction Approach for the T2 and Q statistics
False alarm rates must be controlled for both the T 2 and Q statistics. Thus, a statistics-based 

false alarm reduction method is proposed to further control these false alarm rates. The proposed 
method is shown in Fig. 2.

Fig. 2. Flow chart for the false alarm reduction method

The method works under the assumption that the false alarm rates for the T2 and Q statis-
tics should be around α (customary 5 %). The approach further considers an observation moving  
window with n samples. If k continuous violations take place, the algorithm considers such an event 
as a streak. When streaks occur simultaneously in both statistics, the algorithm triggers a ‘true 
alarm,’ otherwise, the algorithm dismisses the event as a ‘false alarm.

2. 3. Engine Description
The equipment selected is a Jenbacher JMS 612 GS-N engine, as shown in Fig. 3. It be-

longs to a 2 MW generation system operating with natural gas. The main specifications of the 
engine are shown in Table 1.

Fig. 3. Engine diagram: a − General flow diagram b − Physical structure  
of the motor for the engine generator system

a b
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Table 1
Characteristic of Jenbacher JMS 612 GS-N engine [13]

Parameter Value
Volume (Liters) 74.852

Compression ratio 10.5
Number of Cylinders 12 V at 60°
Stroke length (mm) 220

Chamber diameter (mm) 190
Maximum torque (kN∙m) 60.66
Maximum power (kW) 1820
Rotation speed (rpm) 1500

This engine has a three-phase electric generator working at a frequency of 60 Hz, with a 
power factor of 0.9 %, delivering a reactive power of 911 kvar, electrical power of 1975 kW, and 
apparent power of 2177 kvar. Also, it has an average voltage between lines of 13.264 V.

Fig. 3 shows the engine’s configuration used in a plastic company in the industrial sector. 
The operation of this set begins at point (0), where the natural fuel gas (with the composition: 
97.97 % CH4, 1.5 % N2, 0.25 % C2H6, and 0.16 % CO2) is mixed with air (Data provided by plant 
operations staff). This mixture passes through the combustion chamber (0-1), where the process 
of releasing energy takes place, obtaining gases at high temperatures. Next, these gases are driven 
to the compressor (1-11), where pressure is increased and fed to the cooler (11-2). This component 
allows controlling the temperature of the gases which enter the engine’s intake manifold (2-7). 
Finally, the inlet manifold is the component directing the combustion gases at high pressure and 
temperature to each of the engine’s cylinders (7-8). The torque necessary to drive the electric gen-
erator (G) is produced at this stage of the process. Then, the gases that come out of each cylinder 
go to the engine’s outlet manifold (8-9), where the gases are mixed and driven through the system’s 
turbine (E9-10), where the gases are expanded to generate the torque required to ultimately drive 
the system’s generator (G), generating electricity.

3. Results and discussion
3. 1. Selection of ICE measurement variables for the development of the PCA algorithm
The observation window of the engine’s variables starts on 8/08/2019 at 00:58 AM and goes 

up to 08/21/2019 at 11:46:00 PM; the observations were obtained with a sampling period of 2 min-
utes for a total of 9,898 measurements for 50 variables, which are shown in Table 2.

Table 2
Selected variables for Principal Component Analysis

Variable (s) Units Total variables Symbol (s) Mean (s) 

Voltage from 1 to 12 kV 12 (x1–x12) 15.673

Compressor bypass % 1 (x13) 48.773

Gas mixer 1 and 2 % 2 (x14–x15) 183.342

Cylinder knocking noise from 1 to 12 mV 12 (x16–x27) 81.082

Cylinder valve noise from 1 to 11 mV 11 (x28–x38) 1377.668

Cylinder exhaust temperature from 1 to 12 °C 12 (x39–x50) 592.493

The symbols provided in Table 2 are a simplified way to summarize information. However, 
at the end of the analysis, the variables affected by or causing the assessed fault are described with 
their full tag/name, units, and the corresponding symbols as in Table 2.

An example of the behavior of some of the variables is shown below in Fig. 4.
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Fig. 4. Illustration of the behavior of some variables

The variables’ behavior, taken as an example from the entire set of variables (shown in Fig. 4) 
shows disturbances taking place at different moments, revealing graphically that there was a change 
in the operation of the engine, false alarms, anomalies, and faults within the 9898 observations.  
In particular, the plots in Fig. 4 show fewer disturbances up to observation 7000. However, fluctua
tions are stable throughout the measured window. This indicates that it is necessary to standardize 
and observe them to analyze the variables’ real behavior over time.

3. 2. Application of the proposed approach
3. 2. 1. Off-line stage
3. 2. 1. 1. Data pre-processing
The study considered two datasets: a training set and a testing set. The raw training set com-

prised 5600 observations of 87 variables, while the raw testing set comprised 9898 observations 
of 87 variables as well. In order con carry out the data pre-processing, both datasets were merged. 
Thus, the entire raw dataset, X R X

0
15498 87ρ ∈  comprised 15498 observations of 87 variables. After 

removing variables with null variability and signal loss or missing value issues, the pre-processed 
set, X0∈R15498X50, comprises 15498 observations of 50 variables. After the pre-processing, the data-
sets were split again.

3. 2. 1. 2. Training
As explained in the Data-preprocessing subsection, the (pre-processed) training set com-

prises 5600 observations of 50 variables. This training set includes data obtained when the engine 
worked without reported failures or anomalies, according to the operators’ knowledge. The PCA 
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training is executed, such as explained in equations (3)–(15). Fig. 5 shows the magnitude of all 
eigenvalues and graphically illustrates the selection of the number of principal components (NPC), 
symbolized with a in the notation used in this paper. The NPC selection is performed based on the 
95 % variability capture, as previously shown in equation (13). The outcome of the NPC selection 
is a = 30 principal components.

Fig. 5. Illustration of the selection of the NPC

Moreover, Table 3 shows in detail the magnitude of all the principal components, along with 
the percentual variability they are associated with.

Table 3
Characterization of the PCs

a a % Eigenvalues
1 26.16 15.48
2 20.44 12.43
3 9.83 6.97
4 3.87 3.17
5 3.00 2.27
6 2.35 1.68
7 2.13 1.42
8 2.04 1.14
9 1.78 1.06
10 1.70 0.92
11 1.60 0.91
12 1.57 0.90
13 1.51 0.86
14 1.48 0.79
15 1.30 0.77
16 1.26 0.72
17 1.19 0.68
18 1.18 0.64
19 1.12 0.63
20 1.06 0.62
21 1.06 0.57
22 0.97 0.55
23 0.96 0.54
24 0.91 0.51
25 0.89 0.50
27 0.83 0.48
28 0.77 0.47
29 0.75 0.46
30 0.70 0.42
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3. 2. 2. On-line Stage 
Based on the T 2 and the Q statistics, this subsection addresses the on-line fault detection 

task, as well as the further identification of signature variables, i.e., those variables most affected 
by or causing the abnormal operating condition.

3. 2. 2. 1. Fault detection
Using equations (16)−(22), the fault analysis applied for this case study is made for the 

different normal operating conditions presented in the 9898 observations within the testing set. 
Results are displayed in Fig. 6.

Fig. 6. Control charts: a – T2; b – Q statistics

The normal operating condition was present in the first 1000 observations, indicating 
that no abnormal behavior arose. This level of regular service is consequent to the expected be-
havior of the variables in the control state. On the other hand, the thresholds violations indicate 
an operational change or a failure not reported or not detected by the operators. Additionally, 
the data shows a transient state, as shown in Fig. 7. The transient state identified by the fault  
detection algorithm as a continuous series of magnitude-increasing threshold violations is an 
early detection of an incipient fault, which would only be detected by the operators considerably 
long after.

Fig. 7. Illustration of the transient behavior of the engine:  
a – T 2; b – Q statistics

a b

a b
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Fig. 8 illustrates, within the control charts for T 2 and Q, the moment when the plan operator 
reported an engine malfunction. The algorithm outperformed the operators regarding the detection 
capacity, anticipating them by roughly 7500 samples (i.e., roughly 10 days).

Fig. 8. Fault detection time by operators

The operators’ lack of detection capacity is normal as they are humans, yet it led them to 
stop the engine only when the consequences of the failure had caused damage, generating losses 
due to prolonged idle times and corrective maintenance.

In addition to this, the stop is extended by ignorance of the variable or variables that could 
create the failure. Therefore, identifying the fault-related variable(s) is an important task, which 
will be addressed now.

3. 2. 2. 2. Signature variables identification
Using equations (23), (24), the variables’ contributions to the out-of-control operation are 

determined. The Cylinder Noise 2 (x17) and Cylinder Voltage 8 (x8) exhibit an average contri-
bution, as computed by the approach proposed by [34] of 50 and 30, respectively, when the fault 
is fully developed. Fig. 9 shows a heatmap displaying these contributions, along with their time 
evolution. Let’s notice that the operators do not detect the anomaly until one of these variables rep-
resents 50 % or more contribution. Operators report defects from observation 7600 onwards when 
the criterion is met.

Fig. 9. Contribution heatmap

Results prove it relevant to identify the variable(s) most associated with the fault from 
the moment the ICE presents an anomaly, as these can be used as signatures to characterize 
and further diagnose this fault. In this case, the fault starts developing from observation 1000.  
Fig. 10 summarizes the main findings with the fault detection and signature variable identifica-
tion approaches.
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Fig. 10. Summary of findings:  
a – instant maximum anomaly; b – average of the anomaly

It is important to mention that one of the limitations of this study corresponds to the va
riables that were not taken into account due to the lack of measurements and processing of the 
sensors of the system. Aspects should be taken into account when trying to replicate this study 
in other combustion engines. However, the variables taken into account for this study correspond  
to Table 2, and most of them correspond to determining factors in the combustion of the Jenbacher 
JMS 612 GS-N engine equipment, which allowed this study to be carried out efficiently. However, 
the inclusion of other variables could be an interesting aspect to be evaluated in future studies.

4. Conclusions
The main result of this study is the validation of the mathematical model proposed for 

the detection of failures in internal combustion engines, this model was validated in a Jenbacher 
JMS 612 GS-N engine. The model was built based on principal component analysis, a statistical 
tool that allows to assessment the variability or failure component in a series of normless operating 
parameters. Thirty (30) principal components representing at least 95 % of the engine variability 
were obtained.

The explanation of this result is focused on the analysis related to the T2 and Q stipends that 
allow the quantitative assessment of the behavior in a time series. The method and its application 
become successful to the extent that human operators can detect engine failures and identify re-
lated variables up to ten days in advance. It will allow the industry that uses this type of engines 
to have greater control of the operations minute by minute avoiding any anomaly of the process.

Thus, this research was able to demonstrate that the proposed methodology allows the early 
detection of failures, controlling the false alarm rate, identifying the variables that contribute to 
or explain the out-of-control state. Future research should consider the evaluation of the reduction  
of the false alarm rate achieved with the application of the proposed methods.

a

b
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