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Abstract
Background  Seed beetles are one of the most important causes of yield loss in bean production. It is essential to develop 
resistant varieties in the fight against these pests. Agrobacterium-based gene transformation is the most widely used breeding 
method worldwide to develop insect-resistant varieties.
Methods and results  Embryonic axes and plumule explants were obtained from Agrobacterium tumefciens treated mature 
zygotic embryos of low and high raw protein-based common bean cultivars Akman 98 and Karacaşehir 90. Agrobacterium 
tumefaciens contained a synthetic Bacillus thuringiensis insecticidal crystal protein gene (Bt Cry1Ab) controlled by the 
35S promoter and NOS terminator sequences. The transformation event was genotype and explant dependent. The plumule 
explants could not withstand kanamycin-based selection pressure and died. It was possible to get two transgenic plants using 
embryonic axis explants of low protein cultivar Akman 98. These results were validated using GUS analysis, PCR, RT-PCR, 
bioassay analysis, and ELISA test from the samples taken from T0 and T1 generations. Bioassay tests showed that these plants 
were protected from the damage of legume seed insects (Bruchus spp.).
Conclusions  The results are very encouraging and may help in producing better transgenic common bean germplasm leading 
to safe agriculture and reducing environmental pollutions.
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Introduction

Common bean (Phaseolus vulgaris L.) is important edible 
legume energy and protein source, consumed both fresh and 
dry as food and feed [1]. It is well adapted to various cli-
mates and is cultivated on 33 million hectares of land with 
29 million tons of production world over [2]. It is cultivated 
in all areas of Turkey and is tolerant to drought and heat 
[3]. Many insects are a major constraint to common bean 
production in Turkey. They attack plants at all growth and 
developmental stages with considerable yield losses [4]. The 
most destructive insect among them is the common bean 
seed beetle [Acanthoscelides obtectus Say., (Coleoptera: 

Chrysomelidae: Bruchinae)] [5]. These lethal and destruc-
tive beetles, continue to reproduce and multiply throughout 
the year in seeds under storage the world over [6]. These 
end up in high losses and reduce the quantity and quality 
of common bean seeds. This compels farmers to sell their 
produce early at low prices [6, personal observations 2021].

The studies have shown that breeding common bean 
for seed insect resistance through conventional breeding 
approaches is unlikely to provide feasible solutions to breed 
for insect resistance in the near future [7]. A. obtectus cre-
ate cavities in common bean seeds; during storage by about 
more than 35–100% and are a great concern during post-
harvest conditions in terms of quality, yield, and seed ger-
mination [6, personal observations 2021].

These insects could be controlled by various cultural 
treatments like late sowing, storing clean seeds in sacks, 
using clean depots for storage, deep burying of crop resi-
dues, burning the plant residues left in the field after harvest, 
and using various chemical pesticides [8]. However, these 
practices increase environmental pollution and may end up 
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in various degrees of risks to food security and human health 
[9].

There are several reports on common bean shoot regen-
eration by Martins and Sondahl [10] from shoot apex, by 
Mohamed et al. [11] and, Faranklin et al. [12] from cotyle-
don nodes with axillary buds, by Mariotti et al. [13] from 
cotyledon nodes without using axillary buds, by Delgado-
Sánchez et al. [14] from embryonic axes, by Zambre et al. 
[15] from embryonic calluses and by Espinosa-Huerta et al. 
[16] from hypocotyl explants. However, no protocol among 
these is repeatable. No study has confirmed the transfor-
mation of viable plants during Agrobacterium tumefaciens 
mediated transformations.

Collado et  al. [17] has reported transformation of P. 
vulgaris cv. CIAP7247F using primary green nodular calli 
using A. tumefaciens using bar gene for selection. However, 
the procedure is very complex and there is a need to simplify 
it. It is well established that callus explants could be mul-
ticellular in their origin, leading to development of shoots 
that are chimeric in origin and may restrict the selection of 
transgenic shoots [18].

Transforming common bean with cry genes is an active 
issue to control insects belonging to the order Coleoptera, 
Diptera, and Lepidoptera, [19] and presumed to play an 
important role in insect management in common bean and 
other legume crops in the future. Fearing et al. [20] reported 
that toxins from bt are relatively host-specific, that have 
physiological specific gut conditions and the receptor sites 
are highly sensitive to these toxins [21]. Many previous stud-
ies show that the Cry1Ab [19, 22] gene can be used in insect 
resistance with a high success percentage.

Therefore, this study was designed to develop a repro-
ducible genetic transformation protocol against these insects 
using the Cry1Ab gene in two low and high protein com-
mon bean cultivars with high stability. It was presumed that 
this will help in safe agriculture without the use of unde-
sired inputs like chemical pesticides and accumulation of 
their residues during storage reducing the environmental 
pollution.

Materials and methods

Plant materials and seed surface sterilization 
of the two cultivars

The seeds of common bean cv. Akman 98 and cv. 
Karacaşehir 90 were used in this study. Cv. Akman 98 has 
23–26% protein (low protein cultivar) with a hard testa. 
Whereas, the seeds of cv. Karacaşehir 90 have a protein 
percentage of 28–30% (high protein cultivar) and soft testa 
[23]. These were obtained from the Transitional Zone Agri-
cultural Research Institute, Eskişehir, Turkey.

The seeds of both cultivars were surface sterilized with 
10 and 20% commercial bleach (Ace-Turkey, containing 5% 
NaOCl) at room temperature and after giving 4 °C treatment 
for 12 h or using 50% hydrogen peroxide (H2O2). After steri-
lization, the seeds were 3 × 5 min rinsed with tissue culture 
grade bidistilled sterilized water.

A magnetic stirrer was not used during sterilization. How-
ever, the sterilized beakers containing the seeds of each cul-
tivar were shaken manually.

Preparation of explant

The embryos were collected from the seeds under aseptic 
conditions by gently removing the testa and holding seeds 
with forceps to open them with scalpel blades. These were 
pretreated for 4 on a 10 mg l−1 6-benzylaminopurine (BAP) 
(These were separately modified in a separate experiment 
containing 5, 10, and 15 mg l−1 6-benzylaminopurine (BAP) 
for 4 and 8 days- these results are not reported in this experi-
ment). It was followed by excising the embryonic axis and 
plumule explants from the embryos.

Inoculation and transformation

The A. tumefaciens strain was multiplied using Nutrient 
Broth (NB) medium containing selective antibiotics (spec-
tinomycin and rifampicin at 50 mg l−1 each) by inoculating 
a single colony of A. tumefaciens on Liquid NB medium 
(d (+)-glucose, 1 g l−1; peptone, 15 g l−1; sodium chloride, 
6 g l−1 yeast extract, 3 g l−1). The liquid NB medium was 
prepared by dissolving 25 g of broth in 1 l of tissue culture 
grade water before autoclaving.

Both embryonic axis and plumule were treated (for 
30 min) with A. tumefaciens strain LBA4404 harboring 
recombinant binary vector pRGG bar that contained the 
herbicide (bar) and insecticide tolerance gene pRD400/35S/
NOS-Cry1Ab harboring codon-optimized for insect resist-
ance along with uida (GUS) coding β-glucuronidase under 
the control of 35S promoter by dipping them in a bacte-
rial suspension—OD = 1.2. They were co-cultured for 24 h 
on agar solidified MS medium containing 30 g l−1 sucrose. 
Thereafter, these were transferred to the selection and regen-
eration medium containing, 0.50 mg l−1 6-benzylaminopu-
rine (BAP), 500 mg l−1 biostatic wide spectrum antibiotic 
Augmentin [a combination of amoxicillin and clavulanate 
potassium (a beta-lactamase inhibitör)] and 50 mg l−1 kana-
mycin monosulphate.

Subsequently, the 3.5–4 cm long regenerated putative 
transgenic shoots were excised and rooted on MS medium 
supplemented with 2.0 mg l−1 IBA [24], 50 mg l−1 kanamy-
cin monosulfat, and 500 mg l−1 Augmentin.
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Culture conditions

All cultures were incubated in a growth chamber at 
24 ± 2 °C, using 42 μMol m−2 s-1 during transformation 
regeneration and rooting.

Histochemical GUS analysis

Putative transgenic plants were tested for Gus (uidA) anal-
ysis. The fresh leaves of putative transgenic plants (taken 
randomly) of T0 generation were subjected to a histo-
chemical GUS assay based on methods described by [25]. 
The leaf samples of putatively transformed shoots were 
obtained from newly developed leaves under greenhouse 
conditions and incubated at 38 °C for 24 h in 100 mM 
sodium phosphate (pH 7.0), 10 mM EDTA, 0.1% Triton 
X-100 and 1 mM 5-Bromo-4-chloro- 3-indolyl glucuron-
ide (X-GLUC). The putatively transformed tissues were 
detected by continuous soaking in 96% ethanol for 3 days 
(36 h) to break up chlorophyll completely for easy detec-
tion of GUS activity in the tissues. The presence of GUS 
activity was indicated by blue staining of the leaf tissues.

DNA ısolation and PCR analysis

Putative transgenic gus positive plants were further 
screened using PCR analysis with Cry1Ab sequence-
specific primers. Non transformed (control) and putative 
transgenic plants (confirmed by PCR and RT-PCR assay) 
were tested for the efficiency of transgenic plants’ resist-
ance against insect pests.

Genomic DNA was isolated using the CTAB method 
[26]. The isolated DNA was used for PCR analyses of the 
putative transgenic plants and their subsequent progenies.

PCR was performed in a total reaction mixture vol-
ume of 25 μL containing 1 × reaction buffer, 3 μl of DNA 
template, 25 mM (3 μl) MgCl2, 10 mM (2 μl) of each of 
the dNTPs, 2 μl of each primer, and 0.2 μl of Taq DNA 
polymerase, 2.5 μl 10X PCR tampon and 10.3 μl dH2O. 
Reactions are run at Biometra T-personal thermal cycler 
instrument. The PCR conditions were: initial denatura-
tion at 95 °C for 10 min, denaturation at 94 °C for 1 min, 
annealing at 58 °C for 1 min, and initial extension at 72 °C 
for 2 min, followed by 2 to 39 cycles, extension at 72 °C 
for 10 min and 4 °C pauses. Amplified DNA fragments 
were electrophoresed on 1.0% agarose gel at 70 Volt 1 h 
and visualized by 5 μl ethidium bromide staining under 
UV light.

RT‑PCR expression analysis of Cry1Ab gene

Furthermore, the putative transgenic plants were ana-
lyzed by RT-PCR assay to confirm the presence of the 
introduced gene (Cry1Ab/Cry1AC). Genomic DNA was 
isolated from fresh common bean leaves using the CTAB 
method [27].

PCR was run using gene-specific primers for the pres-
ence of the Cry1Ab and bar gene to amplify internal frag-
ments of 750 bp using forward 5′-TGG ATT GCA CGC 
AGG TTC TC-3′ and reverse 5′-CAA GAA GGC GAT AGA 
AGG CG-3′ as primers. DNA extracted from untransformed 
plants was used as the negative control and that of plasmid 
pRGG as the positive control.

Before using DNA samples, they were diluted 1/5, 1/10, 
1/50, 1/100 and a standard curve was drawn to compare with 
positive samples. The Log Amplification curve was formed 
on the samples after obtaining the standard curve. The 
melting curve peaks were obtained after drawing a standard 
curve and log amplification according to the results. Analy-
sis was carried out by the SYBR Green I assay format. The 
PCR conditions were annealing temperature at 60 °C for 6 s 
and extension temperature at 72 °C for 20 s. After obtain-
ing the standard curve, the log amplification curve of the 
samples was extracted and the melting peaks were obtained 
according to the results obtained from these two curves.

ELISA based protein expression analysis

This qualitative ELISA kit was used to detect the presence 
of Bt-Cry1Ab protein expressed in transgenic plants. The 
test does not distinguish between Bt-Cry1Ab and Bt-Cry1Ac 
proteins. This assay is suitable for testing both seeds and 
leaves. The Bt Cry1Ab/1Ac ELISA is an immunoassay for 
the qualitative screening detection of Bt Cry1Ab protein res-
idues. The Bacillus thuringiensis (Bt) Cry1Ab protein is an 
insecticidal crystalline protein expressed by the Cry1Ab/1Ac 
gene in genetically modified plants as described by the man-
ufacturer (https://​orders.​agdia.​com/​bt-​cry1ab-​1ac-​elisa-​kit-​
psp-​06200). The samples were considered positive when the 
absorbance value was above the absorbance value of the 
negative control reagent.

Insect bioassays

The insect bioassays were conducted following [28] using 
transgenic and nontransgenic seeds of the cultivars placed 
in separate glass Petri dishes under ambient conditions of 
temperature and moisture in the laboratory together with 
five males and females. These were collected from Prof. 
Dr. Mevlüt Emekci Department of Plant Protection, Ankara 
University, and were maintained in a mass-bred popula-
tion maintained in the laboratory. 24–36 h old individuals 

https://orders.agdia.com/bt-cry1ab-1ac-elisa-kit-psp-06200
https://orders.agdia.com/bt-cry1ab-1ac-elisa-kit-psp-06200
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were put on separate transgenic and nontransgenic seeds 
maintained in separate Petri dishes for 10 days. After the 
stipulated time the females laid eggs. The experiments were 
performed at ambient conditions of temperature (25 ± 1 ℃ 
and relative humidity 70 ± 2%).

General culture conditions

The pH of all culture treatments was adjusted to 5.6–5.8 
using 0.1 N KOH or 0.1 N HCl before autoclaving under 
the pressure of 105 kPa for 20 min at 121 °C. The steriliza-
tion and all tissue culture procedures were carried out under 
aseptic conditions. The glass Petri dishes were sterilized for 
2 h in a drying oven at 160 °C.

Statistical analysis

A total number of 100 seeds divided equally into 5 replica-
tions were used in the experiment for each cultivar in a Com-
pletely Randomized Block Design. The frequency (%) of 
shoot regeneration, the mean number of shoots per explant, 
shoot length, and frequency of rooting were recorded and 
analyzed using univariate analysis of variance in a two fac-
torial experimental randomized block design. SPSS 17.00 
for Windows Computer software was used for statistical 
analysis. The post hoc tests were performed using the Dun-
cans Multiple Range Test. Data given in percentages were 
subjected to arcsine transformation [29] before statistical 
analysis.

Results

Seed surface sterilization of the two cultivars

Surface sterilization of the seeds of both cultivars was highly 
genotype-dependent. It was possible to sterilize the seeds 
hard testa cv. "Akman 98" with 20% commercial bleach at 
room temperature (24 °C); whereas, the seeds soft testa cv. 
"Karacaşehir 90" did not allow the use of commercial bleach 
for surface sterilization. It damaged the seed testa, cotyle-
dons, and embryos when using 10 and 20% NaOCl contain-
ing bleach. The seeds split during surface sterilization. The 
10% solution worked partially well when the seeds were 
cold treated overnight at 4 °C. The percentage of damage 
to seeds was not completely reduced. The damage percent-
age reduced to about 65–67%. Therefore, these seeds were 
sterilized with 50% hydrogen peroxide (H2O2) without using 
a magnetic stirrer for 5 min. Treatment with H2O2 did not 
split the seeds during sterilization.

Inoculation and transformation

The plumule explants failed to induce shoot regeneration. 
The embryonic axis explants regenerated shoots. They did 
not show hyperhydricity or any kind of necrosis on the 
developing shoots or during the transfer of the shoots from 
the regeneration + selection medium. The results showed 
40.00% and 66.66% shoot induction with 1.13 and 1.40 
shoots per explant cv. Akman-98 and cv. Karacaşehir-90 in 
the same order. All of these were rooted and acclimatized for 
taking samples for GUS analysis. Only one plant resistant to 
kanamycin monosulphate of cv. Karacaşehir-90 has rooted. 
It was not confirmed transgenic through PCR. This plant was 
acclimatized in the greenhouse to external conditions for set-
ting seeds. The recovery of transgenic plants in the presence 
of kanamycin has been greatly facilitated by the npt II gene. 
During genetic transformation, antibiotic kanamycin acts by 
binding to ribosomes by inhibiting protein synthesis due to 
the presence of the nptII gene.

Two regenerated shoots (plants) of cv. Akman-98 rooted; 
these two plants were confirmed transgenic through PCR. 
These were successfully acclimatized to the external condi-
tions to set seeds.

GUS expression and PCR analysis

The common beans are important economic vegetable crops 
for Turkey and their genetic modification has significant 
importance. It is well known that the integration of GUS 
gene is either expressed stably or transiently in transformed 
plants [36, 37]. It is of interest to check their tissue-specific 
expression or activity.

The samples were taken from the two plants in cv. 
Akman-98 in T0 were confirmed putative transgenic through 
GUS positive expression (Fig. 1). A total number of 17 
seeds were produced from the T0 generation. These were 
germinated in pots to produce T1 generation. Histochemical 
analysis of the leaf samples obtained from newly developed 
putative transgenic plants of T1 generation also proved GUS 
positive. Single plant obtained from cv. Karacaşehir-90 was 
not confirmed gus positive in T0 or T1.

Fig. 1   Leaf sample stained blue as a result of GUS test in gene trans-
fer with GV2260:: p35GUSINT bacterial line in cv. Akman 98
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Positive gus expression in Akman-98 and PCR results in 
T0 and T1 generations showed stable transformation. The 
GUS gene expression for stable and transient expression in 
the common bean is very important.

GUS gene expression was detected both in T0 and T1 
plants that peaked in (1–5 days old) young leaves and 
declined in the old leaves. Strong GUS activity was observed 
in young leaves, young floral tissues, like mature anthers, 
stamens sepals, petals, leaves, and pollen grains of the seed-
lings of T0 plants.

PCR analysis

The results were further confirmed and demonstrated by 
transgene integration into genomic DNA of putative trans-
genic Plants in T0 and T1 putative transformed common bean 
plants were observed.

Column 2 (K) Non-transformed plants did not show any 
hybridization signals as expected. Columns 1–6 show nega-
tive bean plants. Positive results were obtained in a total of 
two transformant plants (Columns 7 and 8) (Fig. 2.).

RT‑PCR test

The data representing the exact quantification and the results 
obtained with the programs used are given schematically in 
Fig. 3. The RT PCR results also confirmed transgene inte-
gration into genomic DNA of putative transgenic Plants in 
T0 and T1 common bean plants.

It was determined that the putative transgenic plants 
obtained from the “plumule” explants treated with strains 
belonging to the LBA4404 line containing the nptII and Cry 
1Ab genes of A. tumefaciens were RT-PCR positive.

ELISA based protein expression analysis

Quantitative evaluation of Cry1Ab delta endotoxins in 
T0 and T1 transformed common bean seeds of Akman 98 
developed was observed using DAS-ELISA with their 
extracts. The mean quantity of Cry1Ab endotoxin among 
two T0 transgenic plant seeds was 35 ng  mg−1 TSP and 
25–35 ng mg−1 TSP in T0 plants showed an inconsistent 
level of toxin at seed setting (data not shown).

Only two transgenic plants obtained from a single culti-
var in the current study showed that transformation was a 
difficult event in common bean. The current results further 
suggest that ELISA for Bt-Cry toxin in T0 population results 
were better in T0 compared to T1 and reflected the level of 
insect resistance.

Insect bioassays

The bioassays were carried out on common bean seeds. The 
leaves of the Karacaşehir 90 were affected by oviposition 
(Fig. 4a). No oviposition was noted on the leaves of Akman 
98. The transformed beans also did not show damage on the 
leaves (Fig. 4b). The transgenic seeds of the cultivar also 
did not show wounding in the feeding assay of transgenic 
cv. Akman-98. The results indicated that the Cry1Ab in 
transgenic common bean offered a protection shield against 
insects. The larval mortality on the T0 leaves was very clear 
on the transgenic seed samples. A larval mortality rate of 
89.48% was noted after a period of 24 h of bioassay. This 
mortality increased to 97.89% on seeds of transgenic plants 
after 36 h and 100% in 48 h. The mortality of larvae fed on 
transgenic leaves in T1 was between 67.23 and 90.16% after 
60 h and 100% after 84 h of feeding the seeds. Mortality was 
noted on larvae fed on the seeds of non-transgenic common 
bean plant leaves of cv. Karacaşehir-90 (Fig. 4).

Fig. 2   Confirmation of the 
presence of npt-II gene by PCR 
in cv. Akman-98 grown in the 
greenhouse; (M) marker, (K) 
Cv. Akman–98 negative control, 
1–6 Columns cry1Ab gene 
negative plants, 7–8. Columns 
transgenic bean carrying the 
Cry1Ab gene
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Fig. 3   Determination of 
nptII—Cry1Ab PCR product 
in cv. Akman-98 common bean 
by real-time PCR analysis. 
a Amplification curve using 
known amounts of pRD400. 
b Standard curve for data 
presented in a. c Real-time 
PCR melting curves showing 
overlapping peaks for known 
amounts of pRD400 and 
Cry1Ab-transformed plants

Fig. 4   Transformation of com-
mon bean. a Non transformed 
plant of Karacaşehir 90 with 
oviposition of insect b trans-
formed plant of Akman 98 with 
mortality noted on larvae fed on 
the seeds of transgenic common 
bean plant Akman 98. Bar of 
a = 1 cm, b = 3.1 cm
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Discussion

The results indicated that the seeds of low protein cv. 
Akman 98 were less sensitive towards the concentration 
and type of disinfectants compared to the seed coats of 
high protein cv. Karacaşehir 90. Findings from several 
studies have exhibited that NaOCl treatments influence 
the breaking of seed dormancy, germination, and viability 
of seeds of several plant species like Lens culinaris [30], 
Amaranthus powellii S. Wats [31], Aconitum heterophyl-
lum Wall. [32]. The results are also in agreement with 
Khan and Zia [33], who reported that sodium hypochlorite 
reduced the effects of salinity under lower temperatures 
emphasizing that the activity of sodium hypochlorite was 
progressively lowered with a decrease in temperature. 
Therefore, care should be made in selection of the disin-
fectant. The disinfectant must be seed coat friendly to have 
optimum results.

The Escherichia coli based gus or uidA gene that 
encodes b-glucuronidase (GUS) [25] is a popularly used 
reporter gene in the genetic transformation of an innumer-
able number of plant species [38, 39]. It is well known 
that the integration of GUS reporter gene into the genome 
of transformed plants induces blue color in plants and 
facilitates in the analysis of gene expression without the 
need of expensive equipment and tedious chemical proce-
dures. This gene enables easy quantified spectrophotomet-
ric analysis and is preferred in gene expression analysis. 
GUS gene expression in plant tissues is extremely useful 
to monitor the results immediately after genetic transfor-
mation the results of the study support induction of strong 
GUS activity on young leaves, and tissues in T0 and T1 
plants. The results are in agreement with [40], while no 
Gus activity was noted in T1 immature floral tissues of T1 
generation [41]. The results confirmed that the Gus expres-
sion in T0 and T1 plants were not transient.

Although the results showed a very low rate of genetic 
transformation, the results confirmed selection of trans-
genic shoots on kanamycin. That was reconfirmed through 
PCR and RT PCR from the plants setting seeds. Actually, 
transformation ends up catalyzing the phosphorylation of 
kanamycin as soon as it enters into plant cells by shut-
ting down the protein synthesis machinery in plants. This 
enables transgenic plants to grow in the presence of kana-
mycin [34]. Inbuilt level of resistance in different plants 
species and varieties could vary and affect this reaction 
during transformation efficiency resulting in escapes dur-
ing genetic transformation [35].

The results are in partial agreement with observations 
for differential expression of Bt-endotoxins in T0 plants 
[42]. This variation in T0 transgenic plants could be 

attributed to the position effect of gene integration end-
ing up with physiological variations in the gene functions 
and foreign protein expression in the common bean plant 
tissues [42]. The efficiency level of this Agrobacterium-
strain seems limited and restricted due to several limita-
tions including the complex nature of the common bean 
genome [43, 44]. Expressing a higher Cry toxin of 1.0% of 
TSP in transgenic tomato, maize tobacco, cotton, and rice 
[45] was not noted for common bean. This suggests that 
transforming events in recalcitrant common bean is highly 
tedious like other grain legumes [46].

The results of bioassays in bean seeds showed that the 
leaves of the Karacaşehir 90 were more sensitive and were 
affected by oviposition on leaves of Akman 98 and any 
damage and offered protection by the Cry1Ab in trans-
genic common bean. The results are in agreement with 
previous studies, where the 2nd instar larvae showed mor-
tality in feeding bioassays of other crop plants [47, 48].

Conclusion

This article discusses the developmental stages of Cry1Ab 
transgenic common bean lines and stable gene integration 
of Cry1Ab gene in common bean. This shows that the suc-
cess of regeneration and gene transfer in the bean plants 
mainly depends on the explants, genotypes, and protein 
percentage along with other cofactors. The results of this 
study will influence future transgenic research on common 
beans and will help in improving and developing future 
common bean breeding technologies.
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