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Abstract

As technology advances, whole genome sequencing (WGS) is likely to supersede other 

genotyping technologies. The rate of this change depends on its relative cost and utility. Variants 

identified uniquely through WGS may reveal novel biological pathways underlying complex 

disorders and provide high-resolution insight into when, where, and in which cell type these 

pathways are affected. Alternatively, cheaper and less computationally intensive approaches may 

yield equivalent insights. Understanding the role of rare variants in the noncoding gene-regulating 

genome, through pilot WGS projects, will be critical to determine which of these two extremes 

best represents reality. With large cohorts, well-defined risk loci, and a compelling need to 

understand the underlying biology, psychiatric disorders have a role to play in this preliminary 

WGS assessment. The WGSPD consortium will integrate data for 18,000 individuals with 

psychiatric disorders, beginning with autism spectrum disorder, schizophrenia, bipolar disorder, 

and major depressive disorder, along with over 150,000 controls.

Genetic variation is a major contributor to neuropsychiatric disorders. The variants 

responsible likely include the complete range of sizes, from single nucleotides to large 

structural variants, and the full spectrum of population frequency, from common variants to 

rare variants unique to a family or individual. For severe, early onset neuropsychiatric 

disorders, such as autism spectrum disorder (ASD) and schizophrenia, natural selection 

limits the population frequency of variants so that variants with larger effect sizes are 

extremely rare1,2. Over the past decade, genomic technologies have advanced our 

understanding of neuropsychiatric disorders, yet remaining limitations in technology and 

cohort sizes have limited progress in identifying inherited rare variants.

Genome-wide association studies (GWAS) using genotyping arrays have detected over 100 

regions (loci) at which common genetic variants (population frequency ≥2%), are associated 

with a psychiatric diagnosis (Table 1). Individually, these variants exert small effects and 

thus require very large sample sizes for detection (Table 1). Common risk variants can 

provide a window into the molecular architecture of these disorders. For example, common 

variants suggest a previously unrecognized role for the complement cascade in 

schizophrenia3.

Exome sequencing, which identifies genetic variants in the ~1% of the genome that encodes 

proteins, has identified over 50 genes in ASD (Table 1). The majority of this discovery was 

through de novo protein truncating variants (PTVs) observed in a patient but not in either 

unaffected parent. Such mutations are very rare, e.g. population frequency ≤0.000002%, but 

they can have large effect sizes, up to a ~50-fold increase in risk. As with common variation, 

these very rare variants have advanced our understanding of the etiology of these disorders, 

for example by implicating chromatin remodeling in ASD4,5.

Although much remains to be discovered, these results have yielded critical starting points 

for studies of pathogenesis,6,7 and indicate the feasibility and importance of discovering 

sufficient additional variation to fully delineate the key biological pathways underlying these 

disorders.

Sanders et al. Page 2

Nat Neurosci. Author manuscript; available in PMC 2021 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Insights from whole genome sequencing

By assaying most of the genome at single nucleotide resolution, WGS holds the potential to 

extend rare variant discovery to the ~99% of the genome that is noncoding (Box 1). While 

GWAS identifies common noncoding variants, the rare noncoding variants assayed by WGS 

might have substantially higher effect sizes1, increasing tractability for biological 

experimentation. WGS also enables detection of most structural variation including 

translocations, inversions, and copy number variants (CNVs)8,9. Furthermore, WGS can 

improve detection of common variants in existing GWAS by statistically inferring SNPs not 

directly genotyped (imputation) and identifying the specific risk variants within a risk region 

(fine mapping). Similarly, WGS data may allow detection of common structural variants, 

including CNVs, that can be missed by current SNP-based approaches10, facilitating 

common CNV association studies.

The role of noncoding variation

There is considerable evidence that noncoding variation influences brain function and 

neuropsychiatric disorders. Over 90% of disease-associated GWAS loci discovered by 

assaying common variants map to noncoding regions11,12. In humans, at least 4% of the 

noncoding genome has been under strong purifying selection13. Additionally, epigenomic 

studies have identified many functional noncoding elements involved in regulation of gene 

expression underlying neurogenesis, cell differentiation, and neurodevelopment14.

Noncoding variation influences which exons are expressed within a gene, in which cells, and 

under what circumstances. While such insights can be gained from gene association15, 

noncoding variation studies should increase the resolution of such analyses by identifying 

regulatory regions of genes restricted to fewer cell types, developmental periods, or brain 

regions. Given the multiple biological roles (pleiotropy) of genes implicated in psychiatric 

disorders, such WGS-derived hypotheses may be critical for biological follow-up.

The role of rare noncoding variation

While common noncoding variation clearly plays a role in neuropsychiatric disorders, the 

role of rare noncoding variation is less clear. A pessimist could note that in Mendelian 

disorders few linkage peaks were resolved to noncoding causal variants and that systematic 

deletion of noncoding regions proximate to the HPRT1 gene (Lesch–Nyhan syndrome) had 

little impact on protein activity16. In contrast, an optimist could argue that Fragile X, the first 

psychiatric linkage peak resolved to a gene, is a triplet repeat expansion in the 5` 

untranslated region (UTR) of the FMRP gene, and that there are several clear examples of 

Mendelian traits (e.g. OCA2 enhancer in eye color) and disorders (e.g. TBX5 enhancer in 

congenital heart disease) with penetrant noncoding variants17.

The role and utility of rare variation in the noncoding genome is likely to be a function of 

the number of noncoding regions that, when mutated, disrupt gene expression or function to 

a high degree. While this can be estimated in model systems, there will be experimental 

confounds (e.g. species, cell type, developmental stage) that limit interpretation. Direct 
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analysis of WGS offers a complementary and irreplaceable approach to identify and 

characterize the role of rare noncoding variants in human disease.

WGS technology is sufficiently novel that we cannot accurately evaluate its potential in 

neuropsychiatric disorders without generating pilot data in human cohorts. It may implicate 

novel biological pathways missed by previous genomic efforts and identify disease-

associated regulatory elements specific to certain cell types, developmental stages, or brain 

regions. Alternatively, WGS may prove less efficient than cheaper methods in identifying 

experimentally actionable disease-associated variation. Optimal allocation of future 

resources rests on efforts, such as the WGSPD, that seriously test the utility of WGS.

Estimating our ability to find rare noncoding variants

Finding disease-associated loci or variants by WGS will prove more challenging than with 

GWAS or WES. With WGS there are two orders of magnitude more sites to consider (~3 

billion) compared to potential loci in GWAS (~20 million) or variants in WES (~30 million). 

Furthermore, we cannot predict functional changes, e.g., to transcriptional rate, in the 

straightforward way we can predict changes to amino acids from coding variation.

To evaluate our power to detect noncoding variants in WGS data, we estimated the power to 

detect de novo protein truncating variants that contribute to risk in ASD4,18,19 if they were in 

the noncoding genome. Without any additional information to help us distinguish signal 

from noise, for every one risk-mediating variant in the WGS data there would be about 

25,000 non-risk variants (a ratio of 1:25000, Table S2). By only considering variants with 

some evidence of functional effect (e.g. conservation) or proximity to a gene with genome-

wide significant association to ASD, we would expect to reduce the noise of non-risk 

variants, making the risk-mediating variant signal easier to detect. We considered a range of 

annotation scenarios, from an optimistic 1:5 to a pessimistic 1:500 (see Table S2). Moreover, 

we do not know what penetrance to expect for these noncoding variants so we considered a 

wide range, shown as relative risk. For context, the highest relative risks for common 

variants and de novo mutations in psychiatric disorders are about 1.3 and 50, respectively.

We first considered our ability to detect an overall excess of noncoding variants between 

cases and controls (a burden analysis). Such an analysis could identify a class of variants 

that mediate risk in psychiatric disorders, for example promoters in proximity to ASD-

associated genes, providing insight into regions of the noncoding genome most likely to 

yield specific risk variants for neuropsychiatric disorders. Since there is no clear category of 

noncoding variation equivalent to de novo protein truncating variants, we adjusted for testing 

1,000 annotation categories. The results for de novo and case-control analyses are shown in 

Figure 1a and 1b respectively (see Supplemental Methods).

We next considered our ability to identify a specific genetic variant, functional element, or 

group of functional elements (e.g. enhancers that regulate one gene) associated with risk that 

could be assessed in larger patient cohorts. The results for de novo and case-control analyses 

are shown in Figure 1c and 1d respectively (see Supplemental Methods).
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From these analyses, it is clear that we will need: 1) large cohorts, and 2) methods to 

decrease background noise (to obtain a high risk to non-risk ratio), e.g. through predicting 

functional effects or regulation of known risk loci.

Why perform WGS in psychiatric disorders?

Given current uncertainty over the utility of WGS, we could wait until WGS for non-

psychiatric phenotypes provide sufficient insight to enable better power analyses. However, 

even large case-control cohorts may not be informative of the utility of WGS in ASD, for 

which de novo mutations have provided a more efficient approach to identifying specific 

genes and genetic loci6,20 (Figure 1). Additionally, there is a pressing need to identify 

specific cell types, tissues, and developmental stages involved in brain-based disorders due 

to the complexity of the nervous system, limited understanding of how molecular changes 

lead to disorder, and difficulty in interpreting model systems. In short, the potential benefits 

of WGS in psychiatric disorders may be greater than in other phenotypes and the availability 

of family-based cohorts may offer insights otherwise unobtainable.

Implications for neuroscientists

Interpreting the biology downstream of variants identified by existing WES and GWAS 

analyses remains a challenge; this is especially true in neuroscience due to the inaccessibility 

and complexity of neural tissue.

The interface of human genetics and neuroscience has typically focused on rare, highly 

penetrant variants that permit generation of transgenic animals with a robust 

phenotype5,21–24. Neuroscientists now face the challenge of obtaining biological insights 

through investigation of the multiple weakly penetrant variants, identified through modern 

genomics, that act through unknown neurological mechanisms, in a manner highly 

dependent on genetic background25. Noncoding variants will pose yet harder challenges. 

Their effect sizes are likely to be small, and the relevant biology likely to be restricted to 

specific cell types, developmental stages, or cell states. Analysis of 3D chromatin structure 

must often be performed to identify the genes that a noncoding variant regulates. Finally, a 

proportion of noncoding variants may have human-specific functions absent in model 

organisms. For example, human accelerated regions (HARs), which are conserved across 

multiple species but differ within humans, are enriched for homozygous variants in 

consanguineous ASD cases26.

Notwithstanding such challenges, many variants identified by genomic technologies have 

strong evidence of association with the disorders, creating a foundation for investigating 

pathogenesis. Furthermore, the presence of numerous variants allows systems analyses that 

identify biological convergences5, thus generating mechanistic hypotheses.
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Strategies to improve locus discovery in WGS

Sample selection:

As with other genomic technologies, large sample sizes will be key (see Figure 1 and S2); 

the simplest way to achieve large cohorts will be through case-control studies, see Table 2.

Several recent studies have shown an excess of deleterious variants in isolated populations 
that have expanded rapidly following recent bottlenecks27–30, including deletions of the 

TOP3B gene, associated with schizophrenia and intellectual disability29, in ~3% of 

individuals in Northern Finland compared to 0.05% in other European populations. Large 
multiplex pedigrees with multiple affected individuals may be enriched for rare, inherited 

variants with high effect sizes31,32. Simplex pedigrees, with only one affected individual, 

are enriched for de novo mutations with very high effect sizes given the lack of exposure to 

natural selection. This strategy has succeeded in severe early-onset disorders, including ID 

and ASD4,6,19,33. Finally, consanguineous pedigrees may be enriched for homozygous 

variants that, like de novo mutations, are extremely rare with very high relative risks26,34,35. 

Homozygous variants may also play a role in non-consanguineous cases (Table S4) and have 

been found to contribute to risk in some outbred ASD families36,37. Determining which of 

these sample selection strategies will be most successful will require WGS pilot projects 

under each strategy.

Integrating phenotypic data:

Broadly, two contrasting approaches have been employed in integrating phenotypes in 

genomic studies, both with the aim of improving statistical power: 1) Combining clinically- 

or genetically-related diagnoses to increase sample size; and 2) Subdividing cohorts by 

shared phenotypes to decrease heterogeneity of the underlying genetics (subtyping or 

endophenotypes). GWAS data demonstrate substantial common variant sharing across 

current conventional diagnostic categories, e.g., bipolar disorder and schizophrenia38. 

Similarly, genes identified by de novo mutations are frequently shared between ASD, 

intellectual disability, and developmental delay4,19. Thus, combining data from related 

diagnoses, can increase sample size, hastening variant discovery39.

The alternative approach, dividing by shared phenotypes, was critical for discovery of 

Mendelian disorders by linkage methods, in which mis-classifying one individual could 

prevent discovery. However, such an approach is risky for common, non-Mendelian 

psychiatric disorders given: 1) current lack of insight into relevant subtypes; and 2) reduced 

sample size. A GWAS based on ~2,500 cases in the Simons Simplex Collection ASD cohort 

showed no improvement in the proportion of genetic heritability explained by the top SNPs 

accounting for changes in sample size for over 10 phenotypic characteristics40. In contrast, a 

GWAS of a nonpsychiatric phenotype, bone mineral density, showed benefits of 

subgrouping, leading to the identification of 16 new loci41.

Phenotypic subtyping also poses practical challenges. Genetic analysis is comparatively 

cheap, while deep phenotyping is cumbersome and costly, effectively diminishing sample 

size. The relative ease of using pre-existing cohorts and registries to inexpensively boost 

sample size has favored “phenotype-light” sample collection. This balance could be shifted 
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by the adoption of consistent phenotyping schema42,43, identification of reliable 

neuropsychiatric biomarkers, or utilization of electronic medical records. Several large-scale 

initiatives are already working in this direction, for example deCODE44, UK biobank45, 

Geisinger46, and the All of Us Research Program (formerly the Precision Medicine 

Initiative).

Identifying functional variants:

Our assessment of statistical power (Figure 1) shows that distinguishing variants that are 

likely to be functional and risk-mediating (i.e. high risk to non-risk ratio) will maximize 

discovery of specific noncoding variants. Several strategies might help.

Annotating the noncoding genome:

Annotations may predict functional variants, including: 1) Conservation of DNA sequence 

across species; 2) Regions of open chromatin, where DNA is exposed allowing proteins to 

bind (detected by DNase-Seq or ATAC-Seq); 3) Regions of active chromatin, where 

epigenetic marks suggest transcription of a nearby gene (detected by ChIP-Seq); 4) 

Transcription factor binding sites (detected by ChIP-Seq); and 5) Predicting the 

regulatory gene target using proximity to the variant (<40% accurate47) or physical 

interactions with target loci (e.g. ChIA-Pet) or genome-wide (e.g. Hi-C, 5C)47. Of note, 

many of these annotations may be tissue and developmental stage specific48–51.

Large-scale endeavors such as ENCODE52 and the Roadmap Epigenome Consortium 

(REC)53 have created a reference for human epigenome annotation. Parallel efforts focused 

on brain tissue, such as the PsychENCODE Consortium54, will help extend these 

resources55.

Cataloguing human variation:

Building a database of human variation has proven invaluable in interpreting the coding 

genome56 and the Genome Aggregation Database (gnomAD, http://

gnomad.broadinstitute.org) extends this approach to WGS. Such data can be used to 

estimate regions of constraint, (with less variation than expected), suggesting 

functionality57–59.

Regions associated with psychiatric disorders:

GWAS and WES have defined specific regions of the genome that contribute to psychiatric 

disorders, particularly in ASD4,6,19 and schizophrenia7. It is plausible that noncoding 

variation in proximity to these regions will be enriched for risk-mediating variants.

Large variants:

On average, large variants, especially deletions, have greater potential to mediate risk than 

small variants6. However, while large indels and small CNVs may have a greater impact on 

noncoding function, there are considerably fewer such variants compared to SNVs8. The 

utility of this strategy will depend on the balance between these two opposing effects.
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Functional validation:

Methods have been developed to assess the functional effects of large numbers of potential 

regulatory regions. These Massively Parallel Reporter Assays (MPRA)60, including Self-

Transcribing Active Regulatory Region Sequencing (STARR-Seq)61, assess the function of a 

regulatory region by its potential to transcribe itself, or a specific sequence of DNA 

(barcode). Of note, this ability to functionally validate noncoding variants en masse is a 

major benefit over interpreting coding missense variants, for which protein-specific 

functional assays are usually required.

The Whole Genome Sequencing Consortium for Psychiatric Disorders 

(WGSPD)

The potential for WGS to help understand neuropsychiatric disorders, and the absence of 

insight into the role of rare noncoding variants, prompted the United States National Institute 

of Mental Health (NIMH) to fund four pilot projects aimed at generating WGS data in 

neuropsychiatric disorders to provide a more complete understanding of genomic 

architecture.

Big questions in biology are akin to solving problems of similar complexity in other 

disciplines such as particle physics or astronomy and require a ‘Team Science’ approach62. 

Recognizing the need for large samples sizes to make progress (Table 1, Figure 1), the 

NIMH, the Stanley Center for Psychiatric Research, and researchers at 11 academic 

institutions across the USA that were funded in the four selected projects, have formed a 

public-private partnership: the Whole Genome Sequencing Consortium for Psychiatric 

Disorders (WGSPD). This consortium aims to establish a repository of WGS data, processed 

in a consistent manner, to facilitate large-scale analyses within and across four psychiatric 

disorders (Figure 2). This approach can make more efficient use of funding and resources, 

for example, by using a central data repository, consistent analysis pipelines, and 

collaborative methods development to help all researchers access and use the data.

The WGSPD will need to expand, both beyond the founding members and these four 

disorders. Investigators with relevant WGS data will be invited to join the WGSPD and 

participate in working groups focused on specific disorders or cross-disorder projects. Given 

the scale of WGS data, the cost of reprocessing the data in a consistent manner and storing 

the data will be substantial. Establishing a suitable funding strategy for such genomic 

integration is a key question that needs to be addressed urgently throughout the genomics 

community. In a first step to improve this, WGS analysis pipelines have been coordinated 

across several major sequencing centers and consortia (e.g. CCDG, TOPMed, WGSPD) to 

allow direct comparison of results. To obtain the sample sizes necessary (Figure 1), a similar 

consensus will need to be established internationally.

Cloud-based analysis

The sheer scale of WGS datasets necessitates new models for data analysis, since data 

storage and computation is likely to be beyond the resources at any single institution. 

Fortunately, the development of cloud-based computing has coincided with the generation of 
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WGS data. Under this model, a single cloud-based data repository can be accessed by teams 

at each collaborating site, and cloud-based analysis eliminates the need for cumbersome and 

costly downloads. This approach has the further advantage of facilitating the sharing of 

preinstalled algorithms and pipelines, encouraging consistent consortium-wide analysis.

The scale of WGS data can make simple analytical tasks overwhelming. Therefore, the 

WGSPD is committed to developing Application Program Interfaces (APIs) and software 

solutions for the wider community to simplify cloud-based data access (e.g. hail63). In doing 

so, computational biologists and analysts can focus on the development and application of 

methods for analysis, rather than on lower level data management and handling.

The analysis of deidentified genetic data on university-hosted remote servers is common 

practice, with contributing sites being responsible for securing non-genetic identifying 

information. So long as cloud environments meet equivalent security standards to existing 

remote servers, then existing informed consent will cover this use, except in rare instances 

where the consent specifically excludes this approach. Best practice guidelines for secure 

sharing of genomic data have been described by the NIH: https://www.ncbi.nlm.nih.gov/

projects/gap/pdf/dbgap_2b_security_procedures.pdf. There is an urgent need for methods 

that allow such guidelines to be easily adopted and readily vetted across cloud providers and 

institutions.

The WGSPD projects and data

The four WGSPD projects, developed by independent sets of investigators, encompass the 

diverse strategies for improving locus discovery and therefore will provide some of the 

earliest opportunities to assess their relative utility in complex disorders. The four projects 

are:

1) Case-control analysis of schizophrenia and bipolar disorder in individuals of 

African American ancestry.

2) Family-based analysis of ASD in families with a single affected child, allowing 

the detection of de novo mutations.

3) Case-control analysis of schizophrenia or bipolar disorder in isolated 

populations with recent population bottlenecks.

4) Family-based analysis of schizophrenia, bipolar disorder, or major depression in 

families with multiple affected individuals.

Combining these WGS cohorts with consistently processed WGS data from other consortia 

will yield an initial dataset of 183,000 individuals, including 18,000 cases and 165,000 

controls (Table 2). In addition to the genotype data, we are collating phenotype data that are 

comparable across projects, disorders, and ages to allow in-depth genotype-phenotype 

analysis.
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Conclusion

The noncoding genome remains largely unexplored and major discoveries undoubtedly 

await intrepid explorers. Whole genome sequencing of neuropsychiatric cases and controls 

provides an important avenue in this exploration, potentially offering high resolution insight 

into the developmental stages, brain regions, cell types, and biological functions that 

underlie these disorders. If the cost of sequencing continues to fall, it is inevitable that WGS 

will ultimately replace both microarray and WES – the key question is at what price point 

this transition offers a good return for investment. Pooling preliminary WGS data between 

researchers and across disorders offers the most efficient mechanism to make this 

determination.

The creation of the WGSPD has allowed numerous researchers to pursue diverse scientific 

approaches on multiple psychiatric disorders, while simultaneously working towards a 

harmonized data set for integrated analysis. The pooling of expertise, methods, and data will 

accelerate progress towards understanding genetic contributions to brain development, 

function, and pathology and create a resource that will continue to yield scientific and 

clinical insights for years to come.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1:

Types of genetic variation reliably detected by genomic technologies

Karyotype (≤1% common; ≤1% rare): Chromosomal aneuploidies, massive structural 

variation (e.g. translocations, inversions, CNVs of millions of nucleotides), some fragile 

sites with special protocols.

Microarray (~90% common; ~1% rare): Protein coding and noncoding common 

SNVs, large rare CNVs (over ~20,000 nucleotides).

Exome sequencing (~1% common; ~1% rare): Protein coding common SNVs and 

indels, protein coding rare SNVs and indels, some CNVs.

Low coverage WGS (~95% common; ~85% rare): Protein coding and noncoding 

common SNVs, most protein coding and noncoding rare SNVs.

Deep coverage WGS (~99% common; ~99% rare): Protein coding and noncoding 

common SNVs and indels, protein coding and noncoding rare SNVs and indels, rare and 

common CNVs (over ~1,000 nucleotides), multi-allelic CNVs (e.g. over 3 copies), 

mobile element insertions, other structural variation (e.g. translocations, inversions)

Long-read (>10,000bp), deep coverage WGS (100% common; 100% rare): As for 

deep coverage WGS plus: small CNVs (50–1,000 nucleotides), complex structural 

variation, variants in repetitive DNA, direct assessment of phasing (whether two variants 

are on the same allele)

SNV: Single nucleotide variant

Indel: Insertion/Deletion (gain or loss of ≤50bp)

CNV: Copy number variant (gain or loss of >50bp)
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Figure 1. Statistical power in the noncoding genome.
We estimated the power at a significance threshold (alpha) of 5 × 10−5, selected to account 

for 1,000 categories of noncoding variants, to detect an excess of noncoding variants at 

122,500 risk loci in cases vs. controls as we varied the relative risk and risk:non-risk ratio, 

which represents annotation quality (Table S2). In a) we assessed the power for detecting an 

excess of de novo mutations in 5,000 cases vs. 5,000 controls as the relative risk increases. 

With a risk:non-risk ratio of 1:20, approximately equivalent to assessing protein truncating 

variants in the coding genome, we achieve >80% power with a relative risk of 5. In b) the 

power to detect an excess burden of rare variants (allele frequency ≤0.1%) is assessed in 

20,000 cases vs. 20,000 controls. In c) we assessed the power to identify an excess of de 
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novo mutations at a specific genomic locus, e.g. the noncoding region regulating a single 

gene. Consequently, we set the significance threshold (alpha) at 2.5×10−6. In d) we assessed 

the power to identify an excess of rare variants (allele frequency ≤0.1%) at a specific 

nucleotide (alpha = 1.7×10−11), since this yielded better power than testing for burden at a 

locus (alpha = 2.5×10−6).
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Figure 2. 
Overview of the WGSPD.
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Table 1.

The largest genomic studies to date in autism spectrum disorder, schizophrenia, bipolar disorder, and major 

depression.

Study
design Platform Variant

detected Disorder Patients Controls Genome-
wide hits Reference

Case-control

Genotyping 
microarray

SNP (GWAS)

ASD 16,539 157,234 1
Anney et al, Mol Autism, 
201764

SCZ 36,989 113,075 108 Ripke et al, Nature 20147

BPD 11,974 51,792 2
Sklar et al, Nature Genetics 
201139

MDD 121,380 338,101 15
Hyde et al, Nature Genetics 
201665

CNV

SCZ 21,094 20,227 8
Marshall et al, Nature 
Genetics 201766

BPD 9,129 81,802 1
Green et al, Mol Psychiatry 
201567

MDD 2,591 8,842 0
Rucker et al, Biol Psychiatry 
201568

Exome 
sequencing

Rare PTV 
mutation

ASD 5,563 1,881 0 Sanders et al, Neuron 20156

SCZ 2,536 2,543 0 Purcell et al, Nature 201469

Ultra rare PTV 
mutation SCZ 4,877 6,203 0

Genovese et al Nature 
Neuroscience 201670

Family-based

Genotyping 
microarray CNV ASD 4,687 2,100 8 Sanders et al, Neuron 20156

Exome 
sequencing

De novo PTV 
mutation

ASD 5,563 1,881 65 Sanders et al, Neuron 20156

SCZ 617 731 0 Fromer et al, Nature 201471

Meta-
analysis

Exome 
sequencing

Rare and de 
novo PTV 
mutations

SCZ 7,776 13,028 1
Singh et al, Nature 
Neuroscience 201672

SNP, single nucleotide polymorphism; CNV, copy number variant; PTV, protein-truncating variant. ASD, autism spectrum disorder; SCZ, 
schizophrenia; BPD, bipolar disorder; MDD, major depressive disorder.
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Table 2.

Individuals with WGS data generated by, or accessible to, the WGSPD.

Data being generated by the WGSPD

Project Disorder Cases Controls Details

1 Schizophrenia 3,333 1,667 Case-control analysis; African American ancestry

1 Bipolar Disorder 3,333 1,667 Case-control analysis; African American ancestry

2 ASD 378 1,512 Simplex families with two parents, affected child, unaffected child

2 Schizophrenia 281 843 Families with two parents and one or more affected children

3 Schizophrenia 1,000 1,400 Case-control analysis of individuals from Finland

3 Bipolar Disorder 1,000 500 Case-control analysis of individuals from Finland

3 Schizophrenia 650 325 Case-control analysis of individuals from Netherlands

3 Bipolar Disorder 650 325 Case-control analysis of individuals from Netherlands

3 Bipolar Disorder 62 138 Multiplex families with affected and unaffected from Colombia

3 Bipolar Disorder 83 170 Multiplex families with affected and unaffected from Costa Rica

4 Schizophrenia 271 280 Multiplex families with affected and unaffected

4 Bipolar Disorder 299 309 Multiplex families with affected and unaffected

4 Major depression 476 492 Multiplex families with affected and unaffected

Data being generated by other funding mechanisms with consistent analysis pipelines

Disorder Cases Controls Details

ASD* 5,302 15,856 Families with two parents, affected child, +/− unaffected child

ASD* 150 150 Multiplex families with affected and unaffected

Schizophrenia 118 198 Multiplex families with affected and unaffected

Bipolar Disorder 118 198 Multiplex families with affected and unaffected

Major depression 478 804 Multiplex families with affected and unaffected

TOPMed
† 0 68,950 Heart, lung, blood and sleep disorders

CCDG
† 0 63,950 Heart, vascular, lung, bowel, neurological, and endocrine disorders

Totals 17,957 165,834

*
ASD samples are being generated by several groups: Centers for Common Disease Genomics (CCDG) of the National Human Genome Research 

Institute (NHGRI), Simons Foundation Autism Research Initiative (SFARI)73, Autism Sequencing Consortium (ASC)74.

†
6,100 samples are shared between Trans-Omics for Precision Medicine (TOPMed) of the National Heart, Lung, and Blood Institute (NHLBI) and 

CCDG, therefore the total number of samples was reduced by 3,050 for each cohort. These cohorts are composed of individuals ascertained for 
non-psychiatric disorders and for whom their psychiatric disorder status is generally unknown.
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