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Genome-wide meta-analysis of 241,258 adults
accounting for smoking behaviour identifies novel
loci for obesity traits
Anne E. Justice et al.#

Few genome-wide association studies (GWAS) account for environmental exposures, like

smoking, potentially impacting the overall trait variance when investigating the genetic

contribution to obesity-related traits. Here, we use GWAS data from 51,080 current smokers

and 190,178 nonsmokers (87% European descent) to identify loci influencing BMI and central

adiposity, measured as waist circumference and waist-to-hip ratio both adjusted for BMI. We

identify 23 novel genetic loci, and 9 loci with convincing evidence of gene-smoking interaction

(GxSMK) on obesity-related traits. We show consistent direction of effect for all identified

loci and significance for 18 novel and for 5 interaction loci in an independent study sample.

These loci highlight novel biological functions, including response to oxidative stress,

addictive behaviour, and regulatory functions emphasizing the importance of accounting for

environment in genetic analyses. Our results suggest that tobacco smoking may alter the

genetic susceptibility to overall adiposity and body fat distribution.

Correspondence and requests for materials should be addressed to A.E.J. (email: anne.justice@unc.edu) or to L.A.C. (email: adrienne@bu.edu).
#A full list of authors and their affiliations appears at the end of the paper.
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R
ecent genome-wide association studies (GWAS) have
described loci implicated in obesity, body mass index
(BMI) and central adiposity. Yet most studies have ignored

environmental exposures with possibly large impacts on the trait
variance1,2. Variants that exert genetic effects on obesity through
interactions with environmental exposures often remain
undiscovered due to heterogeneous main effects and stringent
significance thresholds. Thus, studies may miss genetic variants
that have effects in subgroups of the population, such as
smokers3.

It is often noted that currently smoking individuals display
lower weight/BMI and higher waist circumference (WC) as
compared to nonsmokers4–6. Smokers also have the smallest
fluctuations in weight over B20 years compared to those who
have never smoked or have stopped smoking7,8. Also, heavy
smokers (420 cigarettes per day [CPD]) and those that have
smoked for more than 20 years are at greater risk for obesity than
non-smokers or light to moderate smokers (o20 CPD)9,10. Men
and women gain weight rapidly after smoking cessation and
many people intentionally smoke for weight management11. It
remains unclear why smoking cessation leads to weight gain or
why long-term smokers maintain weight throughout adulthood,
although studies suggest that tobacco use suppresses appetite12,13

or alternatively, smoking may result in an increased metabolic
rate12,13. Identifying genes that influence adiposity and interact
with smoking may help us clarify pathways through which
smoking influences weight and central adiposity13.

A comprehensive study that evaluates smoking in conjunction
with genetic contributions is warranted. Using GWAS data from
the Genetic Investigation of Anthropometric Traits (GIANT)
Consortium, we identified 23 novel genetic loci, and 9 loci with
convincing evidence of gene-smoking interaction (GxSMK) on
obesity, assessed by BMI and central obesity independent of overall
body size, assessed by WC adjusted for BMI (WCadjBMI) and
waist-to-hip ratio adjusted for BMI (WHRadjBMI). By accounting
for smoking status, we focus both on genetic variants observed
through their main effects and GxSMK effects to increase our
understanding of their action on adiposity-related traits. These loci
highlight novel biological functions, including response to
oxidative stress, addictive behaviour and regulatory functions
emphasizing the importance of accounting for environment in
genetic analyses. Our results suggest that smoking may alter the
genetic susceptibility to overall adiposity and body fat distribution.

Results
GWAS discovery overview. We meta-analysed study-specific
association results from 57 Hapmap-imputed GWAS and 22
studies with Metabochip, including up to 241,258 (87% European
descent) individuals (51,080 current smokers and 190,178
nonsmokers) while accounting for current smoking (SMK)
(Methods section, Supplementary Fig. 1, Supplementary
Tables 1–4). For primary analyses, we conducted meta-analyses
across ancestries and sexes. For secondary analyses, we conducted
meta-analyses in European-descent studies alone and sex-specific
meta-analyses (Tables 1–4, Supplementary Data 1–6). We con-
sidered four analytical approaches to evaluate the effects of
smoking on genetic associations with adiposity traits (Fig. 1,
Methods section). Approach 1 (SNPadjSMK) examined genetic
associations after adjusting for SMK. Approach 2 (SNPjoint)
considered the joint impact of main effects adjusted for SMKþ
interaction effects14. Approach 3 focused on interaction effects
(SNPint); Approach 4 followed up loci from Approach 1 for
interaction effects (SNPscreen). Results from Approaches
1–3 were considered genome-wide significant (GWS) with a
P-valueo5� 10� 8 while Approach 4 used Bonferroni
adjustment after screening. Lead variants 4500 kb from

previous associations with BMI, WCadjBMI, and WHRadjBMI
were considered novel. All association results are reported with
effect estimates oriented on the trait increasing allele in the
current smoking stratum.

Across the three adiposity traits, we identified 23 novel
associated genetic loci (6 for BMI, 11 for WCadjBMI, 6 for
WHRadjBMI) and nine having significant GxSMK interaction
effects (2 for BMI, 2 for WCadjBMI, 5 for WHRadjBMI;
Fig. 1, Tables 1–4, Supplementary Data 1–6). We provide a
comprehensive comparison with previously-identified loci1,2

by trait in supplementary material (Supplementary Data 7,
Supplementary Note 1).

Accounting for smoking status. For primary meta-analyses of
BMI (combined ancestries and sexes), 58 loci reached GWS in
Approach 1 (SNPadjSMK; Supplementary Data 1, Supplementary
Figs 2 and 3), including two novel loci near SOX11, and SRRM1P2
(Table 1). Three more BMI loci were identified using Approach 2
(SNPjoint), including a novel locus near CCDC93 (Supplementary
Figs 4 and 5). For WCadjBMI, 62 loci reached GWS for Approach
1 (SNPadjSMK) and two more for Approach 2 (SNPjoint),
including eight novel loci near KIF1B, HDLBP, DOCK3,
ADAMTS3, CDK6, GSDMC, TMEM38B and ARFGEF2 (Table 1,
Supplementary Data 2, Supplementary Figs 2–5). Lead variants
near PSMB10 from Approaches 1 and 2 (rs14178 and rs113090,
respectively) are 4500 kb from a previously-identified
WCadjBMI-associated variant (rs16957304); however, after
conditioning on the known variant, our signal is attenuated
(PConditional¼ 3.02� 10� 2 and PConditional¼ 5.22� 10� 3), indi-
cating that this finding is not novel. For WHRadjBMI, 32 loci were
identified in Approach 1 (SNPadjSMK), including one novel locus
near HLA-C, with no additional loci in Approach 2 (SNPjoint;
Table 1, Supplementary Data 3, Supplementary Figs 2–5).

We used GCTA15 to identify loci from our primary meta-
analyses that harbour multiple independent SNPs (Methods
section, Supplementary Tables 5–7). Conditional analyses
revealed no secondary signals within 500 kb of our novel
lead SNPs. Additionally, we performed conditional association
analyses to determine whether our novel variants were
independent of previous GWAS loci within 500 kb that are
associated with related traits of interest. All BMI-associated SNPs
were independent of previously identified GWS associations
with anthropometric and obesity-related traits. Seven novel loci
for WCadjBMI were near previous associations with related
anthropometric traits. Of these, association signals for rs6743226
near HDLBP, rs10269774 near CDK6, and rs6012558 near
ARFGEF2 were attenuated (PConditional41E� 5 and b decreased
by half) after conditioning on at least one nearby height and
hip circumference adjusted for BMI (HIPadjBMI) SNP,
but association signals remained independent of other related
SNP-trait associations. For WHRadjBMI, our GWAS signal was
attenuated by conditioning on two known height variants
(rs6457374 and rs2247056), but remained significant in other
conditional analyses. Given high correlations among waist, hip
and height, these results are not surprising.

Several additional loci were identified for Approaches 1 and 2
in secondary meta-analysis (Table 2, Supplementary Data 1–6,
Supplementary Fig. 6). For BMI, 2 novel loci were identified by
Approach 1, including 1 near EPHA3 and 1 near INADL. For
WCadjBMI, 2 novel loci were identified near RAI14 and PRNP.
For WHRadjBMI, five novel loci were identified in secondary
meta-analyses near BBX, TRBI1, EHMT2, SMIM2 and EYA4.
A comprehensive summary of nearby genes for all novel loci and
their potential biological relevance is available in Supplementary
Note 2.
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Figure 3 presents analytical power for Approaches 1 and 2
while Supplementary Table 8 and Supplementary Fig. 7 present
simulation results to evaluate type 1 error (Methods section). A
heat map cross-tabulates P-values for Approaches 1 and 2 along
with Approach 3 examining interaction only (Supplementary
Fig. 8). We demonstrate that the two approaches yield valid type
1 error rates and that Approach 1 can be more powerful to find
associations given zero or negligible quantitative interactions,
whereas Approach 2 is more efficient in finding associations
when interaction exists.

Modification of genetic predisposition by smoking. Approach
3 directly evaluated GxSMK interaction (SNPint; Table 3,
Supplementary Data 1–6, Fig. 2, Supplementary Figs 9 and 10).
For primary meta-analysis of BMI, two loci reached GWS
including a previously identified GxSMK interaction locus near
CHRNB4 (ref. 3), and a novel locus near INPP4B. Both loci
exhibit GWS effects on BMI in smokers and no effects in
nonsmokers. For CHRNB4 (cholinergic nicotine receptor B4), the
variant minor allele (G) exhibits a decreasing effect on BMI in
current smokers (bsmk¼ � 0.047) but no effect in nonsmokers
(bnonsmk¼ 0.002). Previous studies identified nearby SNPs in
high LD associated with smoking (nonsynonymous, rs16969968
in CHRNA5)3 and arterial calcification (rs3825807, a missense
variant in ADAMTS7)16. Conditioning on these variants
attenuated our interaction effect but did not eliminate it
(Supplementary Table 7), suggesting a complex relationship
between smoking, obesity, heart disease, and genetic variants in
this region. Importantly, the CHRNA5-CHRNA3-CHRNB4 gene

cluster has been associated with lower BMI in current smokers3,
but with higher BMI in never smokers3, evidence supporting the
lack of association in nonsmokers as well as a lack of previous
GWAS findings on 15q25 (Supplementary Data 8)1. The
CHRNA5-CHRNA3-CHRNB4 genes encode the nicotinic
acetylcholine receptor (nAChR) subunits a3, a5 and b4, which
are expressed in the central nervous system17. Nicotine has
differing effects on the body and brain, causing changes in
metabolism and feeding behaviours18. These findings suggest
smoking exposure may modify genetic effects on 15q24-25 to
influence smoking-related diseases, such as obesity, through
distinct pathways.

In primary meta-analyses of WCadjBMI, one novel GWS locus
(near GRIN2A) with opposite effect directions by smoking status
was identified for Approach 3 (SNPint; Table 3, Supplementary
Data 2, Fig. 2, Supplementary Figs 9 and 10). The T allele of
rs4141488 increases WCadjBMI in current smokers and decreases
it in nonsmokers (bsmk¼ 0.037, bnonsmk¼ � 0.015). In
secondary meta-analysis of European women-only, we identified
an interaction between rs6076699, near PRNP, and SMK on
WCadjBMI (Table 4, Supplementary Data 5, Supplementary
Fig. 6), a locus also identified in Approach 2 (SNPjoint) for
European women. The major allele, A, has a positive effect on
current smokers as compared to a weaker and negative effect
on WC in nonsmokers (bsmk¼ 0.169, bnonsmk¼ � 0.070),
suggesting why this variant remained undetected in previous
GWAS of WCadjBMI (Supplementary Data 8).

Approach 4 (SNPscreen; Fig. 1, Methods section) evaluated
GxSMK interactions after screening SNPadjSMK results (from
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Figure 1 | Summary of study design and results. Approach 1 uses both SNP and SMK in the association model. Approaches 2 and 3 use the SMK-stratified

meta-analyses. Approach 4 screens loci based on Approach 1, then uses SMK-stratified results to identify loci with significant interaction effects

(Methods section).
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Approach 1) using Bonferroni-correction (Methods section,
Tables 3–4, Supplementary Data 1–6). We identified two SNPs,
near LYPLAL1 and RSPO3, with significant interaction; both have
previously published main effects on anthropometric traits. These
loci exhibit effects on WHRadjBMI in nonsmokers, but not in
smokers (Fig. 2). In secondary meta-analyses, we identified
three known loci with significant GxSMK interaction effects
on WHRadjBMI near MAP3K1, HOXC4-HOXC6 and JUND
(Table 4, Supplementary Data 3 and 6). We identified rs1809420,
near CHRNA5-CHRNA3-CHRNB4, for BMI in the men-only,
combined-ancestries meta-analysis (Supplementary Data 1).

Power calculations demonstrate that Approach 4 has increased
power to identify SNPs that show (i) an effect in one stratum
(smokers or nonsmokers) and a less pronounced but concordant
effect in the other stratum, or (ii) an effect in the larger
nonsmoker stratum and no effect in smokers (Fig. 3). In contrast,
Approach 3 has increased power for SNPs that show (i) an effect
in the smaller smoker stratum and no effect in nonsmokers, or
(ii) an opposite effect between smokers and nonsmokers (Fig. 3).
Our findings for both approaches agree with these power
predictions, supporting using both analytical approaches to
identify GxSMK interactions.

Enrichment of genetic effects by smoking status. When exam-
ining the smoking specific effects for BMI and WCadjBMI loci in
our meta-analyses, no significant enrichment of genetic effects by
smoking status were noted. (Fig. 2, Supplementary Figs 11 and 12).
However, our results for WHRadjBMI were enriched for loci
with a stronger effect in nonsmokers as compared to smokers,
with 35 of 45 loci displaying numerically larger effects in
nonsmokers (Pbinomial¼ 1.2� 10� 4).

We calculated the variance explained by subsets of SNPs
selected on 15 significance thresholds for Approach 1 from
PSNPadjSMK¼ 1� 10� 8 to PSNPadjSMK¼ 0.1 (Supplementary
Table 9, Fig. 4). Differences in variance explained between smokers
and nonsmokers were significant (PRsqDiffo0.003¼ 0.05/15,
Bonferroni-corrected for 15 thresholds) for BMI at each
threshold, with more variance explained in smokers. For
WCadjBMI, the difference was significant for SNP sets beginning
with PSNPadjSMKZ3.16� 10� 4, and for WHRadjBMI at
PSNPadjSMKZ1� 10� 6. In contrast to BMI, SNPs from Approach
1 explained a greater proportion of the variance in nonsmokers

for WHRadjBMI. Differences in variance explained were greatest
for BMI (differences ranged from 1.8 to 21% for smokers)
and lowest for WHRadjBMI (ranging from 0.3 to 8.8% for
nonsmokers).

These results suggest that smoking may increase genetic
susceptibility to overall adiposity, but attenuate genetic effects
on body fat distribution. This contrast is concordant with
phenotypic observations of higher overall adiposity and lower
central adiposity in smokers4,6,7. Additionally, smoking increases
oxidative stress and general inflammation in the body19 and may
exacerbate weight gain20. Many genes implicated in BMI are
involved in appetite regulation and feeding behaviour1. For waist
traits, our results adjusted for BMI likely highlight distinct
pathways through which smoking alters genetic susceptibility to
body fat distribution. Overall, our results indicate that more loci
remain to be discovered as more variance in the trait can be
explained as we drop the threshold for significance.

Functional or biological role of novel loci. We conducted
thorough searches of the literature and publicly available
bioinformatics databases to understand the functional role of all
genes within 500 kb of our lead SNPs. We systematically
explored the potential role of our novel loci in affecting gene
expression both with and without accounting for the influence of
smoking behaviour (Methods section, Supplementary Note 3,
Supplementary Tables 10–12).

We found the majority of novel loci are near strong candidate
genes with biological functions similar to previously identified
adiposity-related loci, including regulation of body fat/weight,
angiogenesis/adipogenesis, glucose and lipid homeostasis, general
growth and development. (Supplementary Notes 1 and 3).

We identified rs17396340 for WCadjBMI (Approaches 1 and 2),
an intronic variant in the KIF1B gene. This variant is associated
with expression of KIF1B in whole blood with and without
accounting for SMK (GTeX and Supplementary Tables 10 and 12)
and is highly expressed in the brain21. Knockout and mutant forms
of KIF1B in mice resulted in multiple brain abnormalities,
including hippocampus morphology22, a region involved in
(food) memory and cognition23. Variant rs17396340 is
associated with expression levels of ARSA in LCL tissue. Human
adipocytes express functional ARSA, which turns dopamine sulfate
into active dopamine. Dopamine regulates appetite through leptin
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and adiponectin levels, suggesting a role for ARSA in regulating
appetite24.

Expression of CD47 (CD47 molecule), near rs670752 for
WHRadjBMI (Approach 1, women-only), is significantly
decreased in obese individuals and negatively correlated with
BMI, WC and Hip circumference25. Conversely, in mouse
models, CD47-deficient mice show decreased weight gain on
high-fat diets, increased energy expenditure, improved glucose
profile and decreased inflammation26.

Several novel loci harbour genes involved in unique biological
functions and pathways including addictive behaviours and
response to oxidative stress. These potential candidate genes
near our association signals are highly expressed in relevant
tissues for regulation of adiposity and smoking behaviour
(for example, brain, adipose tissue, liver, lung and muscle;
Supplementary Note 2, Supplementary Table 10).

The CHRNA5-CHRNA3-CHRNB4 cluster is involved in
the eNOS signalling pathway (Ingenuity KnowledgeBase,

http://www.ingenuity.com) that is key for neutralizing reactive
oxygen species introduced by tobacco smoke and obesity27.
Disruption of this pathway has been associated with
dysregulation of adiponectin in adipocytes of obese mice,
implicating this pathway in downstream effects on weight
regulation27,28. This finding is especially important due to the
compounded stress adiposity places on the body as it increases
chronic oxidative stress itself28. INPP4B has been implicated in
the regulation of the PI3K/Akt signalling pathway29 that is
important for cellular growth and proliferation, but also eNOS
signalling, carbohydrate metabolism, and angiogenesis30.

GRIN2A, near rs4141488, controls long-term memory
and learning through regulation and efficiency of synaptic
transmission31 and has been associated with heroin addiction32.
Nicotine increases the expression of GRIN2A in the prefrontal
cortex in murine models33. There are no established relationships
between GRIN2A and obesity-related phenotypes in the literature,
yet memantine and ketamine, pharmacological antagonists of
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GRIN2A activity34,35, are implicated in treatment for obesity-
associated disorders, including binge-eating disorders and
morbid obesity (ClinicalTrials.gov identifiers: NCT00330655,
NCT02334059, NCT01997515, NCT01724983). Memantine is
under clinical investigation for treatment of nicotine dependence
(ClinicalTrials.gov identifiers: NCT01535040, NCT00136786 and
NCT00136747). While our lead SNP is not within a characterized
gene, rs4141488 and variants in high LD (r240.7) are within
active enhancer regions for several tissues, including liver, fetal leg
muscle, smooth stomach and intestinal muscle, cortex and several
embryonic and pluripotent cell types (Supplementary Note 2),

and therefore may represent an important regulatory region for
nearby genes like GRIN2A.

In secondary meta-analysis of European women-only, we
identified a significant GxSMK interaction for rs6076699 on
WCadjBMI (Table 4, Supplementary Data 4, Supplementary
Fig. 6). This SNP is 100 kb upstream of PRNP (prion protein),
a signalling transducer involved in multiple biological processes
related to the nervous system, immune system, and other cellular
functions (Supplementary Note 2)36. Alternate forms of the
oligomers may form in response to oxidative stress caused by
copper exposure37. Copper is present in cigarette smoke and
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Figure 4 | Stratum specific estimates of variance explained. Total smoking status-specific explained variance (±s.e.) by SNPs meeting varying

thresholds of overall association in Approach 1 (SNPadjSMK) and the difference between the proportion of variance explained between smokers and

nonsmokers for these same sets of SNPs in BMI (a,b), WCadjBMI (c,d), and for WHRadjBMI (e,f).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14977

6 NATURE COMMUNICATIONS | 8:14977 | DOI: 10.1038/ncomms14977 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


elevated in the serum of smokers, but is within safe ranges38,39.
Another gene near rs6076699, SLC23A2 (Solute Carrier Family 23
(Ascorbic Acid Transporter), Member 2), is essential for the
uptake and transport of Vitamin C, an important nutrient for
DNA and cellular repair in response to oxidative stress both
directly and through supporting the repair of Vitamin E after
exposure to oxidative agents40,41. SLC23A2 is present in the
adrenal glands and murine models indicate that it plays an
important role in regulating dopamine levels42. This region is
associated with success in smoking cessation and is implicated in
addictive behaviours in general43,44. Our tag SNP is located
within an active enhancer region (marked by open chromatin
marks, DNAse hypersentivity, and transcription factor binding
motifs); this regulatory activity appears tissue specific
(sex-specific tissues and lungs; HaploReg and UCSC Genome
Browser).

Nicotinamide mononucleotide adenylyltransferease (NMNAT1),
upstream of WCadjBMI variant rs17396340, is responsible for
the synthesis of NAD from ATP and NMN45. NAD is necessary
for cellular repair following oxidative stress. Upregulation of
NMNAT protects against damage caused by reactive oxygen
species in the brain, specifically the hippocampus46. Also for
WCadjBMI, both CDK6, near SNP rs10269774, and FAM49B,
near SNP rs6470765, are targets of the BACH1 transcription
factor, involved in cellular response to oxidative stress and
management of the cell cycle47.

Influence of novel loci on related traits. In a look-up in existing
GWAS of smoking behaviours (Ever/Never, Current/Not-
Current, Smoking Quantity (SQ))48 (Supplementary Data 8),
eight of our 26 SNPs were nominally associated with at least one
smoking trait. After multiple test correction (PRegressiono0.05/
26¼ 0.0019), only one SNP remains significant: rs12902602,
identified for Approaches 2 (SNPjoint) and 3 (SNPint) for BMI,
showed association with SQ (P¼ 1.45� 10� 9).

We conducted a search in the NHGRI-EBI GWAS Catalog49,50

to determine if any of our newly identified loci are in high LD
with variants associated with related cardiometabolic and
behavioural traits or diseases. Of the seven novel BMI SNPs,
only rs12902602 was in high LD (r240.7) with SNPs previously
associated with smoking-related traits (for example, nicotine
dependence), lung cancer, and cardiovascular diseases (for
example, coronary heart disease; Supplementary Table 13).
Of the 12 novel WCadjBMI SNPs, 5 were in high LD with

previously reported GWAS variants for mean platelet
volume, height, infant length, and melanoma. Of the six novel
WHRadjBMI SNPs, three were near several previously associated
variants, including cardiometabolic traits (for example, LDL
cholesterol, triglycerides and measures of renal function).

Given high phenotypic correlation between WC and WHR
with height, and established shared genetic associations that
overlap our adiposity traits and height1,2,51 we expect cross-trait
associations between our novel loci and height. Therefore,
we conducted a look-up of all of our novel SNPs to
identify overlapping association signals (Supplementary Data 8).
No novel BMI loci were significantly associated with height
(PRegressiono0.002(0.05/24) SNPs). However, there are additional
variants that may be associated with height, but not previously
reported in GWAS examining height, including two for
WHRadjBMI near EYA4 and TRIB1, and two for WCadjBMI
near KIF1B and HDLBP (PRegressiono0.002).

Finally, as smoking has a negative (weight decreasing) effect on
BMI, it is likely that smoking-associated genetic variants have an
effect on BMI in current smokers. Therefore, we expected that
smoking-associated SNPs exhibit some interaction with smoking
on BMI. We looked up published smoking behaviour SNPs49,50,
10 variants in 6 loci, in our own results. Two variants reached
nominal significance (PSNPinto0.05) for GxSMK interaction
on BMI (Supplementary Table 14), but only one reached
Bonferroni-corrected significance (Po0.005). No smoking-
associated SNPs exhibited GxSMK interaction. Therefore, we
did not see a strong enrichment for low interaction P values
among previously identified smoking loci.

Validation of novel loci. We pursued validation of our novel and
interaction SNPs in an independent study sample of up to
119,644 European adults from the UK Biobank study (Tables 1–4,
Supplementary Table 15, Supplementary Fig. 9). We found con-
sistent directions of effects in smoking strata (for Approaches 2
and 3) and in SNPadjSMK results (Approach 1) for each locus
examined (Supplementary Fig. 13). For BMI, three SNPs were
not GWS (PSNPadjSMK, PSNPjoint, PSNPInt45E� 8) following meta-
analysis with our GIANT results: rs12629427 near EPAH3
(Approach 1); rs1809420 within a known locus near ADAMTS7
(Approach 4) remained significant for interaction, but not for
SNPadjSMK; and rs336396 near INPP4B (Approach 3). For
WCadjBMI, 3 SNPs were not GWS (PSNPadjSMK, PSNPjoint,
PSNPInt45E� 8) following meta-analysis with our results:

Table 1 | Summary of association results for novel loci reaching genome-wide significance in Approach (App) 1 (PSNPadjSMK

o5E�8) or Approach 2 (PSNPjoint o5E�8) for our primary meta-analysis in combined ancestries and combined sexes.

App Marker Chr:Pos
(hg19)

Nearest
Gene

N EAF Alleles
E/O

Smokers Non-smokers Main and interaction effects GIANTþUKBB

b P-value b P-value badj PSNPadjSMK PSNPint PSNPjoint PSNPadjSMK PSNPint PSNPjoint

BMI
1,2 rs10929925 2:6155557 SOX11 225,067 0.55 C/A 0.019 7.80E�03 0.02 8.40E�08 0.020 1.1E�09 8.2E�01 1.6E�08 1.5E� 13 4.5E�01 9.8E� 13

1 rs6794880 3:84451512 SRRM1P2 186,968 0.85 A/G 0.025 2.30E�02 0.027 3.90E�06 0.028 4.3E�08 8.5E�01 1.8E�06 4.9E�09 4.5E�01 9.7E�08

2 rs13069244 3:180441172 CCDC39 233,776 0.08 A/G 0.061 1.80E�05 0.031 6.60E�05 0.035 1.2E�07 4.6E�02 3.5E�08 6.1E� 10 1.1E�02 9.6E� 11

WCadjBMI
1,2 rs17396340 1:10286176 KIF1B 206,485 0.14 A/G 0.016 1.40E�01 0.035 4.70E� 10 0.028 3.0E�08 9.8E�02 9.1E� 10 1.0E� 11 2.9E�02 1.5E� 13

1,2 rs6743226 2:242236972 HDLBP 200,666 0.53 C/T 0.018 1.30E�02 0.023 2.60E�09 0.022 1.2E� 10 5.5E�01 5.8E� 10 6.7E� 12 7.0E�01 2.8E� 11

1 rs4378999 3:51208646 DOCK3 156,566 0.13 T/A 0.035 1.30E�02 0.035 1.30E�06 0.036 4.1E�08 9.7E�01 4.1E�07 7.6E� 11 5.3E�01 3.2E� 10

1,2 rs7697556 4:73515313 ADAMTS3 206,017 0.49 T/C 0.004 6.30E�01 0.025 7.30E� 11 0.021 5.2E�09 6.7E�03 7.6E� 10 5.4E� 19 1.9E�02 2.7E� 19

1 rs10269774 7:92253972 CDK6 157,552 0.34 A/G 0.024 6.60E�03 0.023 1.10E�06 0.023 2.9E�08 8.8E�01 1.6E�07 2.9E� 10 7.7E�01 2.1E�09

1 rs6470765 8:130736697 GSDMC 157,450 0.76 A/C 0.032 1.90E�03 0.023 1.70E�05 0.026 4.8E�08 4.3E�01 9.5E�07 2.5E� 12 8.9E�01 9.0E� 11

2 rs9408815 9:108890521 TMEM38B 156,427 0.75 C/G 0.012 2.30E�01 0.03 4.20E�09 0.026 2.3E�08 8.5E�02 1.7E�08 1.2E� 11 3.0E�01 2.8E� 11

1 rs9409082 9:108901049 157,785 0.76 C/T 0.017 8.10E�02 0.029 2.60E�08 0.027 1.5E�08 2.7E�01 4.6E�08 9.5E� 12 6.6E�01 6.5E� 11

1 rs6012558 20:47531286 ARFGEF2 208,004 0.41 A/G 0.026 5.40E�04 0.018 6.50E�06 0.020 1.9E�08 3.3E�01 1.3E�07 1.5E�09 7.0E�02 3.0E�09

WHRadjBMI
1,2 rs1049281 6:31236567 HLA-C 149,285 0.66 C/T 0.022 1.30E�02 0.027 2.00E�08 0.025 2.2E�09 5.6E�01 5.3E�09 1.2E� 18 8.3E�01 1.8E� 10

Adj, adjusted for smoking; app, approach; int, interaction; chr, chromosome; EAF, effect allele frequency; E/O, effect/other; Pos, position (bp). Significant P-values that reach genome-wide significance
(Po5� 10� 8) threshold are in bold.
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rs1545348 near RAI14 (Approach 1); rs4141488 near GRIN2A
(Approach 3); and rs6012558 near PRNP (Approach 3). For
WHRadjBMI, only 1 SNP from Approach 4 was not significant
following meta-analysis with our results: rs12608504 near
JUND remained GWS for SNPadjSMK, but was only nominally
significant for interaction (PSNPint¼ 0.013).

Challenges in accounting for environmental exposures in GWAS.
A possible limitation of our study may be the definition and
harmonization of smoking status. We chose to stratify on current
smoking status without consideration of type of smoking
(for example, cigarette, pipe) for two reasons. First, focusing on
weight alone, former smokers tend to return to their expected
weight quickly following smoking cessation7,13,52. Second, this
definition allowed us to maximize sample size, as many
participating studies only had current smoking status available.
However, WC and WHR may not behave in the same manner
as weight and BMI with former smokers retaining excess fat
around their waist. Thus, results may differ with alternative
harmonization of smoking exposure.

Another limitation may be potential bias in our effect estimates
when adjusting for a correlated covariate (for example, collider
bias)53. This phenomenon is of particular concern when the
correlation between the outcome and the covariate is high and
when significant genetic associations occur with both traits in
opposite directions. Our analyses adjusted both WC and WHR
for BMI. WHR has a correlation of 0.49 with BMI, while WC has

a correlation of 0.85 (ref. 53). Using previously published results
for BMI, WCadjBMI and WHRadjBMI, we find three novel loci
for WCadjBMI (near DOCK3, ARFGEF2 and TMEM38B) and
two for WHRadjBMI (near EHMT2 and HLA-C; Supplementary
Data 8) with nominally significant associations with BMI and
opposite directions of effect. At these loci, the genetic effect
estimates should be interpreted with caution. Additionally, we
adjusted for SMK in Approach 1 (SNPadjSMK). However binary
smoking status, as we used, has a low correlation to BMI, WC,
and WHR, as estimated in the ARIC study’s European descent
participants (� 0.13, 0.08 and 0.12, respectively) and in the
Framingham Heart Study (� 0.05, 0.08 and 0.16). Additionally,
there are no loci identified in Approach 1 (SNPadjSMK) that
are associated with any smoking behaviour trait and that exhibit
an opposite direction of effect from that identified in our
adiposity traits (Supplementary Data 8). We therefore preclude
potential collider bias and postulate true gain in power through
SMK-adjustment at these loci.

To assess how much additional information is provided by
accounting for SMK and GxSMK in GWAS for obesity traits, we
compared genetic risk scores (GRSs) based on various subsets of
lead SNP genotypes in various regression models (Methods
section). While any GRS was associated with its obesity trait
(PGRSo1.6� 10� 7, Supplementary Table 16), adding SMK and
GxSMK terms to the regression model along with novel variants
to the GRSs substantially increased variance explained. For
example, variance explained increased by 38% for BMI (from

Table 2 | Novel loci showing significant association in Approaches 1 (SNPadjSMK) and/or 2 (SNPjoint) identified in secondary
meta-analyses and not significant in primary meta-analyses.

Approach:
Strata

Marker Chr:Pos
(hg19)

Nearest
Gene

N EAF Alleles
E/O

Smokers Non-smokers Main and interaction effects GIANTþUKBB

b P-value b P-value badj PSNPadj PSNPint PSNPjoint PSNPadjSMK PSNPint PSNPjoint

BMI
1:EC rs2481665 1:62594677 INADL 209,453 0.56 T/C 0.015 4.60E�02 0.021 8.90E�08 0.019 3.50E�08 4.00E�01 6.70E�08 3.3E� 11 7.8E�01 2.0E�08

1:AW rs12629427 3:89145340 EPHA3 137,961 0.26 C/T 0.025 2.10E�02 0.028 3.60E�07 0.027 4.80E�08 8.00E�01 2.00E�07 7.7E�08 9.1E�01 3.0E�07

1:EW rs2173039 3:89142175 117,942 0.26 C/G 0.024 3.10E�02 0.032 8.90E�08 0.031 7.30E�09 5.70E�01 6.50E�08 2.4E�09 9.3E�01 2.2E�07

WCadjBMI
1:EM rs1545348 5:34718343 RAI14 77,677 0.73 T/G 0.044 3.10E�04 0.03 1.90E�05 0.034 1.80E�08 3.20E�01 1.70E�07 1.2E�07 1.2E�01 4.8E�07

2:EW rs6076699 20:4566688 PRNP 76,930 0.97 A/G 0.169 1.40E�05 �0.07 1.20E�04 �0.034 3.50E�02 1.40E�08 4.80E�08 4.2E�02 2.3E�06 3.4E�06

WHRadjBMI
1:AW rs670752 3:107312980 BBX 107,568 0.32 A/G 0.012 5.50E�02 0.009 1.50E�02 0.027 4.90E�08 6.80E�01 7.80E�03 3.1E� 10 3.8E�01 9.5E�05

1:EC rs589428 6:31848220 EHMT2 162,918 0.66 G/T 0.006 1.20E�01 0.011 4.10E�04 0.022 2.80E�08 3.50E�01 7.00E�04 1.1E� 17 8.4E�02 1.6E� 10

2:EC rs1856293 6:133480940 EYA4 127,431 0.52 A/C 0.006 5.30E�01 �0.028 9.10E�09 �0.019 6.50E�06 5.40E�04 4.70E�08 9.6E�08 1.3E�02 1.5E�08

1:AW rs2001945 8:126477978 TRIB1 103,446 0.4 G/C 0.009 1.20E�01 0.013 1.00E�04 0.025 4.70E�08 5.90E�01 1.30E�04 1.1E�09 3.0E�01 1.4E�06

1:EC rs17065323 13:44627788 SMIM2* 69,968 0.01 T/C 0.154 1.90E�01 �0.23 1.20E� 10 �0.181 9.20E�09 1.40E�03 3.90E� 10 9.6E�09 3.6E�03 1.3E�09

A, all ancestries; C, combined sexes; Chr, chromosome; E, European-only; EAF, effect allele frequency; E/O, effect/other; int, interaction; M, men only; Pos, position (bp); Padj, adjusted for smoking;
W, women only.
All estimates are from the stratum specified in the Approach:Sample column.
*This locus was filtered from approaches 2–4 due to low sample size in the SMK strata, and only P values for Approach 1 are considered significant. Significant P-values that reach genome-wide
significance (Po5� 10� 8) threshold are in bold.

Table 3 | Summary of association results for loci showing significance for interaction with smoking in Approach (App) 3 (SNPint)
and/or Approach 4 (SNPscreen) in our primary meta-analyses of combined ancestries and combined sexes.

App Marker Chr:Pos
(hg19)

Nearest
Gene

N EAF Alleles
E/O

Smokers Non-smokers Main and interaction effects GIANTþUKBB

b P-value b P-value badj PSNPadj PSNPint PSNPjoint PSNPadjSMK PSNPint PSNPjoint

BMI
3 rs336396 4:143062811 INPP4B 169,646 0.18 T/C 0.063 4.8E�08 �0.006 3.4E�01 0.007 2.3E�01 2.1E�08 1.9E�07 7.4E�01 2.7E�06 1.3E�05

3 rs12902602* 15:78967401 CHRNB4 240,135 0.62 A/G 0.047 1.8E� 11 �0.002 5.5E�01 0.009 8.6E�03 4.1E� 11 1.1E� 10 1.1E�01 6.0E� 13 1.6E� 12

WCadjBMI
3 rs4141488 16:9629067 GRIN2A 153,892 0.5 T/C 0.037 2.2E�05 �0.015 9.6E�04 �0.003 4.4E�01 2.7E�08 5.0E�07 9.5E�01 1.8E�06 1.1E�05

WHRadjBMI
4 rs765751* 1:219669226 LYPLAL1 189,028 0.64 C/T 0.003 3.9E�01 0.019 3.1E� 11 0.029 3.1E� 16 7.3E�04 2.1E� 10 9.1E� 31 1.4E�04 7.8E� 22

4 rs7766106* 6:127455138 RSPO3 188,174 0.48 T/C 0.007 7.9E�02 0.022 2.2E� 15 0.037 3.7E� 27 9.7E�04 3.8E� 15 4.4E� 51 1.0E�05 3.4E� 34

Adj, adjusted for smoking; app, approach; int, interaction; chr, chromosome; EAF, effect allele frequency; E/O, effect/other; Pos, position (bp).
*Known locus.
Significant P-values after multiple test correction are italicized.
Significant P-values that reach genome-wide significance (Po5� 10�8) threshold are in bold.
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1.53 to 2.11%, PGRSDiff¼ 4.3� 10� 5), by 27% for WCadjBMI
(from 2.59 to 3.29%, PGRSDiff¼ 3.9� 10� 6) and by 168% for
WHRadjBMI (from 0.82 to 2.20%, PGRSDiff¼ 3.2� 10� 11).
Therefore, despite potential limitations, much is gained by
accounting for environmental exposures in GWAS studies.

Discussion
To better understand the effects of smoking on genetic
susceptibility to obesity, we conducted meta-analyses to uncover
genetic variants that may be masked when the environmental
influence of smoking is not considered, and to discover genetic
loci that interact with smoking on adiposity-related traits. We
identified 161 loci in total, including 23 novel loci (6 for BMI, 11
for WCadjBMI, and 6 for WHRadjBMI). While many of our
newly identified loci support the hypothesis that smoking may
influence weight fluctuations through appetite regulation, these
novel loci also have highlighted new biological processes and
pathways implicated in the pathogenesis of obesity.

Importantly, we identified nine loci with convincing evidence of
GxSMK interaction on obesity-related traits. We were able to
replicate the previous GxSMK interaction with BMI within the
CHRNA5-CHRNA3-CHRNB4 gene cluster. One novel BMI-
associated locus near INPP4B and two novel WCadjBMI-associated
loci near GRIN2A and PRNP displayed significant GxSMK
interaction. We were also able to identify significant GxSMK
interaction for one known BMI-associated locus near ADAMTS7
and for five known WHRadjBMI-associated loci near LYPLAL1,
RSPO3, MAP3K1, HOXC4-HOXC6 and JUND. The majority of
these loci harbour strong candidate genes for adiposity with a
possible role for the modulation of effects through tobacco use.

We identified 18 new loci in Approach 1 (PSNPadjSMK) by
adjusting for current smoking status. Our analyses did not allow
us to determine whether these discoveries are due to different
subsets of subjects included in the analyses compared to previous
studies1,2 or due only to adjusting for current smoking.
Adjustment for current smoking in our analyses, however, did
reveal novel associations. Specifically after accounting for
smoking in our analyses, all novel BMI loci exhibit P-values
that are at least one order of magnitude lower than in
previous GIANT investigations, despite smaller samples in the
current analysis2. While sample sizes for both WCadjBMI
and WHRadjBMI are comparable with previous GIANT
investigations, our P values for variants identified in Approach
1 are at least two orders of magnitude lower than previous
findings. Thus, adjustment for smoking may have indeed revealed
new loci. Further, loci identified in Approach 2, including nine

novel loci, suggest that accounting for interaction improves our
ability to detect these loci even in the presence of only modest
evidence of GxSMK interaction.

There are several challenges in validating genetic associations
that account for environmental exposure. In addition to exposure
harmonization and potential bias due to adjustment for smoking
exposure, differences in trait distribution, environmental expo-
sure frequency, ancestry-specific LD patterns and allele frequency
across studies may lead to difficulties in replication, especially for
gene-by-environment studies54. Furthermore, the ‘winner’s curse’
(inflated discovery effects estimates) requires larger sample
sizes for adequate power in replication studies55. Despite these
challenges, we were able to detect consistent direction of effect in
an independent sample for all novel loci. Some results that did
not remain GWS in the GIANTþUKBB meta-analysis had
results that were just under the threshold for significance,
suggesting that a larger sample may be needed to confirm these
results, and thus the associations near INPP4B, GRIN2A, RAI14,
PRNP and JUND should be interpreted with caution.

While we found that effects were not significantly enriched in
smokers for BMI, there is a greater proportion of variance in BMI
explained by variants that are significant for Approach 1
(SNPadjSMK), which may be expected given that there are a
greater number of variants with higher effect estimates in
smokers. For WCadjBMI, there was no enrichment for stronger
effects in one stratum compared to the other for our significant
loci; however, there was a greater proportion of explained
variance in WCadjBMI for loci identified in Approach 1
(SNPadjSMK) in nonsmokers. For WHRadjBMI, there were
significantly more loci that exhibit greater effects in nonsmokers,
and this pattern was mirrored in the variance explained analysis.
The large difference between effects in smokers and nonsmokers
likely explains the sub-GWS levels of our loci in previous GIANT
investigations2. For example, the T allele of rs7697556, 81kb from
the ADAMTS3 gene, was associated with increased WCadjBMI
and exhibits a sixfold greater effect in nonsmokers compared to
smokers, although the interaction effect was only nominal; in
previous GWAS this variant was nearly GWS. These differences
in effect estimates between smokers and nonsmokers may help
explain inconsistent findings in previous analyses that show
central adiposity increases with increased smoking, but is
associated with decreased weight and BMI5,9,10.

Our results support previous findings that implicate genes
involved in transcription and gene expression, appetite regula-
tion, macronutrient metabolism, and glucose homeostasis. Several
of our novel loci have candidate genes within 500 kb of our tag

Table 4 | Summary of association results for loci showing significance for interaction with smoking in Approach 3 (SNPint)
and/or Approach 4 (SNPscreen) in our secondary meta-analyses not identified in primary meta-analyses.

Approach:
Strata

Marker Chr:Pos
(hg19)

Nearest
Gene

N EAF Alleles
E/O

Smokers Non-smokers Main and interaction effects GIANTþUKBB

b P b P badj PSNPadj PSNPint PSNPjoint PSNPadjSMK PSNPint PSNPjoint

BMI
4:AM rs1809420* 15:79056769 ADAMTS7 57,081 0.59 T/C 0.074 9.8E�08 0.023 2.0E�03 0.036 4.9E�08 9.4E�04 5.6E�09 9.8E�05 3.3E� 05 1.9E�07

WCadjBMI
3:EW rs6076699 20:4566688 PRNP 76,930 0.97 A/G 0.169 1.4E�05 �0.07 1.2E�04 �0.034 3.5E�02 1.4E�08 4.8E�08 4.2E�02 2.3E�06 3.4E�06

WHRadjBMI
4:EM rs30000* 5:55803533 MAP3K1 71,424 0.27 G/A 0.002 7.8E�01 0.031 3.7E�08 0.04 1.7E� 10 1.6E�04 2.7E�07 2.7E� 17 3.2E� 07 3.8E� 15

4:AM rs459193* 5:55806751 80,852 0.27 A/G 0.004 5.0E�01 0.034 4.1E� 10 0.043 2.3E� 13 6.8E�05 2.2E�09 3.5E� 20 2.5E� 07 1.6E� 17

4:AM rs2071449* 12:54428011 HOXC4- 70,868 0.37 A/C 0.003 6.0E�01 0.026 1.0E�06 0.034 9.1E�09 1.1E�03 5.7E�06 2.7E� 12 8.0E�04 2.8E�09

4:EM rs754133* 12:54418920 HOXC6 71,136 0.36 A/G 0.003 6.2E�01 0.026 8.2E�07 0.034 3.0E�09 1.1E�03 4.0E�06 2.1E� 12 9.7E� 04 4.0E�09

4:AM rs12608504* 19:18389135 JUND 80,087 0.37 A/G 0.006 2.6E�01 0.025 5.0E�07 0.032 4.7E�09 5.5E�03 1.8E�06 2.9E� 11 1.3E�02 1.6E�08

A, all ancestries; Adj, adjusted for smoking; app, approach; C, combined sexes; Chr, chromosome; E, European-only; EAF, effect allele frequency; E/O, effect/other; int, interaction; M, men only;
Pos, position (bp); W, women only.
All estimates are from the stratum specified in the Approach:Sample column The R2 between the ADAMTS7 (rs1809420) and CHRNB4 variant (rs1290362) in Table 3 is 0.72 (HapMap 2, CEU).
Additionally, the PRNP variant (rs6076699) is the same as the variant that came up from Approach 2 (Table 2).
*Known locus.
Significant P-values after multiple test correction are italicized.
Significant P-values that reach genome-wide significance (Po5� 10�8) threshold are in bold.
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variants that are highly expressed and/or active in brain tissue
(BBX, KIF1B, SOX11 and EPHA3) and, like other obesity-
associated genes, may be involved in previously-identified
pathways linked to neuronal regulation of appetite (KIF1B,
GRIN2A and SLC23A2), adipo/angiogenesis (ANGPTL3 and
TNF) and glucose, lipid and energy homeostasis (CD47, STK25,
STK19, RAGE, AIF1, LYPLAL1, HDLBP, ANGPTL3, DOCK7,
KIF1B, PREX1 and RPS12).

Many our newly identified loci highlight novel biological
functions and pathways where dysregulation may lead to
increased susceptibility to obesity, including response to oxidative
stress, addictive behaviour, and newly identified regulatory
functions. There is a growing body of evidence that supports
the notion that exposure to oxidative stress leads to increased
adiposity, risk of obesity, and poor cardiometabolic out-
comes27,56. Our results for BMI and WCadjBMI, specifically
associations identified near CHRNA5-CHRNA3-CHRNB4, PRNP,
SLC23A2, BACH1 and NMNAT1, highlight new biological
pathways and processes for future examination and may lead to
a greater understanding of how oxidative stress leads to changes
in obesity phenotypes and downstream cardiometabolic risk.

By considering current smoking, we were able to identify 6
novel loci for BMI, 11 for WCadjBMI and 6 for WHRadjBMI,
and highlight novel biological processes and regulatory functions
for genes implicated in increased obesity risk. Eighteen of these
remained significant in our validation with the UK Biobank
sample. We confirmed most established loci in our analyses after
adjustment for smoking status in smaller samples than were
needed in previous discovery analyses. A typical approach in
large-scale GWAS meta-analyses is not to adjust for covariates
such as current smoking; our findings highlight the importance of
accounting for environmental exposures in genetic analyses.

Methods
Study design overview. We applied four approaches to identify genetic loci that
influence adiposity traits by accounting for current tobacco smoking status (Fig. 1).
We defined smokers as those who responded that they were currently smoking;
not current smokers were those that responded ‘no’ to currently smoking. We
evaluated three traits: body mass index (BMI), waist circumference adjusted for
BMI (WCadjBMI), and waist-to-hip ratio adjusted for BMI (WHRadjBMI). Our
first two meta-analytical approaches were aimed at determining whether there are
novel genetic variants that affect adiposity traits by adjusting for SMK
(SNPadjSMK), or by jointly accounting for SMK and for interaction with SMK
(SNPjoint); while Approaches 3 and 4 aimed to determine whether there are
genetic variants that affect adiposity traits through interaction with SMK (SNPint
and SNPscreen) (Fig. 1). Our primary meta-analyses focused on results from all
ancestries, sexes combined. Secondary meta-analyses were performed using the
European-descent populations only, as well as stratified by sex (men-only and
women-only) in all ancestries and in European-descent study populations.

Cohort descriptions and sample sizes. The GIANT consortium was formed by
an international group of researchers interested in understanding the genetic
architecture of anthropometric traits (Supplemental Tables 1–4 for study sample
sizes and descriptive statistics). In total, we included up to 79 studies comprising up
to 241,258 individuals for BMI (51,080 smokers, 190,178 non-smokers), 208,176
for WCadjBMI (43,226 smokers, 164,950 non-smokers), and 189,180 for
WHRadjBMI (40,543 smokers, 148,637 non-smokers) with HapMap II imputed
genome-wide chip data (up to 2.8M SNPs in association analyses), and/or with
genotyped MetaboChip data (B195K SNPs in association analyses). In instances
where studies submitted both Metabochip and GWAS data, these were for non-
overlapping individuals. Each study’s Institutional Review Board has approved this
research and all study participants have provided written informed consent.

Phenotype descriptions. Our study highlights three traits of interest: BMI,
WCadjBMI and WHRadjBMI. Height and weight, used to calculate BMI (kgm� 2),
were measured in all studies; waist and hip circumferences were measured in the
vast majority. For each sex, traits were adjusted using linear regression for age and
age2 (as well as for BMI for WCadjBMI and WHRadjBMI), and (when
appropriate) for study site and principal components to account for ancestry.
Family studies used linear mixed effects models to account for familial
relationships and also conducted analyses for men and women combined including
sex in the model. Phenotype residuals were obtained from the adjustment models

and were inverse normally transformed subsequently to facilitate comparability
across studies and with previously published analyses. The trait transformation was
conducted separately for smokers and nonsmokers for the SMK-stratified model
and using all individuals for the SMK-adjusted model.

Defining smokers. The participating studies have varying levels of information on
smoking, some with a simple binary variable and others with repeated, precise data.
Since the effects of smoking cessation on adiposity appear to be immediate7,8,52,
a binary smoking trait (current smoker versus not current smoker) is used for the
analyses as most studies can readily derive this variable. We did not use a variable
of ‘ever smoker vs. never’ as it increases heterogeneity across studies, thus adding
noise; also this definition would make harmonization across studies difficult.

Genotype identification and imputation. Studies with GWAS array data or
Metabochip array data contributed to the results. Each study applied study-specific
standard exclusions for sample call rate, gender checks, sample heterogeneity and
ethnic group outliers (Supplementary Table 2). For each studies (except those that
employed directly typed MetaboChip genotypes), genome-wide chip data was
imputed to the HapMap II reference data set.

Study level analyses. To obtain study-specific summary statistics used in sub-
sequent meta-analyses, the following linear models (or linear mixed effects models
for studies with families/related individuals) were run separately for men and
women and separately for cases and controls for case-control studies using phe-
notype residuals from the models described above. Studies with family data also
conducted analyses with these models for men and women combined after
accounting for dependency among family members as a function of their kinship
correlations. We assumed an additive genetic model. The analyses were run using
various GWAS software Supplementary Table 2.

SMK-adjusted : TRAIT ¼ b0 þb1SNPþb2SMK

SMK-stratified : TRAIT ¼ b0 þ b1SNP ðrun in current smokers and

nonsmokers separatelyÞ

Quality control of study-specific summary statistics. The aggregated summary
statistics were quality-controlled according to a standardized protocol57. These
included checks for issues with trait transformations, allele frequencies and strand.
Low quality SNPs in each study were excluded for the following criteria: (i) SNPs
with low minor allele count (MACo¼ 5, MAC¼MAF�N) and monomorphic
SNPs, (ii) genotyped SNPs with low SNP call-rate (o95%) or low Hardy-Weinberg
equilibrium test P value (o10� 6), (iii) imputed SNPs with low imputation quality
(MACH-Rsq or OEVAR o0.3, or information score o0.4 for SNPTEST/IMPUTE/
IMPUTE2, or o0.8 for PLINK). To test for issues with relatedness or overlapping
samples and to correct for potential population stratification, the study-specific
standard errors and association P values were genomic control (GC) corrected using
lambda factors (Supplementary Fig. 1). GC correction for GWAS data used all SNPs,
but GC correction for MetaboChip data were restricted to chip QT interval SNPs
only as the chip was enriched for associations with obesity-related traits. Any study-
level GWAS file with a lambda 41.5 was removed from further analyses. While we
established this criterion, no study results were removed for this reason.

Meta-analyses. Meta-analyses used study-specific summary statistics for the
phenotype associations for each of the above models. We used a fixed-effects
inverse variance weighted method for the SNP main effect analyses. All meta-
analyses were run in METAL58. As study results came in two separate batches
(Stage 1 and Stage 2), meta-analyses from the two stages were further meta-
analysed (Stage 1þ Stage 2). A second GC correction was applied to all SNPs when
combining Stage 1 and Stage 2 meta-analyses in the final meta-analysis. First,
Hapmap-imputed GWAS data were meta-analysed together, as were Metabochip
studies. This step was followed by a combined GWASþMetabochip meta-analysis.
For primary analyses, we conducted meta-analyses across ancestries and sexes. For
secondary meta-analyses, we conducted meta-analyses in European-descent studies
alone, and sex-specific meta-analyses. There were two reasons for conducting
secondary meta-analyses. First, both WCadjBMI and WHRadjBMI have been
shown to display sex-specific genetic effects2,59,60. Second, by including
populations from multiple ancestries in our primary meta-analyses, we may be
introducing heterogeneity due to differences in effect sizes, allele frequencies, and
patterns of linkage disequilibrium across ancestries, potentially decreasing power to
detect genetic effects. See Supplementary Fig. 1 for a summary of the primary meta-
analysis study design. The obtained SMK-stratified summary statistics were later
used to calculate summary SNPjoint and SNPint statistics using EasyStrata61.
Briefly, this software implements a two-sample, large sample test of equal
regression parameters between smokers and nonsmokers59 for SNPint and the two
degree of freedom test of main and interaction effects for SNPjoint14.

Lead SNP selection. Before selecting a lead SNP for each locus, SNPs with high
heterogeneity I2Z0.75 or a minimum sample size below 50% of the maximum
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N for each strata (for example, N4 max(N women smokers)/2) were excluded.
Lead SNPs that met significance criteria were selected based on distance
(±500 kb), and we defined the SNP with the lowest P value as the top SNP for a
locus. SNPs that reached genome-wide significance (GWS), but had no other SNPs
within 500 kb with a Po1E-5 (lonely SNPs), were excluded from the SNP selection
process. Two variants were excluded from Approach 2 based on this criterion,
rs2149656 for WCadjBMI and rs2362267 for WHRadjBMI.

Approaches. Figure 1 outlines the four approaches that we used to identify novel
SNPs. The left side of Fig. 1 focuses on the first hypothesis that examines the effect
of SNPs on adiposity traits. Approach 1 considered a linear regression model that
includes the SNP and SMK, thus adjusting for SMK (SNPadjSMK). Summary
SNPadjSMK results were obtained from the SMK-adjusted meta-analysis.
Approach 2 used summary SMK-stratified meta-analysis results14 to consider the
joint hypothesis that a genetic variant has main and/or interaction effects on
outcomes as a 2 degree of freedom test (SNPjoint). For this approach, the null
hypothesis was that there is no main and no interaction effect on the outcome.
Thus, rejection of this hypothesis could be due to either a main effect or an
interaction effect or to both.

The right side of Fig. 1 focuses on our second hypothesis, testing for interaction
of a variant with SMK on adiposity traits as outcomes. Approach 3 used the SMK-
stratified results to directly contrast the regression coefficients for a test of
interaction (SNPint)59. Approach 4 used a screening strategy to evaluate
interaction, whereby the SMK-adjusted main effect results (Approach 1) were
screened for variants significant at the Po5� 10-8 level. These variants were then
carried forward for a test of interaction, comparing the SMK-stratified specific
regression coefficients in the second step (SNPscreen).

In Approaches 1–3 variants significant at Po5� 10� 8 were considered GWS.
In Approach 4 (SNPscreen) variants for which the P value of the test of interaction
is less than 0.05 divided by the number of variants carried forward were considered
significant for interaction. We performed analytical power computations to
demonstrate the usefulness and characteristic of the two interaction Approaches.

Locuszoom plots. Regional association plots were generated for novel loci using
the program Locuszoom (http://locuszoom.sph.umich.edu/) . For each plot, LD
was calculated using a multiethnic sample of the 1000 Genomes Phase I reference
panels62, including EUR, AFR, EAS and AMR. Previous SNP-trait associations
highlighted within the plots include traits of interest (for example, cardiometabolic,
addiction, behaviour and anthropometrics) found in the NHGRI-EMI GWAS
Catalog and supplemented with recent GWAS studies from the literature1,2,51,60.

Conditional analyses. To determine if multiple association signals were present
within a single locus, we used GCTA15 to perform approximate joint conditional
analyses on the SNPadjSMK and SMK- stratified data. The following criteria were
used to select candidate loci for conditional analyses: nearby SNP (±500kb) with
an R240.4 and an association Po1E� 5 for any of our primary analyses. GCTA
uses associations from our meta-analyses and LD estimates from reference data sets
containing individual-level genotypic data to perform the conditional analyses. To
calculate the LD structure, we used two U.S. cohorts, the Atherosclerosis Risk in
Communities (ARIC) study consisting of 9,713 individuals of European descent
and 580 individuals of African American descent, and the Framingham Heart
Study (FramHS) consisting of 8,481 individuals of European ancestry, both studies
imputed to HapMap r22. However, because our primary analyses were conducted
in multiple ancestries, each study supplemented the genetic data using HapMap
reference populations so that the final reference panel was composed of about
1–3% Asians (CHBþ JPT) and 4–6% Africans (YRI for the FramHS) for the entire
reference sample. We extracted each 1MB region surrounding our candidate SNPs,
performed joint approximate conditional analyses, and then repeated the steps for
the appropriate Approach to identify additional association signals.

Many of the SNPs identified in the current analyses were nearby SNPs
previously associated with related anthropometric and obesity traits (for example,
height, visceral adipose tissue). For all lead SNPs near a SNP previously associated
with these traits, GCTA was also used to perform approximate conditional analyses
on the SNPadjSMK and SMK-stratified data in order to determine if the loci
identified here are independent of the previously identified SNP-trait associations.

Power and type I error. In order to illustrate the validity of the approaches with
regards to type 1 error, we conducted simulations. For two MAF, we assumed
standardized stratum-specific outcomes for 50,000 smokers and 180,000
nonsmokers and generated 10,000 simulated stratum-specific effect sizes under the
stratum-specific null hypotheses of ‘no stratum-specific effects’. We applied the
four approaches to the simulated stratum-specific association results and inferred
type 1 error of each approach by visually examining QQ plots and by calculating
type 1 error rates. The type 1 error rates shown reflect the proportion of nominally
significant simulation results for the respective approach. Analytical power
calculations to identify effects for various combinations of SMK- and
NonSMK-specific effects by the Approaches 1–4 again assumed 50,000 smokers
and 180,000 nonsmokers. We first assumed three different fixed effect estimates in
smokers that were small (R2

SMK ¼ 0.01%, similar to the realistic NUDT3 effect on

BMI), medium (R2
SMK ¼ 0.07%, similar to the realistic BDNF effect on BMI) or large

(R2
SMK ¼ 0.34%, similar to the realistic FTO effect on BMI) genetic effects, and

varied the effect in nonsmokers. Second, we assumed fixed (small, medium and
large) effects in nonsmokers and varied the effect in smokers.

Biological summaries. To identify genes that may be implicated in the association
between our lead SNPs (Tables 1–3) and BMI, WHRadjBMI and WCadjBMI, and to
shed light on the complex relationship between genetic variants, SMK and adiposity,
we performed in-depth literature searches on nearby candidate genes. Snipper v1.2
(http://csg.sph.umich.edu/boehnke/snipper/) was used to identify any genes and
cis- or trans-eQTLs within 500 kb of our lead SNPs. All genes identified by Snipper
were manually curated and examined for evidence of relationship with smoking and/
or adiposity. To explore any potential regulatory or function role of the association
regions, loci were also examined using several online bioinformatic tools/databases,
including HaploReg v4.1 (ref. 63), UCSC Genome Browser (http://genome.ucsc.edu/),
GTeX Portal (http://www.gtexportal.org), and RegulomeDB64.

eQTL analyses. We used two approaches to systematically explore the role of
novel loci in regulating gene expression. First, to gain a general overview of the
regulatory role of newly identified GWAS regions, we conducted an eQTL lookup
using 450 eQTL studies65, with specific citations for 4100 data sets included in
the current query for blood cell related eQTL studies and relevant non-blood cell
tissue eQTLs (for example, adipose and brain tissues). Additional eQTL data was
integrated from online sources including ScanDB, the Broad Institute GTEx Portal,
and the Pritchard Lab (eqtl.uchicago.edu). Additional details on the methods,
including study references can be found in Supplementary Note 3. Only significant
cis-eQTLS in high LD with our novel lead SNPs (r240.9, calculated in the
CEUþYRIþCHBþ JPT 1000 Genomes reference panel), or proxy SNPs, were
retained for consideration.

Second, since public databases with eQTL data do not have information available
on current smoking status, we also conducted a cis-eQTL association analysis using
expression results derived from fasting peripheral whole blood using the Human
Exon 1.0 ST Array (Affymetrix, Inc., Santa Clara, CA). The raw expression data were
quantile-normalized, log2 transformed, followed by summarization using Robust
Multi-array Average66 and further adjusted for technical covariates, including the
first principal component of the expression data, batch effect, the all-probeset-mean
residual, blood cell counts, and cohort membership. We evaluated all transcripts
±1Mb around each novel variant in the Framingham Heart Study while accounting
for current smoking status, using the following four approaches similar to those used
in our primary analyses of our traits: (1) eQTL adjusted for SMK, (2) eQTL stratified
by SMK, (3) eQTL� SMK interaction and (4) joint mainþ eQTLxSMK interaction).
Significance level was evaluated by FDRo5% per eQTL analysis and across all loci
identified for that model in the primary meta-analysis. Additional details can be
found in Supplementary Note 3.

Variance-explained estimates. We estimated the phenotypic variance in smokers
and nonsmokers explained by the association signals. For each associated region, we
selected subsets of SNPs within 500 kb of our lead SNPs and based on varying
P value thresholds (ranging from 1� 10� 8 to 0.1) from Approach 1 (SNPadjSMK
model). First, each subset of SNPs was clumped into independent regions to identify
the lead SNP for each region. The variance explained by each subset of SNPs in the
SMK and nonSMK strata was estimated by summing the variance explained by the
individual lead SNPs. Then, we tested for the significance of the differences across
the two strata assuming that the weighted sum of chi-squared distributed variables
tend to a Gaussian distribution ensured by Lyapunov’s central limit theorem67,68.

Smoking behaviour lookups. In order to determine if any of the loci identified in
the current study are associated with smoking behaviour, we conducted a look-up
of all lead SNPs from novel loci and Approach 3 in existing GWAS of smoking
behaviour3. The analysis consists of phasing study-specific GWAS samples
contributing to the smoking behaviour meta-analysis, imputation, association
testing and meta-analysis. To ensure that all SNPs of interest were available in the
smoking GWAS, the program SHAPEIT2 (ref. 69) was used to phase a region
500Kb either side of each lead SNP, and imputation was carried out using
IMPUTE2 (ref. 70) with the 1000 Genomes Phase 3 data set as a reference panel.

Each region was analysed for three smoking related phenotypes: (i) Ever vs
Never smokers, (ii) Current vs Non-current smokers and (iii) a categorical measure
of smoking quantity48. The smoking quantity levels were 0 (defined as 1-10
cigarettes per day [CPD]), 1 (11-20 CPD), 2 (21-30 CPD) and 3 (31 or more CPD).
Each increment represents an increase in smoking quantity of 10 cigarettes per day.
There were 10,058 Never smokers, 13,418 Ever smokers, 11,796 Non-current
smokers, 6,966 Current smokers and 11,436 samples with the SQ phenotypes.
SNPMETA48 was used to perform an inverse-variance weighted fixed effects
meta-analysis across cohorts at all SNPs in each region, and included a single GC
correction. At each SNP, only those cohorts that had an imputation info score
40.5 were included in the meta-analysis.
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Main effects lookup in previous GIANT investigations. To better understand
why our novel variants remained undiscovered in previous investigations that did
not take SMK into account, we also conducted a lookup of our novel variants in
published GWAS results examining genetic main effects on BMI, WC, WCadjBMI,
WHR, WHRadjBMI, and height1,2,51.

GWAS catalog lookups. To further investigate the identified genetic variants in
this study and to gain additional insight into their functionality and possible effects
on related cardiometabolic traits, we searched for previous SNP-trait associations
nearby our lead SNPs. PLINK was used to find all SNPs within 500 kb of any of our
lead SNPs and calculate r2 values using a combined ancestry (AMR, AFR, EUR,
ASN) 1000 Genomes Phase 1 reference panel62 to allow for LD calculation for
SNPs on the Illumina Metabochip and to best estimate LD in our multiethnic
GWAS. All SNPs within the specified regions were compared with the NHGRI-EBI
(National Human Genome Research Institute, European Bioinformatics Institute)
GWAS Catalog, version 1.0 (www.ebi.ac.uk/gwas)49,50 for overlap, and distances
between the two SNPs were calculated using STATA v14, for the chromosome and
base pair positions based on human genome reference build 19. All previous
associations within 500 kb and with an R240.5 with our lead SNP were retained
for further interrogation.

Genetic risk score calculation. We calculated several unweighted genetic risk
scores (GRSs) for each individual in the population-based KORA-S3 and KORA-S4
studies (total N¼ 3,457). We compared GRSs limited to previously known lead
SNPs (see Supplementary Data 7 for lists of previously known lead SNPs) with
GRSs based on previously known and novel lead SNPs from the current study
(see Supplementary Tables 1–4 for lists of novel lead SNPs). Risk scores were tested
for association with the obesity trait using the following linear regression models:
The unadjusted GRS model (TRAIT¼ b0þ b1GRS), the adjusted GRS model
(TRAIT¼ b0þ b1GRSþ b2SMK) and the GRSxSMK interaction model (TRAIT¼
b0þ b1GRSþb2SMKþ b3GRSxSMK). Additionally, we used an F statistic to test
whether the residual sum of squares (RSS) for the full model including GRSxSMK
interaction was significantly different from the reduced model.

Data availability. Summary statistics of all analyses are available at https://
www.broadinstitute.org/collaboration/giant/.
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Charles Kooperberg82, Bernhard K. Krämer42, Johanna Kuusisto144, Kirsti Kvaløy145, Timo A. Lakka43,146,

Claudia Langenberg47, Lenore J. Launer112, Karin Leander106, Nanette R. Lee147,148, Lars Lind149, Cecilia M.

Lindgren17,150, Allan Linneberg151,152,153, Stephane Lobbens26, Marie Loh80,154, Mattias Lorentzon34,

Robert Luben155, Gitta Lubke156, Anja Ludolph-Donislawski54,157, Sara Lupoli30, Pamela A.F. Madden114,
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