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Contribution of Inbred Singletons to Variance Component 
Estimation of Heritability and Linkage

Lucy Blondell, August Blackburn, Mark Z. Kos, John Blangero, and Harald H. H. Göring
South Texas Diabetes and Obesity Institute, Department of Human Genetics, University of Texas 
Rio Grande Valley, 3463 Magic Drive, San Antonio, TX 78229

Abstract

Objectives: An interesting consequence of consanguinity is that the inbred singleton becomes 

informative for genetic variance. We determine the contribution of an inbred singleton to variance 

component analysis of heritability and linkage.

Methods: Statistical theory for the power of variance component analysis of quantitative traits is 

used to determine the expected contribution of an inbred singleton to likelihood-ratio tests of 

heritability and linkage.

Results: In variance component models an inbred singleton contributes relatively little to a test 

of heritability, but can contribute substantively to a test of linkage. For small to moderate QTL 

effects and a level of inbreeding comparable to matings between first cousins (the preferred form 

of union in many human populations), an inbred singleton can carry nearly 25% the information of 

a non-inbred sibpair. In more highly inbred contexts available with experimental animal 

populations, nonhuman primate colonies, and some human subpopulations, the contribution of an 

inbred singleton relative to a sibpair can exceed 50%.

Conclusions: Inbred individuals, even in isolation from other members of a sample, can 

contribute to variance component estimation and tests of heritability and linkage. Under certain 

conditions the informativeness of the inbred singleton can approach that of non-inbred sibpair.
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Introduction

A simplification often made in quantitative genetic theory and analysis is the assumption 

that the parents of an individual are unrelated. The assumption implies that any offspring of 

the parents are not inbred, and a corollary implication is that a single individual cannot be 

informative for linkage. The assumption is frequently plausible, such as for most 
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westernized human populations, but may often be purely expedient, e.g., when applied to the 

founding members of a pedigree.

Consanguinity, however, carries additional information regarding the inheritance of alleles 

that can be exploited to increase the power of statistical genetic methods based on allele 

sharing [1]. A curious consequence of parental relatedness is the nonzero probability for 

both alleles at a locus in the inbred offspring to be identical by descent (IBD). Therefore, 

even in isolation from a larger pedigree structure, inbred singletons are inherently 

informative for genetic linkage.

Here the approach presented in [2] (see also [3, 4, 5]), for variance component analysis of 

quantitative traits is extended to the case of an inbred singleton. The contribution of the 

inbred singleton to the likelihood-ratio statistic is determined for models of polygenic 

variation and linkage, and the informativeness of the inbred individual is compared with that 

for the conventional minimal unit of analysis, the sibpair. Under certain conditions, an 

inbred singleton can contribute a significant fraction of the information of a non-inbred 

sibpair.

Definitions

To introduce concepts and fix notation it is helpful to review the following definitions [6, 7, 

8, 9, 10].

An individual is said to be inbred (at a given locus) if the individual has (at that locus) two 

copies of a given ancestral allele. This condition generally obtains only if the parents share 

an allele identical by descent (IBD), i.e., are themselves related through some common 

ancestor. offspring of related parents need not inherit two copies of an ancestral allele, but 

without knowledge of the relatedness of the parents it is only the presence in the offspring of 

two copies of an ancestral allele that provides unequivocal evidence of inbreeding.

The coefficient of kinship ϕij between individuals i and j is the probability that an allele 

chosen at random from individual i is IBD with an allele chosen randomly from the same 

locus in individual j. If i and j are unrelated, ϕij = 0.

The inbreeding coefficient f of an individual is the probability that the two parental alleles 

transmitted to the individual are IBD. If parents are unrelated, f = 0, otherwise f is equal to 

the coefficient of kinship between the parents.

The coefficient of kinship of an inbred individual with itself can be understood as the 

inbreeding coefficient of the progeny that would be produced by self-mating. To see this, 

suppose individuals i and j are genetically identical with genotype γ1 γ2 at a locus and 

probability f that γ1 and γ2 are IBD. In random sampling their coefficient of kinship must 

therefore be

ϕi j =  Pr  γ1γ1 ∪ γ2γ2 +  Pr  γ1γ2  Pr  γ1 ≡ γ2
= 1

2 + 1
2 f = 1

2(1 + f ) .
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Finally, the coefficient of relationship, rij = 2ϕij, is the coefficient of the additive genetic 

contribution to the covariance between relatives [9, 10].

Contribution To Likelihood Ratio

In variance component analysis the significance of a modeled effect is typically evaluated 

using a likelihood-ratio test [11]. To evaluate the contribution of an inbred singleton to a test 

of heritability or linkage, we follow the approach presented by others [3, 4, 5, 2] for 

computing the expected likelihood ratio in variance component tests of polygenic and QTL 

effects for a quantitative trait. For more extensive theoretical development of this approach, 

including applications, discussion, and simulation results, the reader is referred to [3, 4, 5, 2] 

and references therein.

Let θ0 and θ1, respectively, be the vector of variance components (i.e., the model 

parameters) under the null H0 and alternative H1 hypotheses. The likelihood-ratio statistic 

for the test of H0: θ = θ0 vs H1: θ = θ1 is distributed asymptotically as a noncentral χ2 with 

noncentrality parameter

Λ = θ1 − θ0 ′T θ1 − θ0

where T is the information matrix of the parameters [11]. The i,j-th element of T is given by

T i j = 1
2 Tr  Ω−1∂Ω

∂θi
Ω−1 ∂Ω

∂θ j

where θk is the k-th element of the parameter vector θ0 [2, 5]. For a specific hypothesis test, 

the quantity Λ completely specifies the distribution of the likelihood ratio under H1 and can 

be used to determine the power of the likelihood-ratio test or, as is done here, as a figure of 

merit for comparing different sampling units.

Results

When considering the influence of an individual, much of the matrix formulation implicit in 

the general case becomes unnecessary. For a singleton, assumed unrelated to the other 

members of a pedigree, the structuring matrices for the phenotypic covariance, and the 

covariance matrix itself, reduce to scalar quantities and most of the analytical effort is 

devoted to computing the information matrix for the model parameters.

Polygenic Model

In a variance component model of polygenic inheritance, the phenotypic covariance matrix 

is structured as

Ω = 2Φσa
2 + Iσe

2,

Blondell et al. Page 3

Hum Hered. Author manuscript; available in PMC 2019 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where Φ is the kinship matrix, I is the identity matrix, σa
2 = a2σ2 is the variance due to 

additive genetic effects, σe
2 = e2σ2 is the variance due to random, individual-specific 

environmental effects, and σ2 = σa
2 + σe

2 is the total phenotypic variance. In the case of a 

singleton 2Φ ≡ 2φ = {1 + f }, I ≡ {1}, and Ω ≡ ω = (1 + f )σa
2 + σe

2 = σ2 + f σa
2 illustrating that 

the additive genetic contribution to the phenotypic variance is inflated by inbreeding in 

proportion to the relatedness of the parents.

Information Matrix—Under the null hypothesis H0:σa
2 = 0, there is no (additive) genetic 

variation and all phenotypic variation is purely environmental. The phenotypic covariance is 

therefore Ω |H0 ≡ ω0 = σe
2 ≡ σ2. Elements tij of the information matrix T are found by 

straightforward evaluation of standard results [3, 4,2].

t11 = 1
2 Tr  Ω−12ΦΩ−12Φ

= 1
2 ω0

−1(1 + f )ω0
−1(1 + f ) = 1

2
1

σ2
2
(1 + f )2,

t12 = 1
2 Tr  Ω−12ΦΩ−1I

= 1
2 ω0

−1(1 + f )ω0
−1(1) = 1

2
1

σ2
2
(1 + f ),

and

t22 = 1
2 Tr  Ω−1IΩ−1I

= 1
2 ω0

−1(1)ω0
−1(1) = 1

2
1

σ2
2

.

The complete information matrix for the polygenic model in the case of an inbred singleton 

is then

T = 1
2

1
σ2

2 (1 + f )2 1 + f
1 + f 1

.

Likelihood-Ratio Statistic—The utility of the singleton in a test of additive genetic 

effects is ultimately determined by its contribution to the total likelihood-ratio statistic. For 

the polygenic model, with parameters σa
2 and σe

2, the parameter vectors under the null and 

alternative hypotheses, respectively, are θ0 = 0, σa
2 + σe

2 ′ and θ1 = σa
2, σe

2 ′. The singleton-

specific likelihood ratio is then
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Λ1 = θ1 − θ0 ′T θ1 − θ0

= 1
2

1
σ2

2
σa

2, − σa
2 ′ (1 + f )2 1 + f

1 + f 1

σa
2

−σa
2

= 1
2

σa
2

σ2 f

2
= 1

2 a2 f
2,

where a2 = σa
2/σ2 ≡ h2 is the proportion of the phenotypic variance due to additive genetic 

effects. (In this polygenic model, a2 is equivalent to the trait heritability h2.) For a given 

additive effect a2, an inbred singleton contributes to estimation of heritability in proportion 

to the square of the inbreeding coefficient. If the singleton is not inbred, then f = 0 and the 

individual contributes nothing to the overall likelihood-ratio statistic.

From [2] the corresponding expected likelihood-ratio statistic for a test of the polygenic 

model in sibpairs is

ΛSP = 1
4

σa
2

σ2

2
= 1

4 a2 2 .

These likelihood-ratio statistics for the inbred singleton and the sibpair are illustrated in 

Figure 1. Even for relatively large genetic effects, the singleton contributes little information 

to a test of heritability. As a unit of analysis, the efficiency of an inbred singleton relative to 

a sibpair is

Λ1 / ΛSP = 2 f 2 .

This comparison is illustrated in Figure 2. The relative efficiency is independent of the effect 

size a2 and strictly a function of the inbreeding coefficient, and is therefore constant for a 

given level of inbreeding. Typically f ≪1 even for moderately high levels of inbreeding, so 

the efficiency of the single-efficiency of the singleton for heritability estimation is never 

large. For example, with f ~1/10, an inbred singleton contributes about 1/50-th the 

information of a sibpair.

For levels of inbreeding exceeding f = 1/ 2 ≈ 0.71, the singleton becomes more informative 

than a non-inbred sibpair. Such high levels of inbreeding are not to be expected in human 

populations, but could easily be achieved in experimental settings, e.g., after two generations 

of selfing, or after six generations of sib-sib matings [9].
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Linkage Model

To evaluate the contribution of an inbred singleton to a test of linkage, the additive genetic 

effect of a major gene is modeled by introducing a QTL-specific variance component. The 

model for the phenotypic covariance matrix becomes

Ω = Πσq
2 + 2Φσa

2 + Iσe
2 .

where Π is a matrix of (estimated) allele sharing between individuals at a locus linked to the 

QTL, σq
2 = q2σ2 is the QTL-specific additive genetic variation, and the other quantities are as 

defined for the polygenic model.

Information Matrix—Under the null hypothesis for linkage, H0:σq
2 = 0, there is no effect 

due to a QTL and all (additive) genetic variation can be ascribed to polygenic effects. The 

phenotypic covariance is therefore Ω |H0 ≡ ω0 = 2φσa
2 + σe

2 = 1 + f h2 σ2, where h2 is trait 

heritability. The elements tij of the information matrix T are

t11 = 1
2 ω0

−1πω0
−1π = 1

2ω0
−2π2

t12 = 1
2 ω0

−1πω0
−1(1 + f ) = 1

2ω0
−2π(1 + f )

t13 = 1
2 ω0

−1πω0
−1(1) = 1

2ω0
−2π

t22 = 1
2 ω0

−1(1 + f )ω0
−1(1 + f ) = 1

2ω0
−2(1 + f )2

t23 = 1
2 ω0

−1(1 + f )ω0
−1(1) = 1

2ω0
−2(1 + f )

t33 = 1
2 ω0

−1(1)ω0
−1(1) = 1

2ω0
−2,

and the complete information matrix for the linkage model is

T = 1
2ω0

−2
π2 π(1 + f ) π

π(1 + f ) (1 + f )2 1 + f
π 1 + f 1

.
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Likelihood-Ratio Statistic—For the linkage model parameterized by σq
2, σa

2, and σe
2, the 

parameter vectors under the null and alternative hypotheses are, respectively, 

θ0 =   0, σq
2 + σa

2, σe
2 ′ and θ1 = σq

2, σa
2, σe

2 ′. The singleton-specific likelihood ratio is then

Λ1 = θ1 − θ0 ′T θ1 − θ0

= 1
2ω0

−2 σq
2, − σq

2, 0 ′
π2 π(1 + f ) π

π(1 + f ) (1 + f )2 1 + f
π 1 + f 1

σq
2

−σq
2

0

= 1
2

q2

1 + f h2

2
(1 + f − π)2,

where the quantity (1 + f ) − π is seen to be the difference in allele sharing at the locus under 

null and alternative models.

For an inbred singleton there are only two possible IBD states at a given locus,

π = 2  with probability  f
1  with probability 1 − f

with expectations E[π] = 1 + f  and E π2 = 1 + 3 f . The corresponding expectation for the 

likelihood-ratio statistic in a test of linkage is therefore

Λ1 = 1
2 f (1 − f ) q2

1 + f h2

2
.

Again, in the absence of inbreeding (f = 0), the likelihood ratio is identically zero and the 

singleton does not contribute to the estimation of linkage.

From [2] the corresponding expected likelihood-ratio statistic for a test of the linkage model 

in sibpairs is

ΛSP = 1
2

h4 + 4

h4 − 4 2q4 .

These expressions for inbred singleton and sibpair are illustrated in Figure 3 for various 

values of the inbreeding coefficient. The curves have qualitatively the same appearance, with 

the likelihood ratio (and therefore the power of a test of linkage) increasing with the QTL 

effect q2. When q2 exceeds about0.4–0.5 the power of the sibpair begins to increase 

markedly faster than for the inbred individual.

Relative to the sibpair, the efficiency for linkage of the inbred singleton is
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Λ1
ΛSP

= f (1 − f )
1 + f h2

h4 − 4 2

h4 + 4
.

This ratio is illustrated in Figure 4. Note that the efficiency is independent of the QTL-

specific effect, and depends only on the trait heritability. For low to moderate levels of 

inbreeding an inbred singleton can contribute a signifficant proportion of the linkage 

information of the sibpair. In extreme cases (unlikely to be found with human populations, 

but easily encountered or contrived with animal populations), an inbred individual can carry 

more than half of the linkage content of a sibpair.

Dominance Variance

The foregoing models have considered only additive genetic variation. However, since an 

inbred individual has a nonzero probability of having both alleles IBD at a locus, the 

individual can also be informative for dominance variance. The effect of dominance variance 

can be incorporated into a variance component model by introducing the term Δ7 σd
2, where 

Δ7 specifies the (expected) probability of sharing both alleles IBD and σd
2 is the variance due 

to dominance interactions [2].

Dominance variance is generally ignored in variance component models, however, because 

only certain kinds of relative pair can share both alleles IBD (MZ twins, full sibs, double 

first cousins, etc). Even with large extended pedigrees containing many contributing 

relationships, the effect of dominance is inconsequential against the additive genetic effect 

and di cult to estimate accurately. Inclusion of dominance variance in the statistical model 

also introduces an additional degree of freedom for an effect that is primarily of academic 

interest.

Discussion

The ability to collect and analyze large extended human and nonhuman pedigrees 

significantly increases the probability of encountering pedigree loops, consanguinity, and 

inbred individuals [12]. When these features are present, statistical methods that avoid 

simplifying assumptions regarding relatedness will recover more of the available inheritance 

information, leading to more precise parameter estimates and more secure inferences. 

Penetrance-based approaches to linkage analysis often accommodate consanguinity and 

inbreeding with little if any additional effort, and approaches based on variance component 

models require only that the algorithms for computing the relevant structuring matrices (e.g., 

the kinship and QTL-specific sharing matrices) are written to handle correctly any 

consanguinity loops.

In quantitative genetic studies of large, pedigreed, human and nonhuman populations, the 

inclusion of isolated but inbred individuals can materially increase the power of statistical 

analysis. The realized benefit depends greatly on the number of such individuals and the 

expected level of consanguinity in the population under study, but even in populations 
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having a low mean coefficient of inbreeding, the linkage information contributed by isolated 

inbred individuals can accumulate to useful levels.

In human populations, the average inbreeding coefficient is typically less than 1/1000 [13, 

14]. For genetic studies of many westernized populations the assumption of an outbred study 

sample is met to a greater or lesser degree, and ignoring inbreeding will have minimal 

impact on statistical power. For many of the world’s populations, however, endogamy and 

consanguineous marriages are favored, and the mean level of inbreeding can become 

significant [15, 16, 17]. In many Asian and African populations, for example, first cousin 

marriages are the preferred form of consanguineous union [18, 19, 20,21]. Across the 

world’s populations, inbreeding coefficients f near 1/30 are not uncommon, and in many 

groups f exceeds 1/10. An extreme case is found in the well-known Jicaque pedigree [22, 7] 

in which the kinship coefficient ϕ = 0.3710 for the terminal pair of sibs implies f > 1/3 for 

their hypothetical offspring.

In wild primate populations, behavioral and demographic patterns (e.g., dispersal of males 

from their natal groups) act to reduce matings between close relatives, and lead to 

population mean inbreeding coefficients that are nearly zero or even slightly negative [23]. 

In captive or experimental populations, however, controlled breeding for colony 

management—even if new founders are introduced to maintain genetic diversity—can 

eventually raise the overall inbreeding coefficient to well over 1/8 [24, 25], and experimental 

selection for extreme phenotypes can generate many individuals having an inbreeding 

coefficient approaching 1/4.

With any inbred population, inclusion of inbred singletons is relatively most advantageous 

for smaller QTL effects. Not only is the linkage information content of the individual 

relatively greater in such cases, but the additional information compensates somewhat for 

the inherently reduced power of linkage analysis to detect smaller QTL effects. Ultimately, 

any increase in statistical power is desirable, particularly in the case of discrete phenotypes 

which, in variance component models, are markedly less informative than their quantitative 

counterparts [26].
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Figure 1. 
Likelihood-ratio statistic for an inbred singleton and a (non-inbred) sibpair in variance 

component estimation of heritability. Curves are shown for inbreeding coefficients f = 1/4 

(e.g., matings between full sibs, or parent and offspring) and 1/8 (e.g., half-sib, double first 

cousin, or offspring-grandparent matings).
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Figure 2. 
The contribution of an inbred singleton relative to a (non-inbred) sibpair in variance 

component estimation of heritability. See Figure 1 for description of the inbreeding 

coefficients.
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Figure 3. 
Likelihood-ratio statistic for an inbred singleton and a (non-inbred) sibpair in variance 

component linkage analysis. Data are shown for inbreeding coefficients f = 1/4 (e.g., 

matings between full sibs, or parent and offspring), 1/8 (e.g., matings between half-sibs, 

double first-cousins, or grandparent and offspring), and 1/16 (e.g., matings between single 

first-cousins).
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Figure 4. 
The contribution of an inbred singleton relative to a (non-inbred) sibpair in variance 

component linkage analysis. See Figure 3 for description of the inbreeding coefficients.
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