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Abstract
Water purity and availability determines health and life quality of humans, biodiversity and existence of plants and animals. 

The results of global climate change have been registered all over the world as progressive warming with fast heat waves, accelerated 
glacier ice melting, variations in the global ocean streams and heat balance, droughts and lack of drinking water, damage to plants 
and animals. Mathematical modeling of the water exchange in local ecosystems is a very important constituent of detailed analysis 
of different scenarios of water availability at various trends in the weather change. 

The work is aimed at mathematical modelling of water balance in an urban ecosystem accounting for global climate changes. 
A brief review of the models is presented, and a synthetic model for the water balance on the urban territory of Kharkiv city (Ukraine) 
based on the statistical dependencies, compartmental system dynamics approach and hydrological equation with probabilistic de-
scription of the input parameters is developed. The monthly and year averaged temperature and precipitation curves, time series on 
downpours, droughts and storms over the Kharkiv region and Kharkiv city during 1908−2012 years were collected from the open 
databases and analyzed. Gradual increase in the annual temperature was confirmed. 

Different scenarios of the regional development (population growth and industry development with increased water de-
mands) and weather changes were tested, and availability of water has been estimated. It was established by numerical simulations, 
the water insufficiency in the region in 2040 could reach 10−17 % if the mean annual air temperature increases in 0.5−2.5 °T. This 
will cause damage for plants, animals, and human health. The obtained results are important for decision making by official planning 
authorities and regional administration.
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1. Introduction
Global climate changes, which are associated with progressive warming and decreasing air 

humidity, ice melting in Antarctica and Greenland, atypical southern oscillations El Niño, elevation 
of methane release into the atmosphere, and many other hazards have lead to irreversible changes 
in nature: biodiversity loss in ecosystems, sudden downpours and floods, forest fires and droughts, 
lack of food and drinking water in the developing countries [1–3]. Recently, a disastrous melt rate 
of glaciers has been recorded in Switzerland [4]. This year, low snowfall and persistent heat waves 
caused a 6 % loss of glaciers in the Alps. Regular reports on the outcomes of global climate change 
appear in mass media of all the developed countries, and significant efforts are made in under-
standing the physical phenomena and quantitative predictions based on mathematical models [1]. 
It was shown, the glacier melt, heavy rains and other disasters can be explained with hydrological 
models [5] and general energy balance algorithms [6] because the surface water reservoirs, surface 
runoff, snow and ice deposits are interconnected with groundwater via the porous soils (Fig. 1). 
The hydrological models are based on the systems of ordinary differential equations (ODE) for 
time dependencies of the water mass in each compartment of the model (Precipitation→Surface 
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runoff→Intermediate runoff→Subbase runoff→Base flow) or on the systems of partial differential 
equations (PDE) for the pressure, flow, stress, concentrations, temperature distributions in differ-
ent layers (atmosphere, vegetation cover, surface, soil, waterproof rock). Since each component in 
(Fig. 1) is considered as a single compartment, the mathematical equations described the water 
balance between them compose a compartmental model.

Different discrete, continual and synthetic models of river beds in connection with precipi-
tation, percolation in soils and groundwater flows have been proposed taking into account geome-
try of the riverbed, composition of bottom sediments, water flow velocity, surface runoff, and other 
parameters. These models are widely used to calculate the removal of bottom sediments and chan-
nel migration, water quality and pollution transfer, ecological expertise of the ecosystem, and other 
practical problems [7–9]. Mathematical modeling and numerical calculations of the velocity field, 
vorticity, friction stresses and other hydrodynamic parameters make it possible to assess the risks 
of coastline erosion, bottom erosion, to identify areas with slow currents, in which, due to insuffi-
cient water circulation, the bottom will become overgrown and the water quality will deteriorate.

Fig. 1. Water exchange system between the atmosphere and surface

In this paper the results of mathematical modeling and calculations of water velocity, pres-
sure distributions, friction and other hydrodynamic parameters in the system of rivers on the ter-
ritory of city Kharkiv that contribute to the riverbed migration, its overgrowth, deterioration of 
water quality and problems in drinking water availability are presented. The results are used for 
mathematical modeling of water availability in the city at different scenarios of the city develop-
ment, demography and climate changes.

2. Materials and methods
Mathematical modeling of water dynamics in an urban area (Fig. 1) aimed at prognosis of 

the drinking water availability is used as a powerful method for complex long-range prognoses. A 
synthetic model based on several types of the developed models has been elaborated in the work. 

The most common mathematical models use regression dependencies in the form of statis-
tically reliable trend curves X(t), where X is a quantitative indicator of precipitation (rain, snowfall, 
hail, ice, etc.), t is time (in months, years). There are statistical approximations for various countries 
(regions, lands, cities), including Ukraine [10]. Based on the observation data on the territory of 
Ukraine, during the period 1986–2010, there were 1,335 downpours, 237 snowfalls, 131 hailstorms, 
398 cases of strong wind, 164 squalls, 249 blizzards, 3 sandstorms, 70 complex ice deposits; a total 
of 3031 adverse events the majority of which were showers (52.9 %). Corresponding regression 
dependences for each of the areas are given in [11] for heavy and dangerous downpours and rains, 
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taking into account recurrence, intensity and season. Recently, similar statistical data for 2010–
2020 have appeared, which have other regressive dependencies due to climate warming [12]. These 
data are very important for use in mathematical models, but the stochastic nature of bad weather 
conditions is more accurately described using probabilistic models.

The concept of probability of maximum amount of precipitation (Vmax) for a certain time that is 
physically possible for a given size of the storm area in a certain geographical location at a certain time 
of the year has been introduced [13]. The simplest mathematical model introduces the dependence of the 
average volume of surface water VS (m

3) on the mean precipitation volume VV (m
3) in the form

                ,= + εS VS V SV k V     (1)

where kVS is a dimensionless coefficient, εS is probable deviation from the average values, which are 
calculated based on Vmax.

Similar dependence for the volumetric rate of the surface flow QS (m
3/s) can be written as [13]:

               ,= κ + εV
S VS V Q

S

T
Q Q

T
   (2)

where TV, TS are time durations of the precipitation and surface runoff, κVS and εQ are similar to the 
coefficients in (1).

The total mass of pollutants MS (kg) in surface waters after precipitation is calculated as

     ,= + εS V V MM C V    (3)

where CM (kg/m3) is the concentration of the pollutants in surface waters, εM is similar to the cor-
responding coefficients in (1), (2).

In urban areas, precipitation washes away both transport pollution (fuel, oils, heavy met-
als, etc.) and agricultural pollution (fertilizers, nitrates, nitrites, etc.), and can also cause overflow 
of drains and ingress of wastewaters into the surface waters, which is dangerous for the quality 
of both drinking and technical water [2, 3, 9]. Decision-making on water management is usually 
carried out after evaluating the values of VS, QS, MS in comparison with the volumes of reserve 
possibilities of local flows. The value kVS is obtained from regression dependences for this area; the 
values VV, TV, TS and εS, εQ, εM are usually computed from the measurement data and probabilistic 
models, accordingly [13].

The probabilistic models are based on determination of probability of the distribution of 
surface runoff {VS, QS}(t,x,y,z) from a given “point” source { }( ) 1

, , , ,
=

n

V V j j j j
V Q t x y z  of precipita-

tion in a defined area {S: xϵ[x1,x2]; yϵ[y1,y2]; zϵ[z1,z2]}. Ordinary rains, showers, snowfalls, etc. are 
distributed sources, which requires the determination of spatio-temporal functions {VV, QV}{t,x,y,z) 
from all distributed sources j=1,…,n.

One of the methods is based on stochastic storm transposition (SST), which combines the 
probabilities of “arrival”, “accumulation” and “transfer” of precipitation even in an area that lies 
outside the precipitation zone, but has surface runoff from it based on the probability theory. The 
SST method assumes that storms occur with equal probability at any point in the transposition 
domain. The probability of the event that a given precipitation area (S) with a certain catchment 
will be overloaded with precipitation takes into account the localization of storm centres that led 
to an excess of precipitation in the vicinity of S. The probability of this event is calculated as the 
ratio of the incidence plane to the plane of the transposition region, which is estimated by normal 
distribution of the transposition over a large number of grid cells on and near the plane [14]. The 
second method, which is based on “stochastic storm regression” (SSR), combines point precipita-
tion frequency curves with regression estimates of local and accumulated precipitation on the area. 
Precipitation maxima are generated by stochastic sampling of independent variables, where the 
necessary probabilities of exceeding the precipitation level are obtained using the general proba-
bility theorem [15].
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Many mathematical models combined SST and SSR have been developed [13]. According to 
the probabilistic models, instead of (1) one has

         
1

,
=

= + ε∑
k

S j Vj S
j

V k V     (4)

where kj are regression coefficients for the most probable and influential precipitations j=1,…,n 
(prime key sites, PKSs); similar generalizations can also be written instead of (2), (3). 

The curve of the precipitation frequency over a natural habitat territory is derived using the 
general theorem of probability theory, in which the probability that a certain amount of precipi-
tation VS over the territory S is equal to or exceeds V* is determined by the probability of a point 
amount of precipitation in a key area [13]

        ( ) ( ) ( )
1

* * | .
=

≥ = ≥ ⋅∑
k

S S Sj Sj
j

P V V P V V V P V     (5)

The parameters in (5) are subject to epistemic uncertainty arising from the finite nature of 
the available data. This uncertainty can be characterized using the parametric bootstrap method, 
and the uncertainty in the correlation between precipitation maxima at PKSs is based on the as-
sumption that the transformation of the sample correlation coefficient is distributed with a standard 
error [16]. For the purpose, the relations used to represent hydrological variability are randomly 
selected to reflect the uncertainty associated with their parameterization.

The probability that the average amount of precipitation VS exceeds the predicted amount V* 
can be estimated using the general integral [14, 16]

          ( ) ( ) ( ) ( )* * | | d d ,≥ = ≥∫ ∫S S s s s
f As

P V V P V V f p f A p A A f    (6)

where f ‒ storm precipitation depth of the area As; P(VS≥V*| f ) is the conditional probability that 
the average catchment has the area VS≥V* when the precipitation depth is f; P( f |AS) is the storm 
probability density over the area As in the transfer area with the precipitation depth f; p(As) is the 
probability density function of the samples of storm zones (assumed to be uniform).

Therefore, statistical data on the distribution of rainfall in terms of their intensity and du-
ration along a grid generated over the area of interest, are the main inputs for both SST and SSR 
methods. Standardization and bias-correction of the precipitation grids is carried out by regression 
and probability methods [16].

Fluid dynamics equations based on the laminar (slow flows) or turbulent (fast flows) mod-
els for water movement in the riverbeds with surface runoff, Darcy’s law for the water percola-
tion in the porous soils are used for computations of the hydrostatic pressure and flow velocity. 
The advection-diffusion equations for concentrations of different pollutants are used for compu-
tations of the concentrations when the flow velocities are computed and the sources of the pollut-
ants are known. A detailed review of the equations and examples of their solving are thoroughly 
discussed in [9, 17]. 

The simplest 2D hydrological model of river flows is based on the equation

           ( ) ,∂
+ =

∂


c
h div q q
t

     (7)

where 
2

2
= + +

vh z H
g

 is the dynamic head, v is the flow velocity, g is the gravitational acceleration,  
 
H(x) is the river depth profile, z and x are vertical and longitudinal coordinates, qc are mass sources 
distributed along the riverbed (tributaries, rainfalls, snow melting, outlets), = − ∇q kK h  is the mass 
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flux, k=H5/3 is the hydraulic conductivity of the channel profile, /=K S m  is friction over the wet-
ted surface, S=(∂h/∂x)2+(∂h/∂z)2 is the slope, m is the Gauckler-Manning roughness coefficient. 

More detailed 3D computations can be carried out on the incompressible Navier-Stokes 
equations 

           ( ) ,=div v q  ,ρ = −∇ + µ∆ + ρ


 dv p v g
dt

   (8)

where ρ and μ are density and viscosity of the fluid, p is the hydrostatic pressure, q are the water 
sources along the riverbed. 

The boundary conditions for (8) are

         1 0,Γ =v  2 ,Γ = atmp p     (9)

where patm is the atmospheric pressure, Γ1 and Γ2 are wetted and free surfaces of the riverbed, re-
spectively. 

When both positive (bottom springs, tributaries, rainfalls, outlets) and negative (channels, 
percolation sites, water intake) are presented, their distributions must be taken from the measure-
ment data and approximations as a function q=q(x,y,z). Transfer of the pollutants can be modeled 
by convection-diffusion equations for their concentrations. The temperature balance in the system 
can be modeled based on the heat equation. Then the temperature dependent evaporation rate from 
the free surface Γ2 must be added. 

For the riverbeds with arbitrary geometry the problem (8), (9) can be solved numerically 
by the finite element or finite volume methods. A reasonable simplification can be introduced by 
averaging of (8) over the cross-section of the riverbed. The resulting 1D equations have exact solu-
tions as a piecewise continuous function that is useful for preliminary estimations of the problem 
solution and for reliable validation of more detailed 3D models. 

3. Results and discussion
According to data available from the World Resources Institute, a large part of the territory 

of Ukraine has a high (3–4) or medium (2–3) stress index for water supply, the highest level of 
drought (0.8–1) and quite high (3–5) index of coastal floods [12]. Values of average, minimum and 
maximum monthly temperatures in the Kharkiv region during the year are shown in Fig. 2. The 
lowest and highest temperatures for the entire observation period were recorded in 1893–1964 and 
1931–2015, respectively, which indicates a noticeable climate warming in the region. Similar con-
clusions can be drawn for other regions of Ukraine.

Fig. 2. Values of average and absolute minimum and maximum air temperatures in different 
months in Kharkiv region
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Therefore, development and analysis of mathematical models of water resources management 
accounting for peculiarities (urbanized, agricultural, tourist, etc.) of the cities and regions of Ukraine 
is very important. This type of modeling has been done for many cities and regions USA, Europe and 
Africa [11, 18, 19], while there is a lack of the models developed for the Ukrainian water resources.

City Kharkiv is located around the junction of the rivers Kharkiv, Lopan and Udy (Fig. 3, a). 
The top view geometry of the riverbeds has been taken from satellite images (surface geome-
try, temperature, soil use, etc.) collected in the open access online resource Google Earth Engine. 
The 3D surface geometry has been determined using online Shuttle Radar Topography Mission 
(SRTM) data. The locations, depths and compositions of the soils and groundwater layer have been 
taken from hydrogeological maps. The river bottom profiles have been computed by averaging 
data during field measurements across the stream (Fig. 3, b). The measurements were carried out 
in the first decade of June, 2016–2019. A measuring tape with marks located at h=10 cm intervals 
was stretched between the left and right banks of the river perpendicular to its flow direction. The 
boat with a depth measuring system moved gradually along the rope, and the depth of the river was 
determined near each mark. The collected data were smoothed and the evolution of bottom profiles 
has been analyzed based on the data on the snow melt and rainfall dynamics during the spring time. 
The measurement results for four sections marked in Fig. 3, b are presented in Fig. 4. The slope 
along the channel and the velocity of the river flow along the middle line, near the left and right 
banks, were also measured. The dynamics of changes in the depth and width of the river, associated 
with low or high snow level in winter, and dry or rainy spring, as well as changes in bottom profiles 
associated with the transfer of sediments and channel overgrowth has been studied.

As it was recorded in all the profiles, the right bank is steeper than the left, in accordance 
with the Coriolis force in the Northern hemisphere (Fig. 4). However, the degree of steepness 
of the right and left banks varies due to erosion and transfer of bottom sediments. The river 
bed in the studied area is twisting; the river turns twice to the left and once to the right at the 
angles 124.8°, 116.7°, 144.3°, respectively. Due to the flow inertia, the water mass will be swept 
towards the right, right and left bank at three corresponding turns, causing additional erosion of 
the appropriate banks and transfer of bottom sediments. A detailed answer to the question of the 
further evolution of the channel and the dependence of this process on the level of precipitation 
and air temperature changed by the global climate warming can be given based on mathematical 
modeling of the water circulation in the whole system (Fig. 1).

Equation (7) describes quite well the change in the flow velocity for slightly meandering 
rivers, however, in the case under consideration, the presence of several successive multidirec-
tional turns leads to the fact that the inertia of the flow and its drift in the direction transverse 
to the flow significantly affect the hydrodynamic parameters. Therefore, more accurate calcula-
tions on a 3D model accounting the real river bottom profiles are required.

Based on the results of digitizing the boundaries of three riverbeds inside the admin-
istrative boarders of the city Kharkiv, a 3D geometric model and a homogeneous grid were 
built. Due to big difference in scales in the longitudinal (0x, 0y ~10 km) dimensions and the 
depth (0z, ~100 m), a small part of the river system is presented in Fig. 5, a. The uniform mesh 
in one of the cross-sections and the mesh of the surface are presented in Fig. 5, b, c, accordingly. 

The total number of nodes and finite elements was 12643170 and 6713218, respectively. The 
chosen values were determined by obtaining a mesh-independent numerical solution. Computa-
tional fluid dynamics (CFD) simulations have been carried out in AnSys Fluent 2021 academic 
version. The distributed sources q(x,y,z) have been determined as user-defined functions (UDF). 
The gravity vector was determined according the slope of the landscape. The flow inlet boundary 
conditions (9) have been assigned in the locations of the inlets of three rivers at the boarders of the 
city Kharkiv. Convergence of the computations has been monitored by both residuals and total 
mass flow rate in the river system. 

The characteristic values of the Reynolds number for the case under consideration were 
Re=103‒104; therefore, models of both laminar and turbulent flows (Spalart-Allmaras model) with 
a second-order numerical scheme and calculation accuracy of 10-5 were used.
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a

b

Fig. 3. Geometry of the water system: a ‒ rivers Kharkiv (1), Lopan (2) and Udy (3) on the 
territory of the Kharkiv city; b – a river segment with locations 1‒4 for the bottom profile 

measurement sites

The results of calculations of the velocity field are presented in Fig. 6, a as the stream-
lines on the free surface coloured in accordance with the magnitude of the velocity for the 
piece of total geometry shown as example in Fig. 3, b. The areas of accelerated f low in the 
narrowest cross sections of the channel are clearly visible, as well as areas of separation of 
streamlines and areas with stagnant eddy circulation near the widened zones of the channel. 
Due to low flow rates, these areas are the most likely to be overgrown with various aquatic 
vegetation and poor water quality. In accordance with geophysical data, in the areas with 
accelerated f low the bottom sediments are transferred to the areas with lower f low by the 
shear forces, which further worsen the circulation and contributes to the overgrowth of the 
entire bottom. At the channel turns, the central core of the f low drifts to one of the banks, 
which leads to the erosion of the coastline, which is noticeable on the top view images of the 
streamlines (Fig. 6, b) and shear stress over the bottom (Fig. 6, c). In areas with sharp differ-
ences in the channel width, as well as after the turns, there are increased friction values up to 
σ=2.73 kPa, which can cause both erosion of the coastline and movement of bottom sediments. 
The obtained numerical results are of the same order of magnitude for the laminar f low and 
the Spalart-Allmaras turbulent models.
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a

b

c

d

Fig. 4. River bottom profiles along 4 cross sections (Fig. 3, b) measured in 2016 (solid line), 
2017 (thin line), 2018 (dotted line), 2019 (dashed line): a – section 1; b – section 2; c – section 3; 

d – section 4
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Comparative analysis of the computed and calculated flow velocity values revealed a good 
correspondence between the calculated and measured values (Table 1) that confirms accuracy and 
reliability of the developed model, and its ability to quantify the results of various engineering hy-
drophysical structures for the coastline protection measures and control over erosion and gradual 
evolution of the river basins.

The results of CFD computations for the weather conditions (functions q(t) in (8)) detected 
in 2016‒2019 over the territory of Kharkiv city has been averaged of each cross-section along 
the river systems, and the resulting volumetric flow rates Q(t)m/s have been used as the surface 
water component in the general model (4)‒(6). This model has been validated by the 2016‒2019 
meteorological and hydrological data available [20‒22]. The data of meteorological prognoses 
(ThData) for total month-averaged precipitation (in mm) have been smoothed by Bayesian filters 
and compared to the valued measured by local meteorological stations over territory of Kharkiv 
region (ExpData). The distributions of ThData versus ExpData before and after the smoothing 
are presented in Fig. 7, a, b accordingly. Bayesian filtering produces a much better correspon-
dence between the global predicted and local measured precipitations with lower dispersion. 
The dispersion in Fig. 7, b depends on the precipitation area; the prognosis is more accurate for 
smaller areas (point sources of water). 

The measured and smoothed curves for the mean air temperature, humidity, wind direction 
and intensity, precipitation amount have been approximated by different probability distribution 
functions (PDF), namely, Gamma (I), Lognormal (II), Normal (III), Weibull (IV), Gumbel (V), 
Gumbel+ (VI) in the form [7, 8, 12, 18]

       ( )
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2 2
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e

  (10)

where V is the parameters under consideration, Г is the gamma-function, α, β, ς are model 
parameters. 

Table 1
The values of the flow velocity v(m/s) near the free surface in the sections 1‒4 (Fig. 3, b); the upper and lower 
values correspond to the CFD and measured values< accordingly

Cross-section Location 2016 2017 2018 2019
1 Left bank 0.084/0.08 0.096/0.11 0.096/0.12 0.090/0.09
1 Midline 0.380/0.39 0.454/0.42 0.334/0.35 0.431/0.38
1 Right bank 0.125/0.17 0.141/0.13 0.138/0.14 0.133/0.12
2 Left bank 0.278/0.25 0.322/0.35 0.397/0.40 0.303/0.35
2 Midline 0.551/0.48 0.584/0.55 0.612/0.55 0.488/0.45
2 Right bank 0.332/0.35 0.478/0.45 0.528/0.50 0.384/0.40
3 Left bank 0.078/0.10 0.088/0.12 0.092/0.12 0.075/0.08
3 Midline 0.354/0.30 0.403/0.45 0.385/0.41 0.498/0.45
3 Right bank 0.142/0.15 0.128/0.14 0.155/0.14 0.125/0.13
4 Left bank 0.075/0.08 0.082/0.10 0.089/0.11 0.084/0.09
4 Midline 0.332/0.35 0.396/0.40 0.427/0.45 0.406/0.45
4 Right bank 0.136/0.12 0.139/0.15 0.122/0.14 0.120/0.13
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a

  
    b                                            c      

Fig. 5. An example of the 3D model of the river basin: a ‒ bottom view of the segment;  
b ‒ mesh a cross section (side view); c ‒ mesh on the free surface (top view)

a

b

Fig. 6. Computational f luid dynamics results: a ‒ velocity streamlines in the piece of 
geometry (Fig. 3, b); b – contour plot of the shear stress at the bottom 
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a

b

Fig. 7. Statistical distributions ThData vs ExpData over Kharkiv region in 2016−2020:  
a − raw data; b − bias-treated data 

For each of the probabilistic approximations (10) the likelihood function Flkh can be com-
puted as 

                  ( )( )
1

ln , , , ,
=

= α β ζ∑
n

lkh j
j

F F V     (11)

where n is the number of observations. 
The approximations (10) have been computed for the precipitation level h(mm), runoff and 

surface water flow rates Q(m3/s), mean air temperature Т(°С) and relative humidity (RH) by com-
putations of the best fit parameters α, β, ς with the least square method. The results of approxima-
tions for the dependence LНF(Q) are demonstrated in Fig. 8.

The best fit approximations for each parameter have been used for numerical computations 
on (1)‒(3) at different possible climate warming scenarios with the mean temperature rise in 0.5; 
1; 1.5; 2; 2.5 °С in the year 2040 [1, 2]. Numerical computations on (1)‒(3) have been carried out 
by the finite difference method with accuracy ε=10-3. The results have been validated in known 
dynamical curves Т(t) and Q(t) in 2016‒2019 (before the covid-19 pandemic). A good correspon-
dence between the numerical and smoother experimental data has been obtained. The results of 
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simulations on different scenarios for the total non-dimensional volume V° of water available on 
the territory of Kharkiv city are presented in Fig. 9. The value V° is normalized by the total volume 
measured in 2019, and the labels in Fig. 9 show the decrease in the water available relatively to the 
latest measured value (in July 2019). More recent data for the Ukrainian territory are temporary 
unavailable.

Fig. 8. Dependencies Flkh(Q) and their approximations by the probabilistic functions:  
1 – Gamma; 2 – Lognormal; 3 – Normal; 4 – Weibull; 5 – Gumbel; 6 – Gumbel+

Fig. 9. The non-dimensional dependencies V°(t) prognosed based on the model; the curves 
1‒5 correspond to the increase in the mean annual air temperature in 2040 by ΔT=0.5; 1; 1.5; 

2; 2.5 °С accordingly

According to the computed results, in the worst scenario the water available will be lower 
in ~20 % (Fig. 9). Noticeable variations in the values of the minimum, average, and maximum 
precipitation rates in different seasons, which could be a result of unpredictable climate changes, 
do not give the possibility of more accurate numerical prognoses. The latter need more com-
plicated mathematical models with a systems dynamics approach that will be a subject for our 
further studies.

5. Conclusions
Based on statistical analysis of the meteorological data and measurement results obtained in 

three rivers (Kharkiv, Lopan, Udy) over the territory of Kharkiv city, it was shown that on the entire 
territory of Ukraine there is a gradual increase in the average, maximum and minimum annual air 
temperatures. The differences in the precipitation levels in different months during the year exhibit 
significant variability: from sudden long-lasting rainfalls to long periods of dryness. The reviewed 
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regression-probability models are useful for deeper analyzes of the measured data, its approxima-
tion by probability functions. The latter can be used as analytical functions in the compartmental 
hydrological models that allows a reasonable prediction of possible shortage of the drinking water 
available because of such events like droughts, insufficient capacities of dams and sewage systems 
in the case of floods, as well as a dangerous gradual increase in the level of pollution in open wa-
ter sources due to the global weather changes discussed in the work. Direct CFD simulations on 
real map based geometries give the most detailed results on the river flow velocity and vorticity, 
shear stress at the river bottom and other values which are important for prognosis of the riverbed 
evolution (erosion of soils, accumulation and transfer of bottom sediments, plant overgrowth and 
worsening of water quality). A combination of the regression curves and CFD results with com-
partmental models allows fast numerical computations of the amount of the drinking and technical 
water availability for the growing population and industry in large cities at different scenarios of 
global climate warming.
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