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ARTICLE

Fast and powerful genome wide association of
dense genetic data with high dimensional imaging
phenotypes
Habib Ganjgahi1,2, Anderson M. Winkler 3,4, David C. Glahn5, John Blangero6, Brian Donohue7,

Peter Kochunov7 & Thomas E. Nichols 3,8,9

Genome wide association (GWA) analysis of brain imaging phenotypes can advance our

understanding of the genetic basis of normal and disorder-related variation in the brain. GWA

approaches typically use linear mixed effect models to account for non-independence

amongst subjects due to factors, such as family relatedness and population structure. The use

of these models with high-dimensional imaging phenotypes presents enormous challenges in

terms of computational intensity and the need to account multiple testing in both the imaging

and genetic domain. Here we present a method that makes mixed models practical with high-

dimensional traits by a combination of a transformation applied to the data and model, and

the use of a non-iterative variance component estimator. With such speed enhancements

permutation tests are feasible, which allows inference on powerful spatial tests like the

cluster size statistic.
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Genome-wide association studies (GWAS) of neuroimaging
data can advance our understanding of human brain by
discovering genetic variants associated with normal and

disorder-related phenotypic variance in brain structure and
function1–6. Quantitative brain phenotypes are based on struc-
tural images (i.e. brain volume, cortical thickness, white matter
integrity) or functional images (brain response to particular
cognitive task or resting state). Genetic association at a hundred
thousand locations in the human brain present immense statis-
tical challenges including: low statistical power, need for multiple
comparisons correction and like, other association studies, cor-
rection for population structure, a term that encompasses cryptic/
family relatedness and population stratification.

In the GWA studies of unrelated individuals, non-
independence due to latent population stratification or
unknown (cryptic) relatedness7,8 is generally thought to be a
confounding factor that can lead to excessive false positives when
ignored. This type of non-independence has been studied
throughly in the recent GWA era9–13. While genomic data can be
used to control for population stratification by including the top
principal components as fixed effect covariates in a linear
regression model14, usually individuals with close estimated
relatedness from identity-by-state (IBS) matrix or different eth-
nicities are excluded from the study sample. This might not be a
problem in genetic studies with six digit sample sizes, but may
make substantial differences in GWA studies with neuroimaging
phenotypes where sample size is much smaller. Also, even in a
carefully designed GWA study, it is hard to avoid spurious
associations because of population structure; in particular, it is
likely that in studies with large sample sizes, such as the UK
biobank possess some level of population structure. Although the
emergence of large scale neuroimaging consortia like ENIGMA or
CHARGE can help to conduct well-powered genetic association
studies through meta analysis framework, still it is crucial to use a
powerful statistical method at the site level. Hence, there is a
compelling need for analytical techniques that addresses these
challenges.

Linear mixed effect models (LMMs) using molecularly derived
empirical relatedness measures have grown in use recently for
both studies of related and unrelated individuals, since they do
not require self-reported biological relatedness, providing a fra-
mework where such complexities are automatically accounted for.
LMMs have been used as an alternative to ordinary least squares
(OLS), providing a mechanism to model trait variance explained
by a genetic relationship matrix (GRM); such variance captures
the genome-wide similarity between “unrelated” individuals by
modeling it as a random effect15–26. It has been shown that the
correction for the problem of latent population structure in GWA
with an LMM is both effective and power preserving25–27.

These merits motivate the application of LMM for genetic
association with high-dimensional imaging phenotypes. However,
fitting LMM at each voxel in the brain is computationally
intensive or even intractable at the voxel level since variance
component estimation relies on likelihood function optimization
using numerical methods. Moreover, search for genetic associa-
tion across the genome at different locations with imaging phe-
notypes requires intense multiple testing corrections both for
number of elements in an image and number of markers. Whe-
ther the association analysis is conducted for a few regions of
interest (ROIs) or every voxel, naive application of Bonferroni
correction for number of hypothesis testing in the image with
usual GWA P-value leads to conservative statistical inference
procedure as it ignores complex spatial dependence in the ima-
ging phenotypes. Despite the many analytical techniques that
have been developed to accelerate the GWA with LMM, these
advances do not eliminate problems related to numerical

optimization nor multiple testing problem. Furthermore, com-
monly used spatial inference tools, like cluster size28 or threshold-
free cluster enhancement (TFCE) statistics29, depend on
resampling-based inference methods to ensure valid control of
false positives30,31. Familywise error rate (FWE) correction,
controlling the chance of one or more false positives across the
whole set (family) of tests32 requires the distribution the max-
imum statistic, can be computed for either voxels, ROIs, clusters
or TFCE with a permutation test33, a standard tool to conduct
inference in neuroimaging.

This paper makes two major contributions to reduce the
complexity of LMM for genetic association with imaging pheno-
types. First, the computational cost of variance component esti-
mation is reduced by using a non-iterative one-step random effect
estimator34. Second, the complexity of association testing is dra-
matically decreased by projecting the model and phenotype to a
lower dimension space, combined with use of a score statistic for
association testing. This projection is based on the eigenvectors of
the GRM adjusted for the fixed effect nuisance terms16,35. In this
setting, the projected phenotype likelihood function is equivalent
to that used with restricted maximum likelihood (REML) of the
LMM (Method), going forward we call this approach simplified
REML35. While both models have the same statistical properties,
our particular projection provides several computational benefits
that dramatically reduces LMM complexity: (i) The diagonalized
covariance allows a non-iterative one-step variance component
estimator34, taking the form of a weighted regression of squared
projected data on eigenvalues of the GRM adjusted for nuisance
fixed effect terms, an approach that we call weighted least squares
REML (WLS-REML); (ii) The regression form of our estimator is
easily vectorized, meaning that many image elements and SNPs
can be tested in a single and fast computational test in several
high-level programming languages (Method); (iii) Finally, the
simplicity and fast computation of the score test statistic makes
permutation testing feasible, allowing exact, non-parametric con-
trol over the FWE, accounting for the number of tests conducted
over all image elements and genetic markers; we define two per-
mutation schemes, free and constrained, where in the latter case
the permutation is confined to exchangeability blocks defined
based on the eigenvalues distribution.

Results
Computational complexity. The reduced computational com-
plexity of our method represents a significant advance over
existing methods. The complexity of LMM association has two
components, one for the variance component estimation, the
other is for fixed effect parameter estimation and test statistic
computation. For a GWA over S markers and V imaging phe-
notype elements on N individuals, the variance component like-
lihood optimization complexity of FaST-LMM19,35 which, to the
best of our knowledge, is the fastest implementation of LMM is O
(N3+ INV), where I is the average number of iterations, while for
WLS-REML the random effect estimator (see Methods) it is O
(N3+NV) (the common O(N3) term is the time complexity of
the GRM eigendecomposition). More critically, the estimation
and test statistic computation complexity of FaST-LMM is O
(SPN2V), where P is the number of nuisance fixed effects, while
for WLS-REML (Eq. (16)) this is O(SNV), a substantial reduction
for imaging phenotypes when number of image elements V is
much bigger than the sample size N. Even for a single trait GWA
(V= 1), our proposed projection reduces the association (Eq.
(13)) complexity to O(SN) which is significantly less than FaST-
LMM for large sample GWA.

In our previous work34, we introduced the WLS-ML random
effect estimator that exploits a one-step optimization approach
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combined with eigen-rotation of phenotype and model (see
Method for more details). The non-iterative estimator has a
simple form, with variance components and fixed parameters
each estimated by weighted least-squares regressions. In this
paper, we evaluate our non-iterative ML and REML estimators
(WLS-ML and WLS-REML) with their fully converged counter-
parts (Full ML or Full REML), comparing score, likelihood ratio
(LRT) and Wald tests on intensive simulation studies; the two
permutation schemes are also compared. Direct comparisons are
made between FaST-LMM and our score test with WLS-REML
using simulation and real data.

Simulation results. Intensive simulation studies are conducted to
evaluate the proposed methods for association estimation and
testing. The aim of the first study is to compare fully converged
and one-step random effect estimators based on the simplified
ML and REML functions. In the second study, the performance of
various test statistics for the association testing are compared
using a fully converged or one-step random effect estimators for
ML and REML functions (see Supplementary Note 1 for details).
Finally, we compare FaST-LMM to our preferred test, the score
test based on the simplified REML function, using both false
positive error rates and empirical power using simulated genetic
markers (see Supplementary Note 2 for details).

Simulation results on the accuracy of genetic random effect
σ2A
� �

estimation shows that the non-iterative one-step approaches
are similar to their fully converged counterparts (Supplementary
Figure 1), using either likelihood or restricted likelihood functions.
When the data are independent σ2A ¼ 0

� �
, the methods are

indistinguishable in terms of bias and mean squared error (MSE).
When σ2A > 0, the fully converged methods have less bias, but the
difference is modest in absolute value; in terms of MSE, the non-
iterative one-step methods have just slightly worse performance.
The first simulation also shows good performance of fixed effect
(β1) estimation (Supplementary Figure 2). Both the non-iterative
one-step and fully converged have similar bias and MSE, with
WLS-REML again closely following fully converged REML.

Simulations show that the false positive rates for the fixed effect
score test for H0:β1= 0 (Supplementary Figure 3a) are nominal;
for both simplified ML or REML functions, for all simulation
settings considered, test statistic type and type of random effect
estimator, the false positive rates lay within the Monte Carlo
confidence interval (MCCI) (see Supplementary Figures 4a, b).

The simulation results on the power of score test reveal
negligible differences between the random effect estimation
methods (Supplementary Figure 3b). Similar findings are
obtained for the power of LRT and Wald tests (Supplementary
Figures 4c, d). Like the parametric approach, we found that both
permutation schemes, free or permutation within exchangeability
blocks, control the false positives at the nominal level 5% (Fig. 1a
and Supplementary Figures 5a, b), and could provide nearly
equivalent power Fig. 1b, Supplementary Figures 5c, d) for all
statistics either based on the simplified ML or REML functions.
However, for all test statistics and σ2A, the free permutation
scheme is slightly more powerful than the constrained permuta-
tion test when a kinship matrix is used.

Simulations show that the null distribution of the score test for
H0:β1= 0 based on the simplified models using the fully
converged and non-iterative variance component estimators are
valid and indistinguishable (Fig. 2 and Supplementary Figure 6).
However, we stress that the latter is much faster to calculate.
Based on all of these results, we selected the score test based on
the simplified REML function as the computationally most
efficient test to be considered for genome-wide simulations and
real data analysis.

Genome wide simulations were conducted to compare the
parametric P-values from FaST-LMM and the score test based on
the simplified REML using non-iterative variance component
estimator in terms of false positives and power. The simulation
results reveal that both approaches provide overall valid error
rates (FaST-LMM= 4.94% and the WLS-REML score test=
4.89%, Fig. 3a). Power simulation shows that FaST-LMM and the
score test have largely similar power (FaST-LMM= 15.25%,
WLS-REML score test= 15.22%), however, FaST-LMM is slower
(Fig. 3b). Despite reasonable concordance of P-value and fixed
effect parameter estimates (β1) between FaST-LMM and
simplified REML (Supplementary Figure 7), FaST-LMM’s
estimates of parameter estimate variance ðvarðβ̂ÞÞ exhibits some
systematic bias (Supplementary Figure 8).

The final simulation study evaluates controlling for a heritable
fixed effect nuisance covariate in the null simulation setting when
there is neither a SNP effect nor a covariate effect on the
phenotype. Although the LMM can accommodate fixed effect
nuisance terms, we compare to an alternate approach where
nuisance covariates are regressed out in advance and LMM is
fitted to the residualized phenotypes for GWA. We note that
imaging association studies routinely use intracranial volume
(ICV) as a nuisance covariate1,2, and ICV is well known to have
heritability as large as 0.836,37. Figure 4 compares performance of
FaST-LMM, EMMAX and the score test based on the simplified
REML function using non-iterative random effect estimator
(NINGA). The simulation results show that the parametric P-
value from all approaches when the nuisance covariate is included
in the LMM is valid (Fig. 4 left panel). However, the null
distribution of P-values from LMM fitted on residualised
phenotypes can be conservative (Fig. 4 right panel).

Association analysis of fractional anisotropy (FA) data. We
performed GWA of whole brain FA data, using a whole brain
parcellation of 42 ROIs, as well as a voxel-wise analysis for 53,458
voxels (332 subjects, 1,376,877 SNPs; for full details see Methods),
comparing the WLS-REML score test with the fully converged
random effect estimators with FaST-LMM. We also evaluate the use
of OLS with MDS as nuisance fixed effects regressors for control of
population structure in GWA with unrelated individuals.

The random effect estimators, one-step and fully converged
REML are compared directly in Fig. 5 with a scatter plot, showing
an apparent trade-off between accuracy and running time as the
non-iterative method has lower estimates of σ2A for some regions.

Even with the tendency for genetic variance to be under-
estimated with the non-iterative method, the association statistic
show remarkable concordance, with both approaches having
almost the same performance (Fig. 6). FaST-LMM comparisons
with the score test using the simplified REML function shows
slightly larger statistics consistently for all ROIs, regardless of
random effect estimation method (Supplementary Figures 10 and
11). Furthermore, comparing different approaches genomic
control shows that regardless of random effect estimation
method, the score test based on the simplified REML has smaller
genomic control values than OLS with MDS nuisance regressors
for all ROIs consistently. The genomic control of OLS with MDS
nuisance regressors is poor, while the score test using both fully
converged, one-step estimators and FaST-LMM have similar
values close to unity (Supplementary Figure 9).

Figure 7 compares QQ-plot of association statistics between
our model, FaST-LMM and OLS with MDS. These plots show
either an identical distribution or slightly larger values for the
OLS approach; however, the OLS approach has poor genomic
control (Supplementary Figure 9) and after adjustment we get
essentially identical results (Supplementary Figures 12 and 13).
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A permutation test was used to find FWE-corrected P-values
for 42 ROIs and 1,376,877 SNPs to assess association significance.
Among the 42 × 1,376, 877 ≈ 57 million statistics, eight passed the
permutation based FWE threshold χ21 ¼ 34:72

� �
. Application of a

Bonferroni correction for 42 tests to the usual GWA alpha level
(5 × 10−8) yields to a more stringent threshold χ21 ¼ 36:98

� �
where only one association survives, indicating the potential
improved power from a permutation-based inference that
accounts for dependency among the tests (Fig. 8). An alternate,
approximate approach involves computing the effective number
of independent tests among the 42 ROIs; while there is no unique
definition for the number of independent tests, we used one
approach based on eigenvalues of phenotype correlation matrix38;
this gave an effective test count of 18.30. Application of a
Bonferroni correction for 18 independent tests to the usual GWA
alpha level (5 × 10−8). This Bonferroni threshold with effective
number of tests yields a slightly more stringent threshold
χ21 ¼ 35:37
� �

, but finds the same eight association statistics as
found with permutation.

Finally we performed voxel-wise genome-wide association
analysis of 53,458 voxels with 1,376,877 SNPs, using our

proposed WLS-REML score test for association. Cluster-wise
inference was performed on each spatial association map; we used
a threshold corresponding to a χ21 P-value of 0.01 to create
clusters, and 1000 permutations were used to compute the
maximum distribution of cluster size over space and SNPs,
offering FWE control over the entire search space; voxel-wise
FWE thresholds were also computed. The level 5% FWE-
corrected voxel-wise statistic threshold was 66.42, producing six
significant association out of 84 billion tests. The 5% FWE
corrected cluster size threshold is 7370 but no SNP’s statistic map
had a cluster exceeding this value; the largest observed cluster size
is 6648, which had a image-wide, genome-wide FWE-corrected
cluster size P-value of 0.09. We note that the effective number of
independent tests is not applicable to cluster-wise inference30 and
does not scale to voxel-wise inference. Also, it depends on an
arbitrary GWAS threshold that depends on the chip used.

Benchmarking and running times. We compared running time
of our WLS-REML score test to that of FaST-LMM, which to our
knowledge is the fastest implementation of LMM. The
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comparison was done using simulated and read data with a Intel
(R) core(TM) 3.4 GHz i7-2600 CPU and 16 GB RAM. Parametric
association testing of 5000 phenotypes with 6000 simulated
markers using a sample of 300 individuals took 1 h with FaST-
LMM, however, our implementation of the score test (Eq. (14-
15)) only took 3 s. On real data, parametric whole genome
association on 42 ROIs, required 756 min using FaST-LMM while
our approach took only 2 min.

Discussion
Neuroimaging genetics has moved from establishing a heritable
phenotypes to finding genetic markers that are associated with
imaging phenotypes. Despite emerging world-wide consortia to
boost GWA studies power using the largest possible sample sizes,
there is a compelling need for powerful and computationally
efficient analytic techniques that control for population structure
at the site level. Moreover, GWA studies with neuroimaging
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phenotypes require fitting a model at each point (voxel/element)
in the brain, and the large number of measurements presents a
challenge both in terms of computational intensity and the need
to account for elevated false positive risk because of the multiple

testing problems both in terms of number of elements in image
and number of markers being tested.

There has been rapid advances in quantitative genetic statistical
methods account for population structure in GWA studies of
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Fig. 7 QQ plot for comparing FaST-LMM and the score test based on the simplified REML function using the WLS-REML random effect estimator with the
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distribution or slightly larger values for the OLS approach. However, the OLS approach has poor genomic control (Supplementary Figure 9)
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unrelated individuals. Linear mixed models allowing for the rig-
orous testing of genetic associations (and, more generally, any
fixed effects) have long been employed in human genetics as the
standard to correct for the non-independence among subjects due
to known familial relatedness in pedigree-based studies39–43. The
LMM has gained popularity as an alternate method for GWA of
unrelated individuals to correct for population structure15–26.
However, due to the required inversion of potentially large
matrices, the general LMM is computationally intensive where
the complexity includes the deriving of the GRM, variance
component parameter estimation, fixed effect estimation, and the
calculation of the required association statistic for each marker
grows with sample size and number of candidate markers for
association testing.

To tackle these problems, we used an orthogonal transforma-
tion that substantially reduced LMM complexity for GWA. The
equivalence between projected model and REML function helped
us to reduce complexity of association testing. Specifically, the
projection reduces the information matrix to a scalar that enables
efficient vectorized implementation of score test with time com-
plexity O(SNV). Further improvements in speed can be achieved
by using the WLS-REML random effect estimator with O(NV)
that we found to be more accurate than the WLS-ML estimator.

We conducted intensive simulation studies, evaluating a broad
set of test statistics for association testing using the simplified ML
and REML functions accompanied by one-step and fully con-
verged random effect estimators. The one-step random effect
estimator using simplified REML function provides more accu-
rate approximation of the fully converged one in comparison to
the WLS-ML variance component estimator. The simulation and
real data analysis shows that only minor differences in marker
effect estimation and association test statistics between one-step
and fully converged random effect estimator. However, the

former requires less computational resources. Also, we could not
observe any appreciable differences in performances in terms of
the error rate and power using the GRM from unrelated indivi-
duals or kinship matrix from a family study.

The WLS-REML random effect estimator is fast enough to be
used to estimate voxel-wise heritability. Although the proposed
one-step random effect estimator is not as accurate as fully
converged one, it can be used for filtering a small number of
elements for further investigation with more computational
intense tools. Furthermore, when restricted to individuals with
European ancestry we found LMM had genomic controls values
closer to 1 than OLS values, indicating the success of the LMM in
dealing with population structure.

We selected the score test based on the simplified REML
function for further investigations because it only requires a
single variance component estimate, common to all markers
under the null hypothesis. Furthermore, efficient vectorized
implementation of score test for images accelerates association
testing. The null distribution of WLS-REML score test P-values
was nearly as accurate as for the fully converged REML score test,
meaning that permutation is not required for element-wise
inference.

Genome wide association analysis of high dimensional imaging
phenotype requires a computationally efficient LMM that can
accommodate large sample sizes, provide multiple testing cor-
rection and complex spatial dependence among image elements.
Although we have not observed significant differences of para-
metric P-values between our proposed method and existing
methods, current LMM approaches depend on numerical opti-
mization and are not feasible for GWA of over 1000’s imaging
phenotypes, such as found in the UKBiobank44 or Human con-
nectome project which has related individuals. Moreover, a search
for genetic association across the genome with imaging
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Fig. 8 GWA of whole brain fractional anisotropy data, using a whole brain parcellation of 42 regions (real data analysis). Permutation test was used to
derive FWE corrected P-values of score test based on the simplified REML function using one-step random effect estimator. Among the 42 × 1,376,877≈
57 million statistics, eight passed the permutation based FWE threshold (χ21 ¼ 34:72, blue line in Manhattan plot). Application of a Bonferroni correction
for 42 tests to the usual GWA alpha level (5 × 10−8) yields to a more stringent threshold (χ21 ¼ 36:98, black line in Manhattan plot) where only one
association survives, indicating the potential improved power from a permutation-based inference that accounts for dependency among the tests
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phenotypes requires intense multiple testing corrections both for
number of elements in an image and number of markers. The
reduced complexity of our proposed method due to a non-
iterative random effect estimator and vectorized implementation
of score statistic computation makes permutation-based FWE-
corrected inferences feasible. Our permutation approach is more
computationally efficient than others proposed in the genetics
literature45, avoiding inversion of the phenotypic covariance on
each permutation. Permutation provides flexible FWE inference
for ROIs or the whole brain, voxel-wise or cluster-wise. Though
methods based on effective number of independent tests are
computationally efficient, they depend on an (1) arbitrary GWAS
threshold that depends on the chip used, (2) these approaches are
not applicable to cluster-wise inference and (3) do not scale to
voxel-wise inference which are the standard spatial statistics in
imaging. While our vectorized implementation of score statistics
demands complete data, there are various imputation methods
can be used prior to association analysis to address missingness.

Whether using the linear mixed model for controlling popu-
lation structure or kinship, high dimensional imaging phenotypes
presents challenges in terms of computational intensity and ele-
vated false positive risk; growing sample sizes and whole genome
sequence data add to the computational burden. Our contribution
in the acceleration of the exact LMM can be seen at two steps.
First, covariance matrix estimation using WLS-REML random
effect estimator reduces time complexity from O(N3+ INV) to O
(N3+NV). Further improvement in speed is also obtained by
using the vectorized implementation of the score test based on
simplified REML function. Our proposed method allows efficient
implementation that reduces running time complexity to O
(SNV). In addition, the efficient score test computation is fast
enough to allow the permutation test to control family-wise error
rate for number of elements in image and number of markers,
and allow the use of spatial statistics like cluster size or TFCE.

Methods
Reference methods. Several approximate or exact methods have been proposed to
speed up LMM-based testing. Approximate methods assume the total polygenic
random effect is same for all markers under the null hypothesis of no marker effect,
hence the relevant residual genetic variance component is estimated only once
using all markers. In contrast, exact methods, which is the recommended LMM
practice19,20,25,35,46, estimate a residual variance component conditional on each
marker’s effect. In studies of “unrelated” subjects, this residual variance component
often involves re-estimation of the GRM which is constructed excluding the can-
didate marker and surrounding markers in linkage disequilibrium.

To the best of our knowledge, the fastest implementation of exact LMM is Fast-
LMM, which transforms the phenotype and LMM model with the genetic
similarity matrix (GRM) eigenvectors and uses a profile likelihood approach to
simplify variance component estimation. The eigenvector matrix diagonalisation
along with the profile likelihood with only one variance parameter reduces
optimization time substantially. In Fast-LMM the covariance matrix is estimated
only under the null hypothesis of no marker effect, and then a generalized least
squares (GLS) is applied to estimate the marker effect and the LRT is used for
hypothesis testing. Note that small sample size behavior of this approach has not
been validated; for example, using it for association analysis of imaging phenotypes
with only 300 subjects might not be valid. In addition to concerns about the finite
sample validity, Fast-LMM requires numerical optimization for each element
(voxel/ROI) of image that makes it computationally intensive or essentially
impractical for large-scale imaging phenotypes.

Linear mixed effect models. At each voxel/element, a LMM for the genetic
association for N individuals can be written as:

Y ¼ X1β1 þ X2β2 þ g þ ε; ð1Þ

where Y is the N-vector of the measured phenotype; X1 is a N-vector of a given
marker’s minor allele count, implementing an additive genetic model; X2 is the N ×
(P− 1) matrix containing an intercept and fixed effect nuisance variables like age
and sex; β1 is the scalar genetic effect; β2 is the (P− 1)-vector of nuisance
regression coefficients and g is the N-vector of latent (unobserved) additive genetic
effects; and ε is the N-vector of residual errors. The trait covariance, var(Y)= var

(g+ ε)= Σ can be written

Σ ¼ σ2Að2ΦÞ þ σ2EI; ð2Þ

where σ2A and σ2E are the additive genetic and the environmental variance com-
ponents, respectively; I is the identity matrix; and 2Φ is the GRM matrix where
element (i, j) is calculated as:

ϕi;j ¼
1
M

XM
k¼1

xik � 2pkð Þ xjk � 2pk
� �

2pk 1� pkð Þ ;

where xik is the minor allele count of the ith subject’s kth marker, coded as coded as
0, 1 or 2; pk is frequency of the kth marker; and M is the total number of markers.

Under the assumption that the the data follows a multivariate normal
distribution, the model specified by Eqs. (1) and (2) have a log-likelihood of

‘ML βML;ΣML;Y;X
� �

¼ � 1
2 Constþ log Σj jð Þ þ Y � Xβð Þ′Σ�1 Y � Xβð Þ½ �; ð3Þ

and a REML function of

‘REML ΣREML;Y;Xð Þ
¼ � 1

2 Const� log X′Xj j þ log Σj j þ log X′Σ�1Xj j þ Y ′PYð Þ; ð4Þ

where X ¼ X1 X2½ � and β ¼ β1 β2½ � are the full design matrix of fixed effects
and their parameter estimate vector, respectively, and P= Σ−1(I− X(X′Σ−1X)−1X′
Σ−1), the projection matrix. The fixed effect parameters are estimated using GLS

β̂REML ¼ X′Σ̂�1
REMLX

� ��1
X′Σ̂�1

REMLY;

where Σ̂�1
REML comes from optimized REML function (Eq. (4)).

Several algorithms have been proposed to accelerate ML or REML optimization
by transforming the model with the eigenvectors of the GRM and/or using a
different covariance matrix parametrisation16,19,21,34,35,46. Here we consider
standard additive model covariance matrix parametrisation (Eq. (2)) as we can
efficiently estimate it with our one-step, regression based approach34.

Simplified REML and ML functions. The simplified ML function for LMM is
discussed in refs. 16,19,21. For completeness, we review shortly the simplified ML
function, to be next followed by development of the simplified REML function. The
simplified ML function is obtained by transforming the data and model with an
orthogonal transformation S, the matrix of eigenvectors of 2Φ that crucially
coincide with the eigenvectors of Σ:

S′Y ¼ S′Xβþ S′g þ S′ε

which we write as

Y� ¼ X�βþ g� þ ε�; ð5Þ

where Y� is the transformed data, X� is the transformed covariate matrix, g� and ϵ�
are the transformed random components. The diagonalising property of the
eigenvectors then gives a simplified form for the variance:

var ε�ð Þ ¼ Σ� ¼ σ2ADg þ σ2EI;

where, Σ� is the variance of the transformed data and Dg= diag{λgi} is a diagonal
matrix of the eigenvalues of 2Φ.

The log likelihood takes on the exact same form as Eq. (3) for Y� , X� , β and Σ� ,
except is easier to work with since Σ� is diagonal:

‘ML β; σA; σE;Y
�;X�ð Þ

¼ � 1
2 Nlog 2πð Þ þPN

i¼1
log σ2Aλgi þ σ2E

� �
þPN

i¼1

y�i �x�i βð Þ2
σ2Aλgiþσ2E

� �
;

where y�i is the ith element of Y� , and x�i is the ith row of X� .
The REML function (Eq. (4)) is simplified using projection matrix (P= Σ−1(I

− X(X′Σ−1X)−1X′Σ−1)35). Also, an alternate simplified form of the REML function
can be obtained as follows:

Let M= I− X(X′X)−1X′ be the residual forming matrix based on the fixed
effects regressors. Since M is idempotent, it can be decomposed as

M ¼ AA′;
A′A ¼ I;

where A is the N × (N− P) matrix of the eigenvectors of M corresponding to the
non-zero eigenvalues. Crucially, A also residualises the data, because it is
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orthogonal to the design matrix X:

A′X ¼ A′AA′X;
¼ A′MX ¼ 0:

Hence A′Y ~N(0, A′ΣA) and the log likelihood of the transformed data is

‘ A′Y;Σð Þ
¼ � 1

2 Constþ log A′ΣAj j þ Y′A A′ΣAð Þ�1A′Y
� 	

:
ð6Þ

Now we show that this (Eq. (6)) is equivalent to Eq. (4), and thus we can use the
eigenvectors of the residual-forming matrix to build the REML log likelihood.

It can be shown that

log A′ΣAj j ¼ log Σj j þ log X′Σ�1X


 

� log X′Xj j:

and using A(A′ΣA)−1A= P (47, M4.f p.451), we have that Eqs. (4) and (6) are
equivalent and the transformed data likelihood function is exactly as same as the
REML function.

As A is not unique, we seek to find one that diagonalises the covariance of the
residualised data. The transformation matrix could be derived from
eigendecomposition of GRM adjusted for the fixed effect covariates as follows:

M 2Φð ÞM ¼ SrDgr
Sr′;

where Dgr
¼ diagfλgr ig is the (N− P) × (N− P) diagonal matrix of non-zero

eigenvalues; and Sr is the N × (N− P) matrix of eigenvectors that corresponds to
non-zero eigenvalues. Firstly, Sr is a valid A, because its columns are orthogonal
Sr′Sr ¼ I and M ¼ SrSr′16. Thus we define the projected polygenic model by pre-
multiplying Sr′ both sides of polygenic model (Eq. (1)):

Sr′Y ¼ Sr′X þ Sr′g þ Sr′ε;
Sr′MY ¼ Sr′MX þ Sr′Mg þ Sr′Mε:

which we write as

Y�
r ¼ g�r þ ε�r ; ð7Þ

where Y�
r , g

�
r and ε�r are N− P projected phenotype, genetic and residual vectors,

respectively. In this fashion, the projected phenotype covariance matrix becomes
diagonal:

cov Y�
r

� �¼ Σ�
r ;

¼ cov Sr′Yð Þ;
¼ cov Sr′MYð Þ;
¼ Sr′ MΣMð ÞSr;
¼ Sr′ σ2AMð2ΦÞM þ σ2EM

� �
Sr;

¼ σ2ASr′ SrDgr
Sr′

� �
Sr þ σ2ESr′ SrSr′ð ÞSr;

¼ σ2ADgr
þ σ2EI;

where we have used the identity Sr′M ¼ Sr′. That is, therefore the projected data,
Y�
r , loglikelihood takes on a simpler form:

‘REML σ2A; σ
2
E;Y

�
r

� �
¼ � 1

2 Constþ PN�P

i¼1
log λgr iσ

2
A þ σ2E

� �
þ PN�P

i¼1

y�2ri
λgr iσ

2
Aþσ2E

� �
:

ð8Þ

where y�2ri is the square of the ith element of Y�
r . It is clear from the Eq. (8) that

working with the simplified version of REML is computationally easier than the
original one (Eq. (4)). Beside accelerating the REML optimisation, this approach
facilitates performing LRT for fixed effects (βs) and leads to a computationally
efficient estimator and test statistic, described below.

REML and ML parameter estimation. We choose Fisher’s scoring method to
optimize the simplified ML and REML functions because it leads to computa-
tionally efficient variance component estimators. The score and the expected Fisher
information matrices for the simplified models can be expressed as:

SML β; θð Þ ¼ X�′Σ��1ε�

� 1
2 U ′Σ��11� U ′Σ��2ε�2½ �

" #
;

IML β; θð Þ ¼ X�′Σ��1X� 0

0 1
2U ′Σ��2U

" #
;

and

SREML θð Þ ¼ � 1
2 Ur′Σ��1

r 1� Ur′Σ��2
r Y�2

r

� 	
;

IREML θð Þ ¼ 1
2Ur′Σ��2

r Ur;

where θ ¼ σ2E; σ
2
A

� �
; U= [1, λg] and Ur ¼ ½1r; λgr � are N × 2 and (N− P) × 2

matrices; and λg is the vector of eigenvalues of (2Φ); λgr the vector of eigenvalues of
M(2Φ)M; 1 and 1r are N and (N− P)-vectors of one, respectively; Y�2

r is the
element wise square of Y�

r ; and ϵ�2 is the element wise square of ϵ� . Following
Fisher’s scoring method it can be shown that at each iteration, maximum-
likelihood estimation of β and θ are updated based on WLS regression of Y� on X�
and ϵ�2 on U, respectively, as follows:

β̂ML;jþ1 ¼ X�′ Σ̂�
j

� ��1
X�

� ��1

X
� ′ Σ̂�

j

� ��1
Y�;

θ̂ML;jþ1 ¼ max 0; U ′ðΣ̂�2
j Þ�1U

� ��1
U ′ Σ̂�2

j

� ��1
ε̂�2j

 �
;

ð9Þ

and REML estimation of θ is updated based on WLS regression of Y�2
r on Ur as

follows:

θ̂REML;jþ1 ¼ max 0; Ur′ Σ̂�2
rj

� ��1
Ur

� ��1

Ur′ Σ̂�2
rj

� ��1
Y�2
r

( )
;

where j indexes iteration; Σ�2
j and Σ�2

rj are constructed with θML,j and θREML,j,
respectively; ε�2j is the element-wise square of ε�j ¼ Y� � X�βML;j ; Y

�2
r is the

element-wise square of Y�
r ; and the variance parameters θ must be positive, hence

the maximum operator. As usual, these updates are iterated until convergence
criteria holds.

It has been shown that when the initial value is a consistent estimator, the
estimator based on the first iteration is asymptotically normal and consistent48.
Such initial value for β̂ML and θ̂ML could be derived from OLS regression
coefficients of Y� on X� and squared residuals on U, respectively:

β̂ML;OLS ¼ X�′X�ð Þ�1X�′Y�;

θ̂ML;OLS ¼ max 0; U ′Uð Þ�1U ′ε�2
� �

:

For REML, initial values for θ̂REML;OLS can be found as OLS regression
coefficient of Y�2

r on Ur:

θ̂REML;OLS ¼ max 0; Ur′Urð Þ�1Ur′Y�2
r

� �
:

Hence our one-step, non-iterative estimators are:

β̂ML;WLS ¼ X�′ Σ̂�
OLS

� ��1
X�

� ��1
X�′ Σ̂�

OLS

� ��1
Y�; ð10Þ

θ̂ML;WLS ¼ max 0; U ′ Σ̂�2
OLS

� ��1
U

� ��1
U ′ Σ̂�2

OLS

� ��1
ε�2OLS

 �
; ð11Þ

θ̂REML;WLS ¼ max 0; Ur′ Σ̂�2
OLS;r

� ��1
Ur

� ��1

Ur′ Σ̂�2
OLS;r

� ��1
Y�2
r

( )
; ð12Þ

where Σ̂�
OLS and Σ̂�

OLS;r are formed by θ̂ML;OLS and θ̂REML;OLS respectively, and ε̂�2OLS is
the element-wise square of ε̂�OLS ¼ Y� � X�β̂OLS. Going forward, we will use “ML”
or “REML” to refer to the iterated estimators and “WLS” to refer to these one-step
estimators.

Association testing. The score, LRT and the Wald tests can be used for the genetic
association testing using either ML or REML functions of the model in Eq. (1).

The score statistic49 that requires the value of score and information matrices
under the the null hypothesis constraint (H0:β1= 0) for the simplified ML model
(Eq. 5) can be written

TS;ML ¼ ~ε′ML
~Σ��1
ML X

�
1 C′ðX�′~Σ��1

ML X
�Þ�1C

� 	
X�
1 ′~Σ

��1
ML ~εML;

where C is a P × 1 contrast vector; X� ¼ ½X�
1 X�

2 � encompasses the full transformed
covariate matrix; ~ε′ML and ~ΣML are the ML residual and covariance matrix estimates
under the null hypothesis constraint. The score statistic for the projected model (Eq.
(7)) can be derived like TS,ML following the projection with respect to the H0 fixed
effects, i.e. nuisance, terms X2,

TS;REML ¼ Y
� ′
r
~Σ��1
r X�

1r X�′
1r
~Σ�1
r X�

1r

� ��1
X�′
1r
~Σ��1
r Y�

r ; ð13Þ

where Y�
r ¼ S′2rY and X�

1r ¼ S′2rX1 are (N− P+ 1)-vectors of the projected
phenotype and allele frequency count, respectively; and the projection matrix S2r is
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comprised of the eigenvectors of M2(2Φ)M2 with non-zero eigenvalues,
M2 ¼ I � X2 X2X2′ð Þ�1X2′; and ~Σ��1

r is the projected model covariance matrix
estimation under the null model constraint.

The LRT50 statistic is twice the difference of the optimized log-likelihoods,
unrestricted minus H0-restricted. For ML this requires optimizing the likelihood
function twice, once under the null H0:β1= 0, once under the alternative. We
denote the test statistic for this test TL,ML. A well-known aspect of REML is that it
cannot be used to tests of fixed effects, since the null hypothesis would represent a
change of the projection that defines the REML model. However, we can
consistently use the same projection S2r, under the unrestricted and restricted
models, to diagonalise our covariance and carry out such a hypothesis test. To be
precise, the unrestricted model is

S2r′Y ¼ S2r′X1β1 þ S2r′g þ S2r′ε;

where S2r′X2β2 ¼ 0 by the construction of S2r, and the restricted model is

S2r′Y ¼ S2r′g þ S2r′ε:

Following the same procedure as ML, the test statistic is denoted by TL,REML.
For a scalar parameter, the Wald test49 is the parameter estimate divided by the

standard deviation of the estimate under an unrestricted model. For an vector
parameter β and contrast C, it takes the form

TW ¼ Cβ̂ CðX′Σ̂�1XÞC′� ��1
β̂′C′

where β̂ and Σ̂�1 are the parameter estimations under the alternative hypothesis;
this form holds for both ML and REML. A test for genetic association testing can
be calculated either using fully converged or one-step variance component
estimators. In the parametric framework, all of the aforementioned tests null
distribution follow chi square distribution with one degree of freedom
asymptotically.

Inference using the permutation test. In neuroimaging the permutation test is a
standard tool to conduct inference while controlling the family wise error rate
(FWE)33. It only requires an assumption of exchangeability, that the joint dis-
tribution of the error is invariant to permutation, and provides exact inference in
the absences of nuisance variables, or approximately exact inference with nuisance
variables51. Control of the FWE of a voxel-wise or cluster-wise statistic is obtained
from a maximum distribution of the corresponding statistic. However naive use of
permutation test for genetic association testing, ignoring dependence structure
between individuals, leads to invalid inferences45,52. To the best of our knowledge,
the only work that uses a permutation test for association analysis in the context of
LMM uses the estimated covariance matrix under the null hypothesis to whiten the
phenotype vector, yielding exchangeable data45. This approach requires estimating
the covariance matrix for each phenotype for each permutation, a significant
computational burden with high dimensional imaging data. Here we propose two
permutation schemes that account for dependence explained by our model, one
free and one constrained permutation approach.

The genetic association testing in the context of LMM using a permutation test
requires proper handling of fixed effect and random effect nuisance variables in
order to respect the exchangeablity assumption. While there are a variety of
methods for testing for a fixed effect when the errors are independent51. However,
little work has been done for fixed effect inference using a permutation test in
linear mixed models where the error term is correlated45.

Free permutation for the simplified ML model: For the simplified model (Eq.
(5)) we create permuted data ~Y� using the reduced, H0:β1= 0 null model residuals
to create surrogate null data,

~Y� ¼ X�
2 β̂2 þ ~Pε̂;

where ~P is one of N! possible N ´N permutation matrices; β̂2 is the reduced model
nuisance estimate found with either fully converged (Eq. (9)) or one-step (Eq (10))
methods; ε̂ denotes the reduced model residuals likewise found with either fully
converged or one-step estimators; and the tilde accent on the data (~Y�) and
permutation (~P) denotes one of many null hypothesis realizations. The reduced
null model is not exchangeable due to heteroscedasticity of Σ� , but we account for
this in each permutation step by fitting the simplified model (5) with the permuted
covariance matrix

cov ~Y�� � ¼ ~PΣ�~P′ ¼ σ2A~PDg
~P′þ σ2EI:

With this approach we obtain samples from the empirical null distribution of
the maximum score, LRT and the Wald tests (or cluster-size, after thresholding one
of these test statistics), where the maximum is taken over all voxels and SNPs to
control FWE.

Free permutation for simplified REML model: While the previous approach
creates null hypothesis realizations by permuting the null-model residuals and
adding back on estimated nuisance, here we will permute data after reduced-model
eigen-transformation. We do this because projection removes the nuisance fixed

effect covariates. In both cases, though, we must account for the dependence
existing under H0.

An alternate permutation scheme could be built based on projecting the LMM
model (Eq. (1)) to the lower dimension space with respect to the null hypothesis
reduced model, i.e. using only the nuisance fixed effect terms. Let M2 be the
residual forming based on X2 alone and define S2r as the transformation based on
the non-trivial eigenvectors of M2(2Φ)M2, creating a model with dimension N−
(P+ 1):

Y�
r ¼ X�

1rβ1 þ g�r þ ε�r ;

where Y�
r ¼ S′2rY is the reduced transformed data; X�

1r ¼ S′2rX1 is as above, the
reduced transformed additive genetic effect; g�r ¼ S′2rg and ε�r ¼ S′2rε are the latent
genetic effect and random error terms, respectively, after the reduced
transformation. Here we permute the data, producing ~Y�

r ¼ ~PY�
r , with permuted

covariance matrix

cov ~Y�
r

� � ¼ σ2A~PDgr
~P′þ σ2EI

fit in each permutation step. However, under the null hypothesis of no genetic
effect, estimated random effects for permuted phenotype are exactly as same as the
un-permuted phenotype and hence the variance components only need to be
estimated once.

Constrained permutation for exchangeability blocks: In the free permutation
approaches we permute despite the lack of exchangeability, but then permute the
covariance structure to account for this. An alternate approach is to define
exchangeability blocks where observations within each block can be regarded as
exchangeable. Precisely, with exchangeability blocks, the assumption is that
permutations altering the order of observations only within each block preserve the
null hypothesis distribution of the full data.

While not feasible for the original correlated model (1), in the simplified ML (5)
or simplified REML (7) model we can define approximate exchangeability blocks.
In simplified models the sorted eigenvalues arrange the observations by variance
(increasing or decreasing, depending on software conventions). Hence blocks of
contiguous observations Y� or Y�

r will have variance that is as similar as possible
and will be, under the null hypothesis, approximately exchangeable.

We propose to define exchangeability blocks such that the range of Dg or Dgr
values within a block is no greater than 0.01. This cut off ensured the eigenvalues
did not vary by more than a factor of 10% within a block. Permutation is
constrained within these blocks and the test procedure is as described above for
simplified ML and REML free permutation schemes above, except that the test
statistic is computed using the unpermuted covariance matrix.

Efficient score statistic implementation for vectorized images. To fully exploit
the computational advantage of our non-iterative, reduced-dimension projected
model estimation method we require a vectorized algorithm. That is, even without
iteration, the method will be relatively slow if the evaluation of the estimates is so
complex that each phenotype must be looped over one-by-one. For fast evaluation
with a high-level language like Matlab, the estimation process for a set of pheno-
types must be cast as a series of matrix algebra manipulations. To exploit the
computational advantage of this approach, the phenotype should be observed for
all individuals. However, soft imputation methods can be used in case of missing
phenotypes. An alternate approach has been proposed53 for multi-trait GWA.
However, our proposed method is computationally more efficient due to NINGA.

In this section, we develop the vectorized algorithm for association one
chromosome’s worth of SNPs and all image voxels/elements (subject to memory
constraints). To avoid proximal contamination19 and efficient implementation of
LMM, we follow leave one chromosome out approach where all markers on a
chromosome being tested are excluded from the GRM25,27.

Let Yr and Xr be a (N− P) × V and (N− P) ×G matrices of projected traits and
allele frequencies, respectively, where V and G are number of elements in image
and number of SNPs the tested chromosome, respectively. The score test requires
parameter estimation under the null hypothesis constraints, and since X2 is the
same for all SNPs, the estimated covariance matrix will be the same all markers the
chromosome. Thus the covariance matrix only need to be estimated once as
follows:

F ¼ Yr � Yr;

θ ¼ maxððU ′rUrÞ�1U ′rF; 0Þ;
W ¼ 1NV � Urθð Þ � Urθð Þð Þ;

where F and Yr are ðN � PÞ ´V matrices, where each column of Yr is Y�
r (Eq. (7))

for one image element and F is the element-wise squaring of Yr; � denotes
Hadamard product; � denotes element-wise division; θ is the 2 × V matrix of OLS
solutions which is matrix counterpart of θ̂REML;OLS; 0 is the 2 ×V matrix of zeros;
and here maxð�; �Þ is an element-wise maximum between the two operands,
evaluating to a 2 × V matrix; W and 1NV are the (N−P) ×V matrices, where each

column of W is diag Σ̂��2
OLS;r

� �
for the corresponding image element and 1NV is a
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matrix of ones. With the following notation,

A ¼ 1VW;

B ¼ D′gW;

C ¼ D′g � λ′gr
� �

W;

D ¼ 1V W � Fð Þ;
E ¼ D′g W � Fð Þ;

where 1V is the length-V column vector of ones, we can compute the variance
components of the vectorized image as

σ2A ¼ max �B� Dþ A� Eð Þ � A� C � B� Bð Þ; 0ð Þ; ð14Þ

σ2E ¼ max C � D� B� Eð Þ � A� C � B� Bð Þ; 0ð Þ; ð15Þ

S ¼ Ur

1V � σ2E
1V � σ2A

� �
;

where σ2A and σ2E are the length-V column vectors of genetic and environmental
variance components, respectively; and S is a (N− P) × V matrix which here each
column of S is the element-wise reciprocal of the diagonal of the variance matrix of
the corresponding image element’s data Yr for each element of image. In this
fashion, the score statistic matrix for all markers being tested and the vectorized
image can be expressed as:

TS;R ¼ X′ S� Yrð Þð Þ � X′ S� Yrð Þð Þ½ � � X � Xð ÞS½ �; ð16Þ

where TS,R is a G ×V matrix of score statistics for all SNPs and traits.

Real data. To validate our proposed methods for association estimation and
inference for imaging data, we applied them on a dataset from healthy and schi-
zophrenic individuals to perform ROI and voxel-wise genome wide association
analysis using cluster wise inference. The sample was 54% healthy individual (175
control/155 schizophrenic) and had a mean age of 39.12 (SD= 14.9) where 50% of
the sample is male54.

Diffusion tensor imaging. Imaging data was collected using a Siemens 3T Allegra
MRI (Erlangen, Germany) using a spin-echo, EPI sequence with a spatial resolu-
tion of 1.7 × 1.7 × 4.0 mm. The sequence parameters were: TE/TR= 87/5000 ms,
FOV= 200 mm, axial slice orientation with 35 slices and no gaps, 12 isotropically
distributed diffusion weighted directions, two diffusion weighting values (b= 0 and
1000 s/mm2), the entire protocol repeated three times.

ENIGMA-DTI protocols for extraction of tract-wise average FA values were
used. These protocols are detailed elsewhere55 and are available online http://
enigma.ini.usc.edu/protocols/dti-protocols/. Briefly, FA images from subjects were
non-linearly registered to the ENIGMA–DTI target brain using FSL’s FNIRT55.
This target was created as a “minimal de-formation target” based on images from
the participating studies as previously described (Jahanshad et al., 2013b). The data
were then processed using FSL’s tract-based spatial statistics (TBSS; http://fsl.fmrib.
ox.ac.uk/fsl/fslwiki/TBSS) analytic method56 modified to project individual FA
values on the hand-segmented ENIGMA-DTI skeleton mask. The protocol, target
brain, ENIGMA–DTI skeleton mask, source code and executables, are all publicly
available (http://enigma.ini.usc.edu/ongoing/dti-working-group/). The FA values
are normalized across individuals by inverse Gaussian transform57,58 to ensure
normality assumption. Finally, we analyzed the voxel and cluster-wise FA values
with applying along the ENIGMA skeleton mask.

Genetic quality control. In this study only genotyped single nucleotide poly-
morphisms (SNPs) from genome-wide information were included in the analysis.
Visual inspection of multi-dimensional scaling analysis was used to extract indi-
viduals with European ancestry. SNPs from individuals with European ancestry
that do not meet any of the following quality criteria were excluded: genotype call
rate 95%, significant deviation from Hardy–Weinberg equilibrium P < 10−6 and
minor allele frequency 0.1 was used to ensure that sufficient numbers of subjects
would be found in our sample in each genotypic group (homozygous major allele,
heterozygous, homozygous minor allele) using an additive genetic model. After all
quality control steps, 962,885 out of 1,406,990 SNPs remain for genome-wide
association analysis.

Data availability. The data that support the findings of this study are available
from Dr. Peter Kochunov upon reasonable request.

Code availability. Software implementation of this method, Nonparametric
Inference for Genetics Analysis (NINGA), is available at http://nisox.org/software/
ninga/.
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