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Abstract
Deep learning algorithms have yielded remarkable results in medical diagnosis and 
image analysis, besides their contribution to improvements in a number of fields 
such as drug discovery, time-series modelling and optimisation methods. With 
regard to the analysis of histopathologic breast cancer images, the similarity of those 
images and the presence of healthy and tumourous tissues in different areas compli-
cate the detection and classification of tumours on whole slide images. An accurate 
diagnosis in a short time is a need for full treatment in breast cancer. A successful 
classification on breast cancer histopathological images will overcome the burden 
on the pathologist and reduce the subjectivity of diagnosis. In this study, we pro-
pose a deep convolutional neural network model. The model uses various algorithms 
(i.e., stochastic gradient descent, Nesterov accelerated gradient, adaptive gradient, 
RMSprop, AdaDelta and Adam) to compute the initial weight of the network and 
update the model parameters for faster backpropagation learning. In order to train 
the model with less hardware in a short time, we used the parallel computing archi-
tecture with Cuda-enabled graphics processing unit. The results indicate that the 
deep convolutional neural network model is an effective classification model with a 
high performance up to 99.05% accuracy value.
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1 Introduction

Deep learning methods are used in a variety of fields and have a significant compu-
tational performance on image classification, video analysis, speech recognition and 
natural language processing. The deep learning architectures comprise a combination 
of different layer types such as fully connected, convolutional and recurrent one. The 
multi-level deep neural networks (DNNs) are used to build systems that can detect 
features from big unlabelled training data [1]. Convolutional neural networks are the 
most successful model for image analysis up to now. This success results from the fact 
that computers extract the features best representing the data for the underlying prob-
lem [2]. Convolution and subsampling layers of DCNN do not require data-focused 
and properly decomposed cores, because they can extract image features automatically 
from a particular patch [3, 4]. Processing big data requires a set of powerful hardware 
and infrastructure [5]. Improvements in hardware processing units have facilitated the 
processing of huge amount of data and accelerated the research on DCNN [6]. Com-
paring to the thousands of computing cores and central processing unit (CPU), Cuda-
enabled graphics processing unit (GPU) offers 10 to 100 times higher application 
performance [7]. The characteristic difficulties in classifying the medical images can 
be reduced to an optimal level by parallel computing [8, 9]. Therefore, specific DNN 
models using CPU and GPU in parallel are a need for machine learning.

Detection of breast cancer on digital histopathological images is a successful 
application area for deep learning algorithms. Different DCNN architectures have 
been proposed recently. Innovative architectural ideas and parameter optimisa-
tions show that DCNN performance can be boosted [6]. Medical image process-
ing researchers have recently obtained promising results in this area [9, 10]. These 
results are generally based on specially cropped and labelled images, although the 
whole-slide histopathological images should be processed for a fully automatic 
computer-aided diagnosis. Nevertheless, processing the whole slide images in big 
sizes is difficult for a reasonable processing power and requires a long computational 
time. The presence of healthy or tumour tissues in different areas in different phases 
complicates the detection and classification of tumours on whole slide images.

In this study, we introduce a computer-aided system reducing the complexity 
of diagnosis. The system is based on a machine learning-based deep convolutional 
neural network (HCNN) model for an automated classification of breast cancer his-
topathological images as “benign” and “malignant”. The model consists of multi-
convolution filters for the input layer. Using more than one feature of the multi-con-
volution filters improved the network performance. Multiple inputs were processed 
piece-by-piece using the mini-batch technique, and the batch normalisation was con-
ducted for each mini-batch series. We compared the existing convolutional neural 
networks (CNNs) in the literature and evaluated the network performance. We ana-
lysed the behaviours of various algorithms to optimise the degradation of the model 
to improve the computational performance of HCNN. The model contributes to the 
literature with a high-performance deep learning network optimising the values of 
more than one features of the multi-convolution filters.

The remainder of this paper is organised as follows. A literature review position-
ing the research in the field is given in Sect. 2. The data set is described in Sect. 3. 
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Optimisation strategies of HCNN model are presented in Sect.  4. Experimental 
results are presented in Sect.  5. Finally, the main conclusions and future research 
directions are discussed in Sect. 6.

2  Literature review

In this section, we review the research papers on the detection of breast cancer on 
digital histopathology images in the field. Huh et al. [11] introduce a probabilistic 
model for microscopic images at two stages with the proposed method. The first 
stage entails the identification of spatio-temporal patch sequences, while the sec-
ond one involves the localisation of a birth event. Albarqouni et  al. [12] propose 
a network model (AggNet) from crowds for mitosis detection in breast cancer his-
tology images. AggNet is a learning model that handles data aggregation directly 
as part of the learning process of the convolutional neural network. Bejnordi et al. 
[13] compared the metastases detected at the clinic with the results of deep learn-
ing-based systems. They report that 27.6% of the metastases are misdiagnosed by 
the pathologists, while the CNNs achieved better diagnostic performance. Filipczuk 
et al. [14] classify the feature vectors through a support vector machine with a set 
of 25 features, based on the analysis of cytological images of fine needle biopsies 
using the circular Hough transform. They achieve 98% effectiveness in classification 
of tumour cells. Xu et  al. [15] present a Stacked Sparse Autoencoder (SSAE), an 
instance of a deep learning strategy, for efficient nuclei detection on high-resolution 
histopathological images of breast cancer. The SSAE model is based on just pixel 
intensities alone in order to identify distinguishing features of nuclei. The features 
obtained via the auto-encoder are divided into two, yielding an improved F-meas-
ure of 84%. Saha et  al. [16] propose a supervised model to detect mitosis signa-
ture from breast histopathology WSI images, using deep learning architecture with 
handcrafted features. Their deep learning architecture mainly consists of five con-
volution layers. The model uses morphological, textural, intensity features and has 
90% F-score. George et al. [17] proposed a diagnosis system for breast cancer based 
on the nuclei segmentation of cytological images, using different machine learning 
models such as neural networks and support vector machines. They report accu-
racy rates ranging from 76 to 94% on a data set of 92 images. Spanhol et al. [18] 
achieve a success rate of 90% at most by using BreakHis data set for histopathologi-
cal images taken with different enlargement factors by classifying the cancer cells 
via deep learning methods. Han et al. [19] achieve an accuracy rate of 93.2% over 
BreakHis data set by using a different deep learning model recently proposed for 
grouping the breast cancer into multi-classes. Kausar et al. [20] proposed a binary 
and multiclass classification for breast histopathological images using a deep con-
volution neural network with Haar wavelet decomposed images. The proposed CNN 
model extracts and incorporates the deep features from 2-level Haar wavelet decom-
posed images. On BreakHis data set, this model showed an accuracy of 98.2% for 
both 4-class and 2-class recognition. Toğaçar et al. [21] proposed a new CNN model 
(BreastNet) for breast histopathological image classification using the BreakHis data 
set. The proposed model showed an accuracy of 98.8% for classification. Yang et al. 
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[22] proposed an ensemble of multi-scale convolutional neural networks (EMS-Net) 
to classify haematoxylin–eosin stained breast histopathological microscopy images 
into four categories, including normal tissue, benign lesion, in situ carcinoma, inva-
sive carcinoma. They used the training patches cropped and augmented at each 
scale to fine-tune the pre-trained DenseNet-161, ResNet-152, and ResNet-101. They 
found that a combination of three fine-tuned models is more accurate than other 
combinations. The proposed EMS-Net model showed an accuracy of 91.75 ± 2.32% 
in the fivefold cross-validation using 400 training images. Budak et al. [23] intro-
duced an end-to-end model (Bi-LSTM) based on fully convolutional network 
(FCN). They used the FCN as an encoder for feature extraction and turned the out-
put of the FCN to a one-dimensional sequence. High-resolution images were thus 
used as direct input to the model. The proposed model achieved a performance of 
98.10% through the fivefold cross-validation technique. Dabeer et al. [24] proposed 
a new CNN model for binary classification of breast histopathological images using 
the BreakHis data set. They obtained a prediction accuracy of up to 99.86%. Vo 
et  al. [25] proposed an approach that utilises deep learning models with convolu-
tional layers to extract the most useful visual features for breast cancer classification. 
This deep learning model is based on a novel boosting strategy to extract better fea-
tures than handcrafted feature extraction approaches. The proposed model showed 
an accuracy of 99.5% for binary classification of breast histopathological images.

The literature review is summarised in Table 1 and the table clarify the litera-
ture contribution of this study.

Table 1  Literature summary on breast cancer detection approaches

Reviewed literature Breast cancer detection approaches

Albarqouni et al. 2016 AggNet: deep learning from crowd
Bejnordi et al. 2017 Deep learning model
Han et al. 2017 Propose a breast cancer multi-classification method using a newly 

proposed deep learning model
Huh et al. 2011 CNN and handcrafted features
Malon et al. 2012 CNN and seeded blob features
Mitos-ATYPIA 2014 Deep CNN and max-pooling
Nahid et al. 2017 CNN and handcrafted features
Saha et al. 2018 Deep learning and handcrafted features
Spanhol et al. 2016 Parameter-free threshold adjacency statistics CNN
Srivastava et al. 2014 Convolutional neural network (CNN)
Xu et al. 2016 Stacked sparse autoencoder (SSAE)
Kausar et al. 2019 Decomposed image-based convolution neural network (HWDCNN)
Toğaçar et al. 2019 A novel convolutional neural network model (BreastNet)
Yang et al.2019 Ensemble of multiscale convolutional neural networks (EMS-Net)
Budak et al. 2019 Computer-aided diagnosis system combining FCN and Bi-LSTM model
Dabeer et al. 2019 CNN-based approach
Vo et al. 2019 Incremental boosting CNN
This research Classification method using a newly proposed deep learning model
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Accordingly, we propose a new convolutional neural network model (HCNN) 
that is to yield a higher accuracy rate by as well as to test and compare the gradi-
ent descent optimisation algorithms.

3  Data set

In this section, the experimental BreakHis data set is described [14]. BreakHis 
histopathologic database is made up of 9.109 microscopic images of breast 
tumour tissue enlarged in different rates (40 ×, 100 ×, 200 × and 400 ×) collected 
from 82 patients. The distribution of 2480 benign and 5429 malign png format 
pictures with 3 channel RGB, 700 × 460 pixels in size and 8 bytes depth is shown 
in Table  2. This database is gathered incorporation with P & D Laboratory—
Pathologic Anatomy and Sitopatology Parana Brasilia.

BreakHis data set divides tumours into two groups as benign tumours and 
malign tumours. Histopathologically benign tumours are lesions that do not over-
lap with any criteria of malignity. The benign tumours are comparatively inno-
cent and slowly developing ones. Both tumour samples are presented in Fig. 1 as 
follows.

Table 2  Image distribution by magnification factor and class

Magnification Number of benign pictures (24 
patients)

Number of malign pictures (58 
patients)

Total (82 
patients)

40 × 625 1370 1995
100 × 644 1437 2081
200 × 623 1.390 2013
400 × 588 1232 1820
Total 2480 5429 7909

Fig. 1  BreakHis data set cluster images [14]—the first line for “normal” samples, the second line for 
“tumour” samples
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4  Optimisation strategy of the deep convolutional neural networks

The inner parameters of the model play an important role to train the deep convolu-
tional neural network (DCNN) models efficiently and to get correct results, as well 
as the parameters like layer number, neuron number, and dropout value. Parameters 
that change up to the model designer and according to the problem and data set 
are called hyperparameters. Therefore, we used various algorithms to compute and 
update the suitable and optimum model parameters that affect the training process 
and output of our model. These algorithms coordinate the forward extraction and 
feedbacks of a network with a solver and regulate the model optimisation for param-
eter updates, which improves the losses. Solver methods handle the loss minimisa-
tion problem of the general optimisation. In Eq. (1), D stands for the optimisation 
aim,|D| for the average loss in all data conditions, and λ for controlling factor that 
makes trade-off between regularisation term (weight) and loss term [26, 27].

In Eq. (1), fw(x(i)) is the loss in data sample x(i) and r(w) is a regulation term in � 
weight. |D| may be very large (big), and hence, we practically use a stochastic zoom 
by drawing a mini-batch in Eq. (2) for the N << |D| sample in each solver iteration 
[26].

The model computes fw in forward transition and gradient ∇fw in the backward 
transition. Parameter update is Δw , formed by the solver according to the error gra-
dient ∇fw for each method, regulation gradient ∇r(W) and other details [26, 27].

4.1  Solvers used for the proposed model

Stochastic gradient descent (Sgd) is a simple but very effective approach to distin-
guish learning linear of classifiers under the convex loss functions such as logistic 
regression. Though Sgd has been used for a long time in learning software, lately it 
has been successfully applied to the large-scaled and dropout machine learning in 
which problems are frequently encountered as a part of large-scaled learning, text 
classification and language processing [27]. Nesterov accelerated gradient (Nag) is 
a technique to accelerate the standard momentum. Learning phase to optimise the 
deep neural networks is in direction to the reduction of the target all along the many 
gradient descent. Nag makes up a big jump towards the previous gradient. It meas-
ures the gradient descent and makes the correction after the update [26, 28]. Adap-
tive Gradient (AdaGrad) is an algorithm based on reduction. It applies the learning 
speed to the parameters. It is often used in the proximity of sparse data rather than 
the frequent one. One of the main advantages of adaptive gradient optimisation is 

(1)L(W) =
1

|D|

|D|∑

i

fw
(
x(i)

)
+ �r(w)

(2)L(W) ≈
1

N

N∑

i

fw
(
x(i)

)
+ �r(w)
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that it resolves the obligation of adjusting the learning rate. It minimises the learn-
ing speed in each dimension. It uses the default value (0.01) in many applications 
[26, 29]. AdaDelta is the extension of AdaGrad, which aims to decrease the learn-
ing rate in the gradients that are diminishing at the same level every time. AdaDelta 
limits the past gradients borders to specific dimensions. It doesn’t keep the ineffi-
cient gradients. By taking the degradation average of all the previous gradients, it 
defines them as recursive [30]. RMSprop aims to decrease the learning rates that are 
diminishing in the same rate at the same time. It is generally suggested to adjust the 
momentum to 0.9 and learning speed to 0.01. For many times, this optimizer is a 
good choice for the recurrent neural network [29].

5  Experimental study

In this section, developing platforms and developing context are explained. The 
parameters of the chosen method suggested for each step are shown according to 
the experimental results. The results of the experimental studies are presented. The 
study has been conducted using one machine: Ubuntu 16.04 with Intel Core i7-6700 
CPU @ 4.00 GHZ × 8; NvidiaGeForce GTX 1080 8 GB; 32 GB DDR5 RAM and 
SSD hard disc on one platform. By installing the Python, OpenCV 3.0. and Pip with 
Caffe pane, CUDA 8.0 and cuDNN v6 drivers have been integrated to Caffe frame-
work [31, 32]. By this way, the parallel training of the convolution neural network 
with GPU in Python context have been managed. The data set preparation for the 
convolution neural network has been done.

In this study, three different convolutional neural network architectures are trained 
and compared with each other. All of the trained CNN networks contain convolution 
and maximum pooling layers. Each model is explained in the sub-categories, and 
the suggested model’s architecture is given as follows;

5.1  Input layer

The three models share the same input structure in 700 × 460 × 3 size in RGB format 
of BreakHis data set which are put into the network by turning them into randomly 
cropped in 256 × 256 × 3 size, mean filtered images. Training, verification and test 
sets were formed in order to test the performance of the models. The training set 
is randomly selected from the data set groups with 40 ×, 100 ×, 200 ×, 400 × zoom 
rates (Fig. 2). The prepared training set is separately trained in the network accord-
ing to the zoom rates with 20% verification and in 15% data set rates. The sample 
required for our network is prepared from the selected pictures with 40 × zoom, 1398 
training set, 399 verification and 198 tests with the total samples of 1995.
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5.2  Convolution layer

The block diagram of the model is shown in Fig. 3. The output of the first convolu-
tion layer is max pooled, normalised and conveyed to the second convolution layer 
as input. The output of the second layer is first normalised and then max pooled. The 
input image with a 3 × 3 filter size and zero padding passes through the first convolu-
tion layer.

Following the first convolution layer, the pooling diagram is applied by mak-
ing the input pass through the second convolution layer with a filter size of 3 × 3 

(b)(a)

(d)(c)

Fig. 2  An example of breast malign tumour seen in different enlargement factors of the same image a 
40 ×, b 100 ×, c 200 ×, and d 400 ×

Fig. 3  Block diagram of the deep convolutional neural network model for an automated classification of 
breast cancer histopathological images
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and at step 2. This process reduces the data size by 4 in width and length. The 
output of the first pool layer passes through the second convolution layer and the 
maximum pool layer once more. In order to catch the features in different scales, 
they use the start modules which hold various convolutional kernels in different 
sizes and gather the outputs along the depth dimension. L1 and L2 in Fig. 3 rep-
resent the regularisation of normalised softmax probabilities for classification. 
These regularisations induce using all, rather than some, of the network inputs. 
Table 3 summarises the parameters of the HCNN model in layers.

Module basically works as multi-convolution filters applied to the same input 
of pooling. Results are compiled to let utilise the multi-feature acquisition fea-
ture. As seen in Fig.  4, the passing of the network after the convolution layers 
have been given in detail.

For example, general (5 × 5) filter and local (1 × 1) filter acquire the features at 
the same time. Here, the optimisation of the network performance is provided by 
using more than one feature of the multi-filters. Before the beginning, all archi-
tectures have convolution together in spatial and on channel area. By applying 
convolution with (1 × 1) filter to the entry picture, entry block’s spatial dimen-
sions are disregarded. This is followed by the cross-spatial and cross-channel 
correlation composed with (3 × 3) and (5 × 5) filter. Hence, a feature vector is 
acquired in every phase. In order to create a probability distribution in the last 
phase of the model, Softmax is used to classify the input images.

Table 3  Detailed parameters of each layer

Layer name Filter size Padding Output size 1 × 1 3 × 3 5 × 5

Conv1 3 × 3 3 [64 114 114]
Pooling1 3 × 3 2 [64 57 57]
Conv2 3 × 3 1 [192 57 57] 192
Pooling2 3 × 3 2 [192 28 28]
Inception1 [256 28 28] 64 128 32
Inception2 [480 28 28] 128 192 96
Inception3 [512 14 14]
Inception4 [512 14 14] 192 208 48
Inception5 [512 14 14] 160 224 64
Inception6 [528 14 14] 128 256 64
Inception7 [832 14 14] 112 288 64
Pooling3 3 × 3 2 [832 7 7] 256 320 128
Inception8 [832 7 7] 256 320 128
Inception9 [1024 7 7] 384 384 128
Pooling4 7 × 7 1 [1024 1 1]
Softmax [1024]
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5.3  Experimental results and analysis

The HCNN architecture is trained via six different optimisation algorithms. The 
same data sets were trained and compared with Alex Krizhevsky’s AlexNet model, 
the winner of ImageNet Large-Scale Visual Recognition Challenge 2012 (lLS-
VRCI2) [33]. GoogLeNet became the winner of ILSVRC 2014. The top-5 error was 
6.67%. The network utilised a CNN architecture inspired from LeNet. A new incep-
tion module was applied in that architecture. With tiny convolutions, this model sig-
nificantly reduced the number of parameters [34]. Figure 5 demonstrates the evalua-
tion scheme for the performance of the HCNN model.

Our evaluation criteria include precision-recall and confusion matrix. We tested 4 
magnification factors for each model and 24 complexity matrices for 6 optimisation 
algorithms. In total, 72 complexity matrices were generated for 3 different DCNN 
models. As seen in Table 4, we computed true positive (TP), false positive (FP), true 
negative (TN), false negative (FN), as well as sensitivity, precision, specificity, and 
F1 score of the model with confusion matrix. The confusion matrices in Tables 4, 5, 
6, and 7 denote the percentile representations of per-class accuracy of the other suc-
cessful network models we trained. The results regarding the best performance our 
model attained are reported in detail in Table 8.

In this study, we classify the breast cancer histopathological images into two 
groups as benign and malign cancer cells. We train the HCNN, AlexNet and 

Fig. 4  Inception module

Fig. 5  Test-stage assessment scheme and the performance of the deep convolutional neural network 
model for an automated classification of breast cancer histopathological images
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GoogLeNet models via original data sets and directly compared the alternate net-
works. In order to train the three models, we used six different optimisation algo-
rithms which produced different results as reported in Table 9. The RMSprop opti-
misation algorithm was not able to ensure that the gradient descent was lost in all 
trainings, thus causing overlearning, in other words, the network memorisation. It 
resulted from the fact that the learning coefficient was determined in accordance 
with the network’s gradient descent value. The AdaGrad optimisation algorithm is 
similar to the RMSprop optimisation algorithm; the only difference is the calcula-
tion of the total gradient descent in the former. Based on this, we can say that the 
methods for calculating the gradient descents cause considerable changes in the net-
work performance. The Nag optimisation algorithm has been successful in all the 
trained networks. We can conclude that this success positively affects the network 

Table 4  Confusion matrix for test data according to HCNN-Nag and 200 × enlargement factor

Confusion matrix Benign Malign Per-class accuracy

Benign 89 4 95.7%
Malign 1 207 99.52%
Recall = sensitive = TP/(TP + FN) = 207/211 = 0.981
Precision = TP/(TP + FP) = 207/208 = 0.9951
Specificity = TN/(TN + FP) = 89/90 = 0.988
F1-score = 2 × precision ∗ recall

precision+recall
= 2 (0.9761/1.9761) = 0.9879

Table 5  Confusion matrix for 
test data according to HCNN-
Sgd and 40 × enlargement factor

Confusion matrix Benign Malign Per-class 
accuracy 
(%)

Benign 88 6 93.62
Malign 2 203 99.02

Table 6  Confusion matrix for 
test data according to HCNN-
Sgd and 100 × enlargement 
factor

Confusion matrix Benign Malign Per-class 
accuracy 
(%)

Benign 85 11 88.54
Malign 3 213 98.61

Table 7  Confusion matrix for 
test data according to HCNN-
Nag and 400 × enlargement 
factor

Confusion matrix Benign Malign Per-class 
accuracy 
(%)

Benign 83 5 88.54
Malign 4 181 98.61
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Table 8  Sensitivity, specificity, 
precision, and F1-score 
performance for the HCNN 
model four enlargement factors

Bold values signify the highest values of HCNN

Method HCNN-Sgd HCNN-Nag HCNN-AdaGrad

40 × Sensitivity 0.971 0.935 0.926
Specificity 0.977 0.975 0.951
Precision 0.990 0.990 0.980
F1 0.980 0.962 0.952

100 × Sensitivity 0.950 0.945 0.949
Specificity 0.965 0.933 0.914
Precision 0.986 0.972 0.963
F1 0.968 0.958 0.956

200 × Sensitivity 0.980 0.981 0.971
Specificity 0.936 0.988 0.966
Precision 0.971 0.995 0.985
F1 0.975 0.988 0.978

400 × Sensitivity 0.988 0.973 0.946
Specificity 0.905 0.954 0.917
Precision 0.951 0.978 0.962
F1 0.969 0.975 0.954

Table 9  Per-class accuracy 
performance for the HCNN, 
AlexNet and GoogLeNet model 
of four enlargement factors

Bold values signify the highest values of HCNN, AlexNet and 
GoogLeNet

Methods Accuracy of the enlargement 
factors

40 × 100 × 200 × 400 ×

Hcnn + Rms + Softmax 0.74 0.76 0.87 0.68
Hcnn + Adam + Softmax 0.69 0.69 0.69 0.92
Hcnn + Adadelta + Softmax 0.92 0.91 0.91 0.92
Hcnn + Adagrad + Softmax 0.94 0.95 0.97 0.95
Hcnn + Nag + Softmax 0.96 0.99 0.97 0.96
Hcnn + Sgd + Softmax 0.97 0.97 0.96 0.96
AlexNet + Rms + Softmax 0.70 0.69 0.69 0.69
AlexNet + Adam + Softmax 0.70 0.69 0.69 0.69
AlexNet + Adadelta + Softmax 0.86 0.85 0.91 0.88
AlexNet + Adagrad + Softmax 0.82 0.81 0.88 0.88
AlexNet + Nag + Softmax 0.94 0.92 0.96 0.94
AlexNet + Sgd + Softmax 0.94 0.93 0.96 0.95
GoogLeNet + Rms + Softmax 0.76 0.76 0.87 0.69
GoogLeNet + Adam + Softmax 0.69 0.69 0.69 0.96
GoogLeNet + Adadelta + Softmax 0.92 0.90 0.90 0.91
GoogLeNet + Adagrad + Softmax 0.94 0.96 0.96 0.95
GoogLeNet + Nag + Softmax 0.96 0.97 0.96 0.96
GoogLeNet + Sgd + Softmax 0.97 0.96 0.98 0.97
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performance by preventing excessive diminution while reducing the error function. 
Although AdaDelta is similar to RMSprop, it shows higher performance by receiv-
ing a certain number, rather than all, of the priority gradient descents. The self-
determination of learning coefficient may positively affect its performance as well. 
Adam optimisation algorithm is not as successful in all trainings as RMSprop. Based 
on the common features of these two optimisation algorithms, taking the exponen-
tially weighted averages of the squares of the past gradient descents at each itera-
tion negatively affected the performance of the networks we tested. We reached this 
result in consideration of the fact that other AdaGrad optimisation algorithms sim-
ilar to these optimisation algorithms showed high performance by calculating the 
total past gradient descents.

The HCNN model we propose was trained via six different optimisation algo-
rithms with data sets separately created according to the magnification factors of 
40 ×, 100 ×, 200 ×, 400 ×. The data set created according to the 40 × magnification 
factor achieved a performance of 97% on the HCNN with Sgd optimisation algo-
rithm. The data set created according to the 100 × magnification factor achieved a 
performance of 99% on the HCNN with Nag optimisation algorithm. The data set 
created according to the 200 × magnification factor achieved the same performance 
(97%) on the HCNN with Nag and AdaGrad optimisation algorithms. The data 
set created according to the 400 × magnification factor achieved the same perfor-
mance (96%) on the HCNN with Nag and Sgd optimisation algorithms. RMSprop 
and Adam optimisation algorithms stuck around a certain performance value in the 
network training. Regarding the training of other models, optimisation algorithms 
were tested on separate networks and their effects were observed as seen in Table 9. 
RMSprop ve Adam optimisation algorithms showed lower performance in the train-
ing of these models as well. Per-class accuracy performances for the HCNN and 
AlexNet architectures according to four enlargement factors are reported in Fig. 6. 

Fig. 6  Comparison of model performances



986 K. C. Burçak et al.

1 3

Our HCNN model yields promising results for the binary classification. In the 
related studies as seen in Table 10, Filipczuk et al. [14] obtained a performance of 
97.5–98% in classifying tumour cells with 25-dimension feature vector with a dif-
ferent data set. However, our model has an advantage, as feature extraction via fine 
needle biopsy is a costly method in medical imaging. Han et al. [19] propose a new 
model for grouping breast cancer into multi-classes with BreakHis data set. They 
succeed by 93% and 96%, respectively, for multi-class classification and binary clas-
sification. With BreakHis data set again, Nahid et al. [35] achieve an accuracy rate of 
94.40–97.19%, a precision of 98% according to 100 × and 200 × enlargement factors, 
a maximum recall value of 98.2%, and an F1 score of 98% with 200 × enlargement 
factor. Our model increases the accuracy rate of pathologic diagnosis to shorten the 
decision-making process, as well as to help minimise unnoticed cancer cells and get 
a quicker diagnosis.

6  Conclusion

In this paper, we introduced a DCNN-based model for automatic detection and clas-
sification of cancerous regions on histopathological images taken from breast cancer 
patients, using BreakHis data set. The large size of images and the large amount of 
training data, which are among the major problems in medical image analysis, com-
plicate learning in terms of building the systems with the ability of feature detection. 
In order to solve this problem, we divided the data set into two small groups and 
carried out the process of learning on the mini batches. Besides, we conducted the 

Table 10  Comparative analysis of the results in the related literature

Category Breast cancer detection approaches Data set Accuracy

Texture based and 
colour based

Filipczuk et al. [14] FNB-ZGBH 0.975

Huh et al. [11] – 0.89
Deep learning Saha et al. [16] MITOS-ATYPIA-14 0.92

Bejnordi et al. [13] CAMELYON16 0.96
Spanhol et al. [18] BREAKHIS 0.90
Malon and Cosatto [36] ICPR 2012 0.76
Albarqouni et al. [12] MICCAI-AMIDA13 0.86
Han et al. [19] BREAKHIS 0.932
Xu et al. [15] – 0.84
Nahid et al. [35] BREAKHIS 0.96
Yang et al. [22] BREAKHIS 91.75 ± 2.32
Budak et al. [23] BREAKHIS 0.981
Vo et al. [25] BREAKHIS 0.995
Dabeer et al. [24] BREAKHIS 0.9986
Toğaçar et al. [21] BREAKHIS 0.988
Kausar et al. [20] BREAKHIS 0.982
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batch normalisation for each mini-batch series. We used a Cuda-enabled GPU to 
train the model in a shorter time with less hardware. Another problem in designing 
deep learning models is the selection of network parameters and their congruence 
with the network. Solving problems via deep learning is equivalent to designing the 
multi-layered network structure in an optimal way. In the proposed model, we tested 
the different optimisation algorithms that could accelerate the learning process and 
perform better in terms of cost function. We proved that the optimisation algorithms 
produce different results in accordance with different problems and data clusters in 
the DCNN architectures. It is possible to conclude that the HCNN model achieves 
the best performance (% 99.05).
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