
University of Texas Rio Grande Valley University of Texas Rio Grande Valley 

ScholarWorks @ UTRGV ScholarWorks @ UTRGV 

International Business and Entrepreneurship 
Faculty Publications and Presentations 

Robert C. Vackar College of Business & 
Entrepreneurship 

10-3-2022 

Introducing a Linear Empirical Correlation for Predicting the Mass Introducing a Linear Empirical Correlation for Predicting the Mass 

Heat Capacity of Biomaterials Heat Capacity of Biomaterials 

Reza Iranmanesh 

Afham Pourahmad 

Fardad Faress 

Sevil Tutunchian 

Mohammad Amin Ariana 

See next page for additional authors 

Follow this and additional works at: https://scholarworks.utrgv.edu/ibe_fac 

 Part of the International Business Commons 

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/ibe_fac
https://scholarworks.utrgv.edu/ibe_fac
https://scholarworks.utrgv.edu/rcvcbe
https://scholarworks.utrgv.edu/rcvcbe
https://scholarworks.utrgv.edu/ibe_fac?utm_source=scholarworks.utrgv.edu%2Fibe_fac%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/634?utm_source=scholarworks.utrgv.edu%2Fibe_fac%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors Authors 
Reza Iranmanesh, Afham Pourahmad, Fardad Faress, Sevil Tutunchian, Mohammad Amin Ariana, Hamed 
Sadeqi, Saleh Hosseini, Falah Alobaid, and Babak Aghel 



Citation: Iranmanesh, R.;

Pourahmad, A.; Faress, F.;

Tutunchian, S.; Ariana, M.A.; Sadeqi,

H.; Hosseini, S.; Alobaid, F.; Aghel, B.

Introducing a Linear Empirical

Correlation for Predicting the Mass

Heat Capacity of Biomaterials.

Molecules 2022, 27, 6540. https://

doi.org/10.3390/molecules27196540

Academic Editors: Mohamad Nasir

Mohamad Ibrahim, Patricia Graciela

Vázquez and Mohd Hazwan Hussin

Received: 5 September 2022

Accepted: 27 September 2022

Published: 3 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article
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Abstract: This study correlated biomass heat capacity (Cp) with the chemistry (sulfur and ash
content), crystallinity index, and temperature of various samples. A five-parameter linear correlation
predicted 576 biomass Cp samples from four different origins with the absolute average relative
deviation (AARD%) of ~1.1%. The proportional reduction in error (REE) approved that ash and sulfur
contents only enlarge the correlation and have little effect on the accuracy. Furthermore, the REE
showed that the temperature effect on biomass heat capacity was stronger than on the crystallinity
index. Consequently, a new three-parameter correlation utilizing crystallinity index and temperature
was developed. This model was more straightforward than the five-parameter correlation and
provided better predictions (AARD = 0.98%). The proposed three-parameter correlation predicted the
heat capacity of four different biomass classes with residual errors between −0.02 to 0.02 J/g·K. The
literature related biomass Cp to temperature using quadratic and linear correlations, and ignored the
effect of the chemistry of the samples. These quadratic and linear correlations predicted the biomass
Cp of the available database with an AARD of 39.19% and 1.29%, respectively. Our proposed model
was the first work incorporating sample chemistry in biomass Cp estimation.

Keywords: biomass sample; heat capacity; empirical correlation; biomass crystallinity; feature reduction

1. Introduction

Global warming [1,2] and limitations of fossil fuel sources [3] have been two main
problematic issues in recent decades. According to reports, the maximum allowable carbon
dioxide (CO2) concentration has exceeded 70 ppm in the atmosphere from the preindustrial
period [4]. The combustion of coal and petroleum [5], natural gas industries [1], and
petrochemical complexes are responsible for 80% of CO2 emissions to the atmosphere [6,7].
Furthermore, cement, steel, and iron manufacturers are the subsequent sources of CO2
emissions [4]. In this way, significant attention has been paid to carbon capture [8] and
sequestration strategies [9] to reduce, control, and utilize greenhouse gases, including CO2,
methane, nitrogen, sulfur, chlorofluorocarbons, and so on [10,11]. To this end, according
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to the BLUE map scenario of the international energy agency [12], sustainable energy
sources, including biomass [13], biogas [14], and solar energy [15], have been introduced as
promising candidates to replace traditional fossil fuels.

Recently, biomass-to-energy processes have received growing interest because of the
energy and global warming crises [16]. According to the United Nations Environment
Program (UNEP) [17], 140 billion tons of biomass (mainly agricultural and wooden wastes)
are produced throughout the world annually [18]. Wide ranges of added-value chemicals
and biofuels may be synthesized from this low-cost, sustainable, and plentiful renewable
feedstock [19]. A schematic illustration of synthesizing various products from lignocellu-
losic biomass is presented in Figure 1. Based on UNEP [12], around 20 times the available
environmental yield of agricultural production technologies is required to achieve sus-
tainable development in 2040 [20,21]. Accordingly, thermal processes of biomass, such as
gasification and pyrolysis, have emerged as practical technologies to convert these types
of biomass samples into valuable products [22,23]. It is worth noting that the mentioned
processes include during the first pyrolysis step, in which biomass is converted to gas and
a solid carbon in the presence of heat [24].
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Reliable knowledge of the thermal characteristics of biomass is a crucial issue for
biomass-to-energy process design [22]. Indeed, molecular kinetics govern the thermal
behavior of biomass valorization processes [22,25]. Numerous experimental/modeling
studies have been devoted to the determination of thermal properties of biomass, including
elemental composition [26], higher heating value [27], thermal conductivity [28] and specific
heat capacity [13].

Biomass heat capacity is often experimentally measured by differential scanning
calorimetry (DSC) [29]. Although the DSC is an accurate method, utilizing a few milligrams
of sample results in a shallow heat throws doubt on the measurement accuracy [22,24,25]. It
is worth noting that measuring biomass heat capacity at a higher temperature than 423 K has
some limitations due to sample decomposition [24]. Bitra et al. determined the heat capacity
and thermal conductivity of kernels, peanut pods, and shells using a purpose-built vacuum
flask calorimeter [30]. Furthermore, Mothée and De Miranda focused on the thermal
analysis of sugarcane bagasse and coconut fiber as typical agricultural byproducts [31]. In
addition, the heat capacity of cellulose regarding its applications in the pulp industry and
tissue engineering has been investigated in many studies [32–34]. Ur’yash et al. employed
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the adiabatic calorimeter method to explain the water effect on biomass heat capacity in
temperatures ranging from 80 K to 330 K [34]. Blokhin et al. experimentally measured the
heat capacity of biomass samples obtained from four different sources [32].

Generally, laboratory-scale measurements are complicated and time-consuming, re-
quire economic expense, and often contain different uncertainty levels associated with
human error and the wrong calibrations of apparatus. Furthermore, it is hard to directly
incorporate experimentally measured data for computer-aided simulation purposes. There-
fore, it is necessary to develop a correlation to estimate biomass heat capacity from some
available features. This type of correlation reduces experimental cost, saves time, and
can be easily coupled with computer-aided simulators. The heat capacity (Cp) of a wide
range of pyrolysis chars obtained under conditions representative of industrial reactors
was correlated in a temperature range of 40–80 ◦C [22]. Kollman and Cote suggested an
empirical correlation for estimating the specific heat capacity of solid wood as a function
of the temperature valid for 0–100 ◦C [35]. In another attempt, Gupta et al. proposed a
model for softwood barks and their derived softwood chars using differential scanning
calorimetry, showing acceptable Cp predictions in the temperature range of 40–140 ◦C [36].
The mathematical formulas of the literature suggesting correlations for estimating biomass
heat capacity have been widely investigated in Section 2.2.

All these correlations only estimate the biomass heat capacity as a function of tem-
perature and ignore the effect of biomass chemistry [22,35,36]. Since biomass chemistry
influences heat capacity, it is necessary to include such information in the model’s entry.
Accordingly, this study developed a simple correlation to estimate biomass heat capacity by
considering the sample’s chemistry and operating conditions. To our knowledge, it is the
first usage of the bio-sample composition (sulfur and ash contents), crystallinity index, and
temperature to estimate the biomass heat capacity. This study also compared the accuracy
of the developed correlation with those suggested in the literature. This type of correlation
helped to enhance the understanding of biomass composition on heat capacity.

2. Results and Discussion

Multiple linear regression was employed to estimate the biomass heat capacity from
the sample chemistry, crystallinity index, and temperature. Then, the proportional re-
duction in error was applied to simultaneously decrease the model size and increase its
accuracy. Then, the accuracy of the constructed correlation was compared with those
suggested in the literature. Finally, several graphical and numerical investigations were
performed to monitor the prediction accuracy of the proposed model in real-field situations.

2.1. Developed Correlations in This Study

Equation (1) shows a simple linear correlation developed to estimate the heat capacity
of biomass from four different origins in a temperature range of 81 to 368 K. The differen-
tial evolution algorithm [37] was used to adjust the coefficients of this correlation using
576 experimental datasets.

Cpcal = − 0.0158 × CI − 0.0011 × Ash + 0.022 × S + 0.00407 × T + 0.0165 (1)

This correlation estimated the biomass heat capacity with the absolute average relative
deviation (AARD%) of 1.1%. Equation (2) was used to calculate the AARD% from the
experimental (Cpexp) and calculated (Cpcal) biomass heat capacities [38,39]. Here, N shows
the number of available datasets, i.e., 576.

AARD% = ∑N
i = 1 100 ×

(∣∣∣Cpexp
i − Cpcal

i

∣∣∣/Cpexp
i

)
/N (2)

The proportional reduction in error (PRE) is a practical method for conducting the
sensitivity analysis on independent variables and ranking them based on their contribution
to the model’s accuracy [40]. The PRE uses the sum of squared errors (SSE) or mean
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squared errors (MSE) to conduct its duty. Equations (3) and (4) express the mathematical
formulation of the SSE and MSE, respectively [41].

SSE = ∑N
i = 1

(
Cpexp

i − Cpcal
i

)2
(3)

MSE =

√
∑N

i = 1

(
Cpexp

i − Cpcal
i

)2
/N (4)

The developed correlation (i.e., Equation (1)) has four parts, with each part includ-
ing one independent variable. The PRE associated with each independent variable was
obtained using Equation (4).

PRE = (SSEpart − SSE)/SSEpart part = 1, 2, 3, 4 (5)

Here, SSE and SSEpart indicate the sum of squared errors obtained by considering all
terms (i.e., Equation (1)) and excluding the ith part of the original correlation, respectively.
A high PRE shows that a considered independent variable has a more substantial role in
model accuracy and vice versa.

Figure 2 represents the PRE related to the crystallinity index, ash and sulfur contents
of the bio-samples, and temperature.
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Figure 2. The relative importance of each feature on the prediction accuracy of the biomass
heat capacity.

This figure justifies that the temperature and crystallinity index are the main param-
eters that improve the model’s accuracy. On the other hand, the ash and sulfur contents
only enlarged the model size and had a low contribution to its accuracy.

The previous analysis approved that it was better not to consider the ash and sulfur
contents of the bio-samples in the model development, and re-design the correlation solely
based on the temperature and crystallinity index. Equation (5) presents the mathematical
shape of the developed correlation utilizing the most important independent variables.

Cpcal = − 0.0156 × CI + 0.00407 × T + 0.0162 (6)
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This three-parameter correlation was more straightforward than the previous five-parameter
model, needing low entry information, and providing higher accuracy, i.e., AARD = 0.98%.

2.2. Comparison with the Literature Suggested Models

It was previously explained that the available correlations in the literature estimated
the biomass heat capacity by either quadratic or linear relationships with the temperature.
Therefore, it was necessary to adjust the coefficients of Equation (6) utilizing the available
experimental database. It is worth noting that A equaled zero for the linear correlation.

Cpcal = A × T2 + B × T + C (7)

Table 1 presents the numerical values of the adjustable coefficients of the linear and
quadratic correlations based on the temperature. The last column of Table 1 indicates
that the linear and quadratic correlations predict the heat capacity of the 576 bio-samples
with the AARD of 1.29% and 39.19%, respectively. Not considering the effect of bio-
sample chemistry on the heat capacity may have been responsible for this non-logical
uncertainty [22,35,36].

Table 1. Adjusted coefficients and AARD% of the linear and quadratic correlations developed based
on the temperature.

Correlation A B C AARD%

Linear 0 0.00406 0.0061 1.29

Quadratic 6.11 × 10−5 −0.0210 2.232 39.19

2.3. Visually Inspecting the Performance of the Three-Parameter Correlation

Up to now, it has been approved that the three-parameter linear correlation based on
the crystallinity index and temperature has the highest accurate prediction for biomass heat
capacity. This section employs several graphical analyses to inspect the model performance
further. The compatibility between experimental and calculated heat capacities for different
biomass samples is depicted in Figure 3. It can be concluded that an outstanding level of
agreement existed between the laboratory-measured and calculated heat capacities. The
developed correlation encountered problems in predicting the fourth class’s biomass heat
capacity with excellent accuracy (wood amorphous cellulose).
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Since the crystallinity index of this biomass type was zero, the first part of the devel-
oped correlation diminished (i.e., Equation (5)). Indeed, the heat capacity of the biomass
obtained from wood amorphous cellulose was estimated using a linear correlation solely
based on the temperature. This explanation may justify the uncertainty observed in pre-
dicting the biomass heat capacity of the fourth class, especially at higher values.

The histogram of the arithmetic deviation between experimental and calculated
biomass heat capacities (i.e., residual error) is illustrated in Figure 4. This figure states that
the heat capacity of four different biomass classes was estimated with infinitesimal residual
errors, mainly between −0.02 to 0.02 J/g·K. It was interesting to see that 200 biomass heat
capacities were calculated with the residual error equaling zero.
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Figure 5 shows the AARD observed for predicting the heat capacity of each biomass
class. The heat capacity of the first to the fourth biomass classes was estimated with the
AARD of 0.86%, 0.53%, 0.83% and 1.71%, respectively. The developed correlation presented
the overall AARD = 0.98% for estimating the heat capacity of all 576 bio-samples.
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2.4. Analyzing the Cp of Bio-Samples with Different Origins

The experimental and modeling profiles of heat capacity versus temperature for the
considered biomass classes are plotted in Figure 6a,d. Excellent compatibility between
the laboratory measurements and the correlation predictions can be concluded from these
figures. Furthermore, it can be seen that biomass heat capacities have a substantial direct
relationship with temperature.
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It should be highlighted that by reducing the crystallinity index from the first to the
last biomass classes, the first term of the developed correlation (i.e., Equation (5)) gradually
became weaker. As mentioned previously, the developed correlation finally appeared
as a linear model based on the temperature only for the fourth biomass class (i.e., wood
amorphous cellulose). The deviation between experimental and calculated heat capacities
increased by decreasing the crystallinity index (compare Figure 6a–d). Although the
observed deviation level was too small to distort the generalization ability of the developed
correlation, it approved the importance of incorporating the sample’s chemistry in the heat
capacity estimation phase.

2.5. Pair Effect of Temperature and Crystallinity Index on the Biomass Cp

Furthermore, the variation in heat capacity of biomass based on temperature and crys-
tallinity index is plotted in Figure 7. As can be observed, there is a linear relation between
employed variables and related heat capacity. Additionally, temperature enhancement has
a significant effect on the biomass heat capacity than crystallinity index, which was already
proved by PRE analysis (Figure 2).
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2.6. Summary of the Study in the Flowchart Form

A summary of the steps followed in this study to develop and validate a linear
correlation to estimate the biomass heat capacity is graphically introduced in Figure 8.

Molecules 2022, 27, 6540 9 of 13 
 

 

 
Figure 8. A flowchart of suggested methodology for estimating the biomass heat capacity. 

3. Materials and Methods 
This section presents experimental biomass heat capacities collected from the litera-

ture. Furthermore, the literature suggesting correlations for estimating biomass heat ca-
pacity has been reviewed. 

3.1. Collected Database 
This study focused on constructing a correlation to estimate the heat capacity of bio-

mass from four origins, including cotton microcrystalline cellulose (sample 1), wood sul-
fite cellulose (sample 2), straw cellulose (sample 3), and wood amorphous cellulose (sam-
ple 4), were considered [32]. The chemical composition of bio-samples, crystallinity index, 
and temperature were considered in this estimation. Table 2 introduces numerical ranges 
of sulfur and ash mass fractions, crystallinity index, temperature, and the associated heat 
capacity of the considered bio-samples [32]. A multiple regression method was applied to 
linearly relate bio-sample heat capacity ( calCp ) to the ash (Ash) and sulfur (S) contents, 
crystallinity index (CI), and temperature (T) based on Equation (8). 

( ), , ,calCp f CI Ash S T=  (8)

  

Figure 8. A flowchart of suggested methodology for estimating the biomass heat capacity.



Molecules 2022, 27, 6540 9 of 12

3. Materials and Methods

This section presents experimental biomass heat capacities collected from the literature.
Furthermore, the literature suggesting correlations for estimating biomass heat capacity
has been reviewed.

3.1. Collected Database

This study focused on constructing a correlation to estimate the heat capacity of
biomass from four origins, including cotton microcrystalline cellulose (sample 1), wood
sulfite cellulose (sample 2), straw cellulose (sample 3), and wood amorphous cellulose
(sample 4), were considered [32]. The chemical composition of bio-samples, crystallinity
index, and temperature were considered in this estimation. Table 2 introduces numerical
ranges of sulfur and ash mass fractions, crystallinity index, temperature, and the associated
heat capacity of the considered bio-samples [32]. A multiple regression method was applied
to linearly relate bio-sample heat capacity (Cpcal) to the ash (Ash) and sulfur (S) contents,
crystallinity index (CI), and temperature (T) based on Equation (8).

Cpcal = f (CI, Ash, S, T) (8)

Table 2. The heat capacity versus biomass chemical composition, crystallinity index and temperature [32].

Biomass Type CI (-) Temperature (K) Ash (wt%) S (wt%) Cp (J/g·K) Number Data

Sample 1 0.90 81.50–367.50 0.10 0.02 0.3335–1.500 143

Sample 2 0.80 80.73–367.40 0.10 0.43 0.3304–1.521 144

Sample 3 0.74 80.53–368.25 0.49 0.11 0.3314–1.554 145

Sample 4 0 80.61–368.09 0.07 0.02 0.3342–1.602 144

It should be mentioned that all constructed correlations in this study were only valid
for estimating the heat capacity of those bio-samples with the composition listed in Table 2,
in the temperature range of 80.53 to 368.25 K.

3.2. Literature Suggested Correlations

As previously mentioned, the literature suggested several correlations for estimating
the bio-sample heat capacity. Table 3 summarizes the mathematical formulations of these
correlations and the range of applications. This table shows that all the developed corre-
lations only use temperature to estimate heat capacity. Generally, these correlations use
quadratic or linear forms to correlate the bio-sample heat capacity to the temperature.

Table 3. Developed correlations in the literature to estimate biomass heat capacity.

Material Correlation Shape Temperature Ref.

Various biomass Cp = 0.00534 × T − 299 40–80 ◦C [22]

Pyrolysis residues Cp = 0.0014 × T + 688 40–80 ◦C [22]

General wood Cp = 0.0046 × T − 0.113 0–100 ◦C [35]

Dried softwood particles Cp = 0.00546 × T − 0.524 40–140 ◦C [36]

Derived softwood char Cp = − 3.8 × 10 − 6 × T2 + 0.00598 × T − 795 40–140 ◦C [36]

Since these correlations were only valid to estimate the heat capacity of the considered
biomass in the specific operating ranges, their coefficients were needed to readjust to cover
the utilized database in the current study (see Section 3.2).
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4. Conclusions

This study aimed to develop an accurate and straightforward correlation for estimating
biomass heat capacity, considering bio-sample chemistry and operating condition. The
proportional reduction in error justified that temperature and crystallinity index of bio-
samples were the most critical factors affecting biomass heat capacity. Multiple linear
regression was applied to develop a three-parameter correlation based on the selected
features. The proposed model was more accurate than the quadratic and linear models
available in the literature. This model predicted 576 biomass heat capacities with the
AARD = 0.98%, while the previously suggested models presented higher uncertainty for
the same database. The constructed correlation in this study predicted the heat capacity of
biomass samples from four different origins with an excellent AARD of lower than 1.71%.
The sensitivity analysis approved that the deviation between experimental and calculated
heat capacities increased by reducing the crystallinity index of biomass samples. This
observation indicated the importance of incorporating biomass chemistry in the estimating
phase of the heat capacity. Since this study estimated the heat capacity of biomass samples
with low ash content, it is a good idea to consider straw/digestate as the independent
variable in future research, where the influence of ash on the specific heat capacity would
not be neglectable.
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