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Abstract
Infrared thermography is a non-destructive technique that can be exploited in many �elds including
polymer composite investigation. Based on emissivity and thermal diffusivity variation, components,
defects, and curing state of the composite can be identi�ed. However, manual processing of thermal
images that may contain signi�cant artifacts, is prone to erroneous component and property
determination. In this study, thermal images of different graphite/graphene-based polymer composites
fabricated by hand, planetary, and batch mixing techniques were analyzed through an automatic
machine learning model. Filler size, shape, and location can be identi�ed in polymer composites and thus,
the dispersion of different samples was quanti�ed with a resolution of ~ 20 µm despite having artifacts
in the thermal image. Thermal diffusivity comparison of three mixing techniques was performed for 40%
graphite in the elastomer. Batch mixing demonstrated superior dispersion than planetary and hand
mixing as the dispersion index (DI) for batch mixing was 0.07 while planetary and hand mixing showed
0.0865 and 0.163 respectively. Curing was investigated for a polymer with different �llers (PDMS took
500s while PDMS-Graphene and PDMS Graphite Powder took 800s to cure), and a thermal characteristic
curve was generated to compare the composite quality. Therefore, the above-mentioned methods with
machine learning algorithms can be a great tool to analyze composite both quantitatively and
qualitatively.

1. Introduction
Polymer composites are comprised of two or more materials (matrix and �ller/reinforcing/additive
materials) that have properties that are superior to the properties of the individual materials1–3. Because
of its synergistic properties and applications in aerospace, automotive, maritime, energy, and consumer
�elds, it has attracted the interest of both industry and academia4–8. Among all the �llers or reinforcing
materials, graphite or graphene has become an ideal candidate due to its exceptional mechanical,
thermal, or electrical properties. Thus, graphene-based polymer composites have captured the scienti�c
community's interest during the past few decades.

The properties of polymer composites largely depend on the dispersion of �ller materials on the polymer
matrix. Thus, the performance of a polymer composite (poor or good) is determined directly by the degree
of agglomeration, which can lead to property variation over the composite. The study of particle/loading
size, shape, and size can be accomplished using transmission electron microscopy (TEM)9, but it is
restricted to relatively smaller samples. Scanning electron microscopy can be another technique to
determine dispersion, and Fu et al. calculated the carbon nanotube (CNT) dispersion index by dividing the
images into grids10. The majority of TEM and SEM procedures, which are expensive and require a
complex sample preparation process (sample preparation might be destructive), are employed to
estimate the dispersion of low-weight percentage of �ller materials on a smaller scale qualitatively11.

Another challenge to use polymer composite extensively is to develop a non-destructive method to check
the quality/performance of the composites. The ultrasonic method (impulse acoustic microscopy) was



Page 3/18

used to investigate the �ller distribution or microstructure in carbon nanocomposite specimens prepared
using a traditional method and a vacuum mixer12. The potential applications in industry are, however,
constrained by this non-destructive evaluation (NDE) technique's slowness in sample preparation and
ability to scan only smaller samples13.

Developing an NDE process for measuring the dispersion quantitatively rather than qualitatively,
particle/�ller size, shape, and agglomeration can be an excellent technique for predicting polymer
composite performance. Infrared (IR) thermography is a non-contact method of measuring temperature
that analyzes the infrared radiation emitted by an object. Among different thermography methods, active
thermography (external excitation of the sample) is generally used to detect the surface/sub-surface
defect in �ber-reinforced composites or concrete structures14. The surface temperature obtained via
active IR thermography (a few mm depth) can lead to the determination of the internal temperature of
composites (heat transfer modeling along the entire depth), thus composite quality can be determined15.
For in-depth defect analysis, lock-in thermography can be a useful approach16, but it needs additional
instruments and thereby increases cost. In recent years, composites with nano/micro-sized �llers have
emerged signi�cantly, emphasizing the need for microscale thermography. Therefore, infrared active
thermography performed at micro-scale can be a useful technique for measuring the dispersion of
nano/micro �llers. For instance, infrared thermography was used by Pantano et al. to evaluate the poor
dispersion of carbon nanotubes in nanocomposites17. Ashraf et al. studied the dispersion (quanti�ed as
dispersion index) and thermal properties of graphene polymer composites using a close-up lens infrared
thermography18. Gresil et al. studied the thermal diffusivity mapping of graphene-based polymer
nanocomposites at a resolution of 200 µm per pixel19. Void or �aw detection is also determined for
graphene-based composite via infrared thermography20. However, the process mentioned above to
determine the �ller/void/�aw shape and size is manual and thereby takes a lot of time to real-time in the
manufacturing line. Additionally, defocused images or images with artifacts/void/tramp material
sometimes provide wrong information about the sample quality. So, automatic detection of �llers, voids,
�aws, and artefacts should be employed for accurate results. To the best of our knowledge, automatic
dispersion/�aw/void/tramp material quanti�cation of composites has not been reported yet by the
scienti�c community.

After producing thermal images from each experiment one can quantify dispersion by color thresholding
each image using image processing. However, to leverage such downstream quanti�cation, unrealizable
human effort is required- needless to mention the signi�cant risk of producing erroneous results. Often, it
is impossible to correctly quantify dispersion from noisy or incomplete data. Artifacts essentially pose a
great threat in quanti�cation since it is di�cult to differentiate them from nano-�llers in a thermal image
frame unless one has complete access to subsequent (or previous) image frames of the experiment. The
recent development of image processing techniques, mostly available through get-go libraries in
MATLAB, Python, or R; has been quite useful in such events, although it neither reduces the manual
involvement nor ensures accuracy. A more recent effort to incorporate machine learning towards
automated image processing tasks such as image segmentation, noise removal, object detection,
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recovery, etc. has demonstrated success21–28 and it begs an evaluation for dispersion quanti�cation in a
similar manner. We present a Surface Dispersion quanti�cation method using Fourier Neural operator,
SDFN, that does few-shot learning on thermal data and automatically quanti�es dispersion when
presented with data from unseen experiments.

The inclusion of numerous additives (such as promoting agents, �llers, etc.) in commercial formulations
leads to complex cure kinetics, making a thorough understanding of curing the most important
prerequisite for the optimization of composite processes29. As we heated the sample from the ambient
condition, the temperature rises to a certain maximum point before curing (depending on �ller materials),
followed by a sudden temperature drop. The reaction rate or curing kinetics changes due to �ller in�uence
(change in the rate constants)30. Thus, recording the temperature change with respect to time can provide
information about the curing (micro-scale/bulk curing analysis), which is di�cult to achieve by
conventional methods such as differential scanning calorimetry (DSC).

In this study, we performed dispersion analysis via micro-scale IR thermography in a wide range of
samples prepared by hand, planetary, and batch mixing. Different mixing techniques can signi�cantly
alter dispersion e�ciency and therefore composite properties. These samples were analyzed using SDFN
and thus, it made it possible to quantify the �ller amount or dispersion of polymer composites e�ciently.
Thermal diffusivity quanti�es the speed of heat transfer in a sample, and the diffusivity of polymer
composites is in�uenced by dispersion/homogeneity. So, thermal diffusivity mapping and therefore
dispersion index of different mixing techniques were compared. Finally, curing analysis of polymer with
different �llers and thermal characteristics of hand, planetary, and batch mixing samples were
investigated.

2. Materials And Methods

2.1. Materials:
Dragon skin and Eco�ex 00–30 (platinum-catalyzed silicones) were purchased from Smooth-On (USA),
and Graphite �ake (average size: +20 mesh (850 microns)) was obtained from Asbury Carbons (USA).
Molybdenum Disulphide (MoS2-Powder size 1.5 µm) was provided by ACS Materials LLC. SYLGARD™ 184

Silicone Elastomer Kit was obtained from Dow Corning. Graphene nanoplatelets (surface area 750 m2/g,
size ~ 2 µm) and graphite powder (~ 20 µm) were acquired from Sigma Aldrich (USA) and Fisher
Chemicals respectively.

2.2. Methods:
Dragon skin both part A and part B were mixed with graphite (G) �ake with a 2.5, 5, 7.5, and 10 weight
percent. Graphite with part A and part B was mixed in a 1:1 ratio through simple hand mixing and high-
speed planetary shear mixing techniques (two different procedures result in different dispersion in
polymer composites). Another mixing of a higher percentage of graphite (40% G) in Eco�ex part A and
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part B both was done in a Randcastle batch mixer, where bulk graphite is exfoliated to graphene via shear
exfoliation31 (two samples were prepared, �rst sample is 100 rpm & 3 minutes of mixing, second one is
100 rpm & 10 minutes of mixing). Simple hand mixing, planetary mixing (mixed at 2000 rpm for 1
minute) and batch mixing samples will be referred to as 2.5/5/7.5/10% G Hand, 2.5/5/7.5/10% G
Planetary, and 40% G Batch throughout this manuscript respectively.

For dispersion and thermal characteristics analysis using IR thermography, both hand mixed and
planetary-mixed 2.5–10% G samples (sample size 15x8 mm2, thickness 1.5 mm) were heated using a
SpotIR heater and cooled for 30 seconds in ambient air. Additionally, for higher range dispersion analysis,
two 40% G Batch mixing samples (sample 1 and sample 2) were analyzed. Finally, thermal diffusivity
mapping of 40% G Batch samples, 40% G Planetary and 40% G Hand, 10% G (Hand mixed), and 10% G
Planetary samples were carried out via a controllable pulse and concentrated power SpotIR heater (using
modi�ed ASTM E1461-Standard Test Method for Thermal Diffusivity by the Flash Method32). The setup
for dispersion and thermal characteristics analysis and schematic of thermal diffusivity testing for
polymer composites is shown in Fig. 1a-b. Zeiss �eld emission scanning electron microscopy (FESEM)
was used to examine the morphology of cold fractured surfaces. Using a 50X magni�cation ReniShaw
inVia re�ex system, Raman data was collected using a 633 nm laser.

2.3 SDFN
As mentioned in the previous section, we aim to understand the pattern of nano/micro �llers from
thermal images. Since this is a time series data, and heat proportionally varies with time, each image
essentially represents a different distribution of temperature. Fourier Neural Operator was �rst introduced
to solve the family of PDEs28. Thus, to leverage its effectiveness, we propose SDFN model which
understands the underlying nature of the material composition, not giving sole attention to the particular
heat signature of that image. To train the model, we gather data from 9 different experiments with
varying material composition and temperature. The idea behind generating such a dataset is that if the
model needs to accurately understand and generalize the representation of nanopores in previously
unseen data of varying temperatures, it must �rst learn from a diverse dataset. Once trained on data from
these 9 experiments, the model can be deployed to quantify dispersion from a thermal image it has never
seen before.

2.3.1 Fourier Neural Operator
The SDFN architecture is shown schematically in Figure S1. The neural operator has 7 layers- the �rst two
layers (P) are for high-dimensional feature representation (uplifting layers) and the last layer is for
projection to the target dimension (Projection layer). The rest of the layers are each a combination of
Fourier and linear sublayers. An image of size  is fed to the network. Here  is the width, 
is the height, and  is the number of channels. The �rst two channels are a mesh representation of the 
coordinates and the  coordinates of the thermal image. The second channel is the thermal signature
itself. The network �rst uplifts this  image to size , where  is a

M × N × 3 M N

3 x

y

M × N × 3 M × N × W W
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hyperparameter. This is passed through  which applies the discrte Fourier transform on this and keeps
the  lower frequency modes from this high dimensional data. The main idea behind keeping only these
lower frequency modes is to generalize well among images and avoid noises that are mostly
incorporated as higher frequency. Next, it passes through layer . This is the layer where the model
optimizes and saves the multipliers for the Fourier components. Next, the output from the  layer is
transformed using the inverse Fourier transform at . There is also a linear layer  which contains
weights to multiply to the raw input. The output of the linear sublayer  is added to the output of .
Later this combined output is passed through a GELU activation function, 33. The activation function
denotes the end of one Fourier layer. Finally, the output of three such layers is then fed to a projection
layer Q that transforms the high dimensional data back to an  size image, which is our expected
output, i.e., threshold images. Once this output is produced, anyone can trivially count the black pixels
from it and report the surface dispersion.

3. Results And Discussion

3.1. Automatic Dispersion, Defects (void, tramp material)
Analysis Using Image Processing and Machine Learning

3.1.1. Dispersion Analysis:
Elastomer/polymer matrix has different emissivity compared with the �llers/additives added in
composites. So, �llers can be detected easily by using an IR thermal camera. Through analyzing the
image obtained by the IR camera, dispersion in the surface can be detected. Through image processing,
quanti�cation of dispersion is possible in real-time, and this can be a useful method to analyze �ller size,
shape, voids, or any tramp/foreign material present in composites. In a manufacturing or production line,
this above-mentioned method can be applied to determine whether the batch is of standard quality or not.

Figure 2 shows the thermal signature (temperature in each pixel) obtained from the IR camera, followed
by predicted image and true image obtained from image processing and machine learning algorithm (for
2.5% G Planetary, 2.5% G Hand, 10% G Planetary & 2.5% G Hand samples). Fillers are clearly
distinguishable despite of having manufacturing defects/artifacts/blurry images due to manual
experimental setup and lossy generation. Then, the true image shows the dispersion which was manually
produced for training the machine learning model. This is the only time the model requires this manual
effort. We trained the model in 4 different setups- with 50, 100, 200, and 500 data respectively. Even when
trained with 50 images (on average ~ 5 images from each experiment) the predicted images reach close
to the true image, although are not optimal. The test loss and training loss of the SDFN model with this
varying setup of runs is shown in Fig. S2. As expected, the model trained on 500 data achieves minimum
training loss (~ 0.06) and thereby converges. Hence, we suggest using a training dataset size of 200 or
500 for optimal results. Additionally, 5% and 7.5% G Hand and Planetary sample thermal, predicted, and
test images are shown in Fig. S3. For the higher amount of graphite and graphene content, 40% G batch

F
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R

R

F
−1 W

W F
−1

σ
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mixing samples were also closely inspected. Scanning electron microscopy (SEM) images for 40% wt. G
Batch was shown in Fig. 3a-b. These images indicate the graphene �akes and their shapes in different
spatial locations. Raman spectroscopy provides a reliable technique to determine the number of layers
and some other properties in a carbon-based material 34. The normalized intensity of the 2D band is 0.52
in comparison to the G band (I2D/IG) (Fig. 3c), indicating that few graphene layers were formed during
graphene exfoliation. So, graphite alongside graphene was also detected in thermography, and the
thermal signature, and predicted images of 40% G Batch sample were shown in Fig. 4a-b. Figure 4c-d
depicts the true and binary images of the sample. As the graphite/graphene was dispersed randomly,
surface dispersion can be calculated by using the following formula in Eq. 135:

Surface Dispersion = A�ake /Atotal ……...…….……………. (1)

Where A�ake is the pixel area of the �ller region (black region) and Atotal is the total area. Surface
dispersion calculated from Eq. 1 for different mixing processes (samples were prepared with low and
high amounts of graphite (G) % via both hand and planetary mixing) is shown in Fig. 4e. The dispersion
of Low G Hand & Planetary samples was 2.6619 and 2.7929 respectively which depicts better dispersion
on planetary mixing. For High G samples, the planetary sample dispersion was 9.5593% while for hand
mixing it was 6.7509%. This further illustrates the better mixing capability (less agglomeration) of
planetary mixing. On the other hand, the sample fabricated from batch mixing showed a surface
dispersion of 25.4863%. Thus, surface dispersion/distribution can be obtained using microscale
thermography that can be useful to determine composite performance where surface phenomenon
(surface wettability, conductivity) is important.

3.1.2. Defect (Void/Tramp Material Analysis):
For polymer composites, voids are typically the result of poor manufacturing or fabrication of the
material, and thus it affects the mechanical properties and lifetime of the composites. It can also act as
crack initiation and moisture penetration site 36. Thus, to get the desired property of polymer composites,
voids should be avoided. Analyzing the void using conventional microscopy or optical image is
cumbersome, however, using infrared thermography voids can be identi�ed as they will show a different
temperature signature than �llers and polymer matrix. So, by analyzing each pixel, similar regions
(void/tramp material) can be determined as the temperature will be within a speci�c range. To verify this
hypothesis, we prepared elastomer composites with speci�c regions with MoS2 �llers, then mixed them
with graphite �llers and another region with no �llers. Figure S4 shows that MoS2 and graphite �ller
regions have lower and higher average temperatures than the polymer region respectively. This is
attributed to the distinctive emissivity of different regions of the sample. Thus, any tramp material that is
present in a polymer composite sample thus can be identi�ed via infrared thermography.

3.2. Thermal Diffusivity and Dispersion Index of Polymer
Composites
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Thermal diffusivity mapping was done using ASTM E1461-Standard Test Method for Thermal Diffusivity
by the Flash Method. For the same weight percent, the dispersion level of graphite �llers is different in
samples prepared by different methods (hand, planetary, or batch mixing). Using a pulsed thermal source
(SpotIR heater), the rear face temperature was recorded by a Fluke RSE600 IR thermal camera. The
halftime (  required from the initiation of the pulse for the rear face temperature from baseline to its
maximum is required to measure thermal diffusivity, α. Using the following Eq. (2), thermal diffusivity can
be measured:

2
………………………………….…..

where L is the thickness of the sample. As the IR camera divides the whole image into 640x480 pixels, by
analyzing every pixel we obtained the thermal diffusivity of the sample. Thereby, the dispersion index (DI)
is calculated from thermal diffusivity to quantify the homogenization/dispersion of composites.
Dispersion index is given by (Eq. 3):

3
………………………………….…..
where  and  denotes the minimum and maximum thermal diffusivity of the sample. DI varies
between 0 and 1, a value close to 0 means uniform �ller dispersion.

Three different mixing methods (Hand, Planetary, and Batch mixing) were used to compare the dispersion
of the samples and thus ensure the quality of homogeneity of these methods. By taking the average
temperature over the whole sample area, the average thermal diffusivity of each sample is obtained (Fig.
5). The dispersion index for hand, planetary, and batch mixing were 0.163, 0.0865, and 0.07, respectively,
determined from the highest and minimum thermal diffusivity. This ensures that batch mixing
outperforms planetary in terms of �ller homogeneity, while planetary outperforms hand-mixing.

3.3. Curing and Thermal Characteristics of Polymer
Composites
Polymer composites show a quick temperature change (exothermic reaction) signifying a transition from
a viscous �uid to a solid during curing. A customized 3D printed chamber (3x4x2 mm3) was used as a
sample holder and then constant heat was provided via the heater (Fig. 6a). The trend for maximum
temperature reached by Polydimethylsiloxane (PDMS)-MoS2, then PDMS without �ller, and PDMS with
larger �ller respectively. So, curing can be determined when the constant maximum temperature deviates

t1/2)

α =
0.13879L

2

t0.5

DI = 1 −
αmin

αmax

αmin αmax



Page 9/18

rapidly. While PDMS-Graphene and PDMS Graphite Flake (PDMS G Flake) cure in about 950s, PDMS
(without �ller) takes 500s to cure (Fig. 6b). MoS2 takes about 520 seconds to cure, compared to 800
seconds for PDMS Graphite Powder (PDMS G Powder). The rapid change in temperature or curing is
shown in Fig. 6c-e for different composites. As a result, this method can show how �llers affect the curing
of composites at the microscale, which is di�cult to do with traditional techniques like differential
scanning calorimetry.

Figure 6f-g shows the heating and cooling curve of polymer composites, and it provides the real-time
average temperature over the whole sample area. Dragon skin polymer without �llers reaches a
maximum temperature change of ~ 14 oC at 30s from room temperature, whereas the temperature
change increases (~ 24 oC to ~ 28 oC) when the graphite percentages increase from 2.5 to 7.5 at 30s.
This is due to the reason for �ller addition in the polymer matrix (graphite has higher thermal conductivity
than elastomer) and thus increases the total heat transfer into the composites. Agglomerated �ller
composites have different thermal conductivity than homogenous/well-dispersed composites. Well-
dispersed graphite �ake can transfer the heat to the polymer matrix and thus the average temperature
decreases in planetary samples than in normal hand-mixing samples. A similar trend was also found
from the thermal characteristics of 2.5%-7.5% G Planetary samples, but temperature change increases
from ~ 17 oC to ~ 25 oC at 30s. For a well-dispersed sample like planetary mixing, the temperature change
at 30s will be within a range for a speci�c weight percentage. So, obtaining the front surface temperature
of the sample (either targeting a smaller surface area or a larger surface area) can indicate the quality of
the sample. The thermal characteristics of two 40% G Eco�ex samples were also shown in Fig. S5. As the
sample fabrication of the two samples was different, the temperature change (deviation of ~ 3.5 oC at
30s) was different. As a result, thermal behavior employing infrared thermography and comparing it with
a standard sample might be an excellent platform to examine good or bad quality composite samples in
a manufacturing line.

Conclusion
Thermal signatures from composites at the micro-scale can provide important information about
micro/nanocomposite performance. In our experiment, using micro-scale thermal images and machine
learning, we analyzed the dispersion, thermal diffusivity, curing, and dispersion index of
graphite/graphene-based composites in the range from 2.5% to 40% weight ratio for different mixing
techniques. For dispersion, batch mixing showed better homogeneity than planetary and hand mixing.
The dispersion index for batch, planetary, and hand mixing for 40% graphite samples were 0.07, 0.0865,
and 0.163 respectively. Tramp material/void/�aw detection in polymer composite was investigated with
this machine learning-based model. Curing phenomenon of polymer with different �llers was also
analyzed, and it has been shown that the curing time differs due to the �ller type and size within the
polymer matrix. Thus, infrared thermography integrating with our machine learning model (SDFN) can be
a great non-destructive tool for aerospace and industrial applications where composite quality can be
measured automatically both qualitatively and quantitatively in a real-time fashion.
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Figures

Figure 1

(a) Setup for dispersion and thermal characteristics analysis for polymer composites via infrared
thermography, (b) Schematic of thermal diffusivity testing for polymer composites.
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Figure 2

Thermal image, corresponding predicted, and true image for (a) 2.5% G Planetary, (b) 2.5% G Hand, (c)
10% G Planetary, (d) 10% G Hand. Thermal image is manually fed in image processing to remove
artifacts or voids or blurriness (scale bar = 1000 microns, enclosing red circle area remarks artifact due to
container mark, enclosing rectangle area remarks void area). The predicted image is then fed into
machine learning to obtain the true fabrication. By feeding a few thermal signatures, this machine
learning can show true fabrication in a really quick manner.
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Figure 3

(a-b) SEM image showing graphene morphology in 40% G Batch sample at different locations, (c) Raman
spectroscopy of 40% G Batch sample.
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Figure 4

Thermal image obtained for 40% G Batch mixing (out of focus at the top left corner), (b-d) corresponding
predicted image, true and binary image obtained via machine learning and image processing (removed
the blurriness due to out of focus) of the thermal image in (a), (e) Dispersion (%) of different mixing
process calculated from the area pixels of the composites.
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Figure 5

Thermal Diffusivity of 40% G Eco�ex prepared by (a) Hand mixing, (b) Planetary mixing, (c) Batch mixing,
(d) Dispersion index (DI) comparison of hand, planetary, and batch mixing.
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Figure 6

(a) schematic of micro-scale curing analysis using nichrome wire in a 3D printed chamber. (b) Curing
analysis of different �llers with PDMS polymer (vertical double arrow line depicts curing. Rapid
temperature change during curing for (c) PDMS G Powder, (d) PDMS MoS2, (e) PDMS Graphene, and
PDMS G Flake. Thermal characteristics curve of 2.5%, 5%, 7.5%, 10% G Samples (each sample was
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heated by a SpotIR heater for 30 seconds and then cooled down for another 30 seconds) prepared by (f)
Hand mixing & (g) Planetary mixing.
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