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METHODOLOGY Open Access

Epigenetics, heritability and longitudinal
analysis
Haakon E. Nustad1,2,3, Marcio Almeida4, Angelo J. Canty5, Marissa LeBlanc6, Christian M. Page6,7

and Phillip E. Melton8*

From Genetic Analysis Workshop 20
San Diego, CA, USA. 4-8 March 2017

Abstract

Background: Longitudinal data and repeated measurements in epigenome-wide association studies (EWAS) provide a
rich resource for understanding epigenetics. We summarize 7 analytical approaches to the GAW20 data sets that
addressed challenges and potential applications of phenotypic and epigenetic data. All contributions used the GAW20
real data set and employed either linear mixed effect (LME) models or marginal models through generalized estimating
equations (GEE). These contributions were subdivided into 3 categories: (a) quality control (QC) methods for DNA
methylation data; (b) heritability estimates pretreatment and posttreatment with fenofibrate; and (c) impact of drug
response pretreatment and posttreatment with fenofibrate on DNA methylation and blood lipids.

Results: Two contributions addressed QC and identified large statistical differences with pretreatment and posttreatment
DNA methylation, possibly a result of batch effects. Two contributions compared epigenome-wide heritability estimates
pretreatment and posttreatment, with one employing a Bayesian LME and the other using a variance-component LME.
Density curves comparing these studies indicated these heritability estimates were similar. Another contribution used a
variance-component LME to depict the proportion of heritability resulting from a genetic and shared environment. By
including environmental exposures as random effects, the authors found heritability estimates became more stable but
not significantly different. Two contributions investigated treatment response. One estimated drug-associated methylation
effects on triglyceride levels as the response, and identified 11 significant cytosine-phosphate-guanine (CpG) sites with or
without adjusting for high-density lipoprotein. The second contribution performed weighted gene coexpression network
analysis and identified 6 significant modules of at least 30 CpG sites, including 3 modules with topological differences
pretreatment and posttreatment.

Conclusions: Four conclusions from this GAW20 working group are: (a) QC measures are an important consideration for
EWAS studies that are investigating multiple time points or repeated measurements; (b) application of heritability
estimates between time points for individual CpG sites is a useful QC measure for DNA methylation studies; (c) drug
intervention demonstrated strong epigenome-wide DNA methylation patterns across the 2 time points; and (d) new
statistical methods are required to account for the environmental contributions of DNA methylation across time. These
contributions demonstrate numerous opportunities exist for the analysis of longitudinal data in future epigenetic studies.

Keywords: Epigenetics, Heritability, DNA methylation, Repeated measurements, Linear mixed effect models, Bayesian,
Variance components
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Background
Longitudinal studies and repeated measurements in
epigenome-wide DNA methylation studies (EWAS) can
potentially provide insight into time- or condition-varying
effects. Analysis where each subject serves as their own
control allows for the assessment of within-individual var-
iations over time and identification of factors associated
with these time-dependent changes. Although repeated
measure studies may be expensive to initiate and difficult
to maintain, cross-sectional studies cannot detect the dy-
namic nature of epigenetic mechanisms impacting com-
plex disease, making it difficult to ascertain whether the
underlying causal effect is environmental or genetic [1].
Additionally, repeated measurements typically increase
statistical power compared to cross-sectional designs.
Epigenetics is the study of reversible, mitotically herit-

able changes that influence gene control but do not alter
the underlying DNA sequence. The most studied epi-
genetic mark is DNA methylation, which is a chemical
process where a methyl group is added to the cytosine
base, at a cytosine-phosphate-guanine (CpG) site, to form
5-methylcytosine. DNA methylation has been extensively
studied in relation to diseases [2], where the focus lies on
the discovery of differentially methylated CpG sites or re-
gions. DNA methylation is influenced by age [3] and gen-
der [4], along with environmental factors such as diet [5]
and smoking [6].
Longitudinal studies are clearly beneficial for under-

standing how the epigenome changes over time and its
involvement in the progression of complex disease eti-
ology or response to change in condition, such as treat-
ment [1]. Longitudinal analysis is also important when
assessing epigenetic changes in heritability over the life
course [7, 8]. Change in heritability over time might be
an important feature of biological processes or adapta-
tions to changing environments, and such interrogations
can help with identifying environmental versus genetic
contributions. Comparison of heritability estimates over
several time points also provides an indication of
consistency, which either can improve the certainty of
the estimates or help identify technical issues with the
epigenetic study.
Narrow-sense heritability (h2) is the proportion of

phenotypic variance due to additive genetic variance.
Traditionally, h2 is estimated using twins or parent–off-
spring pairs/trios, but other approaches using linear mixed
effect models have been developed to estimate h2 in pedi-
grees of any size [9, 10]. These methodologies are well
established for phenotypes possessing moderate to high h2

[10, 11], but are less well established for traits having low
h2, as is expected for some proportion of CpG sites [12,
13]. Modifications in the epigenome, including DNA
methylation, can alter gene expression in a heritable man-
ner without impacting the underlying gene sequence. This

model of epigenetic inheritance can be explained through
(a) mitotic inheritance of phenotypes across cell genera-
tions, (b) inheritance across successive meiotic divisions,
and (c) transgenerational inheritance, which requires
proof of h2 across multiple generations [14].
The GAW20 provided data from individuals in up to

3-generation pedigrees. This provided the opportunity to
investigate h2 of different traits, including metabolic syn-
drome, triglyceride (TG) levels and DNA methylation. In
this paper, we summarize 7 GAW20 contributions (Table 1)
focused on the development and application of statistical
methodologies for the analysis of h2 and longitudinal DNA
methylation data. Similar to previous GAW workshops,
these contributions included a variety of statistical methods
and strategies that dealt with the advantages and challenges
of incorporating both family-structured data and repeated
measurements. The topics addressed by these contributions
were divided into 4 categories: (a) h2, (b) drug treatment re-
sponse, and (c) targeted versus epigenome-wide and (d)
family versus unrelated data sets. In addition, 2 of these
contributions also focused on quality control of the data.

Methods
GAW20 data
GAW20 data included a real and simulated data set on
200 replicates of the real data phenotypes and CpG sites
for 2 time points, before and after 3 weeks of daily treat-
ment with a lipid-lowering drug (fenofibrate). All 7 con-
tributions summarized here used the GAW20 real data
set. The real data set was provided by the Genetics of
Lipid Lowering Drugs and Diet Network (GOLDN)
study and included EWAS and genome-wide association
genotypes from 188 extended families from Minnesota
and Utah [15]. DNA methylation in CD4+ cells was mea-
sured using the 450 K Infinium array for 463,995 CpG
sites and was available for 995 and 530 individuals pre-
treatment and posttreatment, respectively. Phenotype in-
formation included sex, age, recruitment center, smoking
status, and blood lipid levels, and was available both pre-
treatment and posttreatment for 818 and 861 individuals
for TG and high-density lipoprotein (HDL), respectively.

EWAS quality control
An important consideration for EWAS studies are qual-
ity control (QC) and normalization of the CpG sites.
Proper QC helps detect bias and potential technical con-
founders, and is essential in both cross-sectional and
longitudinal studies, making sure phenotypic data be-
tween time points are comparable.
The Illumina Human Methylation 450 K array (Illu-

mina, San Diego, CA USA), uses 2 different chemistries
to detect DNA methylation. As these 2 chemistries differ
in dynamic range, sensitivity, and biological annotation,
the observed methylation patterns follow 2 different
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distributions. This is further complicated by the mixture
distributions generally observed in methylation data.
Multiple methods have been developed to address the is-
sues caused by the 2 chemistries [16–19]. Two of the
GAW20 contributions from this working group focused
solely on QC of the EWAS data [20, 21].
Canty and Paterson [20] focused mainly on batch effects

and QC using independent observations, while LeBlanc et
al. [21] focused on using family structure in their QC steps.
Inspection of the provided GAW20 data by both studies re-
vealed insufficient probe-normalization, which was ad-
dressed in multiple papers submitted to GAW20, including
5 contributions from this group [20–24]. Three of these
studies [21, 23, 24] used beta-mixture quantile
normalization (BMIQ) [19] to normalize out probe-type ef-
fects, whereas Canty and Paterson [20] analyzed the CpG
probe types in 2 separate strata. Almeida et al. [22] used
inverse-normalization to convert the DNA methylation
beta values to have range (−∞,∞). For the same reason,
Canty and Paterson [20], Nustad et al. [24], and LeBlanc et
al. [21] used the inverse logit transformation of beta values
(M values) for their analysis. Two contributions from this
group [25, 26] did not use any normalizations on the epi-
genetic data. However, because Fernández-Rhodes [25] only
used Type II probes, the observed probe bias should not
have affected their results.
Further inspection of the epigenetic data indicated

strong batch effects for pretreatment and posttreatment,
as well as evidence for sample swaps. This was clearly
outlined in both the QC contributions by 2 of these
GAW20 contributions [20, 21]. Batch effects in genomic
studies are sometimes adjusted for by adding the princi-
pal components (PCs) in the analysis. In our GAW20
group, 4 groups [20, 22, 23, 25] adjusted for DNA
methylation-derived PCs in their analysis.
The interpretation of DNA methylation-derived PCs is

still unclear in EWAS, but is often taken to represent ei-
ther batch effects or reflect the sample-specific cell-type
composition. In Irving et al. [27], the PCs were inter-
preted as impurities in the CD4+ T-cell population.

GAW20 approaches
Heritability
Three GAW20 contributions in this group estimated h2

based on the reported family relationships for either phe-
notypes or DNA methylation. Narrow-sense h2 was esti-
mated for blood lipids [22, 24], metabolic syndrome [25],
treatment effect [24], and DNA methylation [22, 24, 25].
All 3 of these contributions used a linear mixed effect
(LME) model (variance component model) approach.
Frequentist models [22, 25] were implemented in
SOLAR (sequential oligogenic linkage analysis routines)
[9], whereas a Bayesian model [24] was implemented in

INLA (integrated nested Laplace approximation) for h2

estimates [28].
All 3 contributions [22, 24, 25] estimated h2 with some

clinical covariates accounted for in their LME models.
Two of these contributions investigated pretreatment and
posttreatment h2 estimates epigenome-wide [22, 24], while
Fernández-Rhodes [25] focused on metabolic syndrome-
associated CpG sites. Almeida et al. [22] used LME to esti-
mate h2 of inverse-normalized CpG sites epigenome-wide.
These researchers also investigated HDL h2 for both pre-
treatment and posttreatment with and without the first 20
DNA methylation-derived PCs as covariates in their LME
[22]. In addition, they calculated covariance matrices be-
tween samples based on gene-specific methylation sites.
These matrices were used as an additional component in
a LME, where they investigated if some of these matrices
could explain a significant proportion of the HDL pheno-
typic variance.
Fernández-Rhodes et al. [25] estimated the h2 of 4

CpG sites (cg00574958, cg17058475, cg18181703, and
cg06500161) previously associated with metabolic syn-
drome in GOLDN and other studies, focusing on build-
ing LMEs, as implemented in SOLAR [9] to account for
shared genetic and environmental factors. They prepro-
cessed the pretreatment methylation data by adjusting
for the top 4 methylation PCs, as previously described to
account for T-cell purity or residual batch effects [27].
Using a variance-component LME, they estimated h2 for
metabolic syndrome and the 4 specific metabolic syn-
drome CpG sites in models with (a) no covariates, (b) with
individual-level covariates that incorporated age, sex, and
their interactions, (c) sequentially adding environmental
covariates (study center, smoking status) to the (b) model.
Only covariates with p < 0.1 were kept in their reduced
model. Finally, to this reduced model, they separately
added a household variance component for siblings repre-
senting “early life shared environment” and one for par-
ents representing “later life shared environment,” and
then screened for nominally significant cis-acting and
trans-acting single-nucleotide polymorphisms (SNPs).
Nustad et al. [24] applied a Bayesian LME imple-

mented in R-INLA [28] to estimate the h2 of TG and
HDL, treatment response (change in TG and HDL from
pretreatment to posttreatment) and epigenome-wide
CpG sites. They performed model selection using the
deviance information criterion to identify CpG sites hav-
ing strong evidence of nonzero h2. They used
BMIQ-normalized methylation on the M-scale in their
analyses, and excluded SNP-associated CpG sites while
accounting for age and sex.

Drug treatment response
Two contributions [23, 26] in this group examined the
treatment effect on DNA methylation. Yu et al. [26] used
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a generalized estimating equation to estimate the associ-
ation between log-transformed TG levels and the methy-
lation proportion separately for the pretreatment and
posttreatment of 349,755 CpG sites that were uniquely
mapped to a gene. They adjusted for age, sex, study center,
and smoking status in their analysis. Furthermore, they
examined whether the effect of adding log-transformed
HDL to the model changed the evidence for association.
Using the subset of 421 individuals with methylation and
lipids at both time points they also conducted a longitu-
dinal analysis, adding a covariate fenofibrate treatment
(time) and the interaction between treatment (time) and
methylation proportion. Except for the added indicator
covariate for drug treatment, they used the same covari-
ates in the longitudinal modeling and conducted with and
without adjustment for HDL. Lim et al. [23] restricted
their analysis to 14,850 CpG sites that were nominally sig-
nificant (p < 0.05) with log-transformed TG level at base-
line methylation. For each of these sites, residuals were
found from a LME accounting for family structure and co-
variates, such as age, sex, study center, smoking status,
and 10 PCs separately pretreatment and posttreatment
DNA methylation. These residuals were used to construct
networks using weighted gene coexpression network ana-
lysis (WGCNA) to find modules of highly interconnected
CpG sites [29]. They tested whether pretreatment mod-
ules changed more than by chance in the posttreatment
modules using both the WGCNA module preservation
method and generalized hamming distance [30].

Targeted versus epigenome-wide data
In EWAS, a proportion of DNA methylation covering the
epigenome is investigated, with little regard for prior bio-
logical knowledge or reasoning. Although this is more
computationally intensive, it has the ability to detect pre-
viously unknown epigenetic associations with a phenotype
and generate new hypotheses about the underlying biology
of complex disease.
One contribution from this GAW20 group preprocessed

the epigenome-wide methylation data for cell purity or re-
sidual batch effects, but then performed a targeted analysis
[25] that focused on 3 genes (CPT1A, SOCS3 and ABCG1)
previously reported to be associated with metabolic syn-
drome [31–35]. All other GAW20 contributions from this
group applied an epigenome-wide hypothesis-generating
approach where the entire epigenome was interrogated.
However, 2 of these contributions implemented data-driven
approaches to reduce the final number of analytic tests con-
ducted. In their network analysis, Lim et al. [23] used a re-
duced data set consisting of 14,850 CpG sites that showed
a nominal association of log-transformed TG with pretreat-
ment with fenofibrate DNA methylation. Almeida et al.
[22] reduced the methylation data to the gene-specific CpG

sites in their search for gene-specific methylation that could
explain a significant proportion of the observed HDL h2.

Family versus unrelated
Six of 7 scientific contributions in our GAW20 group used
the known pairwise family relationships in their analyses
[21–26]. These contributions included pedigree informa-
tion that described the expected proportion of shared gen-
etic information between extended family members. The
family information was used either to estimate h2 or gen-
etic values for various traits [21, 22, 24, 25] or to model
the dependency between individuals in drug treatment re-
sponse models [23, 26].
A single GAW20 contribution from this working

group used a customized unrelated data set [20]. These
authors randomly selected 1 individual from each pedi-
gree and looked for the differences in both the mean
and variability of DNA methylation between pretreat-
ment and posttreatment.

Results
Heritability
Almeida et al. [22] demonstrated that epigenome-wide
DNA methylation h2 estimates differed between pretreat-
ment and posttreatment, with higher h2 estimates pretreat-
ment. When these authors included the first 20 DNA
methylation-derived PCs as covariates, the pretreatment
and posttreatment h2 distributions were similar, with re-
duced h2 estimates. In their analysis of gene-specific methy-
lation sites that together could explain a proportion of the
HDL phenotypic variance, they did not identify any signifi-
cant associations.
Fernández-Rhodes et al. [25] reported metabolic syn-

drome h2 estimates in various LMEs they tested account-
ing for fixed covariates; including age, sex, study center,
smoking status, and SNPs, along with an additional ran-
dom effect representing either early or late life shared
household environment. Metabolic syndrome h2 estimates
after accounting for these random effects ranged from
0.24 to 0.46, but the estimates were not significantly differ-
ent from the model including only significant fixed effects
(0.43). Early life shared environment tended to decrease
the estimated h2 while late life shared environment had
the opposite effect. These authors employed a similar
LME strategy for estimating DNA methylation h2 at a
priori-identified 4 CpG sites previously associated with
metabolic syndrome, and observed that the resulting CpG
h2 estimates were also robust to the LME structure.
Nustad et al. [24] estimated pretreatment h2 for HDL

(0.48) and TG (0.61) using a Bayesian approach. Their
h2 estimates are similar to previous frequentist estimates
[36] for these phenotypes, but show large uncertainty.
They also identified that response to treatment was
weakly heritable. For genome-wide methylation h2, they
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reported h2 followed a 2-group mixture model with some
proportion of CpG sites having nonzero h2 and the
remaining CpG sites following a right-skewed unimodal
distribution. The mixture proportion differed remarkably
pretreatment to posttreatment (zero proportion was ap-
proximately 5% vs 57%, respectively). For the remaining
CpG sites with strong evidence for nonzero h2, the mean,
median, and interquartile range were 0.33, 0.31, and 0.16
pretreatment and 0.36, 0.34, and 0.20 posttreatment.

Drug treatment response
Yu et al. [26] found 23 CpG sites that were significantly
associated with TGs in the pretreatment data after Bon-
ferroni correction and found 13 such sites in the post-
treatment data. Only 1 CpG site (cg19003390 in the
CPT1A gene on chromosome 11) was consistently found
to be associated in both data sets, and with or without
adjustment for HDL. In the longitudinal analysis, 6 sig-
nificant interactions were found either with or without
adjustment for HDL, however, only 1 CpG site
(cg20354777 in SPSB4 on chromosome 5) showed a sig-
nificant interaction in the same direction irrespective of
adjustment for HDL. All other significant interactions
were either significant with or without HDL adjustment
but not in both models. The network analysis approach
used by Lim et al. [23] resulted in 6 significant modules
of at least 30 CpG sites, but the vast majority of probes
(14,049) examined did not belong to any of these mod-
ules. Using both the module preservation and generalized
Hamming distance methods, they found that 3 of these 6
modules had topological differences between the pretreat-
ment and posttreatment networks. The smallest module
found (44 CpG sites) was also the most different between
the 2 time points using the WGCNA preservation statis-
tic. Most of the moderate to high correlations found in
the pretreatment discovery set were absent in the post-
treatment module. This was also seen in the other 2 mod-
ules showing evidence of differential structure.

Quality control, family vs unrelated
The application of h2 estimates represents a potential
novel QC procedure for EWAS data and this method-
ology was explored by 3 contributions in our GAW20
workgroup [21, 22, 24]. CpG sites are responsive epigen-
etic elements and it is reasonable to expect that their
majority present low to moderate h2 estimates [12, 13].
Canty and Paterson [20] conducted paired t-tests to

examine changes in methylation between the pretreat-
ment and posttreatment data sets. To avoid any issues
from family structure, they used a sample size of 140 in-
dividuals, each randomly chosen from a different family.
They found that almost one-third of CpG sites (149,396
out of 463,995) had a significant difference after Bonfer-
roni correction. The significant sites were uniformly

distributed across the entire genome. Methylation gener-
ally increased for Infinium Type I probes and generally
decreased for Type II probes. There were also 9986 CpG
sites showing a significant difference in variability between
pretreatment and posttreatment, generally showing a de-
crease in variability after treatment. These results are from
models that did not use any covariates. When the differ-
ence in TG levels was included as a covariate, fewer sig-
nificant differences in methylation were found (26,371),
but still many more than would be expected.
LeBlanc et al. [21] also conducted a paired t-test as a

QC step to investigate the mean differences between
pretreatment and posttreatment methylation. Approxi-
mately 300,000 (enhanced by family correlation) CpG
sites were found to be significantly different (p < 0.05),
indicating large differences between the time points.
After BMIQ normalization, the signal dropped to ap-
proximately 240,000, indicating a missing probe-type
normalization gave rise to an increased false-positive
rate genome wide. In addition, 13 samples were found to
be possible samples swaps based on comparison of
SNP-regulated CpG methylation values pretreatment
and posttreatment, breeding value correlation between
pretreatment and posttreatment methylation estimated
from a h2 model and methylation-inferred gender. Of
these samples, 11 were found to be wrongly labeled in
the posttreatment.

Discussion
As with previous GAW workshops that have investi-
gated longitudinal data, a direct comparison of results
between each contribution summarized here is made dif-
ficult by the variability in phenotypes and analytical ap-
proaches implemented (see Table 1). However, there are
some novel insights, strengths, and potential limitations
of these statistical approaches that can be discussed.
Additionally, these papers highlight some important op-
portunities for further exploration in the development of
statistical methodologies for understanding epigenome-
wide DNA methylation patterns.
Two contributions directly addressed the issue of QC in

the provided GAW20 EWAS data. Canty and Paterson
[20] customized a reduced set of individuals, whereas
LeBlanc et al. [21] used the family-based data. Both identi-
fied a huge signal of differences between the pretreatment
and posttreatment DNA methylation, which differences
were uniformly distributed across the genome [20], and
argued for the possibility of batch effects. Although not
correcting all the expected false positives between pre-
treatment and posttreatment, some of these differences
were the result of missing normalization of Type I and
Type II probe chemistries in both data sets independently,
as shown in LeBlanc et al. [21] (Fig. 1).
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Both Almeida et al. [22] and Nustad et al. [24] have
established epigenome-wide h2 estimates of pretreat-
ment and posttreatment CpG sites. Almeida et al. [22]
employed a commonly used frequentist approach imple-
mented using SOLAR [9], while Nustad et al. [24] used a
Bayesian approach called INLA [28]. Figure 1 shows the
h2 estimates from pretreatment DNA methylation mea-
surements from these studies, and Fig. 2 compares h2 es-
timates from posttreatment DNA methylation. The
density curve indicates that the majority of measure-
ments are close to the diagonal, indicating that the h2

estimates between the 2 studies are similar. The tail in
Fig. 1 of the 2-dimensional density indicates that
Almeida et al. [22] has a small trend toward higher h2

estimates than do Nustad et al. [24]. The Pearson correl-
ation between the estimates are 0.72, indicating a high
correlation between the vectors of estimates. Figure 2 in-
dicates an opposite trend as for the pretreatment methy-
lation, namely that Nustad et al. [24] has a small trend
toward higher h2 estimates than Almeida et al. [22]. The
Pearson correlation for the posttreatment h2 estimates is
0.82, indicating a high correlation. The correlation be-
tween the h2 estimates is higher for posttreatment than
for pretreatment DNA methylation measurements.
However, because these correlation estimates are based

on the number of CpG sites that passed the model selec-
tion step, the number of CpG sites evaluated is different.
The number for pretreatment is 425,791, while for post-
treatment the number is 199,027. The difference in
amount of nonzero h2 estimates could be caused by an
induced familial batch effect in the pretreatment methy-
lation data suggested by Almeida et al. [22], a loss in sig-
nal caused by sample swaps in the posttreatment
methylation data suggested by LeBlanc et al. [21], or
both. With an opposite general effect between the fre-
quentist [22] and the Bayesian [24] approach in pretreat-
ment versus posttreatment methylation, it is hard to
draw any conclusion regarding comparisons of strengths
and limitations of these methods. This calls for further
analysis and simulation studies of the 2 approaches.
The GAW20 data did not contain information regarding

shared household and dietary aspects, such that the result-
ing h2 estimates of CpG sites may represent an overesti-
mation. However, Fernández-Rhodes et al. [25] used a
novel approach to try and decompose the amount of h2

resulting from shared genetic and environmental factors.
To account for shared early life environment, they in-
cluded a random effect for siblings or half-siblings who
were within 15 years of each other. They also included a
random effect for parent pairs to model the shared later

Fig. 1 The figure shows a comparison of pretreatment DNA methylation heritability estimates from Nustad et al. [24] and Almeida et al. [22]. Each
dot represents a 0.01 × 0.01 square with the color indicating the number of estimates that fall within the square. The red line is the 1-to-1 line,
while the dark blue contour lines present the estimated 2-dimensional density. The displayed heritability estimates are those that passed the
model selection step in Nustad et al. [24]
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life environmental exposures. By including these effects for
early and later life shared environment, the h2 estimates be-
came more stable but did not change significantly.
Two contributions investigated drug response pretreat-

ment and posttreatment [23, 26]. Yu et al. [26] identified
differences in CpG sites pretreatment and posttreatment
that might alter TG concentrations, partially through al-
tering DNA methylation. However, the CpG sites identi-
fied pretreatment and posttreatment differed markedly.
These findings suggest the existence of moderation effects
of DNA methylation (or drug-methylation interactions)
on TG. A total of 11 methylation sites showed substantial
interaction effects with or without HDL adjustment when
both pretreatment and posttreatment data were analyzed
[37]. Furthermore, the interaction between the SPSB4
gene and fenofibrate was significant regardless of HDL ad-
justment, suggesting this interaction effect was independ-
ent of HDL. They also conducted interaction studies and
found that the association of TG with epigenetic data dif-
fered by HDL adjustment, implying that TG and HDL po-
tentially share some epigenetic processes which warrant
further investigation. Lim et al. [23] explored the relation-
ship between TG-associated DNA methylation and fenofi-
brate treatment in a network framework and detected 6

subnetworks using pretreatment methylation probes. They
identified 3 differentially methylated posttreatment mod-
ules using both the module preservation and the general-
ized Hamming distance method. Enrichment analysis
revealed that some were comprised of genes involved in
phospholipid metabolism, which may provide insight into
the effect of treatment on methylation and TG levels.
However, they could not conclude that fenofibrate in-
duced these epigenetic alterations.
A major limitation for the GAW20 data is that treat-

ment and time are completely confounded, which will
likely attenuate the possibility to detect treatment effects
on DNA methylation. Nevertheless, it may have been
possible to better address this by normalizing the data
from the 2 time points jointly. Unfortunately, the raw
data to do this were not available. A strength for these
contributions is that they suggest several improvements
for estimating h2 in pedigrees, by attempting to correct
for shared environment and by using a model selection
step to access the evidence for nonzero h2.

Conclusions
In this paper, we summarize 7 GAW20 contributions apply-
ing novel or existing statistical methods for epigenome-wide

Fig. 2 The figure shows a comparison of posttreatment DNA methylation heritability estimates from Nustad et al. [24] and Almeida et al. [22].
Each dot represents a 0.01 × 0.01 square with the color indicating the number of estimates that fall within the square. The red line is the 1-to-1
line, while the dark blue contour lines present the estimated 2-dimensional density. The displayed heritability estimates are those that passed the
model selection step in Nustad et al. [24]
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DNA methylation data for 2 time points pretreatment and
posttreatment with fenofibrate. Despite the heterogeneous
nature of these analytical approaches, this GAW20 working
group was able to come to these conclusions: (a) QC mea-
sures are an important consideration for EWAS studies that
are investigating multiple time points or repeated measure-
ments; (b) comparison of h2 estimates between time points
for individual CpG sites is a useful QC measure for DNA
methylation studies; (c) drug intervention demonstrated
strong epigenome-wide DNA methylation patterns across
the 2 time points; and (d) new statistical methods are re-
quired to account for the environmental contributions of
DNA methylation across time. The demonstrated diversity
and strategies applied from this GAW20 working group
show that several statistical approaches are appropriate for
investigating repeated measurement data. Although certain
methodological commonalities existed between these contri-
butions, the diversity of approaches did not allow for direct
comparison across all 7 of these GAW20 contributions.
However, it is apparent from these contributions that nu-
merous opportunities exist for the implementation and ana-
lysis of repeated measurement data in EWAS.
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