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Abstract: Bi-Viscosity Bingham plastic fluids are used to understand the rheological 

characteristics of pigment-oil suspensions, polymeric gels, emulsions, heavy oil, etc. High-

temperature applications in many industrial and engineering problems, linear density-

temperature variation is inadequate to describe convective heat transport. Therefore, the 

characteristics of the nonlinear convective flow of a Bi-Viscosity Bingham Fluid (BVBF) 

through three layers in a vertical slab are studied. The two outer layers of the oil-based hybrid 

nanofluid and the intermediate layer of BVBF are considered. The thermal buoyancy force is 

governed by the nonlinear Boussinesq approximation. Continuity of heat flux, velocity, shear 

stress, and temperature are imposed on the interfaces. The governing equations are derived 

from the Navier-Stokes equation, conservation of energy, and conservation of mass for three 

layers. The nonlinear multipoint (four-point) boundary value problem (NMBVP) is solved 

using the differential transform method (DTM). Converging DTM solutions are obtained, and 

they are validated. The entropy equation and Bejan number were also derived and analyzed. It 

is established that the nonlinear density-temperature variation leads to a significant 

improvement in the magnitude of the velocity and temperature profiles due to the increased 

buoyancy force and as a result, the drag force on the walls is reduced. The drag force on the 

slab gets reduced by decreasing the volume of nanoparticles. Furthermore, nonlinear 

convection and mixed convection give rise to an advanced rate of heat transport on the walls 

and thereby to an enhanced heat transport situation. 

Keywords: Multilayer flow; Vertical slab; Hybrid nanoliquid; Nonlinear Boussinesq 

approximation; Entropy generation; Differential transform method. 
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I. INTRODUCTION 

Yield stress fluids demonstrate a stress threshold that separates different fluid behaviors. 

Flow occurs when the yield point is exceeded; otherwise, the fluid behaves like a solid. Several 

real-world fluids, such as pigment-oil suspensions, polymer gels, emulsions, heavy oils, 

biopolymers, pastes, foams, etc., possess these characteristics. These fluids are used in polymer 

industries, petroleum recovery, petroleum extraction, and food processing applications1. 

Bingham model2 exhibits the linear relationship between shear stress and shear rate beyond 

yield stress. However, the apparent viscosity diverges due to zero velocity gradient3. To 

overcome this, the regularization of the Bingham fluid model was made by Nakamura and 

Sawada4 and proposed a Bi-Viscous Bingham fluid (BVBF) model (mostly reported as Casson 

fluid in the literature). They compared their rheological features with the Casson fluid model5 

and showed that BVBF and the Casson fluid models have negligible differences since these 

two constitutive models resemble each other except in the region of modest shear rate. 

Dandapat et al6 studied the bi-viscosity fluid flow problem analytically by considering a thin 

liquid film on extending surface. Hayat et al.7 studied the flow of Casson liquid with the 

magnetic field, Soret, and Dufour effects on a stretched surface. They showed that the Casson 

parameter has a diminishing effect on the velocity and an opposite effect on temperature 

distribution. Reddy et al8 examined the significance of Joule heating, Soret, and Hall effects 

on Casson liquid in a vertical slab. 9Kumar and Mondal studied the buoyancy-driven transport 

of Casson fluid over a wavy plate using the Crank-Nicolson technique. Recently, Frigaard and 

Poole10 commented that the constitutive relationship considered in the studies7-9, the suitable 

way to name the fluid would be bi-viscous Bingham fluid (BVBF) instead of Casson. Because 

of the applications and relevance, the current study deals with the BVBF multilayer flow in a 

vertical slab. 

The nanoliquid concept was initiated by Choi and Eastman11 to improve the efficiency of 

heat transfer in working liquids. Typical working liquids with lower thermal conductivity (such 

as oil, water, and ethylene glycol) have inadequate heat transport capacity. To improve the heat 

transport characteristics, working liquids and nanoparticles are suspended to create a 

composition with higher thermal conductivity. This suspension is called nanoliquid. There are 

three different nanofluid models available to theoretically study the convective heat transfer in 

nanoliquids. Namely, the single-phase model (KVL model), the inhomogeneous two-

component model (Buongiorno model), and the modified Buongiorno model. The KVL 

model12 is based on the same relative velocity of the base fluid and the nanoparticles. Due to 
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the nanometer size of the particles, they can be liquefied and then treated as a single-phase 

liquid rather than a fluid-particle suspension. In this study, we consider a single-phase model 

to describe the nanofluid flow by employing effective nanofluid properties. 

Although nanoliquids address the deficiency of low thermal conductivity, further research 

in this field has helped to develop a new class of liquids known as composite nanoliquids, 

which have a higher thermal efficiency than mono nanoliquids. Composite nanoliquids are 

made by mixing two or more different types of nanoparticles. They have superior physical and 

chemical properties, which is not the case with mono nanoliquids. Hybrid nanoliquids also aim 

to improve the stability of the system. The term stability is used to define the performance and 

thermal efficiency of nanoliquids over time. To achieve better stability and improved heat 

transport capability, copper-alumina (1% of 𝐶𝑢 + 3% of 𝐴𝑙2𝑂3) nanoparticles are chosen for 

the study. Suresh et al.13 experimentally analyzed the heat transfer in 𝐴𝑙2𝑂3 − 𝐶𝑢/water hybrid 

nanoliquids and established that hybrid nanoliquids have greater heat transfer enhancement 

than mono nanoliquids. An elevated average Nusselt number situation occurred due to the use 

of 𝐶𝑢 − 𝐴𝑙2𝑂3 water hybrid nanoliquid. Some studies relating to hybrid nanoliquids can be 

seen in14-20.  

Multilayer flow of immiscible fluids is of great interest in various applications related to 

the polymer industry, petroleum industry, oil extraction, food processing, etc. Multilayer 

transport of fluids reduces the pumping power required to pump oil into a pipeline by adding 

an adequate amount of water. Especially in the polymer industry, multilayer films are produced 

by coextrusion and are used as products with advanced physical and optical properties. Each 

layer of these composite materials offers a certain end-use characteristic, such as mechanical 

and thermoforming properties. Applications for multilayer films range from food packaging to 

laminated paper. Several other applications of the multilayer flows are highlighted in the 

studies21-26. Packham and Shall21 discussed the laminar flow of two non-miscible liquids by 

taking a horizontal tube. They found that the flow rate is greater in a multi-layer system than 

in a single-layer system. Umavathi and Malashetty22 presented a study of multilayer flow in a 

vertical slab with viscous and magnetic effects. The velocity and temperature are calculated for 

both symmetric and asymmetric heating. Vajravelu et al.23 analyzed the heat transmission of 

nanoliquids in a multilayer stream and showed that increasing the concentration of the 

nanoparticle in the base liquid changes the velocity of the liquid at the interface and reduces 

the shear stress, both, at the interface and the surface of the slab. Li et al.24 considered the 

mixed convection flow in a two-layer vertical slab, where the first layer is filled with 
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nanoliquid, and the second layer is filled with a power-law liquid. Some of the recent works in 

this area are Sarma et al.25, and Umavathi and B𝑒́g26.   

Joseph Valentin Boussinesq introduced the concept of the Boussinesq approximation 

which states that density is considered constant throughout the momentum equation until 

gravity is multiplied. In the above studies, the density-temperature relationship is assumed to 

be linear. However, the density does not vary linearly due to temperature/concentration/ 

pressure when the temperature difference is relatively large in the system. Furthermore, the 

non-linear variation of density and temperature significantly affects the fluid system and 

therefore cannot be ignored. Goren27 studied the nonlinear density variation with temperature 

in water. Few other prominent early works related to nonlinear Boussinesq approximation 

(NBA) can be seen in28,29. Partha30 investigated the impact of nonlinear Boussinesq 

approximation (NBA) in a porous medium. Shaw et al.31 analyzed the behavior of BVBF with 

nonlinear convection in the presence of suction/injection, Soret, and Dufour effects. Naveen 

and Reddy32 scrutinized the effects of viscous dissipation and the chemical reaction on 

nonlinear convective heat transfer in a Casson liquid. Besides, the Rosseland approximation is 

generally used to study the effects of thermal radiation. The Rosseland approximation demands 

an optically dense medium with radiation that travels only a short distance before scattering or 

absorption. Some of the recent concerning the nonlinear Boussinesq approximation and 

thermal radiation are in33-35. However, the studies on the application of nonlinear Boussinesq 

approximation in multilayer flow with thermal radiation effect are very limited. 

The literature does not encompass a study of heat transfer in a BVBF sandwiched between 

hybrid nanoliquids in a vertical slab with a nonlinear density-temperature variation. The effects 

of thermal radiation and viscous dissipation are taken into account in the thermal energy 

equation. The entropy generation analysis is also performed because, as we are dealing with 

two-layer hybrid nanofluids, there would be a trade-off. Hybrid nanofluids improve the heat 

transport situation in the system, at the same time, due to the increase in viscosity, the necessary 

pumping power would be penalized. Entropy production analysis enables us to determine the 

effectiveness because it considers both heat transport and fluid friction irreversibility. Further 

details of entropy generation analysis can be found in36-41. The middle region is filled with 

BVBF, and the outer regions are filled with oil-based 𝐶𝑢 − 𝐴𝑙2𝑂3 hybrid nanoliquid. Semi-

analytical Differential Transform Method (DTM) is employed to solve the multi-point 

boundary value problem.  
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II. MATHEMATICAL FORMULATION 

A. The Constitutive Equation and Rosseland Approximation 

The stress-tensor of the BVBF4 in subscript form is given below: 

𝜏𝑖𝑗 = {
2 (𝜇𝐵 +

𝑝𝑦

√2Π
) 𝑒𝑖𝑗  ,     Π ≥ Π𝑐

2 (𝜇𝐵 +
𝑝𝑦

√2Π𝑐
) 𝑒𝑖𝑗 ,      Π < Π𝑐

                                                                                   (1) 

where 𝜏𝑖𝑗 is the Cauchy stress-tensor, 𝜇𝐵 is the plastic dynamic viscosity, 𝑝𝑦 is the yield stress, 

𝑒𝑖𝑗 is the (𝑖, 𝑗)𝑡ℎ component of deformation rate, Π = 𝑒𝑖𝑗𝑒𝑖𝑗 is the product of deformation tensor 

with itself, and Π𝑐 is the critical value of Π. The dimensionless BVBF parameter is given below: 

𝛾 =
𝜇𝐵√2Π𝑐

𝑝𝑦
 .           (2) 

The comprehensive study of regularized Bingham fluid model was made by Nakamura and 

Sawada4, and its rheological features are compared with the Casson fluid model. They showed 

that regularized (bi-viscous) Bingham and the Casson fluid models have insignificant 

differences as these two constitutive models resemble each other except in the modest shear 

rate region. However, the regularized (bi-viscous) Bingham fluid possesses high yield stress in 

comparison to the Casson model.  

The Rosseland approximation depends on the theory that the fluid (medium) is optically 

thick. If the reciprocal of the elimination/absorption factor is negligibly small compared to the 

characteristic dimension of the medium, a medium is said to be optically thick. The net 

radiative heat flux (𝒒𝒓𝒊) using well-known Rosseland approximation is given below35: 

𝒒𝒓𝑖 = −
4

3𝑎𝑅
∇𝑒𝑏 ,          (3) 

where 𝑎𝑅 is the Rosseland mean absorption factor and 𝑒𝑏 is blackbody emissive power. Using 

the Stefan-Boltzmann radiation law: 

𝑒𝑏 = 𝜎𝑆𝐵𝑇𝑖
4 ,            (4) 

here 𝜎𝑆𝐵 is the Stefan-Boltzmann constant, 𝑇 is the temperature, and in 𝑇𝑖 and 𝒒𝒓𝑖, the subscript 

𝑖 (𝑖 = 1,2,3) used to represent the regions I, II, and III correspondingly. Using Eq. (4),  

𝒒𝒓𝑖 = −
4𝜎𝑆𝐵

3𝑎𝑅
∇𝑇𝑖

4 .          (5) 
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B. Description of the Problem 

                                                                   

FIG. 1. Physical configuration. 

Fig. 1 illustrates the physical model, which consists of two vertical flat slabs extending upwards 

in 𝑋-direction, and 𝑌-axis is taken normal to the 𝑋-axis. The width between the plates is 3ℎ 

and is much smaller than the length of the slabs. Two incompressible immiscible fluids are 

considered in a three-layer vertical slab. The regions −ℎ ≤ 𝑌 ≤ 0 and ℎ ≤ 𝑌 ≤ 2ℎ consists of 

oil-based 𝐶𝑢 − 𝐴𝑙2𝑂3 hybrid nanoliquid having a dynamic viscosity (𝜇ℎ𝑛𝑜), density (𝜌ℎ𝑛𝑜), 

thermal expansion coefficients (𝛽ℎ𝑛𝑜 & 𝛽𝑜
∗), and thermal conductivity (𝑘ℎ𝑛𝑜). The middle 

region 0 ≤ 𝑌 ≤ ℎ is filled with BVBF having dynamic viscosity (𝜇𝐵), density (𝜌𝐵), thermal 

expansion coefficients (𝛽𝐵 & 𝛽𝐵
∗ ), and thermal conductivity (𝑘𝐵). The slab walls are kept at 

distinct constant temperatures i.e., 𝑇𝑤1 and 𝑇𝑤2 where 𝑇𝑤1 > 𝑇𝑤2. Both walls are impermeable 

and isothermal. At the two interfaces (𝑌 = 0 and 𝑌 = ℎ), there is a continuity of velocity, shear 

stress, temperature, and heat flux. The flow of fluids is instigated by a common pressure 

gradient and nonlinear buoyancy force. It is worth noting that the BVBF and oil-based hybrid 

nanofluids are immiscible. For instance, pigment-oil-suspensions of printing-ink, polymeric 

gels, heavy oils, and biopolymers are good examples of BVBF, and it is well known that they 

cannot be mixed with the base fluid oil. One can choose any two different immiscible fluids.  
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C. Governing Equations 

The general governing equations of mass, momentum, and energy are4, 22, 38: 

Region I  

𝜕𝜌ℎ𝑛𝑜

𝜕𝑡
+ ∇ ∙ (𝜌ℎ𝑛𝑜𝑼𝟏) = 0 ,              (6) 

𝜌ℎ𝑛𝑜 [
𝜕𝑼𝟏

𝜕𝑡
+ (𝑼𝟏 ∙ ∇)𝑼𝟏] = 𝜇ℎ𝑛𝑜∇

2𝑼𝟏 − ∇𝑝 + 𝜌ℎ𝑛𝑜𝒈 ,          (7) 

(𝜌𝐶𝑝)ℎ𝑛𝑜 [
𝜕𝑇1

𝜕𝑡
+ (𝑼𝟏 ∙ ∇)𝑇1] = −∇ ∙ (𝒒𝟏 + 𝒒𝒓𝟏) + 𝜱𝟏 ,     (8) 

Region II  

𝜕𝜌𝐵

𝜕𝑡
+ ∇ ∙ (𝜌𝐵𝑼𝟐) = 0 ,               (9) 

𝜌𝐵 [
𝜕𝑼𝟐

𝜕𝑡
+ (𝑼𝟐 ∙ ∇)𝑼𝟐] = 𝜇𝐵 (1 +

1

𝛾
) ∇2𝑼𝟐 − ∇𝑝 + 𝜌𝐵𝒈 ,              (10) 

(𝜌𝐶𝑝)𝐵 [
𝜕𝑇2

𝜕𝑡
+ (𝑼𝟐 ∙ ∇)𝑇2] = −∇ ∙ (𝒒𝟐 + 𝒒𝒓𝟐) + 𝜱𝟐 ,               (11) 

Region III 

𝜕𝜌ℎ𝑛𝑜

𝜕𝑡
+ ∇ ∙ (𝜌ℎ𝑛𝑜𝑼𝟑) = 0 ,                  (12) 

𝜌ℎ𝑛𝑜 [
𝜕𝑼𝟑

𝜕𝑡
+ (𝑼𝟑 ∙ ∇)𝑼𝟑] = 𝜇ℎ𝑛𝑜∇

2𝑼𝟑 − ∇𝑝 + 𝜌ℎ𝑛𝑜𝒈 ,              (13) 

(𝜌𝐶𝑝)ℎ𝑛𝑜 [
𝜕𝑇3

𝜕𝑡
+ (𝑼𝟑 ∙ ∇)𝑇3] = −∇ ∙ (𝒒𝟑 + 𝒒𝒓𝟑) + 𝜱𝟑 .              (14) 

In the above equations, 𝑝 is the pressure, 𝑡 is the time, 𝜌𝐵 and 𝜌ℎ𝑛𝑜 are the densities of BVBF 

and hybrid nanoliquids, 𝜇𝐵 and 𝜇ℎ𝑛𝑜 are dynamic viscosity of BVBF and hybrid nanoliquids, 

(𝜌𝐶𝑝)𝐵 and (𝜌𝐶𝑝)ℎ𝑛𝑜 are the specific heat of BVBF and hybrid nanoliquids,  𝒈 = −𝑔𝑘̂ is the 

acceleration due to gravity, 𝑼𝑖 and 𝑇𝑖 (𝑖 = 1, 2, 3) are the velocity and temperature of regions 

I, II, and III respectively, 𝜱𝑖, 𝒒𝑖 and 𝒒𝒓𝒊 (𝑖 = 1, 2, 3) are viscous dissipation, conduction heat 

flux, and radiative heat flux of regions I, II, and III respectively, and ∇ =
𝜕

𝜕𝑋
𝑖̂ +

𝜕

𝜕𝑌
𝑗̂ +

𝜕

𝜕𝑍
𝑘̂ and 

∇2=
𝜕2

𝜕𝑋2
+

𝜕2

𝜕𝑌2
+

𝜕2

𝜕𝑍2
 are gradient and Laplace operators in Cartesian coordinates. The heat 

fluxes are given by: 

𝒒𝟏 = −𝑘ℎ𝑛𝑓∇𝑇1 , 𝒒𝟐 = −𝑘𝐵∇𝑇2 , and 𝒒𝟑 = −𝑘ℎ𝑛𝑓∇𝑇3, 

here 𝑘𝐵 and 𝑘ℎ𝑛𝑜 are thermal conductivity of BVBF and hybrid nanoliquids. 
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The following assumptions are made in the analysis: 

• Flow is fully developed, steady-state, unidirectional, and laminar. 

• Since the vertical slabs are infinite in the upward 𝑋-direction, the flow variables, viz., 

velocities and temperatures depend on the 𝑌-coordinate only. 

• Fluids obey the quadratic form of the Oberbeck-Boussinesq approximation, that is, the 

density of fluids is independent of temperature except in the buoyancy terms, and the 

nonlinear density-temperature relation is accounted for28, 35. 

• The thermophysical effective properties of hybrid nanoliquid depend only on the 

volume fraction of nanoparticles. 

• The fluid properties of oil and BVBF are constant. 

Using the assumptions stated above, in (6)-(14), the following equations are obtained4, 22, 35, 38: 

Region I 

𝑑𝑈1

𝑑𝑋
= 0 ,                     (15) 

𝜇ℎ𝑛𝑜
𝑑2𝑈1

𝑑𝑌2
−

𝜕𝑝

𝜕𝑋
+ 𝑔(𝜌𝛽)ℎ𝑛𝑜(𝑇1 − 𝑇𝑤2) + 𝑔𝜌ℎ𝑛𝑜𝛽𝑜

∗(𝑇1 − 𝑇𝑤2)
2 = 0 ,             (16) 

𝑘ℎ𝑛𝑜
𝑑2𝑇1

𝑑𝑌2
−
𝜕𝑞𝑟1

𝜕𝑌
+ 𝜇ℎ𝑛𝑜 (

𝑑𝑈1

𝑑𝑌
)
2
= 0 ,                 (17) 

Region II 

𝑑𝑈2

𝑑𝑋
= 0,                     (18) 

𝜇𝐵 (1 +
1

𝛾
)
𝑑2𝑈2

𝑑𝑌2
−

𝜕𝑝

𝜕𝑋
+ 𝑔(𝜌𝛽)𝐵(𝑇2 − 𝑇𝑤2) + 𝑔(𝜌𝛽

∗)𝐵(𝑇2 − 𝑇𝑤2)
2 = 0 ,            (19) 

𝑘𝐵
𝑑2𝑇2

𝑑𝑌2
−
𝜕𝑞𝑟2

𝜕𝑌
+ 𝜇𝐵 (1 +

1

𝛾
) (

𝑑𝑈2

𝑑𝑌
)
2
= 0 ,                (20) 

Region III 

𝑑𝑈3

𝑑𝑋
= 0,                     (21) 

𝜇ℎ𝑛𝑜
𝑑2𝑈3

𝑑𝑌2
−

𝜕𝑝

𝜕𝑋
+ 𝑔(𝜌𝛽)ℎ𝑛𝑜(𝑇3 − 𝑇𝑤2) + 𝑔𝜌ℎ𝑛𝑜𝛽𝑜

∗(𝑇3 − 𝑇𝑤2)
2 = 0 ,             (22) 

𝑘ℎ𝑛𝑜
𝑑2𝑇3

𝑑𝑌2
−
𝜕𝑞𝑟3

𝜕𝑌
+ 𝜇ℎ𝑛𝑜 (

𝑑𝑈3

𝑑𝑌
)
2
= 0 .                 (23) 

Furthermore, Eq. (5) becomes 
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𝑞𝑟𝑖 = −
4𝜎𝑆𝐵

3𝑎𝑅

𝜕𝑇𝑖
4

𝜕𝑌
  ,                   (24) 

To linearize Eq. (24) we use35 

𝑇𝑖
4 ≈ 𝑇𝑤2

4 + 4𝑇𝑤2
3 𝑇𝑖 − 4𝑇𝑤2

3 𝑇𝑤2.                   (25) 

Because of (25), Eq. (24) yields,  

𝑞𝑟𝑖 = −
16𝜎𝑆𝐵𝑇𝑤2

3

3𝑎𝑅

𝜕𝑇𝑖

𝜕𝑌
 .                   (26) 

Differentiating (26) with respect to 𝑌 gives  

𝜕𝑞𝑟𝑖

𝜕𝑌
= −

16𝜎𝑆𝐵𝑇𝑤2
3

3𝑎𝑅

𝜕2𝑇𝑖

𝜕𝑌2
 .                   (27) 

The first term of Eqs. (16) and (22) represent the viscous term of the hybrid nanoliquid and the 

first term of Eq. (19) is the viscous term of BVBF. The second term is the common pressure 

gradient in all regions. The fourth term is due to the quadratic Boussinesq approximation in all 

regions. In Eqs. (17), (20), and (23), three terms correspond to heat conduction, heat radiation, 

and viscous dissipation in all regions. The subscripts 1, 2, and 3 represent regions I, II, and III 

respectively. Subscripts 𝐵, 𝑜, and ℎ𝑛𝑜 signify BVBF, oil, and hybrid nanoliquid respectively.   

The main feature of the multilayer flow in a vertical slab is the mechanical coupling across 

the interfaces through the momentum and heat transfer across them. Momentum transfer occurs 

due to the continuity of the interface tangential velocity and equal shear stress across the 

interfaces. As far as the thermal coupling is concerned, at the interfaces, the continuity of the 

temperature, and the balance of the heat flux across the interfaces play an important role. These 

interface conditions include the conditions of ‘no velocity slip’ and ‘no thermal jump’ at the 

interfaces.   

At the left wall of the vertical channel, the zero-velocity and constant temperature are due 

to the no-slip and isothermal conditions: 

𝑈1 = 0 ,   𝑇1 = 𝑇𝑤1   at   𝑌 = −ℎ                 (28a) 

At the fluid interfaces, the velocity, shear stress, temperature, and heat flux are continuous:  

𝑈1 = 𝑈2 ,   𝑇1 = 𝑇2 ,   𝜇ℎ𝑛𝑜
𝑑𝑈1

𝑑𝑌
= 𝜇𝐵 (1 +

1

𝛾
)
𝑑𝑈2

𝑑𝑌
 ,   𝑘ℎ𝑛𝑜

𝑑𝑇1

𝑑𝑌
= 𝑘𝐵

𝑑𝑇2

𝑑𝑌
 ,   at   𝑌 = 0            (28b) 
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𝑈2 = 𝑈3 ,   𝑇2 = 𝑇3 ,   𝜇𝐵 (1 +
1

𝛾
)
𝑑𝑈2

𝑑𝑌
= 𝜇ℎ𝑛𝑜

𝑑𝑈3

𝑑𝑌
 ,   𝑘𝐵

𝑑𝑇2

𝑑𝑌
= 𝑘ℎ𝑛𝑜

𝑑𝑇3

𝑑𝑌
 ,   at   𝑌 = ℎ             (28c) 

At the right wall of the vertical channel, the zero-velocity and constant temperature are due to 

the no-slip and isothermal conditions: 

𝑈3 = 0,   𝑇3 = 𝑇𝑤2   at   𝑌 = 2ℎ.                (28d) 

Eqs. (28a) and (28d) represent the Dirichlet (or first-kind) boundary conditions of velocity and 

temperature at the left and right walls respectively. These conditions are justified as the velocity 

and temperature at the liquid-solid boundaries are equal to those at the solid boundary. Eqs. 

(28b) and (28c) give the boundary conditions at the interfaces i.e., at 𝑌 = 0 and 𝑌 = ℎ. These 

boundary conditions represent continuousness of velocity, shear stress, heat flux, and 

temperature. The boundary conditions of the interfaces are justified because the last fluid 

molecule of layer-I got stuck to the first fluid molecule of layer II. Similarly, the last fluid 

molecule of layer II is glued to the first fluid molecule of layer III.  

Having described the mathematical equations, the next subsection focuses on presenting the 

thermophysical properties used for hybrid nanoliquids.  

D. Hybrid Nanoliquid Model 

The hybrid nanoliquid considered is made up of oil as a base fluid and a maximum of 4 % 

of the total volume fraction of nanoparticles (1% of 𝐶𝑢 +3% of 𝐴𝑙2𝑂3). Alumina nanoparticle 

exhibits important features such as chemical inertness and high stability, but has relatively low 

thermal conductivity compared to a metallic nanoparticle such as copper (𝐶𝑢). Through 

metallic nanoparticles have higher thermal conductivity, their stability and reactivity always 

hinder their use in nanofluid applications. Combination of a small amount of 𝐶𝑢 nanoparticles 

and 𝐴𝑙2𝑂3 nanoparticles lead to significant thermo-physical properties along with the stable 

suspension.  

The effective dynamic viscosity and effective thermal conductivity of hybrid nanoliquid are 

described through modified Brinkman and modified Maxwell models, whereas other properties 

such as density, and thermal expansion coefficient are described by using the mixture theory. 

They are given below19:  

𝜇ℎ𝑛𝑜

𝜇𝑜
=

1

(1−𝜑)2.5
 ,                    (29) 
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𝑘ℎ𝑛𝑜

𝑘𝑜
=

(
𝜑𝐶𝑢𝑘𝐶𝑢+𝜑𝐴𝑙2𝑂3

𝑘𝐴𝑙2𝑂3
𝜑

)+2𝑘𝑜+2(𝜑𝐶𝑢𝑘𝐶𝑢+𝜑𝐴𝑙2𝑂3𝑘𝐴𝑙2𝑂3)−2𝜑𝑘𝑜

(
𝜑𝐶𝑢𝑘𝐶𝑢+𝜑𝐴𝑙2𝑂3

𝑘𝐴𝑙2𝑂3
𝜑

)+2𝑘𝑜−(𝜑𝐶𝑢𝑘𝐶𝑢+𝜑𝐴𝑙2𝑂3𝑘𝐴𝑙2𝑂3)+𝜑𝑘𝑜

 ,             (30) 

𝜌ℎ𝑛𝑜

𝜌𝑜
= (1 − 𝜑) + 𝜑𝐶𝑢

𝜌𝐶𝑢

𝜌𝑜
+ 𝜑𝐴𝑙2𝑂3

𝜌𝐴𝑙2𝑂3

𝜌𝑜
 ,                (31) 

(𝜌𝛽)ℎ𝑛𝑜

(𝜌𝛽)𝑜
= (1 − 𝜑) + 𝜑𝐶𝑢

(𝜌𝛽)𝐶𝑢

(𝜌𝛽)𝑜
+ 𝜑𝐴𝑙2𝑂3

(𝜌𝛽)𝐴𝑙2𝑂3
(𝜌𝛽)𝑜

 ,                          (32) 

where 𝜑(= 𝜑𝐶𝑢 + 𝜑𝐴𝑙2𝑂3) represents the total nanoparticle volume fraction (NVF) and 

subscripts 𝐶𝑢 and 𝐴𝑙2𝑂3 represents copper and aluminum oxide nanoparticles. These models 

are (Eqs. (30)-(32)) valid for the small volume fraction of nanoparticles and particularly Eq. 

(30) is valid for spherical-shaped nanoparticles. Hence, we have chosen 4% of the total volume 

fraction and spherical-shaped 𝐶𝑢 and 𝐴𝑙2𝑂3 nanoparticles. 

E. Non-dimensionalization  

To analyze the problem further and to determine the characteristic quantities, the following 

dimensionless variables are considered: 

𝑦 =
𝑌

ℎ
 ,   𝑢𝑖 =

𝑈𝑖

𝑢̅
 ,   𝜃𝑖 =

𝑇𝑖−𝑇𝑤2

𝑇𝑤1−𝑇𝑤2
 ,   (𝑖 = 1, 2, 3)               (33) 

where ℎ is the length scale, 𝑢̅ is the reference velocity scale, and 𝑢𝑖 and 𝜃𝑖 (𝑖 = 1, 2, 3) are the 

dimensionless velocity and temperature of regions I, II, and III respectively. Substituting Eq. 

(33) into Eqs. (15)-(23) and (28) and using Eqs. (27)-(32), the following dimensionless 

equations are obtained: 

Region I 

𝐴
𝑑2𝑢1

𝑑𝑦2
+ 𝜆𝜃1(𝐵 + 𝐶𝑄𝑐𝜃1) + 𝑃 = 0 ,                 (34) 

(𝐷 + 𝑅𝑑)
𝑑2𝜃1

𝑑𝑦2
+ 𝐴𝐵𝑟𝑜 (

𝑑𝑢1

𝑑𝑦
)
2
= 0 ,                 (35) 

Region II 

(1 +
1

𝛾
)
𝑑2𝑢2

𝑑𝑦2
+ 𝑓𝑣𝑓𝑟𝜆𝜃2(𝑓𝑏 + 𝑓𝑑𝑄𝑐𝜃2) + 𝑓𝑣𝑃 = 0 ,               (36) 

(1 + 𝑓𝑘𝑅𝑑)
𝑑2𝜃2

𝑑𝑦2
+ 𝐵𝑟𝐵 (

𝑑𝑢2

𝑑𝑦
)
2
= 0 ,                            (37) 
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Region III 

𝐴
𝑑2𝑢3

𝑑𝑦2
+ 𝜆𝜃3(𝐵 + 𝐶𝑄𝑐𝜃3) + 𝑃 = 0 ,                 (38) 

(𝐷 + 𝑅𝑑)
𝑑2𝜃3

𝑑𝑦2
+ 𝐴𝐵𝑟𝑜 (

𝑑𝑢3

𝑑𝑦
)
2
= 0 .                 (39) 

with boundary conditions 

𝑢1 = 0 ,   𝜃1 = 1   at   𝑦 = −1

𝑢1 = 𝑢2 ,   𝜃1 = 𝜃2 ,    𝐴𝑓𝑣
𝑑𝑢1

𝑑𝑦
= (1 +

1

𝛾
)
𝑑𝑢2

𝑑𝑦
 ,   𝐷𝑓𝑘

𝑑𝜃1

𝑑𝑦
=

𝑑𝜃2

𝑑𝑦
 ,   at   𝑦 = 0

   

𝑢2 = 𝑢3 ,   𝜃2 = 𝜃3  ,   (1 +
1

𝛾
)
𝑑𝑢2

𝑑𝑦
= 𝐴𝑓𝑣

𝑑𝑢3

𝑑𝑦
 ,   

𝑑𝜃2

𝑑𝑦
= 𝐷𝑓𝑘

𝑑𝜃3

𝑑𝑦
 ,   at   𝑦 = 1

𝑢3 = 0 ,   𝜃3 = 0   at   𝑦 = 2 }
 
 

 
 

            (40) 

where 𝑓𝑣 =
𝜇𝑜

𝜇𝐵
 , 𝑓𝑟 =

𝜌𝐵

𝜌𝑜
, 𝑓𝑏 =

𝛽𝐵

𝛽𝑜
, 𝑓𝑑 =

𝛽𝐵
∗

𝛽𝑜
∗ , and 𝑓𝑘 =

𝑘𝑜

𝑘𝐵
 are ratios of dynamic viscosity, density, 

first-order thermal expansion coefficient, second-order thermal expansion coefficient, and 

thermal conductivity respectively, 𝐴 =
𝜇ℎ𝑛𝑜

𝜇𝑜
, 𝐵 =

(𝜌𝛽)ℎ𝑛𝑜

(𝜌𝛽)𝑜
 , 𝐶 =

𝜌ℎ𝑛𝑜

𝜌𝑜
, and 𝐷 =

𝑘ℎ𝑛𝑜

𝑘𝑜
. 

The non-dimensional physical parameters involved in (34)-(40) are 

𝜆 =
𝑔𝛽𝑜𝜌𝑜ℎ

2(𝑇𝑤1−𝑇𝑤2)

𝜇𝑜𝑢̅
 (mixed convection parameter), 

𝑄𝑐 =
𝛽𝑜
∗

𝛽𝑜
(𝑇𝑤1 − 𝑇𝑤2), (quadratic convection parameter),   

𝑅𝑑 =
16𝜎𝑆𝐵𝑇𝑤2

3

3𝑎𝑅𝑘𝑜
, (thermal radiation parameter),  

𝐵𝑟𝑜 =
𝜇𝑜𝑢̅

2

𝑘𝑜(𝑇𝑤1−𝑇𝑤2)
, (Brinkman number for oil), 

𝐵𝑟𝐵 =
𝜇𝐵(1+

1

𝛾
)𝑢̅2

𝑘𝐵(𝑇𝑤1−𝑇𝑤2)
, (Brinkman number for BVBF), and  

𝑃 = −(
ℎ2

𝜇𝑜𝑢̅
)
𝜕𝑝

𝜕𝑋
, (constant pressure gradient parameter).   

Eqs. (34)-(39) and boundary conditions (40) constitute a multi-point ordinary differential 

boundary value problem with six unknowns.  
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F. Engineering Quantities of Interest 

The rate of heat transfer (𝑁𝑢𝑙 & 𝑁𝑢𝑟) and skin friction factor (𝐶𝑓𝑙 & 𝐶𝑓𝑟) at the walls of the 

vertical slab are given by  

𝑁𝑢𝑙 =
ℎ(−𝑘ℎ𝑛𝑜

𝑑𝑇1
𝑑𝑌

+𝑞𝑟1)

𝑘𝑜(𝑇𝑤1−𝑇𝑤2)
|
𝑌=−ℎ

 (Nusselt number at the left wall),            (41a) 

𝑁𝑢𝑟 =
ℎ(−𝑘ℎ𝑛𝑜

𝑑𝑇3
𝑑𝑌

+𝑞𝑟3)

𝑘𝑜(𝑇𝑤2−𝑇𝑤1)
|
𝑌=2ℎ

(Nusselt number at the right wall),           (41b) 

𝐶𝑓𝑙 =
𝜇ℎ𝑛𝑜

𝑑𝑈1
𝑑𝑌

𝜌𝑜𝑢̅
2 |

𝑌=−ℎ

 (skin-friction factor at the left wall),             (42a) 

 𝐶𝑓𝑟 =
𝜇ℎ𝑛𝑜

𝑑𝑈3
𝑑𝑌

𝜌𝑜𝑢̅
2 |

𝑌=2ℎ

(skin-friction factor at the right wall).                 (42b) 

Because of Eq. (33), we get 

𝑁𝑢𝑙 = −[𝐷 + 𝑅𝑑]
𝑑𝜃1

𝑑𝑦
|
𝑦=−1

,                  (43a) 

𝑁𝑢𝑟 = [𝐷 + 𝑅𝑑]
𝑑𝜃3

𝑑𝑦
|
𝑦=2

,                                                    (43b) 

𝑅𝑒𝐶𝑓𝑙 = 𝐴
𝑑𝑢1

𝑑𝑦
|
𝑦=−1

,                  (44a) 

𝑅𝑒𝐶𝑓𝑟 = 𝐴
𝑑𝑢3

𝑑𝑦
|
𝑦=2

.                                                           (44b) 

To determine these physical quantities, the four-point boundary value problem defined in (34)-

(40) needs to be solved for 𝑢1, 𝑢3, 𝜃1 and 𝜃3. In the following subsection, the derivation of 

entropy equations and Bejan number are presented.  

G. Entropy Generation (EG) Analysis  

Entropy is the amount of thermal energy in a system per unit of temperature that is not 

available for useful work. The loss of energy is a crucial factor in production and industrial 

processes. Increasing entropy will only reduce the efficiency of the system. Therefore, the 

decisive goal must be to identify the characteristics (parameters) that reduce the generation of 

entropy by increasing the productivity of the flow system. The second law of thermodynamics 
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is used to study irreversibility in the form of entropy generation. Viscous dissipation, fluid flow 

resistance, Joule heating, convective heat transfer, molecular vibrations, thermal radiation, 

chemical reaction, and heat transfer through finite temperature gradients are some of the 

parameters that contribute to irreversibility. Following Bejan’s work36, 37,, much research38-42 

has been done on the minimization of entropy production. The local entropy generation rates 

for regions I, II, and III are as follows:  

𝐸𝑔1 =
1

𝑇𝑤2
2 (𝑘ℎ𝑛𝑜 +

16𝜎𝑆𝐵𝑇𝑤2
3

3𝑎𝑅
) (

𝑑𝑇1

𝑑𝑌
)
2
+
𝜇ℎ𝑛𝑜

𝑇𝑤2
(
𝑑𝑈1

𝑑𝑌
)
2
 ,               (45) 

𝐸𝑔2 =
1

𝑇𝑤2
2 (𝑘𝐵 +

16𝜎𝑆𝐵𝑇𝑤2
3

3𝑎𝑅
) (

𝑑𝑇2

𝑑𝑌
)
2
+

𝜇𝐵

𝑇𝑤2
(1 +

1

𝛾
) (

𝑑𝑈2

𝑑𝑌
)
2
 ,              (46) 

𝐸𝑔3 =
1

𝑇𝑤2
2 (𝑘ℎ𝑛𝑜 +

16𝜎𝑆𝐵𝑇𝑤2
3

3𝑎𝑅
) (

𝑑𝑇3

𝑑𝑌
)
2
+
𝜇ℎ𝑛𝑜

𝑇𝑤2
(
𝑑𝑈3

𝑑𝑌
)
2
 .               (47) 

In Eqs. (45)-(47), the first and second terms on the right side are due to heat conduction, 

radiative heat transfer, and viscous dissipation. The characteristic entropy generation rate is 

given by  

𝐸𝑔0 =
𝑘𝑜(𝑇𝑤1−𝑇𝑤2)

2

ℎ2𝑇𝑤2
2  .                   (48) 

The characteristic EG rate (given in Eq. (48)) is utilized to obtain the dimensionless local EG 

number: 

𝑁𝑠1 = (𝐷 + 𝑅𝑑) (
𝑑𝜃1

𝑑𝑦
)
2
+ (

𝐴𝐵𝑟𝑜

𝜔
) (

𝑑𝑢1

𝑑𝑦
)
2
= 𝐻𝑇𝐼1  +  𝐹𝐹𝐼1,              (49) 

𝑁𝑠2 = (
1

𝑓𝑘
+ 𝑅𝑑) (

𝑑𝜃2

𝑑𝑦
)
2
+ (

𝐵𝑟𝐵

𝜔𝑓𝑣
) (

𝑑𝑢2

𝑑𝑦
)
2
= 𝐻𝑇𝐼2  +  𝐹𝐹𝐼2,                         (50) 

𝑁𝑠3 = (𝐷 + 𝑅𝑑) (
𝑑𝜃3

𝑑𝑦
)
2
+ (

𝐴𝐵𝑟𝑜

𝜔
) (

𝑑𝑢3

𝑑𝑦
)
2
= 𝐻𝑇𝐼3  +  𝐹𝐹𝐼3.              (51) 

The overall EG through the vertical slab becomes: 

𝑁𝑠 = 𝑁𝑠1 + 𝑁𝑠2 + 𝑁𝑠3, 

𝑁𝑠 = (𝐷 + 𝑅𝑑) (
𝑑𝜃1

𝑑𝑦
)
2
+ (

1

𝑓𝑘
+ 𝑅𝑑) (

𝑑𝜃2

𝑑𝑦
)
2
+ (𝐷 + 𝑅𝑑) (

𝑑𝜃3

𝑑𝑦
)
2
+ (

𝐴𝐵𝑟𝑜

𝜔
) (

𝑑𝑢1

𝑑𝑦
)
2
+

              (
𝐵𝑟𝐵

𝜔𝑓𝑣
) (

𝑑𝑢2

𝑑𝑦
)
2
+ (

𝐴𝐵𝑟𝑜

𝜔
) (

𝑑𝑢3

𝑑𝑦
)
2
 ,                            (52) 
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where 𝐻𝑇𝐼1,3 = (𝐷 + 𝑅𝑑) (
𝑑𝜃1,3

𝑑𝑦
)
2
 , 𝐻𝑇𝐼2 = (

1

𝑓𝑘
+ 𝑅𝑑) (

𝑑𝜃2

𝑑𝑦
)
2
 , 𝐹𝐹𝐼1,3 = (

𝐴𝐵𝑟𝑜

𝜔
) (

𝑑𝑢1,3

𝑑𝑦
)
2
 , 

𝐹𝐹𝐼2 = (
𝐵𝑟𝐵

𝜔𝑓𝑣
) (

𝑑𝑢2

𝑑𝑦
)
2
 and 𝜔 =

𝑇𝑤1−𝑇𝑤2

𝑇𝑤2
 is characteristic temperature ratio.  

In (52), the first three terms represent heat transfer irreversibility (HTI) due to heat conduction 

and radiation, and the last three terms represent fluid friction irreversibility (FFI). 

The dominant irreversibility mechanism is practically significant as total entropy is inadequate 

to overcome this problem. The Bejan number is useful to understand the relative effects of fluid 

friction and heat transfer. The Bejan number is the ratio of the thermal entropy to the total 

entropy. The Bejan number for the multi-layer problem is given by 

𝐵𝑒 =
∑ 𝐻𝑇𝐼𝑖
3
𝑖=1

∑ 𝐻𝑇𝐼𝑖
3
𝑖=1 +∑ 𝐹𝐹𝐼𝑖

3
𝑖=1

=
∑ 𝐻𝑇𝐼𝑖
3
𝑖=1

𝑁𝑠
.                 (53) 

The Bejan number (𝐵𝑒) has values that vary between 0 and 1. The inferences obtained for the 

Bejan number can be categorized into three cases. 

• 𝐵𝑒 < 0.5 indicates that the EG is mainly due to the viscous dissipation i.e., the FFI 

dominates over HTI.  

• 𝐵𝑒 > 0.5 indicates that the EG is mainly due to the heat transfer (convective-radiative) 

i.e., HTI dominates over the FFI.  

• 𝐵𝑒 = 0.5 indicates that FFI and HTI are of the same order. 

Having Bejan number and entropy equations derived, we shall now move on to solving the 

four-point boundary value problem defined in (34)-(40). 

III. METHOD OF SOLUTION AND VALIDATION 

Eqs. (34)-(40) represents the nonlinear multi-point (four-point) boundary value problem and is 

solved by DTM. 

A. DTM Procedure 

 DTM is a semi-analytical approach that uses the Taylor series expansion to find analytical 

solutions, which was introduced by Zhou43. To acquire the differential transform of the 

dimensionless governing equations and boundary conditions, certain transformation rules are 

applied. The benefit of using the transformation method is that it makes a seemingly difficult 

problem simple and nonlinear differential equations can be directly handled without any 
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linearization, perturbation, or discretization. Applications of DTM to the fluid flow problems 

can be found in44-46. The definition of one-dimensional DTM is: 

ℱ𝑙(𝑏) =
1

𝑏!
[
𝑑𝑏𝑓𝑙(𝑦)

𝑑𝑦𝑏
]
𝑦=𝑦0

 ,                             (54) 

and the inverse differential transformation is given by  

𝑓𝑙(𝑦) = ∑ ℱ𝑙(𝑏)(𝑦 − 𝑦0)
𝑏∞

𝑏=0  .                              (55) 

For execution purposes, 𝑓𝑙(𝑦) can be written as a finite series and hence Eq. (55) can be written 

as  

𝑓𝑙(𝑦) = ∑ ℱ𝑙(𝑏)(𝑦 − 𝑦0)
𝑏𝑛

𝑏=0  ,                                        (56) 

where 𝑛 is taken depending on the convergence criteria and ℱ𝑙(𝑏) is the differential transform 

of 𝑓𝑙(𝑦). From the definitions of (54) and (55), certain fundamental theorems of the one-

dimensional differential transform are as follows: 

Theorem 1: If 𝑓(𝑦) = 𝑤(𝑦) ± 𝑧(𝑦) then ℱ(𝑏) = 𝒲(𝑏) ± 𝒵(𝑏), where 𝒲(𝑏) and 𝒵(𝑏) are 

differential transforms of 𝑤(𝑦) and 𝑧(𝑦) respectively. 

Theorem 2: If 𝑓(𝑦) = 𝜅𝑤(𝑦) then ℱ(𝑏) = 𝜅𝒲(𝑏), where 𝜅 is a constant.  

Theorem 3: If 𝑓(𝑦) =
𝑑𝑚𝑤(𝑦)

𝑑𝑦𝑚
 then ℱ(𝑏) =

(𝑏+𝑚)!

𝑏!
𝒲(𝑏 +𝑚). 

Theorem 4: If 𝑓(𝑦) = 𝑤(𝑦)𝑧(𝑦) then ℱ(𝑏) = ∑ 𝒲(𝒶)𝒵(𝑏 − 𝒶)𝑏
𝒶=0 . 

Theorem 5: If 𝑓(𝑦) = 𝑦𝑚 then ℱ(𝑏) = 𝛿(𝑏 − 𝑚), where 𝛿(𝑏 − 𝑚) = {
1     if 𝑏 = 𝑚
0     if 𝑏 ≠ 𝑚

. 

TABLE I. One-dimensional differential transform of certain functions. 

Original function Transformed function 

𝑑2𝑢𝑖
𝑑𝑦2

 
(𝑏 + 1)(𝑏 + 2)𝒰𝑖[𝑏 + 2] 

𝑑2𝜃𝑖
𝑑𝑦2

 
(𝑏 + 1)(𝑏 + 2)𝛩𝑖[𝑏 + 2] 

𝑦0 𝛿[𝑏] 

𝜃𝑖(𝑦) 𝛩𝑖[𝑏] 
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𝜃𝑖
2 

∑𝛩𝑖[𝒶]𝛩𝑖[𝑏 − 𝒶]

𝑏

𝒶=0

 

(
𝑑𝑢𝑖
𝑑𝑦
)
2

 ∑(𝒶 + 1)(𝑏 − 𝒶 + 1)

𝑏

𝒶=0

𝒰𝑖[𝑏 − 𝒶 + 1]𝒰𝑖[𝒶 + 1] 

where 𝑖 = 1, 2, 3. 

Table I presents the differential transformations of some functions and their derivatives. Using 

Table I, applying the differential transform to Eqs. (34)-(39), we obtain: 

Region I 

𝐴(𝑏 + 1)(𝑏 + 2)𝒰1[𝑏 + 2] + 𝜆(𝐵𝛩1[𝑏] + 𝐶𝑄𝑐 ∑ 𝛩1[𝒶]𝛩1[𝑏 − 𝒶]
𝑏
𝒶=0 ) +

                                                                                                          𝑃𝛿[𝑏] = 0 ,                     (57) 

(𝑏 + 1)(𝑏 + 2)𝛩1[𝑏 + 2](𝐷 + 𝑅𝑑) + 𝐴𝐵𝑟𝑜 ∑ (𝒶 + 1)(𝑏 − 𝒶 + 1)𝑏
𝒶=0 𝒰1[𝑏 − 𝒶 +

                                                                                                     1]𝒰1[𝒶 + 1] = 0 ,            (58) 

Region II 

(1 +
1

𝛾
) (𝑏 + 1)(𝑏 + 2)𝒰2[𝑏 + 2] + 𝑓𝑣𝑓𝑟𝜆(𝑓𝑏𝛩2[𝑏] + 𝑓𝑑𝑄𝑐 ∑ 𝛩2[𝒶]𝛩2[𝑏 − 𝒶]

𝑏
𝒶=0 ) +

                                                                                                                      𝑓𝑣𝑃𝛿[𝑏] = 0,        (59) 

(𝑏 + 1)(𝑏 + 2)𝛩2[𝑏 + 2](1 + 𝑓𝑘𝑅𝑑) + 𝐵𝑟𝐵 ∑ (𝒶 + 1)(𝑏 − 𝒶 +𝑏
𝒶=0

                                                                 1)  𝒰2[𝑏 − 𝒶 + 1]𝒰2[𝒶 + 1] = 0 ,            (60) 

Region III 

𝐴(𝑏 + 1)(𝑏 + 2)𝒰3[𝑏 + 2] + 𝜆(𝐵𝛩3[𝑏] + 𝐶𝑄𝑐 ∑ 𝛩3[𝒶]𝛩3[𝑏 − 𝒶]
𝑏
𝒶=0 ) +

                                                                                                              𝑃𝛿[𝑏] = 0 ,                  (61) 

(𝑏 + 1)(𝑏 + 2)𝛩3[𝑏 + 2](𝐷 + 𝑅𝑑) + 𝐴𝐵𝑟𝑜 ∑ (𝒶 + 1)(𝑏 − 𝒶 + 1)𝑏
𝒶=0 𝒰3[𝑏 − 𝒶 +

                                                                                                     1]𝒰3[𝒶 + 1] = 0 ,            (62) 

where 𝒰𝑖(𝑏) and 𝛩𝑖(𝑏) are the transformed notations of 𝑢𝑖(𝑦) and 𝜃𝑖(𝑦) respectively.  

To apply the differential transform to the boundary conditions, they must be first transformed 

to initial conditions. Hence, the boundary conditions (40) are considered as follows:  
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𝑢1(0) = 𝑢2(0) = 0 ,     
𝑑

𝑑𝑦
𝑢2(0) = 𝛼2 ,     𝑢3(0) = 𝛼3 ,

    
𝑑

𝑑𝑦
𝑢3(0) = 𝛼4 ,        𝐴𝑓𝑣

𝑑

𝑑𝑦
𝑢1(0) = (1 +

1

𝛾
) 𝛼2 ,

𝜃1(0) = 𝜃2(0) = 𝜖1  ,     
𝑑

𝑑𝑦
𝜃2(0) = 𝜖2 ,     𝜃3(0) = 𝜖3 ,

    
𝑑

𝑑𝑦
𝜃3(0) = 𝜖4 ,      𝐷𝑓𝑘

𝑑

𝑑𝑦
𝜃1(0) = 𝜖2 . }

  
 

  
 

                        (63) 

where 𝛼𝑖 and 𝜖𝑖 are unknowns to determine. For the initial conditions (Eq. (63)), we apply the 

differential transformation and get 

𝒰1[0] = 𝒰2[0] = 𝛼1 ,     𝒰2[1] = 𝛼2 ,     𝒰3[0] = 𝛼3 ,     𝒰3[1] = 𝛼4 ,

𝒰1[1] = (
1

𝐴𝑓𝑣
) (1 +

1

𝛾
) 𝛼2 ,

𝛩1[0] = 𝛩2[0] = 𝜖1 ,     𝛩2[1] = 𝜖2 ,     𝛩3[0] = 𝜖3 ,     𝛩3[1] = 𝜖4 ,

𝛩1[1] = (
1

𝐷𝑓𝑘
) 𝜖2 . }

 
 

 
 

                   (64) 

Substituting (64) in (57)-(62) and by recursive method, several values of 𝒰𝑖[𝑣] and 𝛩𝑖[𝑣] can 

be calculated. The series solution for the transformed functions of 𝑢𝑖(𝑦) and 𝜃𝑖(𝑦) are given 

as: 

𝑢𝑖(𝑦) = ∑ 𝒰𝑖(𝑏)𝑦
𝑏𝑛

𝑏=0  ,                  (65) 

𝜃𝑖(𝑦) = ∑ Θ𝑖(𝑏)𝑦
𝑏𝑛

𝑏=0  .                   (66) 

Now substituting all the values of 𝒰𝑖[𝑏] and 𝛩𝑖[𝑏] into (65) and (66), the series solutions 

for the regions I, II, and III are obtained respectively. Then, the values for the unknown 

constants are found using the boundary conditions at 𝑦 = −1, 1 and 2 which can be acquired 

from Eq. (40). The solutions are obtained for the velocity and temperature of the regions I, II, 

and III when 𝑃 = 𝑅𝑑 = 𝜆 = 2, 𝑄𝑐 = 𝐵𝑟𝑂 = 0.2, 𝐵𝑟𝐵 = 0.6, 𝛾 = 0.5, 𝜑𝐶𝑢 = 1% and 

𝜑𝐴𝑙203 = 3%. 

Region I  

𝑢1(𝑦) = 2.8319 + 0.7921𝑦 − 2.0361𝑦
2 + 0.1108𝑦3 + 0.1011𝑦4 − 0.0901𝑦5 +

0.0097𝑦6 − 0.0087𝑦7 − 0.0061𝑦8 + 0.0039𝑦9 − 0.0016𝑦10 + 0.0025𝑦11 +

0.0018𝑦12 − 0.0009𝑦13 + 0.0012𝑦14 − 0.0025𝑦15 − 0.0086𝑦16 + 0.0009𝑦17 −

0.0005𝑦18 + 0.0007𝑦19 + 0.0043𝑦20.                             (67) 

𝜃1(𝑦) = 1.0322 − 0.5311𝑦 − 0.1896𝑦
2 + 0.4137𝑦3 − 0.2972𝑦4 + 0.2792𝑦5 +

0.2594𝑦6 − 0.1872𝑦7 + 0.1804𝑦8 − 0.1043𝑦9 − 0.0774𝑦10 + 0.0484𝑦11 −
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0.0109𝑦12 − 0.0098𝑦13 + 0.0087𝑦14 − 0.0074𝑦15 + 0.0045𝑦16 + 0.0038𝑦17 −

0.0009𝑦18 + 0.0005𝑦19 − 0.0001𝑦20.                     (68) 

Region II 

𝑢2(𝑦) = 2.8319 + 1.1829𝑦 − 1.4056𝑦
2 + 0.0099𝑦3 + 0.0055𝑦4 − 0.0045𝑦5 +

0.0024𝑦6 − 0.0009𝑦7 − 0.0003𝑦8 + 0.0001𝑦9 − 9.9812 ∗ 10−4𝑦10 + 7.0214 ∗

10−4𝑦11 + 1.1438 ∗ 10−4𝑦12 − 7.8411 ∗ 10−5𝑦13 + 1.1541 ∗ 10−5𝑦14 − 1.4333 ∗

10−5𝑦15 − 8.1054 ∗ 10−6𝑦16 + 5.4144 ∗ 10−7𝑦17 − 9.1349 ∗ 10−8𝑦18 + 3.1144 ∗

10−9𝑦19 + 1.4545 ∗ 10−9𝑦20.                  (69) 

𝜃2(𝑦) = 1.0322 − 0.0059𝑦 − 0.2693𝑦
2 + 0.2151𝑦3 − 0.1919𝑦4 + 0.0937𝑦5 +

0.0103𝑦6 − 0.0092𝑦7 + 0.0017𝑦8 − 0.0001𝑦9 − 9.8317 ∗ 10−5𝑦10 + 5.1743 ∗

10−5𝑦11 − 1.8413 ∗ 10−5𝑦12 − 8.7928 ∗ 10−6𝑦13 + 7.8218 ∗ 10−6𝑦14 − 5.4027 ∗

10−6𝑦15 + 2.7381 ∗ 10−6𝑦16 + 9.7289 ∗ 10−7𝑦17 − 5.2639 ∗ 10−7𝑦18 + 3.1049 ∗

10−7𝑦19 − 1.8491 ∗ 10−8𝑦20.                  (70) 

Region III 

𝑢3(𝑦) = 2.1418 + 3.0759𝑦 − 2.8793𝑦
2 + 0.1207𝑦3 + 0.2418𝑦4 − 0.1181𝑦5 +

0.0279𝑦6 + 0.0098𝑦7 − 0.0037𝑦8 + 0.0017𝑦9 − 3.2991 ∗ 10−5𝑦10 + 9.1432 ∗

10−9𝑦11 + 3.9421 ∗ 10−9𝑦12 − 2.2421 ∗ 10−9𝑦13 + 1.4218 ∗ 10−9𝑦14 + 1.1421 ∗

10−9𝑦15 − 9.8467 ∗ 10−10𝑦16 + 1.4317 ∗ 10−10𝑦17 + 9.1342 ∗ 10−11𝑦18 −

5.4312 ∗ 10−11𝑦19 + 1.2147 ∗ 10−12𝑦20.                (71) 

𝜃3(𝑦) = 1.1911 − 0.0233𝑦 − 0.5101𝑦
2 + 0.3798𝑦3 − 0.1551𝑦4 − 0.0083𝑦5 +

0.0144𝑦6 − 0.0085𝑦7 + 0.0005𝑦8 + 0.0024𝑦9 − 4.7512 ∗ 10−4𝑦10 + 8.1423 ∗

10−8𝑦11 − 8.1285 ∗ 10−8𝑦12 − 1.3221 ∗ 10−9𝑦13 + 6.1210 ∗ 10−12𝑦14 − 5.9037 ∗

10−12𝑦15 + 9.6528 ∗ 10−14𝑦16 + 9.0816 ∗ 10−14𝑦17 − 7.0214 ∗ 10−14𝑦18 +

1.1258 ∗ 10−14𝑦19 − 1.0254 ∗ 10−14𝑦20  .                            (72) 

In the next subsection, the validation of DTM and convergence analysis is performed. 

B. Convergence Analysis and Validation 

To affirm accuracy, the results obtained by DTM are compared with those obtained using 

MATLAB solver (bvp5c). Bvp5c method44 is a four-stage Lobatto IIIa formula-based finite 
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difference algorithm. It produces a continuous solution on the interval [𝑝, 𝑞] that has a uniform 

fifth-order precision. Eqs. (34)-(40) represent the four-point boundary value problem (BVP). 

Since bvp5c only accepts two-point BVPs, Eqs. (34)-(40) needs to be converted to a two-point 

boundary value problem using the following transformations. 

𝑦 = 𝜏 + 1, (Transformation for region II), 

𝑦 = 𝜂 + 2, (Transformation for region III). 

Detailed procedures for handling multipoint BVP can be found in44. The comparison results 

are presented in Table II and imply that the DTM results are accurate to at least 6 decimal 

places. 

The viscous dissipation term makes the energy equation non-linear and couples with the 

momentum equation, consequently the system of differential equations becomes complex. 

Therefore, convergence analyzes of DTM solutions are performed in the presence and absence 

of viscous dissipation. Tables III and IV depict the convergence analysis of the DTM in the 

presence and absence of viscous dissipation. In the absence of viscous dissipation (Table III), 

the convergent solutions are attained by considering 4th-order approximation. Table III also 

present the comparison of DTM solutions and bvp5c solutions and exact solutions (in the 

absence of viscous dissipation, see Appendix A). While in the presence of viscous dissipation 

(Table IV), even 10th-order approximations are not sufficient since the values are far from 

precise. As seen in Table IV, the accuracy of the first digit is obtained from the 12th-order 

approximation. However, from the 20th-order approximation, a precision greater than 6 decimal 

places is achieved. Therefore, the simulations are performed with an approximation of order 

20. 

TABLE II. Comparison of velocity and temperature values obtained from DTM and bvp5c. 

Velocity Temperature 

y DTM bvp5c DTM bvp5c 

-1 0 0 1 1 

-0.75 1.100618 1.100618 1.080621 1.080621 

-0.5 1.940173 1.940173 1.093648 1.093648 

-0.25 2.516060 2.516060 1.070361 1.070361 

0 2.831866 2.831866 1.032213 1.032213 

0.25 3.001208 3.001208 1.011343 1.011343 
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0.5 3.024162 3.024162 0.985634 0.985634 

0.75 2.900745 2.900745 0.957625 0.957625 

1 2.630976 2.630976 0.913679 0.913679 

1.25 2.252901 2.252901 0.726891 0.726891 

1.5 1.668629 1.668629 0.523026 0.523026 

1.75 0.907340 0.907340 0.286468 0.286468 

2 0 0 0 0 

TABLE III. Convergence analysis of DTM without viscous dissipation, and comparison of 

DTM results with bvp5c results and exact solutions. 

TABLE IV. Convergence analysis of DTM with viscous dissipation. 

𝑦 4th order 

approx 

10th order 

approx 

12th order 

approx 

14th order 

approx 

16th order 

approx 

20th order 

approx 

bvp5c 

Velocity  

-1 0 0 0 0 0 0 0 

-0.75 1.731861 1.303178 1.298597 1.114789 1.100825 1.100618 1.100618 

𝑦 2nd order 

approx 

4th order 

approx 

 

bvp5c 

2nd order 

approx 

4th order 

approx 

 

bvp5c 

Exact  

solution 

Velocity Temperature 

-1 0 0 0 1 1 1 1 

-0.75 0.895258 0.931074 0.931074 0.892769 0.892769 0.892769 0.892770 

-0.5 1.606694 1.630557 1.630557 0.785538 0.785538 0.785538 0.785539 

-0.25 2.134309 2.114975 2.114975 0.678308 0.678308 0.678308 0.678309 

0 2.478101 2.400236 2.400236 0.571077 0.571077 0.571077 0.571078 

0.25 2.730462 2.573721 2.573721 0.535538 0.535538 0.535538 0.535539 

0.5 2.836700 2.601102 2.601102 0.500000 0.500000 0.500000 0.500000 

0.75 2.796814 2.482399 2.482399 0.464462 0.464462 0.464462 0.464461 

1 2.610805 2.217631 2.217631 0.428923 0.428923 0.428923 0.428922 

1.25 2.297236 1.876249 1.876249 0.321692 0.321692 0.321692 0.321691 

1.5 1.757579 1.384139 1.384139 0.214462 0.214462 0.214462 0.214461 

1.75 0.991834 0.754523 0.754523 0.107231 0.107231 0.107231 0.107230 

2 0 0 0 0 0 0 0 



Accepted to Phys. Fluids 10.1063/5.0123131

22 
 

-0.5 3.108892 2.305829 1.974592 1.968745 1.940224 1.940173 1.940173 

-0.25 4.074375 2.968084 2.634875 2.587451 2.516174 2.516060 2.516060 

0 4.579023 3.257775 2.978215 2.854789 2.831958 2.831866 2.831866 

0.25 4.839717 3.305099 3.142135 3.095231 3.001385 3.001208 3.001208 

0.5 4.953001 3.205415 3.194713 3.099127 3.024274 3.024162 3.024162 

0.75 4.918832 2.958687 2.919781 2.907541 2.900857 2.900745 2.900745 

1 4.737144 2.864892 2.705231 2.665743 2.630981 2.630976 2.630976 

1.25 4.289903 2.403867 2.375417 2.298674 2.252941 2.252901 2.252901 

1.5 3.348455 1.914935 1.798745 1.695321 1.668755 1.668629 1.668629 

1.75 1.918822 1.171811 0.999241 0.954712 0.907754 0.907340 0.907340 

2 0 0 0 0 0 0 0 

Temperature 

-1 1 1 1 1 1 1 1 

-0.75 1.516080 1.308960 1.195417 1.098754 1.080847 1.080621 1.080621 

-0.5 1.858774 1.522067 1.198473 1.099879 1.093818 1.093648 1.093648 

-0.25 2.101797 1.684341 1.187142 1.094571 1.070587 1.070361 1.070361 

0 2.303650 1.828746 1.174215 1.091427 1.032477 1.032213 1.032213 

0.25 2.352695 1.874710 1.141257 1.035471 1.011572 1.011343 1.011343 

0.5 2.387170 1.919056 0.998756 0.990127 0.985874 0.985634 0.985634 

0.75 2.419674 1.950716 0.985746 0.967458 0.957847 0.957625 0.957625 

1 2.446363 1.942296 0.985298 0.957412 0.913847 0.913679 0.913679 

1.25 2.444629 1.804243 0.856874 0.764178 0.726974 0.726891 0.726891 

1.5 2.221470 1.595281 0.652418 0.554782 0.523274 0.523026 0.523026 

1.75 1.531638 1.152542 0.599658 0.298657 0.286642 0.286468 0.286468 

2 0 0 0 0 0 0 0 

Having discussed the solution procedure, the next section focuses on the discussion of the 

results obtained. 

IV. RESULTS AND DISCUSSION 

The flow and heat transport in BVBF sandwiched between 𝐶𝑢 − 𝐴𝑙2𝑂3 −𝐻2𝑂 hybrid 

nanoliquids subjected to nonlinear convection, thermal radiation, and viscous dissipation are 

investigated. The values for quadratic convection parameter (𝑄𝑐), Brinkman number for oil 
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(𝐵𝑟𝑜), Brinkman number for BVBF (𝐵𝑟𝐵), mixed convection parameter (𝜆), radiation 

parameter (𝑅𝑑), BVBF parameter (𝛾), and NVF (𝜑𝐶𝑢 & 𝜑𝐴𝑙203) for simulations are taken as 

𝜆 = 2, 𝑄𝑐 = 0.2, 𝐵𝑟𝑂 = 0.2, 𝐵𝑟𝐵 = 0.6, 𝑃 = 2, 𝑅𝑑 = 2, 𝛾 = 0.5, 𝜑𝐶𝑢 = 1% and 𝜑𝐴𝑙203 =

3%. The effects of these physical parameters are presented graphically (see Figs. 2-13).  

The influence of the quadratic convection parameter (𝑄𝑐) on the velocity and temperature 

fields is shown in Fig. 2 (a) & (b). Increasing the values of the quadratic convection parameter 

leads to an improvement of the velocity and temperature fields in all the regions and thus 

improves the situation of heat transport in the system. It is worth noting that 𝑄𝑐 = 0 represents 

the conventional linear Boussinesq approximation (LBA) model and 𝑄𝑐 ≠ 0 denotes the 

quadratic (nonlinear) Boussinesq approximation (QBA) model. Due to the consideration of the 

quadratic density-temperature change in terms of the buoyancy force, the thermal buoyancy 

force becomes stronger. The increase in thermal buoyancy is accountable for the increasing 

effect on the distribution of velocity and temperature. Furthermore, the magnitude of velocity 

and temperature are greater when the quadratic Boussinesq approximation is taken into account 

than the linear Boussinesq approximation. Due to the predominant impact of nonlinear density-

temperature variation on flow distributions, it cannot be ignored as stated before. Furthermore, 

quadratic convection has a greater impact on the velocity in the center of the slab, while near 

the walls its impact is minute. Our results of quadratic thermal convection are similar to those 

reported by Partha30, and Shaw et al31. 

 

FIG. 2. Influence of 𝑄𝑐 on (a) velocity and (b) temperature. 

Fig. 3 (a) & (b) demonstrates the consequence of the mixed convection parameter (𝜆) on 

the velocity and temperature fields. The velocity and temperature fields depict an increasing 

trend as the values of the mixed convection parameter increase in all the regions. By definition, 
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𝜆 is the ratio of Reynolds number to the Grashof number. So, an increase in the mixed 

convection parameter values induces an increase in the buoyancy force. Since buoyancy forces 

promote the flow of fluid molecules, a tendency to increase in velocity and temperature fields 

can be observed. The results for mixed convection are analogous to those reported by Vajravelu 

et al.23 and Partha30.    

FIG. 3. Influence of 𝜆 on (a) velocity and (b) temperature 

Figs. 4 and 5 describe the effect of the Brinkman number for oil (𝐵𝑟𝑜) and Brinkman 

number for BVBF (𝐵𝑟𝐵) respectively on the velocity and temperature fields.  The zero value 

of the Brinkman numbers represents the fluid system without viscous heating. An increase in 

the Brinkman numbers causes a rise in the velocity and temperature fields, in all regions. The 

Brinkman number is directly related to kinetic energy. As the Brinkman number rises, the 

kinetic energy of the fluid system improves as expected. Higher kinetic energy is accountable 

for a higher fluid temperature, which leads to an improvement in the magnitude of the velocity. 

The Brinkman number is a crucial parameter in polymer processing. The results for the 

Brinkman number are similar to those reported by Murthy and Srinivas38. The Brinkman 

number for oil has a predominant effect on the temperature field in region I and III over region 

II. Likewise, the Brinkman number for BVBF has a predominant influence on the temperature 

field in region II compared to other regions. 

The influence of the radiation parameter (𝑅𝑑) on the velocity and temperature fields is 

shown in Fig. 6 (a) & (b). As the radiation parameter decreases, an increasing trend for both 

velocity and temperature fields is observed, in all the regions. The effect of radiation dampens 

the effect of natural convection by decreasing the variation of the velocity and temperature 

fields. The effect of radiation is known to reduce the rate of energy transfer to the liquid. 

Furthermore, it can be noted that from the definition of the radiation parameter, the radiation 
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factor is inversely related to heat conduction. Therefore, an increasing trend in temperature is 

observed for lower values of the radiation factor. 

FIG. 4. Influence of 𝐵𝑟𝑜 on (a) velocity and (b) temperature 

FIG. 5. Influence of 𝐵𝑟𝐵 on (a) velocity and (b) temperature 

FIG. 6. Influence of 𝑅𝑑 on (a) velocity and (b) temperature 
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Fig. 7 (a) and (b) describe the effect of the BVBF parameter (𝛾) on the velocity and 

temperature fields. We deliberately include the BVBF parameter (𝛾) in the definition of 

Brinkman number for BVBF (𝐵𝑟𝐵) so that 𝐵𝑟𝐵 has a difference between the Brinkman number 

for oil (𝐵𝑟𝑜). Since, 𝐵𝑟𝐵 is a function of 𝛾, by varying 𝛾, the value of 𝐵𝑟𝐵 also varies. Here to 

analyze the effects of BVBF parameter (𝛾), we have chosen 𝛾 = [0.05, 0.08, 0.1, 0.2, 0.25,

0.4, 0.5, 0.8, 1.0, 2.0, 2.5] and the corresponding 𝐵𝑟𝐵 values chosen are [4.2, 2.7, 2.2, 1.2, 1, 

0.7, 0.6, 0.45, 0.4, 0.3, 0.28]. Due to this, the velocity and temperature distributions are more 

pronounced in the BVBF layer (region II) than in other layers (regions I and III). It is found 

that the effect of increasing the BVBF parameter is to increase the velocity and temperature 

fields as expected. An increase in the BVBF parameter physically means a decrease in apparent 

viscosity, which supports the fluid momentum. Therefore, the velocity and temperature fields 

increase with the BVBF parameter. 

FIG. 7. Influence of 𝛾 on (a) velocity and (b) temperature 

FIG. 8. Influence of 𝜑𝐶𝑢 on (a) velocity and (b) temperature 
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Figs. 8 & 9 show the impact of NVF (𝜑𝐶𝑢 & 𝜑𝐴𝑙2𝑂3) on the velocity and temperature fields. 

Both velocity and temperature have a diminishing effect as the values of 𝜑𝐶𝑢 and 𝜑𝐴𝑙2𝑂3 are 

increased in all the regions. The presence of nanoparticles causes the fluid to be highly denser, 

and as a result, the momentum of the fluid diminished. Though the inclusion of nanoparticles 

was restricted to regions I and III, the impact of NVF can be noticed in all the regions, including 

region II (BVBF layer). This is because of the interfacial condition, which is the equality of 

temperature and heat fluxes at the interface. The results for NVF are similar to those reported 

by Rajeev and Mahanthesh35. 

FIG. 9. Influence of 𝜑𝐴𝑙2𝑂3 on (a) velocity and (b) temperature. 

 

 FIG. 10. Influence of total volume fraction (𝜑) and nonlinear convection (𝑄𝑐) on (a) 𝑁𝑢𝑙, 

and (b) 𝑁𝑢𝑟. 
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FIG. 11. Influence of total volume fraction (𝜑) and nonlinear convection (𝑄𝑐) on (a) 𝐶𝑓𝑙, and 

(b) 𝐶𝑓𝑟. 

Figs. 10 and 11 represent the effects of the NVF (𝜑) and quadratic convection parameter 

(𝑄𝑐) on the Nusselt number (𝑁𝑢𝑙 & 𝑁𝑢𝑟) and skin friction (𝐶𝑓𝑙 & 𝐶𝑓𝑟) of both left and right 

walls. The Nusselt number of the left and right walls (as in Fig. 10 (a) & (b)) is seen to upsurge 

as the values of 𝜑 increases and reduces as the values of 𝑄𝑐 increase. This is because the 

thickness of the boundary layer on the left wall has condensed due to the increase in the value 

of 𝜑. As a result, the Nusselt number on the left wall has improved. Whereas a thicker thermal 

boundary layer on the left wall due to a large 𝑄𝑐 leads to a reduced Nusselt number. In Fig. 11 

(a), the skin friction coefficient on the left wall improved with 𝑄𝑐 and 𝜑. In Fig. 11 (b), the 

skin friction coefficient on the right wall gets enhanced with 𝜑, while it gets reduced due to 

higher 𝑄𝑐 values. To summarize, 𝑁𝑢𝑙 & 𝑁𝑢𝑟 is maximum for high values of 𝜑 and low values 

of 𝑄𝑐. 𝐶𝑓𝑙 is minimum for low values of 𝜑 and 𝑄𝑐. 𝐶𝑓𝑟 is minimum for high values of 𝑄𝑐 and 

low values of 𝜑. 
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FIG. 12. Influence of (a) 𝐵𝑟𝑜, (b) 𝐵𝑟𝐵, (c) 𝜔, (d) 𝜑𝐶𝑢, and (e) 𝜑𝐴𝑙2𝑂3 on entropy generation 

number (𝑁𝑠). 

Fig. 12 (a), (b), (c), (d), and (e) present the effects of the Brinkman number for oil (𝐵𝑟𝑜), 

Brinkman number for BVBF (𝐵𝑟𝐵), characteristic temperature ratio (𝜔) and NVF 

(𝜑𝐶𝑢 & 𝜑𝐴𝑙2𝑂3) on 𝑁𝑠. In Figs. 12 (a) & (b), there is an improvement in EG number with the 

increase in the values of both Brinkman numbers (𝐵𝑟𝐵 and 𝐵𝑟𝑜). Physically, the Brinkman 

number reflects the heat generation source that generates heat in the liquid layers. In Fig. 12 

(c), an increase in the characteristic temperature ratio reduces the entropy generation rate. The 

temperature at the wall is greater than the temperature difference and the characteristic 

temperature ratio is defined as 𝜔 =
𝑇𝑤1−𝑇𝑤2

𝑇𝑤2
. Since the temperature at the wall is inversely 

proportional to the characteristic temperature ratio, a decrement is observed. In Fig. 12 (d) and 

(e), as values of NVF (𝜑𝐶𝑢 & 𝜑𝐴𝑙2𝑂3) upsurges the entropy generation number decreases. The 

temperature decreases as the values of NVF increase (as seen in Figs. 7 and 8) and this 

reduction in the temperature leads to a decline in the entropy generation.  
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FIG. 13. Influence of (a) 𝐵𝑟𝑜, (b) 𝐵𝑟𝐵, (c) 𝜔, (d) 𝜑𝐶𝑢, and (e) 𝜑𝐴𝑙2𝑂3 on entropy generation 

number (𝐵𝑒). 

Fig. 13 (a), (b), (c), (d), and (e) present the effects of Brinkman number for oil (𝐵𝑟𝑜), 

Brinkman number for BVBF (𝐵𝑟𝐵), characteristic temperature ratio (𝜔) and NVF 

(𝜑𝐶𝑢 & 𝜑𝐴𝑙2𝑂3) on the Bejan number (𝐵𝑒). In Fig. 13 (a), Bejan number shows a dual behavior 

for increasing values of the Brinkman number for oil (𝐵𝑟𝑜) in all regions. While the Bejan 
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number in region II did not vary significantly as compared to other regions. In Fig. 13 (b), an 

increase in the values of the Brinkman number for BVBF, the Bejan number in region II 

decreases whereas it blows up to a certain value within regions II. In region III, the Bejan 

number upsurges with 𝐵𝑟𝐵. But a dual nature in the Bejan number is observed due to upsurge 

in the values of 𝐵𝑟𝐵 in region I. In Fig. 13 (c), the Bejan number increases with increasing 

values of characteristic temperature ratio in all regions. This is due to the positive relationship 

between the Bejan number and the characteristic temperature ratio. But the impact of 

temperature ratio on Bejan number is more evident in region III than in other regions. Fig. 13 

(d) and (e) show that the impact of 𝜑𝐶𝑢 & 𝜑𝐴𝑙2𝑂3is qualitatively similar on the Bejan number. 

The Bejan number of BVBF layer increases with a rise in the NVF, while the Bejan number of 

hybrid nanofluid layers demonstrate dual behavior due to the increase in NVF.                                                                                                                                           

TABLE V. Nusselt number (𝑁𝑢𝑙& 𝑁𝑢𝑟) and skin friction coefficient (𝐶𝑓𝑙 & 𝐶𝑓𝑟) values of 

left and right walls for various parameters. 

  𝑁𝑢𝑙 𝑁𝑢𝑟 𝐶𝑓𝑙 𝐶𝑓𝑟 

𝑄𝑐 

0.2 -1.588357 -3.963059 5.438501 -4.294240 

0.3 -1.819452 -4.128500 5.743178 -4.442757 

0.4 -2.091108 -4.323586 6.076461 -4.612194 

𝜆 

0.5 -0.478417 -3.112339 3.554965 -3.274945 

1.5 -1.127828 -3.612970 4.759444 -3.909596 

2.5 -2.190052 -4.419868 6.202490 -4.752431 

𝜑 

0.01 -1.923605 -4.221013 5.534063 -4.406279 

0.03 -1.712092 -4.056618 5.490634 -4.341121 

0.05 -1.514074 -3.906256 5.451038 -4.279756 

𝑅𝑑 

1.5 -1.873607 -3.794554 5.594763 -4.431930 

2 -1.588357 -3.963059 5.438501 -4.294240 

2.5 -1.335672 -4.156752 5.330622 -4.198905 

𝐵𝑟𝐵 

0.5 -1.843489 -4.197581 5.546123 -4.367583 

0.7 -1.406815 -3.796375 5.361347 -4.243688 

0.9 -1.164755 -3.574478 5.257468 -4.178744 
 

Table V presents the numeric values of the Nusselt number (𝑁𝑢𝑙 & 𝑁𝑢𝑟) and skin friction 

coefficient (𝐶𝑓𝑙 & 𝐶𝑓𝑟) for different values of 𝑄𝑐, 𝜆, 𝜑, 𝑅𝑑 and 𝛾. The Nusselt number 

(𝑁𝑢𝑙 & 𝑁𝑢𝑟) increases with Brinkman number for BVBF (𝐵𝑟𝐵) and NVF whereas decreases 

for the quadratic convection parameter and mixed convection parameter at both walls. The 

Nusselt number at the left wall increases and decreases at the right wall for the radiation 

parameter. The skin friction coefficient at the left wall increases for the quadratic convection 

parameter and mixed convection parameter whereas decreases for the radiation parameter, and 
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Brinkman number for BVBF and NVF. The skin friction coefficient at the right wall increases 

for the radiation parameter, Brinkman number for BVBF and NVF whereas decreases for the 

quadratic convection parameter and mixed convection parameter. After a detailed discussion 

of the results obtained in the study, the major conclusions are listed in the next section.       

V. CONCLUSIONS 

From this analysis, we conclude the following: 

• The nonlinear density-temperature variation leads to a significant improvement in the 

magnitude of the velocity and temperature profiles due to the increased buoyancy force. 

As a result, the drag force on the walls is condensed. Therefore, the nonlinear variation 

in density with temperature cannot be ignored if the temperature difference in the 

system is relatively large. 

• The velocity and temperature distributions have enhanced due to larger Brinkman 

numbers. While the Brinkman number for BVBF has a more evident impact in region 

II among all regions. 

• The shear stress on the right wall is reduced due to nonlinear convection and mixed 

convection. While this trend is contradictory for left wall shear stress.  

• The drag force on the slab gets enhanced by increasing the volume of nanoparticles. 

• The dragging effect due to the continuance of interfacial conditions is observed. That 

is, the BVBF parameter is only present in region II but the effect is also visible in 

regions I and III as well. Similarly, the hybrid nanoliquid is present in regions I and III, 

but the effect of NVF is visible in region II. 

• By increasing the volume of nanoparticles from 1% to 3%, the heat transport improved 

by 11% on the left wall, whereas the heat transport on the right wall improved by 3.9%. 

• For the variation of all parameters following relations are valid: 𝑁𝑢𝑙 > 𝑁𝑢𝑟 and 𝐶𝑓𝑙 >

𝐶𝑓𝑟.  

• The Brinkman numbers increase the entropy generation rate while the characteristic 

temperature ratio and NVF produce a decrease in the entropy generation rate.  

• An increase in the Brinkman numbers leads to a reduction in the Bejan number.  

• In the multilayer flow problem, the Bejan number decreases for the BVBF parameter 

in region II and increases in regions I and III due to the irreversibility of fluid friction. 

Similarly, near the walls, there is a decrease in the Bejan number and an increasing 

Bejan number can be found elsewhere when NVF has increasing values.  
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• The comparison of the results obtained with the Differential Transformation Method 

and the bvp5c method found excellent agreement and therefore established the accuracy 

of the DTM. Therefore, DTM can be successfully applied to handle multipoint 

nonlinear boundary value problems. 
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Appendix A: Analytical solution for a special case 
 

The analytical solution of the equations (34)-(40) in the absence of viscous dissipation are 

given below: 

Region I 

𝑢1 = −(𝑔5𝐸1
2)𝑦4 − (𝑔6𝐸1 + 𝑔7𝐸1𝐸2)𝑦

3 − (𝑔8𝐸2 + 𝑔9𝐸2
2 + 𝑔10)𝑦

2 − 𝐸3𝑦 − 𝐸4, 

𝜃1 =
𝐸1𝑦+𝐸2

𝑔1
, 

Region II 

𝑢2 = −(𝑔15𝐸5
2)𝑦4 − (𝑔16𝐸5 + 𝑔17𝐸5𝐸6)𝑦

3 − (𝑔18𝐸6 + 𝑔19𝐸6
2 + 𝑔20)𝑦

2 − 𝐸7𝑦 − 𝐸8, 

𝜃1 =
𝐸5𝑦+𝐸6

𝑔11
, 

Region III 

𝑢1 = −(𝑔5𝐸9
2)𝑦4 − (𝑔6𝐸9 + 𝑔7𝐸9𝐸10)𝑦

3 − (𝑔8𝐸10 + 𝑔9𝐸10
2 + 𝑔10)𝑦

2 − 𝐸11𝑦 − 𝐸12, 

𝜃1 =
𝐸9𝑦+𝐸10

𝑔1
 , 

In the above expressions, the following constants 𝑔1-𝑔20, 𝐸1-𝐸12 and 𝑁1-𝑁13 are used.  

𝐸1 = 𝐸2 − 𝑔1;   𝐸2 = 𝑁1𝐸6;  𝐸3 = −𝑔6𝐸1 + 𝑔8𝐸2 + 𝐸4 + 𝑁6;  𝐸4 = 𝐸8 

𝐸5 = 𝑁2𝐸1; 𝐸6 =
𝐸9+𝐸10

𝑁1
− 𝐸5; 𝐸7 = 𝑁3𝐸3; 

𝐸8 = −𝑔16𝐸5 − 𝑔18𝐸6 − 𝐸7 + 𝑔6𝐸9 + 𝑔8𝐸10 + 𝐸11 + 𝐸12 + 𝑁9 

𝐸9 =
𝐸5

𝑁2
; 𝐸10 = −2𝐸9; 𝐸11 =

1

𝑁3
(3𝑔16𝐸5 + 2𝑔18𝐸6 + 𝐸7) − 3𝑔6𝐸9 − 2𝑔8𝐸10 + 𝑁12; 

𝐸12 = −8𝑔6𝐸9 − 4𝑔8𝐸10 − 2𝐸11 − 𝑁13; 𝑔1 = 𝐷 + 𝑅𝑑; 𝑔2 =
𝜆𝐵

𝐴𝑔1
; 𝑔3 =

𝜆𝐶𝑄𝑐

𝐴𝑔1
2 ; 

𝑔4 =
𝑃

𝐴
; 𝑔5 =

𝑔3

12
; 𝑔6 =

𝑔2

6
; 𝑔7 =

𝑔3

3
; 𝑔8 =

𝑔2

2
; 𝑔9 =

𝑔3

2
; 𝑔10 =

𝑔4

2
; 𝑔11 = 1 + 𝑓𝑘𝑅𝑑; 

𝑔12 =
𝑓𝑣𝑓𝑟𝑓𝑏𝜆

(1+
1

𝛾
)𝑔11

; 𝑔13 =
𝑓𝑣𝑓𝑟𝑓𝑑𝜆𝑄𝑐

(1+
1

𝛾
)𝑔11

2
; 𝑔14 =

𝑓𝑣𝑃

(1+
1

𝛾
)
; 𝑔15 =

𝑔13

12
; 𝑔16 =

𝑔12

6
; 𝑔17 =

𝑔13

3
; 

𝑔18 =
𝑔12

2
; 𝑔19 =

𝑔13

2
; 𝑔20 =

𝑔14

2
; 𝑁1 =

𝑔1

𝑔11
; 𝑁2 =

𝐷𝑓𝑘

𝑁1
; 𝑁3 =

𝐴𝑓𝑣

(1+
1

𝛾
)
; 𝑁4 = 𝑔10 − 𝑔20; 

𝑁5 =
2𝑔20

𝑁3
− 2𝑔10; 𝑁6 = 𝑔5𝐸1

2 − 𝑔7𝐸1𝐸2 + 𝑔9𝐸2
2 + 𝑔10; 𝑁7 = 𝑔15𝐸5

2 + 𝑔17𝐸5𝐸6 + 𝑔19𝐸6
2; 

𝑁8 = 𝑔5𝐸9
2 + 𝑔7𝐸9𝐸10 + 𝑔9𝐸10

2 ; 𝑁9 = 𝑁4 − 𝑁7 +𝑁8; 𝑁10 =
1

𝑁3
(4𝑔15𝐸5

2 + 3𝑔17𝐸5𝐸6 +

2𝑔19𝐸6
2); 𝑁11 = 4𝑔5𝐸9

2 + 3𝑔7𝐸9𝐸10 + 2𝑔9𝐸10
2 ; 𝑁12 = 𝑁5 + 𝑁10 − 𝑁11; 
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𝑁13 = 16𝑔5𝐸9
2 + 8𝑔7𝐸9𝐸10 + 4𝑔9𝐸10

2 + 4𝑔10. 

 

Appendix B: Nomenclature 

 
𝒂𝑹 Rosseland mean absorption factor  

(m-1) 

𝝀 Mixed convection parameter 

𝑨,𝑩, 𝑪,𝑫 Constants 𝝁 Dynamic viscosity (kgm-1s-1)  

𝑩𝒓 Brinkman number 𝝂 Kinematic viscosity (m2s-1)  

𝑪𝒑 Heat capacity (Jkg−1K−1) 𝜽 Dimensionless temperature 

𝑪𝒇 Skin friction factor 𝚯 Transformed temperature notation of 

DTM 

𝒆𝒃 Blackbody emissive power 𝝆 Density (kgm-3) 

𝒇𝒃 & 𝒇𝒅 Ratio of coefficient of thermal expansion 𝝉𝒊𝒋 Cauchy stress tensor 

𝒇𝒌 Ratio of thermal conductivity 𝝉, 𝜼 Transformations 

𝒇𝒓 Ratio of density 𝝎 Characteristic temperature ratio 

𝒇𝒗 Ratio of viscosity 𝝅 Product of deformation tensor 

𝒈 Acceleration due to gravity (ms-2) 𝝅𝒄 Critical value 

𝑮𝒓 Grashof number 𝝋 Total nanoparticle volume fraction 

𝒉 Length scale (m) 𝚽 Viscous dissipation 

𝒌 Thermal conductivity (Wm-1K-1) 𝝈𝑺𝑩 Stefan-Boltzmann constant  

(Wm-2K-4) 

𝑵𝒖 Nusselt number Subscripts 

𝒑 Pressure (kgm−1s−2) 𝑩 BVBF 

𝑷 Pressure gradient parameter 𝒐 oil 

𝒑𝒚 Yield stress 𝒉𝒏𝒐 Hybrid nano oil 

𝒒 Conduction heat flux  𝒍 left wall 

𝒒𝒓 Radiative heat flux  𝒓 right wall 

𝑸𝒄 Quadratic convection parameter 𝑪𝒖 Copper 

𝑹𝒅 Thermal radiation parameter 𝑨𝒍𝟐𝑶𝟑 Aluminium oxide 

𝑹𝒆 Reynolds number  𝒊(𝟏, 𝟐, 𝟑) Regions I, II, III 

𝒕 Time (s) Abbreviations 

𝑻 Temperature (K) 𝑩𝒆 Bejan number 

𝑻𝒘 Temperature (K) at walls 𝑩𝑽𝑩𝑭 Bi-viscous Bingham fluid 

𝒖̅ Average velocity (ms-1) 𝑫𝑻𝑴 Differential Transform Method 

𝒖 Dimensionless velocity 𝑬𝒈 Entropy generation 

𝑼 Velocity velocity (ms-1) 𝑬𝒈𝒐 Characteristic entropy generation  

𝓤 Transformed velocity notation of DTM 𝑭𝑭𝑰 Fluid friction irreversibility 

𝑿,𝒀 Cartesian coordinates (m) 𝑯𝑻𝑰 Heat transfer irreversibility 

Greek symbols 𝑳𝑩𝑨 Linear Boussinesq approximation 

𝜶, 𝜺 Unknown constants 𝑵𝒔 Local entropy generation number 

𝜷 & 𝜷∗ Thermal expansion coefficient (K-1) 𝑵𝑽𝑭 Nanoparticle volume fraction 

𝜸 BVBF parameter 𝑸𝑩𝑨 Quadratic Boussinesq approximation 
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