
Journal of Systems Architecture 133 (2022) 102766

A
1

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Comparing timed-division multiplexing and best-effort networks-on-chip
Jens Sparsø a,∗, Hans Jakob Damsgaard a,b, Dimitrios Katsamanis c, Martin Schoeberl a

a Technical University of Denmark, Department of Applied Mathematics and Computer Science, 2800 Kgs. Lyngby, Denmark
b Tampere University, Electrical Engineering Unit, 33720 Tampere, Finland
c ARM Sweden A/B, Lund, Sweden

A R T I C L E I N F O

Keywords:
Multi-core/single-chip multiprocessors
On-chip interconnection networks
Time-division-multiplexing
Performance analysis
Queuing theory model

A B S T R A C T

Best-effort (BE) networks-on-chips (NOCs) are usually preferred over time-division multiplexed (TDM) NOCs
in multi-core platforms because they are work-conserving and have lower (zero-load) latency. On the other
hand, BE NOCs are significantly more expensive to implement than TDM NOCs because of their virtual channel
buffers, allocators/arbiters, and (credit-based) flow control; functionality that a TDM NOC avoids altogether.

The objective of this paper is to compare the performance of BE and TDM NOCs, taking hardware cost
into consideration. The networks are compared using graphs showing average latency as a function of offered
load. For the BE NOCs, we use the BookSim simulator, and for the TDM NOCs, we derive a queuing theory
model and an associated TDM NOC simulator.

Through experiments with both router architectures, packet length, link width, and different traffic
patterns, we show that for the same hardware cost, a TDM NOC can provide higher bandwidth and comparable
latency. We also show that the packet length is the most important factor affecting the TDM period, which
again is the primary factor affecting latency. The best TDM NOC design for BE traffic uses single flit packets,
wide links/flits, and a router with two pipeline stages: link and router traversal.
1. Introduction

Time-division multiplexing (TDM) networks-on-chips (NOCs) [1–
5] are intended for use in hardware platforms for real-time systems
where the ability to guarantee latency and throughput of individual
processor-to-processor communication-flows is crucial. In the bigger
picture, NOCs that offer such hard service guarantees [6] represent
a niche. Most NOC research focuses on general-purpose computing
platforms and efficient support for best-effort (BE) traffic (i.e., low
actual/average-case latency and high bandwidth). In this bigger pic-
ture, TDM NOCs are often ruled out by the criticism that they are not
work-conserving: time-slots are statically assigned to individual traffic
flows, and consequently, bandwidth (i.e., time-slots) that is not used
cannot be used by other traffic flows. This results in poor band-
width utilization and increased latency. Another criticism is that band-
width and latency are inversely proportional: in order to provide low
latency, it is necessary to reserve many time-slots and thereby a large
bandwidth—bandwidth that, for the most part, is not used.

Both criticisms are intuitively correct, but they ignore hardware
cost. A TDM NOC avoids hardware resources for arbitration/allocation,
virtual channel (VC) buffers, and flow control, so for the same hardware
cost, a TDM NOC can provide substantially higher bandwidth, which

∗ Corresponding author.
E-mail addresses: jspa@dtu.dk (J. Sparsø), hans.damsgaard@tuni.fi (H.J. Damsgaard), Dimitris.Katsamanis@arm.com (D. Katsamanis), masca@dtu.dk

(M. Schoeberl).

may compensate for the poorer bandwidth utilization. If bandwidth is
cheap and plentiful, it is less important to maximize its use. In addition,
a TDM router is just a pipelined switch, and the number of pipeline
stages is generally smaller than that of a standard BE virtual channel
router, resulting in a smaller network traversal latency. These factors
may weaken or perhaps even invalidate the above criticism of TDM
NOCs.

The observations mentioned in the previous paragraph have been
briefly touched upon in the literature, including [7,8]. Yet, to the best
of our knowledge, a more thorough and quantitative analysis of this
performance vs. hardware cost perspective on TDM NOCs, as well as
the use of TDM NOCs for BE traffic, has not been attempted before.

The objective of this paper is to compare the performance of a typ-
ical TDM NOC against that of a typical textbook-style BE NOC [9–11]
and to gain insight into how to optimize the TDM NOC for minimum
latency. The TDM NOC we use in this study is the Argo NOC [5], but
the results apply to most TDM NOCs including [1–4]. The performance
measure we use is the average end-to-end latency of packets as a
function of the packet injection rate.

For the BE NOCs, the results are obtained using the BookSim
simulator [10]. For the TDM NOCs, we do not know of any available
vailable online 22 October 2022
383-7621/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.sysarc.2022.102766
Received 30 January 2022; Received in revised form 12 September 2022; Accepted
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

17 October 2022

http://www.elsevier.com/locate/sysarc
http://www.elsevier.com/locate/sysarc
mailto:jspa@dtu.dk
mailto:hans.damsgaard@tuni.fi
mailto:Dimitris.Katsamanis@arm.com
mailto:masca@dtu.dk
https://doi.org/10.1016/j.sysarc.2022.102766
https://doi.org/10.1016/j.sysarc.2022.102766
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2022.102766&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Journal of Systems Architecture 133 (2022) 102766J. Sparsø et al.

o
h
t
t
d
h
a
g

simulator, and as the behavior of a TDM NOC is much simpler and
rigid, we developed an analytical model using queuing theory. The
model provides more insight than simulation-based results, and the
results (average latency versus injection rate) are cycle-accurate. This
analytical model is the first contribution of the paper. To consolidate the
results, we developed a corresponding TDM NOC simulator, which uses
the same traffic generators and time-stamping mechanisms as BookSim.
This simulator is a second contribution of the paper.

Using these simulators and models, we then conduct a number
f experiments where we compare and assess the performance and
ardware cost of typical TDM and BE NOC configurations: mesh and bi-
orus topologies of different sizes. The performance measures include
he (minimum possible) zero-load latency and the average latency at
ifferent packet injection rates, and the saturation throughput. The
ardware cost is quantified using a dimensionless relative area measure
nd FPGA and ASIC synthesis results. These analyses and the insights
ained from them are described below and are a third contribution of

the paper.
Most of the experiments are conducted using random uniform traf-

fic, which is known to be benign towards BE NOCs [9] because it tends
to spread the traffic across the network. A TDM NOC, on the other
hand, must provide private/virtual end-to-end circuits for all possible
pairs of nodes, meaning that random uniform traffic is very challenging,
especially as the number of nodes in the network grows. This means
that the results obtained are favorable for the BE NOCs. To balance
this, we also explore using bit-complement and tornado traffic, which
is known to be more challenging for the BE NOCs.

Our first results show that for networks up to about 64 nodes, a typi-
cal TDM network can deliver roughly the same (saturation) throughput
as a typical BE NOC, for around one-tenth of the hardware cost, but
with a five to ten times higher zero-load latency. Following this, the
paper explores how a TDM network can trade increased hardware cost
for a corresponding reduction of latency and a corresponding increase
of bandwidth. In these configurations, the throughput of the TDM NOC
exceeds that of the BE NOC, still for a smaller hardware cost.

These characteristics make the TDM networks interesting (low cost
or high throughput) points in the design space. We note that the per-
formance of an application executing on a multi-core platform depends
on both the latency and the throughput of the NOC in ways that can
be very complex and application dependent. Here is an area for further
research.

To summarize, the main contributions of this paper are as follows:

1. An analytical queuing theory model of a TDM NOC. The model
gives cycle-accurate results for the average latency of packets.

2. A simulator that combines this model with traffic generators
similar to those used in BookSim.

3. A detailed comparison of the area and performance (average
packet latency versus offered load) of typical TDM and BE NOCs.
One of our results shows that for a smaller area, a TDM NOC can
provide similar latency and higher bandwidth than a BE NOC.

4. Insights into how to best dimension a TDM NOC for minimum
latency.

The paper is organized as follows: Section 2 provides background on
the relation between latency and offered load, the BookSim simulator,
and the TDM-based Argo NOC. Section 3 develops an analytical queu-
ing theory model of a TDM NOC, from which the average latency versus
offered load can be calculated. Section 4 provides equations for the
asymptotes (saturation throughput and zero-load latency) of the latency
curves. These are subsequently used to validate the results. Section 5
provides results on latency versus offered load from our first experi-
ments. Section 6 explores ways of improving latency and throughput.
Section 7 explores the performance when using other traffic patterns
2

(bit-complement and tornado). Finally, Section 8 concludes the paper.
2. Background and related work

This section presents background and related work on NOCs, micro-
architectures of BE and TDM routers, performance expressed as latency
versus offered load, and simulation tools to explore the latter.

2.1. Networks on chip

A network-on-chip (NOC) [12,13] is a packet-switched communi-
cation structure used to connect processors, accelerators, memories,
and IO devices in chip multiprocessors and embedded systems-on-chips.
During the last 10–20 years, NOCs have largely superseded bus-based
interconnects due to the increased complexity and number of cores
in today’s chips. The reason is that a NOC offers solutions to both
technological challenges (bandwidth and buffering of long wires, the
perspective of [13]) and design methodology challenges (composability
and scalability, the perspective of [12]). NOCs share many fundamental
characteristics with inter-chip interconnection networks [9], but the
design tradeoffs of an intra-chip network are different, and this has
been extensively researched during the last 20 years.

Bus-based systems are circuit-switched, meaning that a physical cir-
cuit exists between an initiator node (e.g., a processor) and a target
node (e.g., a memory or IO device) for the duration of a read/write
transaction. NOCs are packet-switched, and typically packets propagate
through the network when the resources needed are available—they
are said to be work-conserving and called best effort (BE) networks. The
latency of traversing the NOC is typically low, but when the amount of
traffic increases, it may not be possible to give bounds on the latency
packets may experience.

An alternative is TDM NOCs, where packets are transmitted ac-
cording to a global, static, repeating schedule. In this way, traffic
from one node to another always experiences the same latency regard-
less of other traffic in the network, effectively creating virtual circuits
between communicating pairs of nodes. For this reason, TDM NOCs
are particularly relevant in real-time systems where latency must be
guaranteed. The static scheduling means that TDM NOCs avoid run-
time arbitration and the associated need to buffer packets. When a
packet is injected into the network, it propagates unimpeded through
the NOC in a pipelined fashion. Hence, the hardware cost is small (just
pipeline registers and multiplexers). The downside is that TDM NOCs
are not work-conserving; even when the required resources in the NOC
are available, packets still wait until the scheduled departure time. The
result is higher latency.

Example BE and TDM NoCs are presented in Sections 2.3 and 2.6.

2.2. Latency vs. Offered load

The performance of an interconnection network is often described
using curves showing the (average) latency that packets experience
when traversing the network as a function of the offered load [9]. Fig. 1
shows a generic example.

Briefly, the curve has two asymptotes [9]: (1) a horizontal one
called the zero-load latency, denoted 𝑇0, corresponding to the minimum
latency experienced for very low traffic loads, and (2) a vertical one at
𝜆𝑆 corresponding to an amount of injected traffic where the network
saturates and the latency grows without limit. The minimum latency,
𝑇0, depends on the topology (mesh, bi-torus, etc.) and the number
of pipeline stages in routers and links along the path from source to
destination. The saturation point, 𝜆𝑆 , depends on many partially inter-
dependent factors, including topology (mesh, bi-torus, etc.), routing
function (X first then Y, dynamic, etc.), depth of the buffers in the
routers, number of VC buffers in router ports, and traffic pattern
(random uniform, bit reverse, tornado, etc.).

In this paper, we aim to derive similar curves for TDM NOCs
through a combination of thorough development and analysis of a
queuing theory model and simulation. In a TDM NOC, both 𝑇 and
0

Journal of Systems Architecture 133 (2022) 102766J. Sparsø et al.
Fig. 1. Example latency versus offered load curve.

𝜆𝑆 also depend on the period of the static TDM schedule, as explained
later.

A representative related work targeting BE NOCs is [14]. It uses the
same synthetic traffic patterns as we do but does not consider hardware
cost.

2.3. The Reference Best-Effort NOC

The BE NOCs that we compare against use what can be considered
a standard textbook router [9, Ch. 16.1] [11, Ch.6], i.e., an input-
buffered credit-based virtual channel router. A typical implementation
has four pipeline stages [11, Fig. 6.15(b)]: (i) buffer write, (ii) route
computation and VC allocation, (iii) switch allocation, and (iv) switch
traversal. Traversing a link connecting two routers may take one or
more additional clock cycles. Multiple virtual channels per physical
port are used to avoid or minimize head-of-line blocking and deadlocks.

In the simulations reported later, we vary the numbers of virtual
channels (2, 4, 8, and 16 virtual channels per router port) and the
packet length (1, 3, and 17 flits), and we explore mesh and bi-torus
topologies of different sizes (8 × 8 and 15 × 15 nodes). The hardware
cost of a number of these configurations is reported and discussed in
Section 5.4.

Finally, we mention that a parameterized open-source implemen-
tation of a NOC as described here is presented in [15] and available
at [16].

2.4. The BookSim simulator

BookSim is an open-source, highly flexible, and cycle-accurate NOC
simulator [10]. BookSim models the router pipeline in detail and allows
specification of all details from network topology, number of nodes,
router micro-architecture, internal delays, and flow control algorithm
to traffic generation. All parameters are passed to BookSim either
through a configuration file or using command-line arguments, making
it easy to perform a simulation sweep of the same NOC with different
injection rates.

In BookSim, a traffic manager generates constant-size packets ac-
cording to a specified traffic pattern (i.e., determination of a packet’s
sink node), and injection process (i.e., when to inject packages). The
generated packets are injected into the network from their source nodes
and are then tracked at flit level throughout the network until they
reach their sinks. The simulated network consists of routers and links.
The routers are configurable in terms of their port width, the number
of pipeline stages from input to output, the number and size of their
VC buffers, their routing function, and their allocation and arbitration
3

algorithms. All links are bidirectional.
2.5. Low latency BE routers

On-chip interconnection networks have been researched intensively
during the last 20 years. Many works have addressed router designs that
improve the (zero-load) latency below the 4–5 cycles of the textbook
router described above. Representative examples are [17–21].

BookSim does not support any of these optimized routers, and due
to their diversity and complexity, attempts to model them quickly
become a topic in itself, diverting focus. We aim to compare the cost
and performance of typical and representative TDM and BE networks.
Towards this goal, we note that it is possible to calculate both 𝜆𝑆 and 𝑇0
for the optimized BE routers without detailed knowledge of their micro-
architecture. The zero-load latency, 𝑇0, depends solely on the (best
case) number of clock cycles per hop, i.e., the number of pipeline stages
in a router and a link. And the saturation throughput, 𝜆𝑆 , depends
primarily on the bisection bandwidth of the particular NOC topology
(as discussed in Section 5.3), and it is thus largely independent of the
detailed router implementation. Exceptions are bi-torus topologies with
few virtual channels.

Based on these observations, we conclude that we can estimate
graphs showing latency versus offered load for the BE routers imple-
menting different forms of bypassing and lookahead routing by simply
scaling the y-axis of graphs obtained using BookSim to fit the calculated
zero-load latency.

2.6. TDM NOCs

Time-division multiplexing (TDM) has been used in computer net-
works for decades, and the term TDM refers to the fact that resources,
e.g., communication links, are used in a time-multiplexed manner. This
multiplexing can be static according to a fixed schedule or dynamic to
improve bandwidth use. The latter is known as statistical TDM (STDM).

Plain TDM NOCs, e.g., [2,3,5,22], are known for their time-
predictability and small hardware implementation (avoiding any dy-
namic arbitration, buffering, and flow control). STDM is mainly used
in local and wide area computer networks [23,24], and STDM-based
NOCs are rare [25]. Their dynamic operation means they compromise
time-predictability and are more complex to implement. In this paper,
we focus on networks using static scheduling, which can be seen as
TDM in its simplest and cleanest form.

All the TDM NOCs cited above offer similar functionality: transfer
of packets/messages across virtual end-to-end circuits connecting pairs
of processors. To help illustrate the operation of a TDM NOC, Fig. 2(a)
shows a 3 × 3 node platform using a mesh NOC. A key feature of a TDM
NOC is that packets, once injected into the network, travel without ever
competing for resources. This avoids all buffering, dynamic arbitration,
and flow control. Consequently, a router is merely a crossbar, possibly
pipelined, which can be implemented using just a multiplexer in each
output port [4]. Like in any other NOC, links may be pipelined as well.

Let us assume that routers and links in Fig. 2(a) each have a latency
of one clock cycle, and that packets consist of three flits; a header
and two payload flits. A static and periodic schedule controls the
transmission of packets out of a node. The schedule specifies (i) the
departure time for packets destined for other nodes and (ii) the route
that the packets must travel. The situation is analogous to the departure
schedules posted in train stations. To travel to a given city, one has to
wait for the next scheduled train to that city following a pre-planned
route.

The communication requirements of an application are typically
specified using a so-called core communication graph, or short core graph,
where nodes represent processors and directed edges, annotated with
bandwidth requirements, represent the virtual circuits. A more formal
description is given in Definition 1 in [26,27].

We use a metaheuristic algorithm to produce the global schedule
comprising the local departure schedules for all the nodes. Given a core

Journal of Systems Architecture 133 (2022) 102766J. Sparsø et al.
Fig. 2. (a) Example 9 core multiprocessor platform using a 3 × 3 mesh NOC. (b) TDM schedule for transmission of packets from node 2.
I
b
s
w
p

3

u
u
s
e

communication graph, the algorithm aims to find the shortest possible
periodic schedule that can support all the required virtual circuits.

One of the traffic patterns we use later in our analysis is random
uniform traffic. To support this traffic pattern, every processor must
have a virtual circuit towards each of the other processors. In a 3 × 3
node platform, as shown as an example in Fig. 2(a), the NOC must
provide a total of 8 ⋅ 9 = 72 virtual (end-to-end) circuits.

In the 3 × 3 mesh platform using 3-flit packets, all the 72 virtual cir-
cuits necessary to support random uniform traffic can be implemented
using a schedule with a period of 30 clock cycles. Fig. 2(b) shows the
schedule for node 2.

As seen, the three flits comprising a packet destined for node 7 must
depart from node 2 in clock cycles 4, 5, and 6, collectively called a
slot. In these three cycles, the packet traverses router R2. There are 3
possible shortest paths from node 2 to node 7: R2-R1-R4-R7, R2-R5-R4-
R7, and R2-R5-R8-R7. Assuming the scheduler has selected the first of
these, the packet traverses the link from R2 to R1 in cycles 5, 6, and 7;
router R1 in cycles 6, 7, and 8; the link from R1 to R4 in cycles 7, 8,
and 9, etc.

Schedule periods are typically longer than what a node needs to
inject packets. In our example, it takes 24 cycles to inject the packets
sent by a node, but it takes the NOC 30 cycles to transmit all the
packets. This is the primary reason for the gaps in the schedule (cycles
7, 11, 12, . . . , 29 and 30 in Fig. 2(b)). In addition, the scheduler
is typically unable to find schedules that use all network resources
in every clock cycle. This adds additional gaps. Finally, it must be
noted that if a node does not have data to send when the schedule
allows this, then the reserved slot in the schedule is not used, and
the reserved resources are consequently left idle. Alternatively, some
implementations transmit void flits in these unused cycles.

For all networks (BE and TDM), it is important to correctly consider
the queuing of packets at the source nodes to obtain accurate la-
tency results. As mentioned in Section 2.4, BookSim assumes infinitely
deep queues in the source nodes. For the TDM networks, it is even
more important to consider the implementation and modeling of these
queues because packets wait in the source nodes until their scheduled
departure time, as described above.

Suppose a source node has only a single queue shared by all out-
going virtual circuits. In that case, a packet at the head of the queue
scheduled for a later point in time may block a packet scheduled for
an earlier point in time and for a different destination. For a TDM
network, such head-of-line blocking would be extremely harmful for
both latency and bandwidth utilization. To avoid this, every source
node must offer separate queues for each outgoing virtual circuit, as
was silently assumed in the presentation above.

2.7. The Argo TDM NOC

The Argo NOC presented in this section implements the queues and
4

the TDM scheduling described in the previous section using a very m
efficient and small hardware implementation. The key to this lies in
the TDM scheduling, which means the queues are accessed one at a
time.

In Argo, every outgoing virtual circuit from a processor core has its
own direct memory access (DMA) controller that can be set up to read
a block of data (a message) from a local private scratchpad memory
(SPM) and push this data, in the form of a sequence of packets, across
the NOC and into the local private SPM of the receiver as illustrated
in Fig. 3. The figure omits details on instruction and data memories; it
only shows details of the network interface and how it is connected to
the processor using a dual-ported SPM.

The Argo NOC uses source routing, and each network interface
stores its local subset of the global schedule. The network interface
consists of a counter (TDM count in Fig. 3) that counts modulo the
period of the TDM schedule, a schedule table, and a bank of DMA
controllers. The latter is organized as a table where each entry contains
an active-bit, a read pointer, a write pointer, and a word counter. The
schedule table is indexed by the TDM counter. An entry holds a valid
flag (indicating if the slot is used or not), the route to be taken by
a packet transmitted in the slot, and an index into the DMA table
(identifying which DMA controller is to source the payload data and
the destination address for the packet).

The packets in a TDM period are generally short; in the original
version of Argo, one header word and two payload words. Larger
messages are transferred using multiple packets as the TDM schedule
repeats.

The schedules used by the Argo NOC are generated using a meta-
heuristic scheduling algorithm [28]. Input to this scheduler is a core
communication graph specifying the desired set of virtual circuits,
their relative bandwidth, and the size/length of the packets. Depending
on their bandwidth requirements, virtual circuits are assigned one or
more slots for transmitting packets within the periodically repeating
schedule. The meta-heuristic scheduling algorithm aims to minimize
the period of the schedule, 𝑃𝑇𝐷𝑀 . As will be clear from the following
sections, 𝑃𝑇𝐷𝑀 greatly affects the performance of the TDM networks.
ntuitively, a core communication graph with few virtual circuits, equal
andwidth requirements, and a NOC using short packets results in
chedules with short periods. In contrast, core communication graphs
ith many virtual circuits and long packets result in very long schedule
eriods.

. Analytical model of a TDM network

In this section, we derive a formal queuing theory model that can be
sed to calculate the average latency of a TDM NOC exposed to random
niform traffic. The model is derived for the Argo NOC [5], but the
ame model applies to other TDM NOCs that offer separate FIFOs for
ach virtual end-to-end circuit, e.g., Æthereal [2] and aelite [3].

To support random uniform traffic in a TDM NOC, all processors

ust have virtual end-to-end circuits towards all other processors,

Journal of Systems Architecture 133 (2022) 102766J. Sparsø et al.

r
o

t
e
f
a
r
f
t
s
a
t
p

b
c
u
a
s
N
𝜇
𝜆
o

M

Fig. 3. Controlled by the TDM schedule, a DMA controller, one for each outgoing virtual circuit, reads data from the SPM and injects it into the network of routers and links.
Incoming packets write the payload data directly into the SPM of the receiver.
q

𝑇

and all these virtual circuits have identical bandwidth, as discussed
in Section 2.6. The traffic out of one processor is generated by a
random memoryless source: packets are generated at random points in
time with an average rate, and the destination processor is randomly
selected. Data is transferred from the SPM in a source processor and
into the SPM in a sink processor.

The SPM at the source end can be represented by a first-in, first-out
queue (FIFO) for each end-to-end circuit holding data to be transmitted.
When packets arrive at their destination, they are immediately written
into the SPM, meaning that the sink can be ignored in an analysis of
the total end-to-end latency. Considering a specific source–destination
node pair (𝑖, 𝑗), or an average across all virtual circuits, the network of
outers causes a constant latency: the time it takes to traverse the NOC
nce the packet has been injected into the NOC.

Ignoring the setup of the DMA controllers needed to initiate data
ransfers and remembering that packets arriving at their destination
ssentially write themselves into the SPM without any involvement
rom the network interface, we get the model shown in Fig. 4. Packets
re generated in processor node 𝑃𝑖 at a rate 𝜆Node and are destined
andomly to one of the 𝑁 − 1 processors. The TDM NOC transfers data
rom the head of the FIFOs in the source processor to the destina-
ion processors in a fully deterministic manner according to the TDM
chedule. Such NOC-traversal represents a constant latency, simply the
ccumulated pipeline depth in all the routers traversed from source
o destination. At the sink, incoming packets immediately write their
ayload into the SPM, and this contributes no additional latency.

The source representing one processor in Fig. 4(a) can be replaced
y a source for each FIFO injecting packets at a rate of 𝜆 = 𝜆Node

𝑁−1 . In
ombination with the constant average latency of the NOC, this allows
s to model a virtual end-to-end circuit connecting a pair of processors,
s shown in Fig. 4(b), using a single source, a single queue, a single
erver, and a delay element representing the latency of traversing the
OC. The server operates in a periodic manner with a service rate of
= 1∕𝑃TDM; the period of the TDM schedule. When the injection rate
reaches this rate, the FIFOs will overflow, and the NOC will fail to

perate correctly.
The source, the queue, and the server in Fig. 4(b) resemble the

/D/1 queue model [29–31], where the average waiting time in the
5

ueue is:

𝑞𝑢𝑒𝑢𝑒(𝑀∕𝐷∕1) =
𝜆∕𝜇

2𝜇(1 − 𝜆∕𝜇)
(1)

However, there is one important difference. In the M/D/1 model, an
element arriving at an empty queue when the server is idle is serviced
immediately, whereas in our TDM NOC, an element arriving at an
empty queue is not serviced (i.e., injected into the network) until the
next scheduled time. The situation resembles a bus stop where buses
with a capacity of one passenger depart according to a periodic sched-
ule. The service rate is the inverse of the interval between departures. In
a situation where a passenger arrives at an empty bus stop at a time that
is random and uniform in relation to the TDM schedule, the average
waiting time is half the period between departures. Adding this to the
expression in Eq. (1) we get Eq. (2).

𝑇𝑞𝑢𝑒𝑢𝑒(𝑇𝐷𝑀) =
1
2𝜆

+
𝜆∕𝜇

2𝜇(1 − 𝜆∕𝜇)
(2)

Substituting 1∕𝜇 by 𝑃TDM, substituting 𝜆 by 𝜆Node
𝑁−1 , and rearranging

the equation, we get Eq. (3). It expresses the average time that a packet
waits in the queue before it is injected into the network of routers as a
function of the injection rate and the period of the TDM schedule.

𝑇queue(TDM) =
𝑃TDM

2(1 − 𝜆Node
𝑁−1 ⋅ 𝑃TDM)

(3)

The time it takes to cross the network, the NOC-latency in Fig. 4(b),
is the time from the packet header enters the source node until the tail
of the packet is received by the destination node. This NOC latency de-
pends on: (i) the relative distance between the sender and the receiver,
often called the hop count, (ii) the number of pipeline stages in the
routers and links, and (iii) the length of a packet. The number of hops
is the number of links traversed from source to destination. Most of
the (pipeline) registers in a path from source to destination are in the
routers, and we note that a path that contains 𝐻 links contains 𝐻 + 1
routers. The average NOC-latency can be calculated from the average
hop count, 𝐻Avg, the pipeline depth of a router, 𝑅, the pipeline depth
of the links, 𝐿, and the length of a packet 𝑆, as follows:

𝑇 = [(𝐻 + 1) ⋅ 𝑅 +𝐻 ⋅ 𝐿] + [𝑆 − 1] (4)
NOC Avg Avg

Journal of Systems Architecture 133 (2022) 102766J. Sparsø et al.

m
l
i

𝐻

𝐻

Fig. 4. A model of a TDM NOC suitable for statistical analysis of latency as a function of offered load. Typically, a node does not send to itself (𝑖 ≠ 𝑗), hence the injection rate
𝜆Node
(𝑁−1)

in Fig. 4(b). The NOC latency is constant for a specific source-to-destination node pair (𝑖, 𝑗). Alternatively, in a coarser model, the NOC latency is the average across all the
virtual source-to-destination connections.
p

𝜆

The first part in square brackets is the number of cycles it takes a
first flit in a packet to traverse and exit the network. The second part
is the number of cycles it takes the remaining flits in a packet to exit
the network.

Adding Eqs. (3) and (4), we obtain the average latency for random
uniform traffic across a TDM NOC (expressed in clock cycles):

𝑇TDM,NOC = 𝑇queue(TDM) + 𝑇NOC (5)

Note that the periodic operation of the server means that a packet
that arrives in an empty FIFO is not serviced immediately, even if the
server is idle; it is serviced at the next scheduled point in time. At low
packet injection rates, a packet waits on average half of the schedule
period, 1

2 𝑃TDM, before it is injected into the network, and when the
injection rate increases, it waits longer, as expressed in Eq. (3). Finally,
we note that the latency of the NOC itself, 𝑇NOC, is independent of the
packet injection rate and constant for a given NOC implementation.

4. Asymptotes of the performance curves

In the next section, we present latency curves for a number of NOC
topologies. However, before doing so, it is relevant to calculate the
asymptotes, i.e., the zero-load latency 𝑇0 and the saturation throughput
𝜆𝑆 , in order to instill confidence in the latency-curves produced from
our analysis and simulations.

The zero-load latency can be obtained from Eq. (4) for the BE NOC
and from Eq. (5) for the TDM NOC. The average hop count for a
topology (here, a bi-torus and a mesh) can be calculated as the average
of the minimum distance between all possible node pairs. For an 𝑁-
node network (𝑁 = 𝑛2) the average hop counts for a bi-torus and a

esh are stated in Eqs. (6) and (7) [11], which do not take the zero-
ength path from a node to itself into account, meaning that the average
s calculated across 𝑁 − 1 nodes:

Avg, Bi-Torus =
{

𝑛∕2 𝑛 even
𝑛∕2 − 1∕2𝑛 𝑛 odd (6)

Avg, Mesh =
{

2𝑛∕3 𝑛 even (7)
6

2(𝑛∕3 − 1∕3𝑛) 𝑛 odd
For all network topologies, the bisection bandwidth, 𝐵𝑏, is the
primary limiting factor when the number of nodes in the network is not
too small [4,9], and it can be used as an upper bound when estimating
𝜆𝑆 . Tighter bounds are possible if the topology, the routing function,
and the amount of buffering are also considered, but this requires a
detailed analysis. For a bi-torus, a bisection cuts 4𝑛 links and hence
𝐵𝑏 = 4𝑛 (flits/s). For a mesh, a bisection cuts 2𝑛 links and hence
𝐵𝑏 = 2𝑛 (flits/cycle). Using these values we can estimate 𝜆𝑆, BE, Bi-Torus
and 𝜆𝑆, BE, mesh as follows:

𝜆𝑆, BE, Bi-Torus =
𝐵𝑏
𝑁∕2

=
4𝑛 (flits/cycle)

𝑛2∕2
= 8

𝑛
(flits/cycle) (8)

𝜆𝑆, BE, Mesh =
𝐵𝑏
𝑁∕2

=
2𝑛 (flits/cycle)

𝑛2∕2
= 4

𝑛
(flits/cycle) (9)

For the TDM NOCs, a tighter bound on 𝜆𝑆 can be determined from
the number of nodes, 𝑁 , the packet size (measured in flits), 𝑆, and the
eriod of the TDM schedule (measured in cycles), 𝑃TDM:

𝑆,TDM =
(𝑁 − 1) ⋅ 𝑆

𝑃TDM
(10)

5. Evaluation of typical NOC configurations

In this section, we analyze the performance of a number of NOC
configurations. First, we list the parameters characterizing these con-
figurations. Then we compute the asymptotes for the performance
graphs and assess the hardware cost. Following this, we present the
latency versus offered load curves for the different configurations and
explore the effects of varying the packet length. Finally, based on the
insights gained, we explore ways of reducing latency and increasing
throughput and the effect of using other traffic patterns (tornado and
bit complement).

5.1. The NOC simulator TDMSim

The BookSim NOC simulator is flexible and highly configurable.
However, it does not support TDM networks. Therefore, we wrote our

Journal of Systems Architecture 133 (2022) 102766J. Sparsø et al.

e
p
i
r
p
i

a
s
t
T
m
d

S
t

T
c
a
t
u
t
g
f
a
d
a

m
a

Table 1
Zero-load latency, 𝑇0, and saturation throughput, 𝜆𝑆 , for different NOC configurations
and packet sizes, 𝑆. For the TDM NOC, 𝑇0 = 1∕2𝑃𝑇𝐷𝑀 +𝑇𝑁𝑂𝐶 , and the two components
are shown in columns 4 and 5. As seen 1∕2𝑃𝑇𝐷𝑀 contributes the most to 𝑇0.

Topology Network 𝑆 TDM NOC BE NOC
1∕2𝑃𝑇𝐷𝑀 𝑇𝑁𝑂𝐶 𝑇0 𝜆𝑆 𝑇0 𝜆𝑆

Bi-Torus 8 × 8 3 126 17 143 0.75 24.0 1.0
8 × 8 17 885 31 916 0.61 40.0 1.0
15 × 15 3 711 27 738 0.47 38.1 1.0
15 × 15 17 5203 41 5244 0.37 56.0 1.0

Mesh 8 × 8 3 207 26 233 0.46 32.7 0.5
8 × 8 17 1367 40 1407 0.39 46.7 0.5
15 × 15 3 1362 46 1408 0.25 55.8 0.5
15 × 15 17 9110 61 9171 0.21 69.8 0.5

own simulator TDMSim. TDMSim uses the same traffic generators and
time-stamping mechanisms as BookSim. Following the illustration in
Fig. 4, it models packet injection into an infinitely long FIFO queue
from the C++ containers library representing a single node in the NOC
and subsequent packet transmission at appropriate times throughout
a TDM period. The network simulation time-stamps a packet when it
enters the waiting queue and measures its latency when it exits the
NOC. The source code is available at https://github.com/hansemandse/
tdmsim

5.2. Network configurations explored

Below we analyze the performance of the following NOC config-
urations: 64-node mesh and bi-torus NOCs, and 225-node mesh and
bi-torus NOCs, all using either 3-flit packets, 𝑆 = 3, (a header and
a double-word payload) or 17-flit packets, 𝑆 = 17, (a header and a
16-word payload). The number of 32-bit words in a flit is one, (𝐹 = 1).

For the BE NOCs, we also vary the number of VCs from 2 to 16. For
ach of the four situations (topology × number of nodes) with 3-flit
ackets, we present curves showing the latency of a packet (measured
n clock cycles) as a function of the offered traffic, i.e., the injection
ate per node (measured in flits/cycle/node), while results for 17-flit
acket cases are presented in tabular form. The same BE router is used
n all of the following experiments as well.

For the TDM NOC, we assume a router implementation similar to
elite [3] and Argo [5] with three pipeline stages in the router; one
tage to traverse the link (𝐿 = 1) and two stages (𝑅 = 2) to propagate
hrough the router (header parsing and crossbar traversal). Simpler
DM NOCs, possibly using distributed routing (to avoid header flits),
ay have 𝑅 = 1 or even 𝑅 = 0, [4]. Later we vary and experiment with
ifferent values of all the parameters 𝑆, 𝐹 , 𝑅, and 𝐿.

For the BE NOCs, we consider the default configuration in Book-
im [10] with minor changes to be a standard BE router, and we use
his in our comparison. We assume a router with 𝐿 = 1 and 𝑅 = 4

as in [11, Fig. 6.15(b)], where the four pipeline stages are: (i) buffer
write, (ii) route computation and VC allocation, (iii) switch allocation,
and (iv) switch traversal. Focusing on principles, we assume 𝐿 = 1 for
all network topologies and types. We further assume dimension order
routing (DOR), eight flits deep VC buffers, and no crossbar speedup
(i.e., the crossbar can transfer at most one flit to each router port in a
cycle). As mentioned above, we provide results for configurations with
2, 4, 8, and 16 VC buffers per port.

5.3. Values of the asymptotes, 𝑇0 and 𝜆𝑆

Using the parameters just stated and equations from Section 4, we
get the values for 𝑇0 and 𝜆𝑆 shown in Table 1. The values for 𝑇0 and 𝜆𝑆
for the TDM NOCs are tight bounds, whereas 𝜆𝑆 for the BE NOC that
is derived from the bisection bandwidth is relatively loose. The actual
7

curves shown in the next section conform with these statements.
The zero-load latency for the BE NOC, 𝑇0,BE, is the time it takes
a packet to traverse the network of routers and links. The zero-load
latency of the TDM NOC, 𝑇0,TDM, is higher. The difference is the time
a packet waits for admission to the network. On average, this is half of
the TDM period, which, as seen, is the major part of the latency.

For large NOCs (𝑛 × 𝑛 = 15 × 15nodes), or when using large packets
(𝑆 = 17), the TDM networks exhibit very high zero-load latency (𝑇0).

he reason is the very long schedule periods, as seen in Table 1. This
an be explained as follows. For a bi-torus, a bisection cuts 4𝑛 links
nd hence 𝐵𝑏 = 4𝑛 (flits/cycle). This bandwidth must support half of
he traffic in the network. For an all-to-all schedule supporting random
niform traffic this is 1∕2 ⋅ 𝑛2 (𝑛2 − 1) ⋅ 𝑆 flits in a schedule period. For
he 15 × 15 node bi-torus using 3-flit packets this bisection argument
ives a lower bound: 𝑃𝑇𝐷𝑀 > 1∕8 ⋅ 𝑛 (𝑛2 − 1) ⋅ 𝑆 = 1200 cycles. This
its nicely with Table 1 that states 1∕2𝑃𝑇𝐷𝑀 = 711 cycles. For a torus,

bisection cuts only 2𝑛 links, and hence 𝑃𝑇𝐷𝑀 and 𝑇0 are roughly
oubled compared to the bi-torus. We discuss ways of reducing 𝑃𝑇𝐷𝑀
nd thereby 𝑇0 later.

The mesh and bi-torus networks analyzed above are the most com-
on NOC topologies. The main takeaway from the analysis is that for
TDM NOC, the zero-load latency, 𝑇0, is dominated by the schedule

length, 𝑃𝑇𝐷𝑀 . The same observation applies to other topologies of TDM
networks, for example, ring topologies. For a ring with 𝑁 nodes, a
bisection cuts two links, and these two links must support the transmis-
sion of 1∕2 ⋅𝑁(𝑁−1)𝑆 flits. For 𝑁 = 64nodes and 𝑆 = 3 flits in a packet,
we can estimate 𝑃𝑇𝐷𝑀 > 3024 cycles. As the ring is a very simple
topology, this is a relatively tight bound, and hence 𝑇0 ≈ 1512 cycles.

5.4. Hardware cost

This paper aims to assess the performance of TDM NOCs and
BE NOCs taking hardware cost into consideration. A fair compari-
son requires precise and objective area measures, and to derive such
measures, it is necessary to consider both the micro-architecture and
gate-level design as well as the particular technology used for the
implementation.

While it is rather straightforward to assess the design of a TDM NOC,
due to its simple router, it is more difficult for a BE NOC. The area of a
BE router depends on many architectural- and circuit-level details [32],
including the number of VC buffers per port, the depth of these VC
buffers, and their implementation (arrays of flip-flops, arrays of latches,
or SRAM). This large design space for a BE router is an unavoidable
source of uncertainty when attempting a comparison.

The next question is what technology (e.g., FPGA, standard-cell
ASIC, or full-custom) and what technology node (e.g., 14 nm, 22 nm,
28 nm) to assume. Moreover, if using ASIC or full-custom technology,
the design may be optimized for speed, area, or leakage, which also
affects the area. All this means that numbers like 1234 slices in a Virtex
II FPGA or 123,456 square microns in a 22 nm process are far less
accurate than they may seem at first. It also means that results from
different papers basically cannot be compared. Finally, such numbers
offer little insight.

Instead, we use a more abstract yet precise and transparent measure
of area. We observe that all routers are dominated by pipeline registers
and VC buffers, and we observe and assume that, to a first-order
approximation, the amount of logic is proportional to the amount of
storage. In the TDM router, the logic is predominantly in the crossbar.
In the BE router, the logic is in the crossbar and the logic administering
the VC buffers. In this way, a dimensionless relative area measure is
simply the total amount of storage measured in bits. A more precise
area measure assumes that the pipeline registers are implemented using
discrete flip-flops and the VC buffers as register-files or memory blocks,
assumed to be two times denser than flip-flops. Throughout the rest
of this paper, we use this more precise, dimensionless relative area
measure and denote it □. For all routers and NOC topologies, we

assume link traversal is done in one cycle.

https://github.com/hansemandse/tdmsim
https://github.com/hansemandse/tdmsim
https://github.com/hansemandse/tdmsim

Journal of Systems Architecture 133 (2022) 102766J. Sparsø et al.

r
s
d
m
r
m
a
t
p

r
T
f
b
m
a
f
I
r

r
i

c
b
3
a
b
t

t
s
a
a
i

1
F
R
t
m
c
f
i

l
a

d
T
e

5

u
t
p
m

t
t
p
s
t
T
s

s
4
a
r
i
t
t

f
t
m
i
N
𝑛
q

B
v
t
t
6
t
i
e
l
p

6

t
p
i
r
t
p

i
F
a
f
w
s
t

Table 2
Hardware resources for FPGA implementation of a single router.

Router FFs LUTs Ratio

Argo 565 932 1:1.6

OpenSoC (2 VCs, 4 flits deep) 2519 4 672 1:1.9
OpenSoC (2 VCs, 8 flits deep) 4337 6 057 1:1.4
OpenSoC (4 VCs, 4 flits deep) 5158 10 935 1:2.1
OpenSoC (4 VCs, 8 flits deep) 8794 13 794 1:1:5

Table 3
Area of a router implemented in the STM 45 nm CMOS cell library.

Router Cell area (μm2)

Argo 4 360

OpenSoC (2 VCs, 4 flits deep) 52 023
OpenSoC (2 VCs, 8 flits deep) 79 885
OpenSoC (4 VCs, 4 flits deep) 111 302
OpenSoC (4 VCs, 8 flits deep) 166 975

The baseline TDM router considered in this paper is a five-ported
outer composed of a 5 × 5 crossbar, and one, two, or three pipeline
tages. The ports are 35 bits wide supporting flits with 32 bits for
ata/address/route and 3 bits indicating the flit type (header, inter-
ediate, tail). A router with one pipeline stage is discussed in [4], and

outers with three pipeline stages (link traversal, extract routing infor-
ation from header flit, and crossbar traversal) are used in the aelite

nd Argo networks [3,5]. The dimensionless relative area measure for
hese routers range from 5 ⋅ 35 ⋅ 1 = 175 □ for routers with a single
ipeline stage to 5 ⋅35 ⋅3 = 525 □ for routers with three pipeline stages.

As a representative BE router, we consider a 5-ported input-buffered
outer with 4 VCs per port. We assume 35 bit wide ports, as for the
DM router. We further assume: (i) 8 flits deep VC buffers, (ii) 35 bit
lits, and (iii) a router with three pipeline stages in addition to the VC
uffers. The crossbar in such a router is either a 20 × 5 crossbar or a 4:1
ultiplexer in each input port followed by a 5 ×5 crossbar. The relative

rea measure of this BE router is 3, 325□ (computed as 5 ⋅3 ⋅35 = 525□
or the pipeline registers and 5 ⋅0.5 ⋅8 ⋅4 ⋅35 = 2800□ or the VC buffers).
f the depth of the VC buffers is reduced to 4 flits, the relative area
educes to 1925□.

From these area estimates, we see that the area of a typical BE
outer is 4–10 times larger than a typical TDM router, and the reason
s primarily the VC buffers and the related logic.

Finally, we mention the router used in Intel’s 48-core IA-32 cloud
omputer [33] uses 5-ported routers, 144 bit wide flits and links (128-
it data and 16-bit sideband information), 8 VCs per input port with
flit deep buffers (implemented as a single register file per port),

nd a pipeline depth of 4 stages (VC buffer write, switch allocation,
uffer read and VC allocation, and switch traversal). For this router,
he relative area is: 5 ⋅ (3 ⋅ 144 + 0.5 ⋅ 3 ⋅ 8 ⋅ 144) = 10, 800□.

To consolidate and substantiate the above estimates, we have syn-
hesized an Argo TDM router with three pipeline stages and several ver-
ions of the BE router from OpenSoc [15,16], targeting both an FPGA
nd an ASIC implementation. The OpenSoc is written in Chisel [34]
nd is first translated to Verilog via the Chisel runtime. Argo is written
n VHDL and can directly be synthesized

For the FPGA implementation, we used Intel Quartus Prime version
9.1.0 and targeted a Cyclone IV FPGA. The resources offered by this
PGA are flip-flops, lookup tables (LUTs) with up to 4 inputs, and block
AM. The latter is not used by any of the router designs. Table 2 shows

he results that confirm that a typical BE router is easily an order of
agnitude larger than a typical TDM router and that the amount of

ombinational logic is proportional to the number of bits stored in flip-
lops and buffers. As the logic required to make the VC buffers deeper
s limited, the ratio reduces as the VC buffers are made deeper.

For the ASIC implementation, we opted for the STM 45 nm CMOS
ibrary of standard cells and we used commercial synthesis and place-
8

nd-route tools (Synopsys). Table 3 shows the results. As seen, the q
ifferent versions of the OpenSoc are 12–48 times larger than the Argo
DM router. This is an even larger difference than our dimensionless
stimate and FPGA synthesis results.

.5. Latency vs. Offered load

Fig. 5 shows the latency versus offered load curves for the config-
rations mentioned above: 64-node and 225-node mesh and bi-torus
opologies using 3-flit packets. We do not include plots for 17-flit
ackages due to the very high zero-load latency of the TDM NOCs
entioned in Section 5.3.

Results for the BE NOCs are obtained using BookSim [10] and for
he TDM NOCs using TDMSim, introduced in Section 5.1. Results from
he simulations conform with Eq. (5). The small discontinuities in the
lotted lines result from the randomized injection processes in our
imulations. Longer simulation runs would reduce these, not change
he results. The dashed lines are the asymptotes for the curves for the
DM networks calculated in Section 4. As seen, they conform with the
imulations.

We see that the 8 × 8 bi-torus NOC using TDM routers has a higher
aturation throughput than a similar NOC using BE routers with 2 or

VCs, and for the 8 × 8 mesh NOC, we see that all networks have
pproximately the same saturation throughput. As the area of a TDM
outer is 5–10 times smaller than a BE router, this is a very positive and
nteresting result. However, in both 8 × 8 networks, we also see that
he zero-load latencies of the TDM NOCs are 6–7 times higher than for
he BE NOCs.

For the larger 15 × 15 NOCs, the versions using BE routers outper-
orm the versions using TDM routers. As discussed in detail in Section 4,
he reason is that the bisection bandwidth in an 𝑁 = 𝑛 × 𝑛 node
esh or bi-torus grows (𝑛), and in the TDM NOCs this bandwidth

s statically assigned to the (𝑛4) virtual end-to-end circuits that the
OC implements. Hence, when increasing from 𝑛 = 8 (64 nodes) to
= 15 (225 nodes), the bandwidth per virtual end-to-end circuit drops
uickly, causing a proportional drop in the saturation injection rate.

From this first evaluation of what we consider typical examples of
E and TDM NOCs, we conclude that using TDM NOCs for BE traffic is a
iable option for NOCs of moderate size using short packets. Compared
o an 8 × 8 BE NOC, an equally-sized TDM NOC can provide comparable
hroughput for a 5–10 times lower hardware cost at the expense of a
–7 times higher latency. Larger TDM NOCs (15 × 15) do not achieve
he same results owing to their long schedules. We consider this an
nteresting point in the solution space, and in the next section, we
xplore ways of trading more area for a corresponding reduction of
atency in 8 × 8 NOCs; measures that will also increase the throughput
roportionally and beyond that of the BE network.

. Improving latency and throughput

In some BE applications, for example, when supporting traffic be-
ween caches and memories, latency rather than throughput is the
rimary concern. It is therefore relevant to ask how a 2x, 4x, or even 8x
ncrease of hardware resources for a TDM router could be exploited to
educe latency and increase throughput, still with an area that is lower
han or similar to that of a BE NOC. In this section, we explore this
erspective.

A straightforward way to increase the performance of a TDM router
s to use wider links/flits, for example, four words per flit (𝐹 = 4).
ig. 6 shows the performance of a TDM NOC using the wider links/flits
gainst the BE NOC from Fig. 5(a) and (c). Widening the links by a
actor of four means that four times as many words can be transferred
ithin a given time. In Fig. 6, this is seen as a four times higher

aturation throughput than before. However, this also implies four
imes wider registers and multiplexers in the TDM router, roughly

uadrupling its area. Considering the area numbers from Section 5.4

Journal of Systems Architecture 133 (2022) 102766J. Sparsø et al.

𝐿
a

a
s

l
o
e
z
i
w
t
s
a

Fig. 5. Latency vs. injection rate curves for the 8 × 8 and 15 × 15 bi-torus and mesh NOCs. The BE NOC has 𝑆 = 3, 𝐹 = 1, 𝐿 = 1, and 𝑅 = 4. The TDM router has 𝑆 = 3, 𝐹 = 1,
= 1, and 𝑅 = 2. BE curves are only partially labeled as they appear with increasing number of virtual channels (2, 4, 8, and 16) from left to right. The dashed lines are the

symptotes for the curves for the TDM networks calculated in Section 4. As seen, they conform with the simulations.
Fig. 6. Latency vs. injection rate curves for 8 × 8 bi-torus and mesh NOCs. The BE NOCs are the same as used before in Fig. 5(a) and (c). The TDM NOC is four times wider
than before and has 𝑆 = 3, 𝐹 = 4, 𝐿 = 1, and 𝑅 = 2.
r
s
r

s
d
l
r

w
b

nd Tables 2 and 3, the TDM router with wider links would still be
maller than a BE router with 2 VCs.

Exploring how more hardware resources can be used to lower the
atency is more interesting and challenging. The average packet latency
f a TDM NOC is expressed in Eq. (5). For the 64-node bi-torus NOC
xplored in the previous section (𝑆 = 3, 𝐹 = 1, 𝑅 = 2, 𝐿 = 1), the
ero-load latency 𝑇0,𝑇𝐷𝑀 = 143 cycles, as stated in Table 1. At low
njection rates (zero-load), 𝑇queue(TDM) = (1∕2)𝑃TDM = 127 cycles. This
aiting time in the queue is clearly the dominating contribution to

he latency, and it grows as the packet injection rate is increased. The
econd component, 𝑃NOC detailed in Eq. (4), amounts to 14 cycles for
9

header flit to traverse the NOC and an additional 2 cycles for the u
emaining flits in a packet to exit the NOC. As these numbers clearly
how, the most efficient way of reducing the average latency is to
educe the schedule period.

The schedules for the TDM NOCs are produced using a metaheuristic
cheduler [28]. Experiments show that the schedule period, 𝑃TDM,
epends primarily on the topology (bi-torus or mesh) and the packet
ength, 𝑆. The number of pipeline stages in routers and links, 𝐿 and 𝑅,
espectively, play a minor role in determining the schedule.

The observation that the schedule period scales roughly linearly
ith packet length may not be obvious. However, it may be explained
y considering the bisection bandwidth limit. When using random

niform traffic, half of the traffic in the network is carried by the links

Journal of Systems Architecture 133 (2022) 102766J. Sparsø et al.
Fig. 7. Latency vs injection rate curves for 8 × 8 bi-torus and mesh NOCs using 4-word single-flit packets. The BE NOC is the same as used before in Fig. 5(a) and (c). The TDM
NOC has 𝑆 = 1, 𝐹 = 4, 𝐿 = 1, and 𝑅 = 1.
that cross a bisection cut, and from this, it is trivial to realize that when
these links are the bottleneck, then the time it takes to transmit a given
number of packets increases linearly with packet length.

From the above discussion, we see that the most effective way to
reduce latency is to reduce the packet length, possibly to a single flit
(𝑆 = 1), because it reduces the schedule period almost proportionally.
The packet size can remain unchanged if the flits and links, and thereby
also the routers, are made correspondingly larger. This will reduce
1
2 𝑃TDM from 126 cycles to 42 cycles for the 64-node bi-torus.

With packet length and schedule period at a minimum, the next step
towards reducing latency is to reduce the number of pipeline stages in
the routers and links. These pipeline stages are ‘‘used’’ for signals to
travel a certain distance or for calculations and switching. Compared to
BE routers, TDM routers perform little decision-making and only very
simple switching, and consequently, most pipelining is related to signal
propagation. For this reason, TDM routers generally may have fewer
pipeline stages than BE routers.

In all of the above, we have assumed a TDM router using a 3-stage
pipeline (𝐿 = 1 and 𝑅 = 2). The reason is that this is what is used in
the aelite [3] and Argo [5] NOCs. The three pipeline stages are (i) link
traversal, (ii) extract routing information, and (iii) crossbar traversal.
Stage (ii) is very simple, and it is possible to combine stages (ii) and
(iii) and reduce the router pipelining to two stages: link traversal and
router traversal. It may even be possible to reduce to a single pipeline
stage for both if aggressive clocking is not needed.

Based on the insight presented in this section, we can now propose a
TDM router targeting minimum latency: it uses single flit packets, wide
flits/links (4 words or more), and two pipeline stages (link traversal
and switch traversal), i.e., configuration (𝑆 = 1, 𝐹 = 4, 𝐿 = 1, 𝑅 = 1).
We estimate the area of this router to be still 2.5–3 times smaller than
a typical BE router. Fig. 7(a) and (b) show the latency versus offered
load curves for the 8 × 8 mesh and bi-torus TDM NOCs using this
configuration. We note that this design achieves a comparable zero-load
latency and a much higher throughput than the BE router.

Finally, we offer some ideas for further research, which can reduce
the schedule period and thereby the latency below what is possible
when using single flit packets. A general performance-increasing tech-
nique used in hardware design when circuit delays do not allow further
pipelining is interleaving, i.e., using multiple copies of the circuit and
operating them in an interleaved fashion. In a TDM NOC, this basic
idea can be implemented in several alternative ways. One option is to
implement a second copy of the network of routers and links and to
execute their TDM schedules phase shifted by half of the TDM period.
Each queue will then provide packets to both networks, effectively halv-
ing the waiting time between slots and thereby the latency. Another
option is to implement two networks, each servicing traffic from half
10

of the nodes. Both options will require some changes in the network
interfaces connecting processor nodes to their corresponding routers,
but the hardware cost of the network interfaces will only increase
marginally.

7. Other traffic patterns

Up to now, we have assumed random uniform traffic. This is con-
sidered benign towards the BE NOCs [9] because traffic spreads across
the network. To supplement the analysis, we now consider tornado
traffic for the bi-torus NOC and bit-complement traffic for the mesh
NOC. These traffic patterns are designed to be challenging for the
respective networks [9]. In both patterns, every node transmits packets
to one destination node, whose address is calculated from the address
of the source node. For tornado traffic the nodes are considered in
two dimensions (𝑠𝑥, 𝑠𝑦) for 𝑥, 𝑦 ∈ [0, 𝑛 − 1] such that the destination
node is (𝑑𝑥, 𝑑𝑦) = ([𝑠𝑥 + ⌈𝑛∕2⌉ − 1] mod 𝑛, [𝑠𝑦 + ⌈𝑛∕2⌉ − 1] mod 𝑛).
For bit-complement traffic, all nodes are assigned a unique number
𝑠𝑖 for 𝑖 ∈ [0, 𝑛2 − 1] such that the destination node is 𝑑𝑖 = ¬𝑠𝑖. In both
cases, we consider networks with 8 × 8 = 64 nodes.

The tornado and bit-complement traffic patterns can be supported
by a TDM network using the same all-to-all schedule that we used for
random uniform traffic. However, in this case, only 64 of the 64 × 63
virtual end-to-end circuits would be used, resulting in poor utilization
of network resources and hence poor performance. For sparse com-
munication patterns like tornado and bit-complement, it is relevant to
consider specific schedules for the traffic patterns. Here we learned a
lesson.

To begin, we defined core-communication graphs for bit-comple-
ment and tornado with one edge between every source–destination
node pair. From this, and assuming the same router as in Section 6
(𝑆 = 1, 𝐹 = 4, 𝐿 = 1, and 𝑅 = 1), we obtained TDM schedules of 18
cycles for the bi-torus NOC and 42 cycles for the mesh NOC. In both
cases, the performance was still poor. The reason is that all packets
from a source to a destination follow the same shortest path, leaving a
lot of NOC resources, i.e., links, idle or partially idle.

To overcome this, we instead specified core communication graphs
with, for example, 16 edges between every source–destination node
pair, enabling the scheduler to use several different shortest-path routes
between communicating nodes. This results in better utilization of net-
work resources and thereby improved performance (higher throughput
and lower latency) while requiring no changes to the NOC routers and
only negligible changes to the network interfaces. It should be noted
that the scheduler is limited to producing shortest-path routes, and
hence that all packets arrive in order despite having followed different
paths.

The final results for the situation where a schedule period allows
nodes to send 16 packets are shown in Fig. 8(a) for a bi-torus exposed

Journal of Systems Architecture 133 (2022) 102766J. Sparsø et al.

b

t
c
i

p
s
a

8

t
t
p
o

l
s
a
s
m

f
n
s

a
t
p
T
h
c

i
s
s
T
i

s
B

T
w
t
o
r
a

Fig. 8. Latency vs injection rate curves for 8 × 8 bi-torus and mesh NOCs with application-specific tornado and bit-complement traffic patterns. The BE NOC is the same as used
efore in Fig. 5(a) and (c). The TDM NOC has 𝑆 = 1, 𝐹 = 4, 𝐿 = 1, and 𝑅 = 1. Labeling follows the same pattern as in Fig. 5.
D

c
i

D

s

A

C
e

o

o
t

R

o tornado traffic and in Fig. 8(b) for mesh NOC exposed to bit-
omplement traffic. As seen, the TDM NOCs outperform the BE NOCs
n terms of zero-load latency and saturation throughput.

As an overall conclusion to this experiment, we note that TDM NOCs
rovide very attractive performance when using application-specific
chedules but that their schedules must be unrolled to better use the
vailable bandwidth.

. Conclusion

Motivated by the observation that the hardware cost of a typical
ime-division multiplexed (TDM) network-on-chip (NOC) [3,5] is 5–10
imes lower than that of a typical best effort (BE) NOC [10,11], this
aper explores and compares the performance of the two. To the best
f our knowledge, such a comparison has not been attempted before.

The performance is expressed using graphs showing average packet
atency versus offered load. For the BE NOCs, we use the BookSim
imulator [10] to obtain these graphs. For the TDM NOCs, we derive
nd contribute a queuing theory model and an associated TDM NOC
imulator that uses the same traffic generators and time-stamping
echanism as BookSim.

Our first experiments use random uniform traffic and show that
or a fraction of the hardware cost, and for networks with up to 64
odes, a TDM NOC can offer similar saturation throughput, albeit with
ignificantly higher latency.

The TDM routers in [3,5] are not optimized for minimum latency,
nd in the second set of experiments, we explore design tradeoffs
hat minimize the latency of a TDM NOC. Here we find that short
ackets and correspondingly wider links/flits significantly reduce the
DM schedule period and thereby the latency. In this way, and for a
ardware cost that is still smaller than that of a BE router, a TDM NOC
an reach almost the same latency and four times higher bandwidth.

As a final experiment, we explored using other traffic patterns,
.e., tornado and bit-complement. Here, we learned that a TDM NOC
hould use longer (unrolled) schedules, where source nodes are as-
igned several slots for sending packets to the same destination nodes.
his uses more paths through the network and results in correspond-

ngly higher utilization of network resources.
The overall conclusion is that a TDM NOC, with its small and

imple hardware, may be attractive in multi-core platforms used for
E applications.

In future work, we envision exploring real applications on BE and
DM NOCs. Furthermore, we plan to explore TDM NOC architectures
ith support for single-cycle multi-hop links, particularly considering

he effects this has on hardware complexity and schedule length. An-
ther direction of future work is using application-specific schedules,
econfiguration of the TDM schedule, and other forms of dynamic
daptation to actual traffic loads.
11
eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

The paper includes a link to the source code for the TDM NOC
imulator.

cknowledgments

The work presented in this paper was partially funded by the Danish
ouncil for Independent Research | Technology and Production Sci-
nces, Denmark under the project PREDICT, contract no. 4184-00127A.

We thank William Wulff and Prof. Alberto Nanarelli for their help
n producing the ASIC area figures in Table 3.

Finally, we thank the anonymous reviewers for their careful reading
f our manuscript and their many insightful comments and suggestions
hat have helped improve the paper.

eferences

[1] M. Millberg, E. Nilsson, R. Thid, A. Jantsch, The Nostrum backbone - a commu-
nication protocol stack for networks on chip, in: Proc. IEEE Intl. Conference on
VLSI Design, 2004, pp. 693–696.

[2] K. Goossens, J. Dielissen, A. Rădulescu, The Æthereal network on chip: Concepts,
architectures, and implementations, IEEE Des. Test Comput. 22 (5) (2005)
414–421, http://dx.doi.org/10.1109/MDT.2005.99.

[3] A. Hansson, M. Subburaman, K. Goossens, Aelite: a flit-synchronous network on
chip with composable and predictable services, in: Proc. Design, Automation and
Test in Europe, DATE, 2009, pp. 250–255.

[4] M. Schoeberl, F. Brandner, J. Sparsø, E. Kasapaki, A statically scheduled time-
division-multiplexed network-on-chip for real-time systems, in: Proc. IEEE/ACM
Intl. Symposium on Networks-on-Chip (NOCS), IEEE Computer Society Press,
2012, pp. 152–160.

[5] E. Kasapaki, M. Schoeberl, R.B. Sørensen, C.T. Müller, K. Goossens, J. Sparsø,
Argo: A Real-Time Network-on-Chip Architecture with an Efficient GALS
Implementation, IEEE Trans. VLSI Syst. 24 (2) (2016) 479–492.

[6] S. Hesham, J. Rettkowski, D. Goehringer, M.A. El Ghany, Survey on real-time
networks-on-chip, IEEE Trans. Parallel Distrib. Syst. 28 (5) (2017) 1500–1517.

[7] K. Goossens, A. Hansson, The aethereal network on chip after ten years:
Goals, evolution, lessons, and future, in: Proc. ACM/IEEE Design Automation
Conference, DAC, 2010, pp. 306–311.

[8] E. Kasapaki, J. Sparsø, Argo: A Time-Elastic Time-Division-Multiplexed NOC
using Asynchronous Routers, in: Proc. IEEE International Symposium on Asyn-
chronous Circuits and Systems, ASYNC, IEEE Computer Society Press, 2014, pp.
45–52.

[9] W.J. Dally, B. Towles, Principles and Practices of Interconnection Networks,
Elsevier Science Publishers, 2003.

http://refhub.elsevier.com/S1383-7621(22)00251-X/sb1
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb1
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb1
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb1
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb1
http://dx.doi.org/10.1109/MDT.2005.99
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb3
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb3
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb3
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb3
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb3
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb4
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb4
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb4
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb4
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb4
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb4
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb4
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb5
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb5
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb5
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb5
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb5
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb6
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb6
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb6
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb7
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb7
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb7
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb7
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb7
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb8
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb8
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb8
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb8
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb8
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb8
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb8
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb9
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb9
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb9

Journal of Systems Architecture 133 (2022) 102766J. Sparsø et al.
[10] N. Jiang, J. Balfour, D.U. Becker, B. Towles, W.J. Dally, G. Michelogiannakis, J.
Kim, A detailed and flexible cycle-accurate network-on-chip simulator, in: Proc.
IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS), IEEE, 2013, pp. 86–96.

[11] N. Enright Jerger, T. Krishna, L.-S. Peh, On-Chip Networks (Second Edition),
Morgan Claypool, 2017, pp. 1–212.

[12] L. Benini, G.D. Micheli, Networks on chips: A new SoC paradigm, Computer 35
(1) (2002) 70–78.

[13] W. Dally, Route packets, not wires: On-chip interconnection networks, in: Proc.
Design Automation Conference, DAC, ACM Press, New York, 2001, pp. 684–689.

[14] R.S. Ramanujam, V. Soteriou, B. Lin, L.S. Peh, Extending the effective throughput
of NoCs with distributed shared-buffer routers, IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst. 30 (4) (2011) 548–561.

[15] F. Fatollahi-Fard, D. Donofrio, G. Michelogiannakis, J. Shalf, OpenSoC fabric: On-
chip network generator, in: Proc. IEEE Intl. Symposium on Performance Analysis
of Systems and Software (ISPASS), 2016, pp. 194–203.

[16] Online, OpenSoC fabric version 1.1.3, 2021, http://www.opensocfabric.org,
accessed August 2021.

[17] R. Mullins, A. West, S. Moore, Low-latency virtual-channel routers for on-chip
networks, in: Proc. International Symposium on Computer Architecture (ISCA),
2004, pp. 188–197.

[18] J. Kim, D. Park, T. Theocharides, N. Vijaykrishnan, C.R. Das, A low latency router
supporting adaptivity for on-chip interconnects, in: Proc. Design Automation
Conference, DAC, 2005, pp. 559–564.

[19] A. Psarras, I. Seitanidis, C. Nicopoulos, G. Dimitrakopoulos, ShortPath: A
network-on-chip router with fine-grained pipeline bypassing, IEEE Trans.
Comput. 65 (10) (2016) 3136–3147.

[20] A. Ejaz, V. Papaefstathiou, I. Sourdis, FreewayNoC: A DDR NoC with pipeline
bypassing, in: Proc. ACM/IEEE International Symposium on Networks-on-Chip,
NOCS, 2018, pp. 1–8.

[21] A. Ejaz, V. Papaefstathiou, I. Sourdis, HighwayNoC: Approaching ideal NoC
performance with dual data rate routers, IEEE/ACM Trans. Netw. 29 (1) (2021)
318–331.

[22] M. Millberg, E. Nilsson, R. Thid, A. Jantsch, Guaranteed bandwidth using looped
containers in temporally disjoint networks within the nostrum network on chip,
in: Proc. Design, Automation and Test in Europe, DATE, IEEE Computer Society
Press, 2004, pp. 890–895.

[23] C. Gibbs, Statistical multiplexing in data-networks, Comput. Commun. 4 (6)
(1981) 281–285.

[24] K. Chandra, Statistical time division multiplexing, in: Handbook of Computer
Networks, Vol. 1, John Wiley and Sons, 2011, pp. 579–590.

[25] W. Jiawen, L. Li, Z. Yuang, P. Hongbing, H. Shuzhuan, Z. Rong, Statistical time
division multiplexing based local system architecture for multi-cluster NoC, in:
Proc. IEEE International Conference on Communication Software and Networks
(ICCSN), 2011, pp. 472–476.

[26] S. Murali, G. De Micheli, Bandwidth-constrained mapping of cores onto NoC
architectures, in: Proc. Design, Automation and Test in Europe, DATE, 2004, pp.
896–901.

[27] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou, L. Benini, G.D.
Micheli, NoC synthesis flow for customized domain specific multiprocessor
systems-on-chip, IEEE Trans. Parallel Distrib. Syst. 16 (2) (2006) 113–129.

[28] R.B. Sørensen, J. Sparsø, M.R. Pedersen, J. Højgaard, A metaheuristic scheduler
for time division multiplexed networks-on-chip, in: Proc. IEEE/IFIP Workshop
on Software Technologies for Future Embedded and Ubiquitous Systems (SEUS),
2014, pp. 309–316.

[29] D. Kendall, Stochastic processes occurring in the theory of queues and their
analysis by the method of the imbedded Markov chain, Ann. Math. Stat. 24 (3)
(1953) 338–354.

[30] R. Cooper, Introduction to Queueing Theory, 2. Ed, North-Holland, 1981, p. 347.
[31] J.F. Shortle, J.M. Thompson, D. Gross, C.M. Harris, Fundamentals of Queue-

ing Theory: Fifth Edition, wiley, 2017, pp. 1–548, http://dx.doi.org/10.1002/
9781119453765.

[32] A.B. Kahng, B. Lin, S. Nath, ORION3.0: A comprehensive NoC router estimation
tool, IEEE Embed. Syst. Lett. 7 (2) (2015) 41–45.
12
[33] P. Salihundam, S. Jain, T. Jacob, S. Kumar, V. Erraguntla, Y. Hoskote, S. Vangal,
G. Ruhl, N. Borkar, A 2 Tb/s 6 x 4 mesh network for a single-chip cloud computer
with DVFS in 45 nm CMOS, IEEE J. Solid-State Circuits 46 (4) (2011) 757–766.

[34] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avizienis, J.
Wawrzynek, K. Asanovic, Chisel: constructing hardware in a Scala embedded
language, in: Proc. Design Automation Conference (DAC), ACM, San Francisco,
CA, USA, 2012, pp. 1216–1225.

Jens Sparsø is professor at the Technical University of
Denmark (DTU). His research interests include: design of
digital circuits and systems, design of asynchronous circuits,
low-power design techniques, application-specific comput-
ing structures, multi-core processors, and networks-on-chips;
in short, hardware platforms for embedded and cyber–
physical systems.

He has published more than 100 refereed conference
and journal papers and is coauthor of the book ‘‘Principles
of Asynchronous Circuit Design - A Systems Perspective’’
(Kluwer, 2001), which has become the standard textbook
on the topic. He received the Radio-Parts Award and the
Reinholdt W. Jorck Award in 1992 and 2003, in recognition
of his research on integrated circuits and systems. He
received the best paper award at ASYNC 2005, and one
of his papers was selected as one of the 30 most influential
papers of 10 years of the DATE conference.

Hans Jakob Damsgaard received the B.Sc. degree in elec-
trical engineering in 2019 and the M.Sc. degree in computer
science and engineering in 2021 as part of the Honours
programme at the Technical University of Denmark, DTU.
Currently, he is pursuing a PhD on approximate reconfig-
urable accelerators for secure edge computing as part of
the APROPOS project at Tampere University. His research
interests include hardware accelerators, networks-on-chip,
and computer architecture.

Dimitrios Katsamanis is a FPGA engineer at Arm Sweden
AB. He is currently working on FPGA images for verification
and software development. Prior to that he was a graduate
student at the Technical University of Denmark (DTU)
where he did his master thesis on High Level Synthesis.
He carried out his undergraduate studies at the Democritus
University of Thrace (DUTH) in Greece, and worked on
network interfaces and network on-chips for integrated
circuits.

Martin Schoeberl received his PhD from the Vienna Uni-
versity of Technology in 2005. From 2005 to 2010 he
has been assistant professor at the Institute of Computer
Engineering. He is now professor at the Technical University
of Denmark. His research interest is on hard real-time
systems, time-predictable computer architecture, and real-
time Java. Martin Schoeberl has been involved in a number
of national and international research projects: JEOPARD,
CJ4ES, T-CREST, RTEMP, the TACLe COST action, and
PREDICT. He has been the technical lead of the EC funded
project T-CREST. He has more then 100 publications in peer
reviewed journals, conferences, and books.

http://refhub.elsevier.com/S1383-7621(22)00251-X/sb10
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb10
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb10
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb10
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb10
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb10
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb10
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb11
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb11
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb11
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb12
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb12
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb12
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb13
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb13
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb13
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb14
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb14
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb14
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb14
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb14
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb15
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb15
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb15
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb15
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb15
http://www.opensocfabric.org
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb17
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb17
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb17
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb17
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb17
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb18
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb18
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb18
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb18
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb18
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb19
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb19
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb19
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb19
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb19
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb20
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb20
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb20
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb20
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb20
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb21
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb21
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb21
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb21
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb21
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb22
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb22
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb22
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb22
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb22
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb22
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb22
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb23
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb23
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb23
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb24
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb24
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb24
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb25
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb25
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb25
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb25
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb25
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb25
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb25
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb26
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb26
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb26
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb26
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb26
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb27
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb27
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb27
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb27
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb27
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb28
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb28
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb28
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb28
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb28
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb28
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb28
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb29
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb29
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb29
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb29
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb29
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb30
http://dx.doi.org/10.1002/9781119453765
http://dx.doi.org/10.1002/9781119453765
http://dx.doi.org/10.1002/9781119453765
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb32
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb32
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb32
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb33
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb33
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb33
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb33
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb33
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb34
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb34
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb34
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb34
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb34
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb34
http://refhub.elsevier.com/S1383-7621(22)00251-X/sb34

	Comparing timed-division multiplexing and best-effort networks-on-chip
	Introduction
	Background and Related Work
	Networks on Chip
	Latency vs. Offered Load
	The Reference Best-Effort NOC
	The BookSim Simulator
	Low Latency BE Routers
	TDM NOCs
	The Argo TDM NOC

	Analytical Model of a TDM Network
	Asymptotes of the Performance Curves
	Evaluation of Typical NOC Configurations
	The NOC Simulator TDMSim
	Network Configurations Explored
	Values of the Asymptotes, T0 and λS
	Hardware Cost
	Latency vs. Offered Load

	Improving Latency and Throughput
	Other Traffic Patterns
	Conclusion
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

