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A B S T R A C T

With the rapid development of demand-side management technologies, load serving entities (LSEs) may offer
demand response (DR) programs to improve the flexibility of power system operation. Reliable load aggregation
is critical for LSEs to improve profits in electricity markets. Due to the uncertainty, the actual aggregated
response of loads obtained by conventional aggregation methods can experience significant deviations from the
bidding value, making it difficult for LSEs to develop an optimal bidding and scheduling strategy. In this paper,
a bi-level scheduling model is proposed to maximize the net revenue of the LSE from optimal DR bidding and
energy storage systems ESS scheduling by considering the impacts of the uncertainty of demand response. An
online learning method is adopted to improve aggregation reliability. Additionally, the net profit for LSEs can
be raised by strategically switching ESS between two modes, namely, energy arbitrage and deviation mitigation.
With Karush–Kuhn–Tucker (KKT) optimality condition-based decoupling and piecewise linearization applied,
this bi-level optimization model can be reformulated and converted into a mixed-integer linear programming
(MILP) problem. The effectiveness and advantages of the proposed method are verified in a modified IEEE
RTS-24 bus system.
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Nomenclature

Abbreviations

AC Air conditioner
CMAB Combined multi-armed bandits
DCOPF DC optimal power flow
DR Demand response
ESS Energy storage system
ISO/RTO Independent System Operator/Regional

Transmission Organization
KKT Karush–Kuhn–Tucker
LMP Locational marginal electricity price
LSE Load serving entity
MILP Mixed integer linear programming
MPEC Mathematical program with equilibrium

constraints
SOC State of charge

Variables

𝜆𝑠𝑡 Dual variables related to power balance
limit

𝜇𝑠,min
𝑙,𝑡 ∕𝜇𝑠,max

𝑙,𝑡 Dual variables related to power flow limit
𝜋𝑖,𝑡 LMP at bus 𝑖 and time slot 𝑡, $/MWh
𝜎𝑐𝑖,𝑡 Charge status indicator variable for ESS
𝜎𝑑𝑖,𝑡 Discharge status indicator variable for ESS
𝐷𝑖,𝑡 Load at bus 𝑖 and time slot 𝑡, MW
𝑃 𝑐
𝑖,𝑡 Charging power of ESS, MW

𝑃𝐷
𝑖,𝑡 Load aggregation deviation, MW

𝑃 𝑑
𝑖,𝑡 Discharge power of ESS for energy sales,

MW
𝑃𝐸
𝑖,𝑡 Power of ESS, MW

𝑃𝑅
𝑖,𝑡 Final DR deviation, MW

𝑃 𝑠,𝑚
𝑖,𝑡 Discharge power of ESS for DR deviation

compensation, MW
𝑃 𝑡𝑎𝑟
𝑖,𝑡 Bidding capacity at bus 𝑖 and time slot 𝑡,

MW
𝑅𝑖,𝑡 Bidding price at bus 𝑖 and time slot 𝑡,

$/MWh
𝑟𝑖,𝑡 Incentive price at bus 𝑖 and time slot 𝑡,

$/MWh
𝜔𝑠,min
𝑔𝑖 ,𝑡

∕𝜔𝑠,max
𝑔𝑖 ,𝑡

Dual variables related to output power limit
of conventional unit 𝑔𝑖

𝜑𝑠,min
𝑤𝑖 ,𝑡

∕𝜑𝑠,max
𝑤𝑖 ,𝑡

Dual variables related to output power limit
of wind generator 𝑤𝑖

𝑃 𝑠
𝑔𝑖 ,𝑡

Power of conventional unit 𝑔𝑖 at time slot 𝑡
under scenarios 𝑠, MW

𝑃 𝑠
𝑤𝑖 ,𝑡

Power of wind generator 𝑤𝑖 at time slot 𝑡
under scenarios 𝑠, MW

𝑆𝑂𝐶𝑖,𝑡 State of charge of ESS

1. Introduction

Load Serving Entities (LSE) are profit-seeking electricity retailers
that purchase energy from electricity markets and sell the energy to
consumers [1]. Meanwhile, LSEs usually aggregate various loads for
participating in electricity market bidding. Demand response (DR) bid-
ding means that LSEs submit their tradable capacities and prices in the
day-ahead electricity market, and the market operator clears capacities
according to the system’s adjustment requirements. As demand-side
2

𝑣𝑠,𝑑𝑔𝑖 ,𝑡∕𝑣
𝑠,𝑢
𝑔𝑖 ,𝑡

Dual variables related to ramping limit of
conventional unit 𝑔𝑖

Parameters

𝜂𝑖,𝑐 Charging efficiency coefficient of ESS
𝜂𝑖,𝑑 Discharging efficiency coefficient of ESS
𝜂𝑖 Electricity retail price, $/MWh
𝜏 Penalty cost coefficient for DR deviation
𝜉 Maximum load reduction coefficient
𝜁 Cost of curtailing per unit capacity for wind

generator, $/MWh
𝐷0

𝑖,𝑡 Primary baseline load at bus 𝑖 and time slot
𝑡, MW

𝐺𝑆𝐹𝑙−𝑖 Generation shift factor to line 𝑙 from bus 𝑖
𝑃𝑙 Limit power of transmission line 𝑙, MW
𝑝𝑠 Occurrence probability of the scenario 𝑠
𝐶𝑔𝑖 Power generation cost of per unit capacity

for conventional unit 𝑔𝑖, $/MWh
𝐸𝑖,𝑐 Maximum capacity of ESS
𝑃max
𝑔𝑖

Maximum Power of conventional unit 𝑔𝑖,
MW

𝑃min
𝑔𝑖

Minimum Power of conventional unit 𝑔𝑖,
MW

𝑃 𝑐,max
𝑖 Maximum charging power of ESS, MW

𝑃 𝑑,max
𝑖 Maximum discharge power of ESS, MW

𝑃 𝑠,0
𝑤𝑖 ,𝑡

Forecast power of wind generator 𝑤𝑖 at time
slot 𝑡 under scenarios 𝑠, MW

𝑅down
𝑔𝑖

∕𝑅up
𝑔𝑖 Ramping limit of conventional unit 𝑔𝑖,

MW/h
𝑆𝑂𝐶max

𝑖 Maximum state of charge of ESS
𝑆𝑂𝐶min

𝑖 Minimum state of charge of ESS

Sets

𝐵 Bus set managed by the LSE
𝑆𝑡 Set of residents selected to receive DR

signals
𝑇𝐷𝑅 Time set of DR execution
𝑈 Set of wind power output scenarios
𝑉 Set of residents who have signed DR

contracts

participation increases, new opportunities and challenges offered by
this competitive market coexist. For example, the unexpected increase
in peak demand or decrease in generation tends to produce extreme
locational marginal prices (LMPs). The purchase price of electricity
(i.e., LMPs) may be higher than the retail price which can lead to
tremendous financial losses for LSEs. DR can alleviate the shortage of
power supply by curtailing the load on the demand side. It enables
LMPs to be decreased. Therefore, LSEs are motivated to implement
optimal DR bidding strategies to averse trading risks.

Previous studies have partially investigated the topic of designing
appropriate DR bidding strategies for LSEs. In [2], DR capacity con-
sidering retail prices’ elasticity and contract incentives are evaluated,
and an approach with system-level constraints is proposed for LSEs
to achieve economic bids. Ref. [3] proposed a novel bidding opti-
mization model combined with price-based and incentive-based DR,
and it benefits multiple agents, including LSEs and residents. In [4],
a market-based operation mechanism for DR resources is proposed,
enabling the aggregator to bid strategically for profit improvement.
In [5], a time-coupled multistage stochastic optimization model is

formulated to achieve the optimal demand bidding for shiftable loads



Applied Energy 328 (2022) 120167R. Han et al.
Fig. 1. Overall schematic diagram of the proposed scheduling method.
in both deregulated day-ahead and real-time markets. Ref. [6] proposes
a coupon settlement method for flexible loads to minimize the energy
procurement cost. Utility functions are assumed in these works to
formulate the relationship between energy consumption and coupon
rewards, which can be unrealistic due to unpredictable random factors,
and thus can result in a significant increase in cost [7]. In [8], a
probabilistic residential demand reduction model is established based
on energy consumption and survey datasets. Nonetheless, establishing
such probabilistic models for residents on long-time scales can be
tedious and time-consuming due to the time-varying response charac-
teristics of users. An inevitable but challenging task for LSEs is to ensure
that these selected offer bids can be delivered to the market operator
as promised.

Among different types of loads, residential loads account for ap-
proximately 38% of electricity consumption [9]. Nonetheless, due to
their considerable amount and the uncertain aggregated behavior of
residents, it becomes challenging for LSEs to reliably aggregate their
loads. It means there can be a deviation between the actual response
capacity and the LSE’s cleared bid value. On the one hand, LSEs could
confront severe financial penalties or even be barred from bidding if
the deviation exceeds a tolerance band [10,11]. On the other hand,
potential operation risks of limit violation might be imposed on power
systems for the sake of satisfying LSE service. For example, due to the
failure to meet the expected load aggregation capacity, transmission
lines remain congested during peak load periods.

Efforts are made to reduce DR uncertainty through comfort con-
straints [12] and reward and punishment mechanism design [13,14].
In [12], a DR control strategy for large-scale residential air conditioner
loads by adjusting the indoor temperature set-point is established con-
sidering users’ comfort. In [13,14], additional rewards are given to
those who respond positively, and unexpected finical punishments are
imposed on those non-participants. With the proliferation of intelligent
Internet-of-Things (IoT) devices, there are also works to assist LSEs
in handling the uncertainty with data-driven approaches [15–18]. For
3

example, in [18], an optimization strategy model combining heuristic
algorithm and neural network modeling is proposed to enable LSEs to
determine differentiated incentive prices by predicting the correspond-
ing behavior of residents. Unfortunately, the impact of DR uncertainty
on LSEs’ profits tends to be ignored due to the unqualified aggregation
deviations. Although authors in Ref. [19] propose to impose a penalty
for resulting aggregation deviations, there is little discussion on DR
uncertainty. It becomes unprecedentedly difficult for LSEs to develop
an optimal bidding and scheduling strategy considering DR uncertainty.

For LSEs, the critical problem is to improve load aggregation relia-
bility. Various load aggregation methods are proposed in the literature,
including stochastic optimization [20,21], interval methods [22], and
fuzzy methods [23]. The stochastic optimization and interval methods
require the actual probability distribution of residential customers’
responses, which is hard to obtain in reality. The fuzzy methods cannot
guarantee optimal solutions. There are also some improvements in
those three methods, but most of them hold ideal hypotheses or con-
straints while ignoring the real features of residential customers. With
these extensive conventional aggregation methods, LSEs cannot adjust
the subsequent bidding strategy timely according to residents’ feedback
after the DR event, and the load aggregation reliability is difficult to
be guaranteed. Due to the limited bidding rewards, it is uneconomi-
cal to provide residents with extremely high monetary incentives for
adequate response capacity. In recent years, online learning becomes
an efficient method for solving dynamic decision-making problems
under complex uncertainty [24,25]. Closed-loop systems created by the
online learning method can be quickly built by quickly adopting online
feedback data. It is capable of managing residents’ highly ambiguous
aggregated behavior. For example, Ref. [26] proposes an online aggre-
gation method based on Thompson sampling considering the influence
of time-varying environmental factors on DR uncertainty.

In addition to DR resources, energy storage systems (ESS) participat-
ing in the electricity market have gradually become another research
hotspot to alleviate the shortage of power supply. In [27–29], a bilevel
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profit maximization model is proposed to maximize ESS arbitrage. The
results demonstrate that the strategic behavior of ESS can improve its
profitability. The main technique is that the upper-level problem is
modeled as profit maximization for ESS operators, and the lower-level
problem simulates market clearing. Although the impact of ESS on the
LMPs is modeled in these works, there are two concerns for LSEs. One
concern is that limited by capacities and installed locations, ESS may
have less impact on LMPs [30]. The coordination between ESS and
DR resources to reduce the energy purchase costs for LSEs becomes an
unconsidered but promising avenue. Another concern is that agents in
the above previous works are only responsible for ESS bids. Methods
proposed by these works cannot apply to LSEs that are also electricity
retailers. Therefore, this paper assumes the LSE is equipped with ESS
and studies the profit maximization problem.

As shown in Fig. 1, this paper focuses on a bi-level optimization
problem with the LSE’s net revenue maximization as the upper-level
problem and the ISO’s economic dispatch (ED) for generation cost
minimization as the lower-level problem, while considering the impacts
of DR uncertainty. Note that the LSE makes DR bidding in the day-
ahead wholesale market to mitigate the cost and the volatility of
LMPs. To improve the load aggregation reliability, we introduce an
online learning method particularly to capture the stochastic features
of DR in this paper. We also conducted an ad hoc survey with 1996
samples in Jiangsu Province, China, and qualified the relationship
between aggregation deviations and incentives. At the upper level, the
coordination between the load aggregation and energy storage systems
(ESS) dispatch is considered due to its demonstrated performance on
profit improvement [11]. In particular, ESS is enabled to mitigate the
DR’s deviation. The main contributions of this paper are summarized
as follows:

(1) Considering the impact of DR uncertainty on the LMP and
demand response bidding, a new optimization model is formulated for
LSEs to develop optimal DR bidding and scheduling strategies. This
model enables LSEs to alleviate the risk of retail profit decrease caused
by extreme energy purchase prices. Making use of the survey dataset,
this model also overcomes the problem of optimal incentives design
under different system requirements.

(2) Two modes, including energy arbitrage and DR’s deviation mit-
igation, are designed for energy storage systems (ESS). The switching
strategy for these two modes is also developed by trading off the profits
of energy arbitrage against the finical penalties of DR deviation. It is
found that the strategic switching behavior of ESS between the two
modes can further improve LSEs’ profits than traditionally undertaking
energy arbitrage.

(3) The quantitative relationship between aggregation targets and
DR deviations under different incentives is established by combining
survey datasets and the online-learning-based load aggregation method.
Also, by incorporating this method with the proposed model, more
reliable and economical load aggregation is achieved compared with
adopting conventional aggregation methods.

The remainder of this paper is organized as follows: Section 2
presents the load aggregation with the online learning method and the
ESS with two modes. Section 3 proposes the bi-level scheduling model.
Section 4 discusses the mathematical solution of the model. Section 5
demonstrates the effectiveness of this work in a modified IEEE RTS-24
bus system. Section 6 draws conclusions.

2. Load aggregation

2.1. Impact of DR uncertainty on LSEs’ profits

In electricity markets, the typical demand response (DR) bid mainly
consists of location information, time and duration of DR, the offer
quantity blocks, and corresponding bid prices [31]. To better explain
the impact of DR uncertainty on LSEs’ profits, two illustrative examples
are provided.
4

(1) Impact on DR bidding. As shown in Fig. 2(a), two clearing
points, i.e, (𝐵1, 𝐶𝑘) and (𝐵2, 𝐶𝑘+1) are assumed. Interactions (𝐵𝑖, 𝑅𝑖)
nd (𝐵𝑖, 𝑃𝑖) denote the corresponding aggregation deviation 𝑅𝑖 and DR
rofit 𝑃𝑖 under the cleared capacity 𝐵𝑖, respectively. The penalty price
or unit capacity deviation is generally the clearing price 𝐶𝑘 multiplied
y a coefficient 𝜏 [19]. Under capacity 𝐵1, the net profit difference
1(𝑖1 − 𝑖2) + 𝜏𝐶𝑘(𝑅1 − 𝑅2) given by the incentive 𝑖2 and 𝑖1 (𝑖2 > 𝑖1)

s positive, indicating an increased profit from 𝑃1 to 𝑃2. When a higher
apacity 𝐵2 is cleared, a negative value 𝐵2(𝑖1 − 𝑖2) + 𝜏𝐶𝑘(𝑅3 − 𝑅4) can
esult in the lower profit, i.e., 𝑃4 < 𝑃3. The root of this problem is the
rofit loss caused by the inevitable aggregation deviation. Meanwhile,
he deviation varies with various elements of DR bidding in Fig. 2(a),
uch as the capacity and the incentive. Therefore, it is critical for LSEs
o consider aggregation deviations in developing bidding strategies.

(2) Impact on LMP. The uncertainty of bidding-type DR programs,
hich is different from coupon-based ones in [8], can also affect the
MP, as shown in Fig. 2(b). Here, the impact of renewables uncertainty
n the energy supply curve is ignored. The LSE is bidding in the market
or a DR program with the capacity 𝐷1−𝐷3. If the aggregation deviation
s omitted, due to the net load change at a specific bus, the LMP will
rop from 𝜋1 to 𝜋3, making the LSE’s retail profit 𝜂 − 𝜋3 positive.
ikewise, the DR uncertainty may result in a reduction in load shedding
y 𝐷2 −𝐷3 so that the profit 𝜂 − 𝜋2 becomes negative.

Consequently, it is necessary to take into account how DR uncer-
ainty will affect the bidding and LMP, and for LSEs to devise practical
id strategies to lessen its impact.

.2. Load aggregation with online learning method

As discussed, it is more difficult for LSEs to aggregate residential
oads due to the strong randomness of residents’ behavior. A recent
eport shows that the electricity consumption of residential air condi-
ioners (AC) has accounted for more than 40% of total urban electricity
onsumption in summer around the world [1]. It is thus a challeng-
ng yet demanding task to develop efficient aggregation methods for
esidential loads, especially for residential air conditioner loads.

Typically, a load aggregation problem can be formulated in the
ollowing way [32]. We assume an LSE has a number of residents 𝑉 . At
ime slot 𝑡, the LSE sends a load reduction request to a set of residents 𝑆𝑡
𝑆𝑡 ∈ 𝑉 ) to meet the bidding capacity 𝐷𝑡. In response to the request, the
ctual load reduction of resident 𝑖 is represented by a random variable
𝑖,𝑡. The load aggregation problem can be formulated as

in
𝑆𝑡

E

(

∑

𝑖∈𝑆𝑡

𝑋𝑖,𝑡 −𝐷𝑡

)2

(1)

The uncertain response of resident 𝑖 can be featured by the response
robability 𝑝𝑖,𝑡. As aforementioned, 𝑝𝑖,𝑡 can be affected by many factors,
uch as incentive price. To identify the response level of air condi-
ioner users (ACs) under different incentive prices, a survey with 1996
amples is conducted in Jiangsu Province, China. The users’ partici-
ation rates under five incentives between 3 $/MWh and 15 $/MWh
re displayed in Fig. 3. The survey results suggest that in terms of
Cs, the actual response probability approximately follows a skewness
istribution. The survey results also show that the response probability
f some users is always high, implying the different features of users.

However, the actual response probability 𝑝𝑖,𝑡 has not been well
ntegrated into conventional aggregation methods, such as the random
election method. This method skips the different 𝑝𝑖,𝑡 of each resident
nd selects residents in a random way. As a result, the value of actual
R capacity will be low when the majority of residents are with low 𝑝𝑖,𝑡.

n contrast, the offline method assumes the actual 𝑝𝑖,𝑡 of each resident
s pre-known and selects residents according to their 𝑝𝑖,𝑡, such that
chieving optimal load aggregation [32]. In practice, it is very hard
o pre-know the actual 𝑝𝑖,𝑡 of residents because LSEs cannot quickly
nterview residents and accurately evaluate their response to different
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Fig. 2. Problem analysis of the LSE’s net revenue.
Fig. 3. Actual user response probabilities under different incentives.

incentives [33]. To address those issues, we develop an online learning
method to estimate the response probability 𝑝𝑖,𝑡 from the residents’
historical response events and select the residents with high 𝑝𝑖,𝑡.

During the online learning process, LSEs need to make a decision of
whether control signals should be sent to residents currently with high
returns (conservation) or to those selected fewer times before but may
have higher potential returns (exploration). This decision-making prob-
lem is similar to the basic setting of the combined multi-armed bandits
(CMAB) problem, in which the decision-maker needs to choose some
arms from the entire set with the unknown distribution of rewards.
Thus, we make use of the CMAB framework in the online learning
process.

To better explain the proposed online learning method with CMAB,
an example is provided here. Assuming that at time slot 𝑡, an LSE has
14,250 residents where each resident has a running AC (the power of
each AC is randomly distributed between 2 kW and 3 kW). The CMAB
framework can be referred to in our previous work [34]. We take the
random selection and offline methods as reference benchmarks, which
generate lower and upper bounds of load aggregation, respectively.
We also take the ratio of the aggregation deviation and the target as
a metric. As a result, the load aggregation performances under the
three methods are compared in Fig. 4. It is found that the online
learning method outperforms the random selection method and obtains
comparable results with the offline method. Note that there is no
difference in the aggregation deviation using three different methods
when the aggregation target is large due to all residents being selected.
5

To further study the features of the optimal bidding strategy, we as-
sume that all aggregation targets can be cleared, and the LSE’s bidding
price is fixed at 25 $/MWh. Also, the deviation penalty coefficient 𝜏
is 1.2 [19]. Applying the three methods, the optimal incentive price
and the maximum net profit under different aggregation targets are
shown in Fig. 5. In terms of the online learning method, when the
bidding capacity is 17.8 MW, the net profit is the highest, but the
corresponding incentive price is only 9 $/MWh. It would be unwise
to blindly increase this price to the maximum value 15 $/MWh, as
the corresponding return is negative. Although the penalty cost is
slightly lower, the incentive cost increases by about 33%. Similar
observations can be found in the remaining two methods. It suggests
that the key to obtaining higher profit for LSEs is to trade off the
DR service costs and returns. There is optimal bidding capacity and
incentive price for owned DR resources, and the net profit is not always
positively correlated with the increasing incentive price and bidding
capacity. Note that the bidding price is assumed to be fixed here.
The formulation of the optimal DR bidding strategy varying with the
bidding price would be more complicated. The established relationship
between aggregation deviations and targets under different incentive
prices based on the online learning method can provide a decision basis
for the optimization model, which will be discussed in Section 3.

2.3. Load aggregation coordinating with ESS

As aforementioned in Section 1, the demand response uncertainty
may exert multiple effects on LSEs’ net revenues. Unfortunately, the
absolute aggregation deviation tends to be inevitable [35]. In recent
years, the coordination between ESS and DR has had significant value
in improving the system’s economics and flexibility [11], in which the
ESS is assumed to participate in electricity markets [36]. Therefore, we
propose enabling ESS with two modes, including energy arbitrage and
DR’s deviation mitigation, denoted as Mode 1 and Mode 2, respectively.

For the capacity of the excess response, the LSE should be paid the
corresponding reward [37]. Thus, the ESS undertaking Mode 2 only
compensates for negative aggregation deviations. The energy of the ESS
discharging is directly supplied to those residents causing the deviation.
The net load demand at the bus is reduced, equivalent to implementing
DR with the same capacity.

𝑃 𝑠𝑚
𝑖,𝑡 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑃𝐷
𝑖,𝑡 ,−𝑃 𝑑,max

𝑖 ≤ 𝑃𝐷
𝑖,𝑡 < 0&𝜋𝑖,𝑡 < 𝜏𝑅𝑖,𝑡

−𝑃 𝑑,max
𝑖 ,−𝑃 𝑑,max

𝑖 ≥ 𝑃𝐷
𝑖,𝑡&𝜋𝑖,𝑡 < 𝜏𝑅𝑖,𝑡

0 , 𝑃𝐷
𝑖,𝑡 < 0&𝜋𝑖,𝑡 ≥ 𝜏𝑅𝑖,𝑡

0 , 𝑃𝐷
𝑖,𝑡 ≥ 0

,

∀𝑡 ∈ 𝑇𝐷𝑅,∀𝑖 ∈ 𝐵, 𝜎𝑑𝑖,𝑡 = 1 (2)

Eq. (2) stipulates how to switch between these two modes of the
ESS, i.e., when 𝑃 𝑠𝑚 is zero, only Mode 1 is undertaken. As shown in
𝑖,𝑡
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Fig. 4. Comparison of aggregation deviation ratios under different aggregation methods.
Fig. 5. Optimal incentive price and maximum net profit under different aggregation targets.
Fig. 6. Switching ESS between Mode 1 and Mode 2.

Fig. 6, multiple factors are considered comprehensively, including LMP,
penalty price, and the current status of ESS. In addition to must being in
the discharge state, the comparison between the penalty cost and the
electricity sales profit for unit capacity is crucial for decision-making
on whether the ESS undertakes Mode 2. Note that when the absolute
aggregation deviation is lower than the maximum discharge power, ESS
can undertake both Mode 1 and 2.

3. Problem formulation

This work studies a bi-level optimization problem in electricity
marketing. On the energy consumption side, the LSE needs optimal
strategies for electricity retail, DR bidding, and ESS economic dis-
patch to maximize its net revenue. On the energy generation side,
the ISO/RTO needs optimal strategies of LMP and energy management
6

to minimize the energy supply cost. Considering the impact of DR
uncertainty on LMP and DR bidding, this work formulates the bi-level
optimization between the LSE and the ISO/RTO, where the LSE is
modeled as the upper level (i.e., leader) and the ISO/RTO is modeled
as the lower level (i.e., the follower), respectively.

3.1. Upper-level model

At the upper level, the primary goal is to maximize the net revenue
for LSEs. Decision variables contain (1) bidding price 𝑅𝑖,𝑡, (2) incentive
price 𝑟𝑖,𝑡, (3) bidding capacity 𝑃 𝑡𝑎𝑟

𝑖,𝑡 , (3) discharge power 𝑃 𝑠,𝑚
𝑖,𝑡 of ESS for

DR deviation compensation, (4) discharge power 𝑃 𝑑
𝑖,𝑡 of ESS for energy

sale, (5) charging power 𝑃 𝑐
𝑖,𝑡 of ESS, and (6) power 𝑃𝐸

𝑖,𝑡 of ESS.
At each time slot 𝑡 and each managed bus 𝑖, the LSE’s net revenue

is represented by the difference between the incomes from electricity
retail, DR rewards, and ESS’s energy sales and the payment on energy
purchases, incentive costs, and response deviation penalties. The LSE’s
net revenue in one day is formulated as

𝑅𝑛 =
24
∑

𝑡=1

∑

𝑖∈𝐵

(

𝜂𝑖𝐷𝑖,𝑡 + 𝑅𝑖,𝑡(𝐷0
𝑖,𝑡 −𝐷𝑖,𝑡 − 𝑃 𝑠𝑚

𝑖,𝑡 ) − 𝜋𝑖,𝑡𝑃
𝑑
𝑖,𝑡

− 𝜋𝑖,𝑡(𝐷𝑖,𝑡 − 𝑃 𝑐
𝑖,𝑡 − 𝑃 𝑠𝑚

𝑖,𝑡 ) − 𝑟𝑖,𝑡(𝐷0
𝑖,𝑡 −𝐷𝑖,𝑡) − 𝜏𝑅𝑖,𝑡𝑃

𝑅
𝑖,𝑡

)

(3)

where the load buses set managed by the LSE is referred to as B, and
the profit loss for mitigating DR’s deviation by ESS is referred to as the
product of the nodal LMP 𝜋𝑖,𝑡 and the supplemental power 𝑃 𝑠𝑚

𝑖,𝑡 .
Adopting 𝑃𝐸

𝑖,𝑡 to represent both the charging power and the dis-
charge power of the ESS, where the charging power is positive, and
the discharge power is negative. The upper-level problem can be for-
mulated as

max
24
∑

𝑡=1

∑

𝑖∈𝐵

(

𝜂𝑖𝐷𝑖,𝑡 + (𝑅𝑖,𝑡 − 𝑟𝑖,𝑡)(𝐷0
𝑖,𝑡 −𝐷𝑖,𝑡) − 𝑅𝑖,𝑡𝑃

𝑠𝑚
𝑖,𝑡

− 𝜋𝑖,𝑡(𝐷𝑖,𝑡 + 𝑃𝐸
𝑖,𝑡 − 𝑃 𝑠𝑚

𝑖,𝑡 ) − 𝜏𝑅𝑖,𝑡𝑃
𝑅
𝑖,𝑡

)

(4)

𝑠.𝑡. Constraint in (2) (5)

𝐷0
𝑖,𝑡 −𝐷𝑖,𝑡 = 𝑃 𝑡𝑎𝑟

𝑖,𝑡 + 𝑃𝐷
𝑖,𝑡 (6)

𝑃𝐷 = 𝑓
(

𝑃 𝑡𝑎𝑟, 𝑟
)

(7)
𝑖,𝑡 𝑖,𝑡 𝑖,𝑡
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4

0 ≤ 𝑃 𝑡𝑎𝑟
𝑖,𝑡 ≤ min{𝑃max

𝑖,𝑡 , 𝜉𝐷0
𝑖,𝑡} (8)

⎧

⎪

⎨

⎪

⎩

𝑆𝑂𝐶𝑖,𝑡+1 = 𝑆𝑂𝐶𝑖,𝑡 +
𝜂𝑖,𝑐𝑃𝐸

𝑖,𝑡+1
𝐸𝑖,𝑐

, 𝜎𝑐𝑡+1 = 1

𝑆𝑂𝐶𝑖,𝑡+1 = 𝑆𝑂𝐶𝑖,𝑡 +
𝑃𝐸
𝑖,𝑡+1

𝜂𝑖,𝑑𝐸𝑖,𝑐
, 𝜎𝑑𝑡+1 = 1

(9)

𝑆𝑂𝐶min
𝑖 ≤ 𝑆𝑂𝐶𝑖,𝑡 ≤ 𝑆𝑂𝐶max

𝑖 (10)

𝑂𝐶𝑖,24 = 𝑆𝑂𝐶𝑖,0 (11)
𝑑
𝑖,𝑡+1 + 𝜎𝑐𝑖,𝑡+1 = 1 (12)

𝑃𝐸
𝑖,𝑡 = 𝑃 𝑑

𝑖,𝑡 + 𝑃 𝑠𝑚
𝑖,𝑡

−𝑃 𝑑,max
𝑖 ≤ 𝑃𝐸

𝑖,𝑡 ≤ 0
−𝑃 𝑑,max

𝑖 ≤ 𝑃 𝑑
𝑖,𝑡 ≤ 0

, 𝜎𝑑𝑖,𝑡 = 1 (13)

𝑃𝐸
𝑖,𝑡 = 𝑃 𝑐

𝑖,𝑡
0 ≤ 𝑃𝐸

𝑖,𝑡 ≤ 𝑃 𝑐,max
𝑖

0 ≤ 𝑃 𝑐
𝑖,𝑡 ≤ 𝑃 𝑐,max

𝑖

, 𝜎𝑐𝑖,𝑡 = 1 (14)

here (5)–(14) are constraints of the upper problem. Constrain (6)
efers to the actual response value of the residential air conditioner
oads. Constraint (7) refers to the DR deviation varying with different
ggregation methods in Section 2. Constraint (8) means that the ca-
acity bid by the LSE should be less than the minimum value between
he maximum power of the DR resource and the maximum load that
an be curtailed [31]. Constraints related to ESS can be found in (5)
nd (9)–(14). Constraints (9)–(11) calculate and enforce the dynamic
OC limit. Constraint (12) ensures that the ESS cannot charge and
ischarge simultaneously. 𝜎𝑐𝑖,𝑡 and 𝜎𝑑𝑖,𝑡 are binary variables identifying
he charging/ discharging status of ESS on bus 𝑖 at time 𝑡 (𝜎𝑐𝑖,𝑡 = 1, the
SS is charging and 𝜎𝑑𝑖,𝑡 = 1, the ESS is discharging). Constraints (13)
nd (14) enable that the ESS’s power under different states should be
ithin limits.

Note that those constraints are against load buses managed by the
SE. Also, in light of residents’ routines, the DR is not carried out for
whole day. Instead, it is only executed between 9 A.M. and 9 P.M.,

enoted as set 𝑇𝐷𝑅.

.2. Lower-level model

At the lower level, the optimization problem can be modeled as a
c optimal power flow (DCOPF) problem for economic dispatch [38].
ecision variables contain (1) power 𝑃 𝑠

𝑔𝑖 ,𝑡
of conventional units, and (2)

ower 𝑃 𝑠
𝑤𝑖 ,𝑡

of wind generators.
Here, we introduce the penalty cost of wind power curtailment to

he objective function to meet renewable energy consumption proce-
ures. Considering wind energy’s uncertainty, we also induce multiple
ind power output scenarios, denoted as set 𝑈 . As a result, the problem

an be formulated as follows

min
24
∑

𝑡=1

( 𝑁
∑

𝑖=1
𝐶𝑔𝑖𝑃

𝑠
𝑔𝑖 ,𝑡

+
𝑁
∑

𝑖=1
𝜁
(

𝑃 𝑠,0
𝑤𝑖 ,𝑡

− 𝑃 𝑠
𝑤𝑖 ,𝑡

)

)

(15)

.𝑡.
𝑁
∑

𝑖=1
𝑃 𝑠
𝑔𝑖 ,𝑡

+
𝑁
∑

𝑖=1
𝑃 𝑠
𝑤𝑖 ,𝑡

=
𝑁
∑

𝑖=1
(𝐷𝑖,𝑡 + 𝑃𝐸

𝑖,𝑡 ) ∶ 𝜆𝑠𝑡 ,

∀𝑠 = 1, 2,… , 𝑈 ,∀𝑡 = 1, 2,… , 24 (16)

− 𝑃𝑙 ≤
𝑁
∑

𝑖=1
𝐺𝑆𝐹𝑙−𝑖

(

𝑃 𝑠
𝑔𝑖 ,𝑡

+ 𝑃 𝑠
𝑤𝑖 ,𝑡

−𝐷𝑖,𝑡 − 𝑃𝐸
𝑖,𝑡

)

≤ 𝑃𝑙 ∶ 𝜇𝑠,min
𝑙,𝑡 , 𝜇𝑠,max

𝑙,𝑡 ,∀𝑙 = 1, 2,… ,𝑀,∀𝑠 = 1, 2,

… , 𝑈 ,∀𝑡 = 1, 2,… , 24 (17)
min
𝑔𝑖

≤ 𝑃 𝑠
𝑔𝑖 ,𝑡

≤ 𝑃max
𝑔𝑖

∶ 𝜔𝑠,min
𝑔𝑖 ,𝑡

, 𝜔𝑠,max
𝑔𝑖 ,𝑡

,∀𝑠 = 1, 2,… , 𝑈 ,

∀𝑡 = 1, 2,… , 24 (18)
≤ 𝑃 𝑠

𝑤𝑖 ,𝑡
≤ 𝑃 𝑠,0

𝑤𝑖 ,𝑡
∶ 𝜑𝑠,min

𝑤𝑖 ,𝑡
, 𝜑𝑠,max

𝑤𝑖 ,𝑡
,∀𝑠 = 1, 2,… , 𝑈 ,
7

∀𝑡 = 1, 2,… , 24 (19) n
− 𝑅down
𝑔𝑖

≤ 𝑃 𝑠
𝑔𝑖 ,𝑡

− 𝑃 𝑠
𝑔𝑖 ,𝑡−1

≤ 𝑅up
𝑔𝑖 ∶ 𝑣𝑠,𝑑𝑔𝑖 ,𝑡, 𝑣

𝑠,𝑢
𝑔𝑖 ,𝑡

,

∀𝑠 = 1, 2,… , 𝑈 ,∀𝑡 = 2, 3,… , 24 (20)

where (16)–(20) represent the system operation constraints in different
scenarios, including active power balance, line power flow limits, unit
output limits, and ramping limits.

After formulating the Lagrangian function of the lower-level model
as (21), the LMP 𝜋𝑠

𝑖,𝑡 for the load bus 𝑖 under scenario 𝑠 can be calculated
in the following way.

𝐿𝑠 =
24
∑

𝑡=1

( 𝑁
∑

𝑖=1
𝐶𝑔𝑖𝑃

𝑠
𝑔𝑖 ,𝑡

+
𝑁
∑

𝑖=1
𝜁
(

𝑃 𝑠,0
𝑤𝑖 ,𝑡

− 𝑃 𝑠
𝑤𝑖 ,𝑡

)

)

−
24
∑

𝑡=1

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜆𝑠𝑡

( 𝑁
∑

𝑖=1
𝑃 𝑠
𝑔𝑖 ,𝑡

+
𝑁
∑

𝑖=1
𝑃 𝑠
𝑤𝑖 ,𝑡

−
𝑁
∑

𝑖=1

(

𝐷𝑖,𝑡 + 𝑃𝐸
𝑖,𝑡

)

)

+
𝑀
∑

𝑙=1
𝜇𝑠,min
𝑙,𝑡

( 𝑁
∑

𝑖=1
𝐺𝑆𝐹𝑙−𝑖

(

𝑃 𝑠
𝑔𝑖 ,𝑡

+ 𝑃 𝑠
𝑤𝑖 ,𝑡

−

𝐷𝑖,𝑡 − 𝑃𝐸
𝑖,𝑡

)

+𝑃𝑙

)

+
𝑀
∑

𝑙=1
𝜇𝑠,max
𝑙,𝑡

(

𝑃𝑙−

𝑁
∑

𝑖=1
𝐺𝑆𝐹𝑙−𝑖

(

𝑃 𝑠
𝑔𝑖 ,𝑡

+ 𝑃 𝑠
𝑤𝑖 ,𝑡

−𝐷𝑖,𝑡 − 𝑃𝐸
𝑖,𝑡
)

)

+
𝑁
∑

𝑖=1
𝜔𝑠,min
𝑔𝑖 ,𝑡

(

𝑃 𝑠
𝑔𝑖 ,𝑡

− 𝑃min
𝑔𝑖

)

−
𝑁
∑

𝑖=1
𝜔𝑠,max
𝑔𝑖 ,𝑡

(

𝑃max
𝑔𝑖

− 𝑃 𝑠
𝑔𝑖 ,𝑡

)

+
𝑁
∑

𝑖=1
𝜑𝑠,min
𝑤𝑖 ,𝑡

𝑃 𝑠
𝑤𝑖 ,𝑡

−
𝑁
∑

𝑖=1
𝜑𝑠,max
𝑤𝑖 ,𝑡

(

𝑃 𝑠,0
𝑤𝑖 ,𝑡

− 𝑃 𝑠
𝑤𝑖 ,𝑡

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

24
∑

𝑡=2

( 𝑁
∑

𝑖=1
𝑣𝑠,𝑑𝑔𝑖 ,𝑡

(

𝑃 𝑠
𝑔𝑖 ,𝑡

− 𝑃 𝑠
𝑔𝑖 ,𝑡−1

+ 𝑅down
𝑔𝑖

)

+

𝑠,𝑢
𝑔𝑖 ,𝑡

(

−𝑃 𝑠
𝑔𝑖 ,𝑡

+ 𝑃 𝑠
𝑔𝑖 ,𝑡−1

+ 𝑅up
𝑔𝑖

)

)

(21)

𝑠
𝑖,𝑡 =

𝜕𝐿𝑠

𝜕
(

𝐷𝑖,𝑡 + 𝑃𝐸
𝑖,𝑡

)

= 𝜆𝑠𝑡 +
𝑀
∑

𝑙=1
𝐺𝑆𝐹𝑙−𝑖

(

𝜇𝑠,min
𝑙,𝑡 − 𝜇𝑠,max

𝑙,𝑡

)

(22)

The LSE needs to make robust decisions to deal with the uncertainty
f scenarios. The excepted LMP is calculated as (23), and the objective
unction in the upper model should be reformulated as (24) combined
ith the lower model.

𝑖,𝑡 = E(𝜋𝑠
𝑖,𝑡) =

𝑈
∑

𝑠=1
𝑝𝑠𝜋

𝑠
𝑖,𝑡 (23)

max
𝑈
∑

𝑠=1
𝑝𝑠

( 24
∑

𝑡=1

∑

𝑖∈𝐵

(

𝜂𝑖𝐷𝑖,𝑡 +
(

𝑅𝑖,𝑡 − 𝑟𝑖,𝑡
) (

𝐷0
𝑖,𝑡 −𝐷𝑖,𝑡

)

− 𝑅𝑖,𝑡𝑃
𝑠𝑚
𝑖,𝑡 − 𝜋𝑠

𝑖,𝑡
(

𝐷𝑖,𝑡 + 𝑃𝐸
𝑖,𝑡 − 𝑃 𝑠𝑚

𝑖,𝑡
)

− 𝜏𝑅𝑖,𝑡𝑃
𝑅
𝑖,𝑡

)

)

⇒ max
24
∑

𝑡=1

∑

𝑖∈𝐵

(

𝜂𝑖𝐷𝑖,𝑡 +
(

𝑅𝑖,𝑡 − 𝑟𝑖,𝑡
)(

𝐷0
𝑖,𝑡 −𝐷𝑖,𝑡

)

− 𝑅𝑖,𝑡𝑃
𝑠𝑚
𝑖,𝑡 + 𝜋𝑖,𝑡𝑃

𝑠𝑚
𝑖,𝑡 − 𝜏𝑅𝑖,𝑡𝑃

𝑅
𝑖,𝑡

)

−
𝑈
∑

𝑠=1
𝑝𝑠

( 24
∑

𝑡=1

∑

𝑖∈𝐵
𝜋𝑠
𝑖,𝑡

(

𝐷𝑖,𝑡 + 𝑃𝐸
𝑖,𝑡

)

)

(24)

here the sum of 𝑝𝑠 is 1.

. Mathematical solution

Mathematically, the formulated problem involves bi-level models,
onlinear objectives, and nonlinear constraints, yielding very high
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computational costs. The mathematical solution to address this issue
is presented in this section.

4.1. Two-layer model decoupling

In the proposed problem formulation, the solution of the upper-level
model depends on the LMP provided by the lower-level model, and
the economic dispatch in the lower level would be affected by the DR
capacity and the ESS output in the upper level. Thanks to the lower-
level model as a linear programming problem, the KKT conditions
can be complementary constraints inserted into the upper-level model.
Ultimately, the bi-level optimization model can be reformulated as a
mathematical program with equilibrium constraints (MPEC) with the
objective function (24). The KKT constraints can be represented as
(25)–(37).

Constraint in (16) (25)

𝐶𝑔𝑖 − 𝜆𝑠𝑡 −
𝑀
∑

𝑙=1
𝐺𝑆𝐹𝑙−𝑖

(

𝜇𝑠,min
𝑙,𝑡 − 𝜇𝑠,max

𝑙,𝑡

)

− 𝜔𝑠,min
𝑔𝑖 ,𝑡

+ 𝜔𝑠,max
𝑔𝑖 ,𝑡

+ 𝑣𝑠,𝑑𝑔𝑖 ,𝑡 − 𝑣𝑠,𝑢𝑔𝑖 ,𝑡 = 0,∀𝑠 = 1, 2,… , 𝑈 , 𝑡 = 1 (26)

𝑔𝑖 − 𝜆𝑠𝑡 −
𝑀
∑

𝑙=1
𝐺𝑆𝐹𝑙−𝑖

(

𝜇𝑠,min
𝑙,𝑡 − 𝜇𝑠,max

𝑙,𝑡

)

− 𝜔𝑠,min
𝑔𝑖 ,𝑡

+ 𝜔𝑠,max
𝑔𝑖 ,𝑡

− 𝑣𝑠,𝑑𝑔𝑖 ,𝑡 + 𝑣𝑠,𝑑𝑔𝑖 ,𝑡+1 + 𝑣𝑠,𝑢𝑔𝑖 ,𝑡 − 𝑣𝑠,𝑢𝑔𝑖 ,𝑡+1 = 0,

∀𝑠 = 1, 2,… , 𝑈 ,∀𝑡 = 2, 3,… , 23 (27)

𝑔𝑖 − 𝜆𝑠𝑡 −
𝑀
∑

𝑙=1
𝐺𝑆𝐹𝑙−𝑖

(

𝜇𝑠,min
𝑙,𝑡 − 𝜇𝑠,max

𝑙,𝑡

)

− 𝜔𝑠,min
𝑔𝑖 ,𝑡

+ 𝜔𝑠,max
𝑔𝑖 ,𝑡

− 𝑣𝑠,𝑑𝑔𝑖 ,𝑡 + 𝑣𝑠,𝑢𝑔𝑖 ,𝑡 = 0,∀𝑠 = 1, 2,… , 𝑈 , 𝑡 = 24 (28)

+ 𝜆𝑠𝑡 +
𝑀
∑

𝑙=1
𝐺𝑆𝐹𝑙−𝑖

(

𝜇𝑠,min
𝑙,𝑡 − 𝜇𝑠,max

𝑙,𝑡

)

+ 𝜑𝑠,min
𝑤𝑖 ,𝑡

− 𝜑𝑠,max
𝑤𝑖 ,𝑡

= 0,∀𝑠 = 1, 2,… , 𝑈 ,∀𝑡 = 1, 2,… , 24 (29)

≤ 𝜇𝑠,min
𝑙,𝑡 ⟂

𝑁
∑

𝑖=1
𝐺𝑆𝐹𝑙−𝑖

(

𝑃 𝑠
𝑔𝑖 ,𝑡

+ 𝑃 𝑠
𝑤𝑖 ,𝑡

−𝐷𝑖,𝑡 − 𝑃𝐸
𝑖,𝑡

)

+ 𝑃𝑙 ≥ 0,∀𝑠 = 1, 2,… , 𝑈 ,∀𝑡 = 1, 2,… , 24 (30)

≤ 𝜇𝑠,max
𝑙,𝑡 ⟂ 𝑃𝑙 −

𝑁
∑

𝑖=1
𝐺𝑆𝐹𝑙−𝑖

(

𝑃 𝑠
𝑔𝑖 ,𝑡

+ 𝑃 𝑠
𝑤𝑖 ,𝑡

−𝐷𝑖,𝑡

− 𝑃𝐸
𝑖,𝑡

)

≥ 0,∀𝑠 = 1, 2,… , 𝑈 ,∀𝑡 = 1, 2,… , 24 (31)

≤ 𝜔𝑠,min
𝑔𝑖 ,𝑡

⟂ 𝑃 𝑠
𝑔𝑖 ,𝑡

− 𝑃min
𝑔𝑖

≥ 0,∀𝑠 = 1, 2,… , 𝑈 ,

∀𝑡 = 1, 2,… , 24 (32)
≤ 𝜔𝑠,max

𝑔𝑖 ,𝑡
⟂ 𝑃max

𝑔𝑖
− 𝑃 𝑠

𝑔𝑖 ,𝑡
≥ 0,∀𝑠 = 1, 2,… , 𝑈 ,

∀𝑡 = 1, 2,… , 24 (33)

≤ 𝜑𝑠,min
𝑤𝑖 ,𝑡

⟂ 𝑃 𝑠
𝑤𝑖 ,𝑡

≥ 0,∀𝑠 = 1, 2,… , 𝑈 ,∀𝑡 = 1, 2,… , 24 (34)

≤ 𝜑𝑠,max
𝑤𝑖 ,𝑡

⟂ 𝑃 𝑠,0
𝑤𝑖 ,𝑡

− 𝑃 𝑠
𝑤𝑖 ,𝑡

≥ 0,∀𝑠 = 1, 2,… , 𝑈 ,

∀𝑡 = 1, 2,… , 24 (35)

≤ 𝑣𝑠,down
𝑔𝑖 ,𝑡

⟂ 𝑃 𝑠
𝑔𝑖 ,𝑡

− 𝑃 𝑠
𝑔𝑖 ,𝑡−1

+ 𝑅down
𝑔𝑖

≥ 0,

∀𝑠 = 1, 2,… , 𝑈 ,∀𝑡 = 2, 3,… , 24 (36)
≤ 𝑣𝑠,up

𝑔𝑖 ,𝑡
⟂ −𝑃 𝑠

𝑔𝑖 ,𝑡
+ 𝑃 𝑠

𝑔𝑖 ,𝑡−1
+ 𝑅up

𝑔𝑖 ≥ 0,

∀𝑠 = 1, 2,… , 𝑈 ,∀𝑡 = 2, 3,… , 24 (37)

where the perpendicular sign ⟂ denotes a zero cross-product of the
orresponding variables in vector form [39].

.2. Linearization of objective function

In the MPEC problem, the objective function (24) contains the
0

8

ollowing nonlinear terms: (1) DR reward 𝑅𝑖,𝑡(𝐷𝑖,𝑡 − 𝐷𝑖,𝑡), (2) DR cost
𝑖,𝑡(𝐷0
𝑖,𝑡 − 𝐷𝑖,𝑡), (3) ESS’s lost profit 𝜋𝑖,𝑡𝑃 𝑠𝑚

𝑖,𝑡 , (4) DR deviation penalty
𝑅𝑖,𝑡𝑃𝑅

𝑖,𝑡 , and (5) energy purchase cost (profits from the ESS’s electricity
ales are considered negative expenses) 𝜋𝑠

𝑖,𝑡(𝐷𝑖,𝑡 + 𝑃𝐸
𝑖,𝑡 ).

The linearization processes for terms (1)–(4) are similar. Taking
inearizing 𝑅𝑖,𝑡(𝐷0

𝑖,𝑡 − 𝐷𝑖,𝑡 − 𝑃 𝑠𝑚
𝑖,𝑡 ) as an example. As aforementioned

n Section 1, the LSE divides the maximum available DR capacity
nto blocks and makes incremental bidding [31]. Thus, the piecewise
inearization method is adopted, and 𝑅𝑖,𝑡(𝐷0

𝑖,𝑡 −𝐷𝑖,𝑡) is denoted as 𝛹𝑅
𝑖,𝑡.

𝑅
𝑖,𝑡 = 𝑝

(

𝑃 𝑡𝑎𝑟
𝑖,𝑡 +

𝑁
∑

𝑗=1
𝜅𝑘
𝑖,𝑡,𝑗𝑑

𝑘
𝑖,𝑡,𝑗 − 𝑃 𝑠𝑚

𝑖,𝑡

)

,

𝑡 ∈ 𝑇𝐷𝑅,∀𝑖 ∈ 𝐵, 𝛾𝑖,𝑡,𝑙 = 1 (38)

𝑖,𝑡,𝑙 =
{

1, 𝑃 𝑡𝑎𝑟
𝑖,𝑡 ∈

[

𝐵𝑖,𝑡,𝑙 , 𝐵𝑖,𝑡,𝑙+1
)

0, otherelse
,

𝑡 ∈ 𝑇𝐷𝑅,∀𝑖 ∈ 𝐵 (39)
𝑁
∑

𝑝=1
𝛾𝑖,𝑡,𝑙 = 1,∀𝑡 ∈ 𝑇𝐷𝑅,∀𝑖 ∈ 𝐵 (40)

here 𝛾𝑖,𝑡,𝑙 is the auxiliary binary variable, and 𝑝 is the bidding price
orresponding to the bidding capacity interval [𝐵𝑖,𝑡,𝑙 , 𝐵𝑖,𝑡,𝑙+1).

Similarly, nonlinear terms (2)–(4) are reformulated as follows

𝑟
𝑖,𝑡 = 𝑘

(

𝑃 𝑡𝑎𝑟
𝑖,𝑡 +

𝑁
∑

𝑗=1
𝜅𝑘
𝑖,𝑡,𝑗𝑑

𝑘
𝑖,𝑡,𝑗

)

,

𝑡 ∈ 𝑇𝐷𝑅,∀𝑖 ∈ 𝐵, 𝜎𝑘𝑖,𝑡,𝑙 = 1 (41)

𝑑
𝑖,𝑡 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜋𝑖,𝑡
𝑁
∑

𝑗=1
𝜅𝑘
𝑖,𝑡,𝑗𝑑

𝑘
𝑖,𝑡,𝑗 ,−𝑃

𝑑,max
𝑖 ≤ 𝑃𝐷

𝑖,𝑡 < 0, 𝜋𝑖,𝑡 < 𝜏𝑅𝑖,𝑡

−𝜋𝑖,𝑡𝑃
𝑑,max
𝑖 ,−𝑃 𝑑,max

𝑖 ≥ 𝑃𝐷
𝑖,𝑡&𝜋𝑖,𝑡 < 𝜏𝑅𝑖,𝑡

0 , 𝑃𝐷
𝑖,𝑡 < 0&𝜋𝑖,𝑡 ≥ 𝜏𝑅𝑖,𝑡

0 , 𝑃𝐷
𝑖,𝑡 ≥ 0

,

𝑡 ∈ 𝑇𝐷𝑅,∀𝑖 ∈ 𝐵, 𝜎𝑑𝑖,𝑡 = 1 (42)

𝑝
𝑖,𝑡 = 𝜏𝑝

|

|

|

|

|

|

𝑁
∑

𝑗=1
𝜅𝑘
𝑖,𝑡,𝑗𝑑

𝑘
𝑖,𝑡,𝑗 − 𝑃 𝑠𝑚

𝑖,𝑡

|

|

|

|

|

|

,

𝑡 ∈ 𝑇𝐷𝑅,∀𝑖 ∈ 𝐵, 𝛾𝑖,𝑡,𝑙 = 1 (43)

Next, the nonlinear term (5) is linearized as (44) based on the strong
uality theory. The linearization process is presented in A.1.
24

𝑡=1

∑

𝑖∈𝐵
𝜋𝑠
𝑖,𝑡

(

𝐷𝑖,𝑡 + 𝑃𝐸
𝑖,𝑡

)

= 𝛹 𝑜
𝑠,𝑡 + 𝛹 𝑙

𝑠,𝑡 + 𝛹 𝑐
𝑠,𝑡 (44)

where

𝑜
𝑠,𝑡 =

24
∑

𝑡=1

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

𝜆𝑠𝑡

⎛

⎜

⎜

⎜

⎝

𝑁
∑

𝑖=1
𝑃 𝑠,0
𝑤𝑖 ,𝑡

+
𝑁
∑

𝑖=1
𝑖∉𝐵

(

𝐷𝑖,𝑡 + 𝑃𝐸
𝑖,𝑡

)

⎞

⎟

⎟

⎟

⎠

+
𝑀
∑

𝑙=1
𝜇𝑠,min
𝑙,𝑡

( 𝑁
∑

𝑖=1
𝐺𝑆𝐹𝑙−𝑖𝑃

𝑠,0
𝑤𝑖 ,𝑡

−

𝑁
∑

𝑖=1
𝑖∉𝐵

𝐺𝑆𝐹𝑙−𝑖

(

𝐷𝑖,𝑡 + 𝑃𝐸
𝑖,𝑡

)

+ 𝑃𝑙

)

+
𝑀
∑

𝑙=1
𝜇𝑠,max
𝑙,𝑡

(

𝑃𝑙 −
𝑁
∑

𝑖=1
𝐺𝑆𝐹𝑙−𝑖𝑃

𝑠,0
𝑤𝑖 ,𝑡

+
𝑁
∑

𝑖=1
𝑖∉𝐵

𝐺𝑆𝐹𝑙−𝑖
(

𝐷𝑖,𝑡 + 𝑃𝐸
𝑖,𝑡
)

)

−
𝑁
∑

𝑖=1
𝜔𝑠,min
𝑔𝑖 ,𝑡

𝑃min
𝑔𝑖

+
𝑁
∑

𝜔𝑠,max
𝑔𝑖 ,𝑡

𝑃max
𝑔𝑖

+
𝑁
∑

𝜑𝑠,min
𝑤𝑖 ,𝑡

𝑃 𝑠,0
𝑤𝑖 ,𝑡

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎝ 𝑖=1 𝑖=1 ⎠
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𝛹 𝑙
𝑠,𝑡 =

24
∑

𝑡=1

( 𝑁
∑

𝑖=1
𝐶𝑔𝑖𝑃

𝑠
𝑔𝑖 ,𝑡

+
𝑁
∑

𝑖=1
𝜁
(

𝑃 𝑠,0
𝑤𝑖 ,𝑡

− 𝑃 𝑠
𝑤𝑖 ,𝑡

)

)

𝛹 𝑐
𝑠,𝑡 =

24
∑

𝑡=2

( 𝑁
∑

𝑖=1
𝑣𝑠,𝑑𝑔𝑖 ,𝑡𝑅

down
𝑔𝑖

+ 𝑣𝑠,𝑢𝑔𝑖 ,𝑡𝑅
up
𝑔𝑖

)

4.3. Linearization of constraints

As constraint (7) is difficult to be characterized with an exact
mathematical formula, the piecewise linearization method is adopted
to describe that relationship as (45)–(47).

𝑃𝐷
𝑖,𝑡 =

𝑁
∑

𝑗=1
𝜅𝑘
𝑖,𝑡,𝑗𝑑

𝑘
𝑖,𝑡,𝑗 ,∀𝑡 ∈ 𝑇𝐷𝑅,∀𝑖 ∈ 𝐵, 𝑟𝑖,𝑡 = 𝑘 (45)

𝜅𝑘
𝑖,𝑡,𝑗 =

{

1, 𝑃 𝑡𝑎𝑟
𝑖,𝑡 ∈

[

𝐴𝑗,𝑡, 𝐴𝑗+1,𝑡
)

0, otherelse
,

∀𝑡 ∈ 𝑇𝐷𝑅,∀𝑖 ∈ 𝐵, 𝑟𝑖,𝑡 = 𝑘 (46)
𝑁
∑

𝑗=1
𝜅𝑘
𝑖,𝑡,𝑗 = 1,∀𝑡 ∈ 𝑇𝐷𝑅,∀𝑖 ∈ 𝐵, 𝑟𝑖,𝑡 = 𝑘

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑟𝑖,𝑡 =
𝑁
∑

𝑙=1
𝜎𝑘𝑖,𝑡,𝑙𝑘

𝑁
∑

𝑙=1
𝜎𝑘𝑖,𝑡,𝑙 = 1

,∀𝑡 ∈ 𝑇𝐷𝑅,∀𝑖 ∈ 𝐵 (47)

where [𝐴𝑗,𝑡, 𝐴𝑗+1,𝑡) denotes the aggregation capacity segment interval
𝑗, different from the interval in Section 4.2. 𝑑𝑘𝑗,𝑡 is the aggregation
deviation constant value corresponding to the interval, and 𝜅𝑘

𝑖,𝑡,𝑗 and
𝜎𝑘𝑖,𝑡,𝑙 are auxiliary binary variables.

Additionally, complementary slackness constraints (30)–(37) are
nonlinear. They can be converted to linear constraints by the Big-M
approach [40,41], presented as (51)–(66) in Appendix A.2.

Consequently, the bi-level optimization problem can be reformu-
lated as a mixed integer linear programming (MILP) problem as

max
24
∑

𝑡=1

∑

𝑖∈𝐵

(

𝜂𝑖𝐷𝑖,𝑡 + 𝛹𝑅
𝑖,𝑡 − 𝛹 𝑟

𝑖,𝑡 + 𝛹𝑑
𝑖,𝑡 − 𝛹 𝑝

𝑖,𝑡

)

−

𝑈
∑

𝑠=1
𝑝𝑠
(

𝛹 𝑙
𝑠,𝑡 + 𝛹 𝑜

𝑠,𝑡 + 𝛹 𝑐
𝑠,𝑡
)

(48)

𝑠.𝑡. (5), (6), (8)–(14), (25)–(29), (38)–(43),(45)–(66)

5. Case studies

In this section, the proposed bi-level scheduling model for the LSE
is tested on a modified IEEE RTS-24 bus system, as shown in Fig. 7.
The MILP problem is solved by the GUROBI solver on MATLAB 2021a.

In the test system, some conventional generators are replaced by
wind turbine generators with the same capacities. Applying the Monte
Carlo method, 5000 wind speed scenarios are generated. Adopting the
previous method in [42], the number is reduced to 10 to reduce the
computation burden. The penalty cost 𝜁 of wind power curtailment
for unit capacity is 35 $/MWh, and the unit power generation costs
of generators at different buses are noted in Fig. 7.

Loads at bus 6, bus 7, and bus 8 are assumed to be managed by
the LSE. The flat retail rate 𝜂𝑖 is 35 $/MWh. The DR resources at each
bus consist of 25,000 residents. The power of their air conditioners is
randomly distributed between 2 kW and 3 kW, and the utilization rates
at different time slots are derived from [43]. During the periods of DR
execution, the LSE divides the maximum available aggregation power
into 5 intervals evenly with incremental bidding price (i.e., 20 $/MWh,
9

Fig. 7. Modified IEEE RTS-24 bus system.

Table 1
Parameters of ESS.

Parameters Value

Maximum capacity 𝐸𝑖,𝑐 30 MWh
Maximum discharge power 𝑃 𝑑,𝑚𝑎𝑥

𝑖 9 MW
Maximum charging power 𝑃 𝑐,𝑚𝑎𝑥

𝑖 8 MW
Discharging efficiency 𝜂𝑖,𝑑 0.9
Charging efficiency 𝜂𝑖,𝑐 0.9
Initial state of charge 𝑆𝑂𝐶𝑖,0 0.5
Maximum state of charge 𝑆𝑂𝐶max

𝑖 0.9
Minimum state of charge 𝑆𝑂𝐶min

𝑖 0.1

25 $/MWh, 30 $/MWh, 50 $/MWh and 60 $/MWh). The maximum
load reduction coefficient 𝜉 is 7% [31]. In addition, these buses are
equipped with an ESS with identical parameters, as shown in Table 1.

5.1. Performance of CMAB-based online learning method

To further investigate the performance of the CMAB-based online
learning method in improving the LSE’s profitability and DR’s relia-
bility, we study the following cases with different load aggregation
methods (over 24 hours). Here, all ESSs can be dispatched in two
modes.

Case 1: The load aggregation method adopts the random selection
method.

Case 2: The load aggregation method adopts the offline method.
Case 3: The load aggregation method adopts the online learning

CMAB method.
Note that the offline method and the random selection method

can be assumed to obtain the upper and lower bounds of the load
aggregation, respectively [32]. The corresponding profits are shown in
Table 2.

The profit in case 2 is the highest due to the ideal load aggregation,
where the actual response probabilities of residents are assumed pre-
known for the LSE. However, this is unrealistic as the inducers of DR
uncertainty are very complex. In case 1, the random selection method
causes a significant deviation such that more capacities of ESS are used
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Table 2
Profits in five cases (Unit: $).

Case Total profit Load management ESS management DR service

Purchasea Energy retailb Purchasea Energy salesb Incentivea Rewardb Deviation penaltya

1 51993 539939 567575 4069 3752 6985 31716 58
2 53128 538090 565664 4298 4841 7802 32816 2
3 52617 538902 566484 4061 4315 7436 32251 68
4 46477 544404 566158 / / 8266 34261 1272
5 52326 538561 566131 4267 5280 7832 32858 1293

aPayment costs for LSE.
bIncome for LSE.
Fig. 8. Bidding capacities at bus 7 under different cases.

Fig. 9. Aggregation deviation ratios at bus 7 under different cases.

Fig. 10. Various incentive prices at bus 7 under different cases.

to undertake Mode 2 and cannot be sold for profit. The net revenue of
ESS management is even negative. The CMAB method in case 3 enables
the LSE to reduce the profit difference between case 1 and case 2 by
around 55%.

Fig. 8 shows the bidding capacities at bus 7 under different cases.
The aggregation deviation ratios and incentive prices are shown in
Figs. 9 and 10, respectively. In terms of the overall performance of
10
Fig. 11. Effect of ESS on LMP.

Fig. 12. Dispatch of the ESS with two modes at bus 7.

aggregation reliability, the offline method performs the best, followed
by the CMAB method, and the random selection method is the worst.
At 4 P.M., the AC utilization rate is only 57%, and the incentive price
is 6 $/MWh. The low level of overall residents’ response results in a
significant deviation for all cases. However, as the AC utilization rate
increases to 74% at 7 P.M., we have more residents with relatively high
response probabilities. The CMAB method achieves nearly the same
aggregation deviation ratio and bidding capacity at a lower incentive
price compared with the random selection method.

5.2. Impact of ESS

We design the following two cases to demonstrate the effectiveness
of the ESS with two modes in case 3. Note that the load aggregation in
these cases adopts the CMAB-based online learning method due to its
outstanding performance in Section 5.1.

Case 4: All ESS do not participate in the dispatch. The LSE only
implements DR programs.

Case 5: ESS scheduling and DR are executed independently at the
same time. The former only undertakes Mode 1.

The income and expenses for the LSE under the above cases are
shown in Table 2. First, compared with case 4, flexible dispatch of
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Fig. 13. Increased net profit for per unit deviation capacity.

ESS in case 5 significantly helps LSE improve margins by around 12%.
As shown in Fig. 11, during specific time slots, the LMP at bus 7
is significantly reduced. Especially at 10 A.M., the original LMP is
higher than the retail price due to the proximity of the load peak, but
benefiting from the ESS’s discharging, the LSE effectively avoids the
risk of negative revenues at this time slot. This suggests that the main
reason for increasing profits is that the cost of energy purchasement is
significantly reduced, except for the small additional profit that the ESS
makes by the LMP difference. Second, the ESS with two modes creates
higher net profits for the LSE than those undertaking single Mode 1 in
case 5. The dispatch of ESS under different modes in case 3 is shown
in Fig. 12. The ESS with Mode 1 can flexibly adjust the operation state
and power according to the LMP. During the execution of the DR plan,
the LSE trades off the energy sale revenue and penalty cost under the
unit capacity and makes the dispatch strategy for the ESS with Mode
2. For example, between 10 A.M. and noon, the aggregation deviations
are fully compensated because of the high penalty cost. Therefore, the
ESS can be flexibly switched between two modes to maximize the total
Profit through the proposed model.

For the LSE, the profit difference of the ESS to compensate for the
aggregation deviation instead of selling equal capacity electricity at
time slot 𝑡 can be expressed as 𝑃𝐷

𝑖,𝑡 [(1 + 𝜏)𝑅𝑖,𝑡 − 2𝜋𝑖,𝑡]. For per unit
deviation capacity, it is shown in Fig. 13. Note that negative revenues
are replaced by zero. Compared with undertaking single Mode 1, the
increased profit of ESS with two modes is proportional to the deviation
and the penalty price. In other words, its economic value would be
more prominent. For example, when the load aggregation method in
case 4 and case 5 adopts the random selection method, the total load
deviation is higher, and the net profit increases by nearly $700.

5.3. Optimal scheduling and DR bidding strategies

The proposed bi-level scheduling model with the CMAB method
enables the LSE to flexibly dispatch ESS at different time slots and
design the optimal DR bidding strategy to maximize profit.

In case 3, the SOC of ESS at different buses and total net load
change are shown in Figs. 14 and 15. The remarkable feature is that
the ESS follows the principle of charging during low load periods and
discharging during peak periods. Through the coordination between
ESS and DR, the load peak–valley difference in the area managed by
the LSE has been reduced by about 84 MW.

Figs. 16 and 17 show the optimal DR bidding prices, incentive
prices, and bidding capacities at different buses. It can be found that the
proposed model formulates differentiated strategies for DR resources
at various time slots. There are mainly the following aspects that may
affect the optimal strategy:

(1) The DR bidding capacity is positively related to system demand.
Especially during the peak load periods, to reduce the operation risk
of the system and the LMP at different buses, the LSE must provide
DR resources with a larger capacity to meet the demand. For example,
compared with 4 P.M., the DR bidding capacity at bus 6 increased by
about 74.6% at 11 A.M.
11
Fig. 14. SOC of ESS at different buses.

Fig. 15. Total net load change for buses managed by the LSE.

Fig. 16. DR bidding and incentive price strategy for different buses.

(2) The incentive and bidding price levels depend on the system
demand and the scarcity of available DR resources. When the DR
resources are few, and the demand is enormous, since many users with
high response probability are needed to ensure aggregation reliabil-
ity, the LSE must increase the incentive price to improve the overall
response level of the users. Meanwhile, unequal demand and supply
further highlight the value of DR resources, and the bidding prices
for the LSE are higher. For example, at 11 A.M. and 9 P.M., the AC
utilization rates are 57% and 94.5%, respectively. Despite the close DR
bidding capacity at bus 6, the incentive and bidding prices at 11 A.M.
are significantly higher than the latter.

6. Conclusion

This paper proposes a bi-level scheduling model for the LSE con-
sidering the impact of demand response uncertainty on LMP and DR
bidding. The quantitative relationship between aggregation deviations
based on the survey dataset is established, and the coordination be-
tween ESS and DR resources to avoid extreme energy purchase prices
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Fig. 17. DR bidding capacities for different buses.

is investigated. The simulation results showcase the advantages of the
proposed method and demonstrate that:

(1) Reliable load aggregation helps reduce the incentive cost under
the same bidding capacity, further increasing the LSE’s profit. Com-
pared with the extensive conventional aggregation method, the LSE
can achieve more economical and reliable load aggregation through the
CMAB method, especially when DR resources are not abundant.

(2) The ESS with two modes could help reduce energy purchas-
ing costs and create greater profits than those with a single mode,
especially when the aggregation deviation and the penalty costs are
high.

(3) With the proposed model, the LSE can effectively assist the
system operation by strategically dispatching ESS and DR resources,
such as reducing the peak-to-valley difference. Also, the optimal DR
bidding strategies at different buses and time intervals could be flexibly
formulated considering the overall system demand and the scarcity of
DR resources.

In future work, the optimal bidding model for coordinating multiple
LSEs in the electricity market will be studied with consideration of the
ancillary service requirements of the system. Moreover, the category
of DR flexible resources will be expanded, such as electric vehicles,
electric water heaters, etc.
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Appendix

A.1. Linearization of nonlinear term based on the strong duality theory

In order to linearize term 𝜋𝑠
𝑖,𝑡(𝐷𝑖,𝑡 + 𝑃𝐸

𝑖,𝑡 ), formula (22) is substituted
into this term, and (49) is calculated.
24
∑

𝑡=1

∑

𝑖∈𝐵
𝜋𝑠
𝑖,𝑡
(

𝐷𝑖,𝑡 + 𝑃𝐸
𝑖,𝑡
)

=
24
∑

𝑡=1

∑

𝑖∈𝐵

(

𝜆𝑠𝑡
(

𝐷𝑖,𝑡 + 𝑃𝐸
𝑖,𝑡

)

+

𝑀
∑

𝑙=1
𝐺𝑆𝐹𝑙−𝑖

(

𝜇𝑠,min
𝑙,𝑡 − 𝜇𝑠,max

𝑙,𝑡

)(

𝐷𝑖,𝑡 + 𝑃𝐸
𝑖,𝑡

) )

(49)

For the lower-level model, the objectives of the primal problem and
the corresponding dual problem at the optimal solution are equal based
on the strong duality theory, and thus it can be described as (50).

24
∑

𝑡=1

⎛

⎜

⎜

⎜
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⎜

⎜

⎜

⎜
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−𝜆𝑠𝑡
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𝑃 𝑠,0
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−
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∑

𝑖=1

(

𝐷𝑖,𝑡 + 𝑃𝐸
𝑖,𝑡

)

)

−
𝑀
∑

𝑙=1
𝜇𝑠,min
𝑙,𝑡

( 𝑁
∑

𝑖=1
𝐺𝑆𝐹𝑙−𝑖

(

𝑃 𝑠,0
𝑤𝑖 ,𝑡

−𝐷𝑖,𝑡 − 𝑃𝐸
𝑖,𝑡
)

+𝑃𝑙

)

−
𝑀
∑

𝑙=1
𝜇𝑠,max
𝑙,𝑡

(

𝑃𝑙 −
𝑁
∑

𝑖=1
𝐺𝑆𝐹𝑙−𝑖

(

𝑃 𝑠,0
𝑤𝑖 ,𝑡

−𝐷𝑖,𝑡 − 𝑃𝐸
𝑖,𝑡

)

)

+
𝑁
∑

𝑖=1
𝜔𝑠,min
𝑔𝑖 ,𝑡

𝑃min
𝑔𝑖

−
𝑁
∑

𝑖=1
𝜔𝑠,max
𝑔𝑖 ,𝑡

𝑃max
𝑔𝑖

−
𝑁
∑
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𝜑𝑠,min
𝑤𝑖 ,𝑡

𝑃 𝑠,0
𝑤𝑖 ,𝑡

⎞
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⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟
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−
24
∑

𝑡=2

( 𝑁
∑

𝑖=1
𝑣𝑠,𝑑𝑔𝑖 ,𝑡𝑅

down
𝑔𝑖

+ 𝑣𝑠,𝑢𝑔𝑖 ,𝑡𝑅
up
𝑔𝑖

)

=
24
∑

𝑡=1

( 𝑁
∑

𝑖=1
𝐶𝑔𝑖𝑃

𝑠
𝑔𝑖 ,𝑡

+
𝑁
∑

𝑖=1
𝜁
(

𝑃 𝑠,0
𝑤𝑖 ,𝑡

− 𝑃 𝑠
𝑤𝑖 ,𝑡

)

)

(50)

Note that the net load at bus 𝑖 not managed by the LSE is the
baseline constant. Substituting (49) into (50), the latter can be replaced
by (44), and the nonlinear term is linearized.

A.2. Linearization of KKT conditions

0 ≤ 𝜇𝑠,min
𝑙,𝑡 ≤ 𝑀𝑠,min

𝜇 𝑣𝑠,min
𝑙,𝑡 (51)

0 ≤
𝑁
∑

𝑖=1
𝐺𝑆𝐹𝑙−𝑖

(

𝑃 𝑠
𝑔𝑖 ,𝑡

+ 𝑃 𝑠
𝑤𝑖 ,𝑡

−𝐷𝑖,𝑡 − 𝑃𝐸
𝑖,𝑡

)

+ 𝑃𝑙

≤ 𝑀𝑠,min
𝜇

(

1 − 𝑣𝑠,min
𝑙,𝑡

)

(52)

0≤ 𝜇𝑠,max
𝑙,𝑡 ≤ 𝑀𝑠,max

𝜇 𝑣𝑠,max
𝑙,𝑡 (53)

0 ≤ 𝑃𝑙 −
𝑁
∑

𝑖=1
𝐺𝑆𝐹𝑙−𝑖

(

𝑃 𝑠
𝑔𝑖 ,𝑡

+ 𝑃 𝑠
𝑤𝑖 ,𝑡

−𝐷𝑖,𝑡 − 𝑃𝐸
𝑖,𝑡

)

≤ 𝑀𝑠,max
𝜇

(

1 − 𝑣𝑠,max
𝑙,𝑡

)

(54)
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𝑔𝑖 ,𝑡

≤ 𝑀𝑠,min
𝜔 𝑣𝑠,min

𝜔,𝑡 (55)

0 ≤ 𝑃 𝑠
𝑔𝑖 ,𝑡
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𝑔𝑖

≤ 𝑀𝑠,min
𝜔

(

1 − 𝑣𝑠,min
𝜔,𝑡

)

(56)

0 ≤ 𝜔𝑠,max
𝑔𝑖 ,𝑡

≤ 𝑀𝑠,max
𝜔 𝑣𝑠,max

𝜔,𝑡 (57)
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𝑔𝑖

− 𝑃 𝑠
𝑔𝑖 ,𝑡

≤ 𝑀𝑠,max
𝜔

(

1 − 𝑣𝑠,max
𝜔,𝑡

)

(58)

0 ≤ 𝜑𝑠,min ≤ 𝑀𝑠,min𝑣𝑠,min (59)
𝑤𝑖 ,𝑡 𝜑 𝜑,𝑡
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0

0

0

0

0

𝑀

R

0 ≤ 𝑃 𝑠
𝑤𝑖 ,𝑡

≤ 𝑀𝑠,min
𝜑

(

1 − 𝑣𝑠,min
𝜑,𝑡

)

(60)

≤ 𝜑𝑠,max
𝑤𝑖 ,𝑡

≤ 𝑀𝑠,max
𝜑 𝑣𝑠,max

𝜑,𝑡 (61)

≤ 𝑃 𝑠,0
𝑤𝑖 ,𝑡

− 𝑃 𝑠
𝑤𝑖 ,𝑡

≤ 𝑀𝑠,max
𝜑

(

1 − 𝑣𝑠,max
𝜑,𝑡

)

(62)

≤ 𝑣𝑠,𝑑𝑔𝑖 ,𝑡 ≤ 𝑀𝑠,𝑑
𝑣 𝑣𝑠,𝑑𝑣,𝑡 (63)
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𝑔𝑖 ,𝑡
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𝑔𝑖 ,𝑡−1
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𝑣

(

1 − 𝑣𝑠,𝑑𝑣,𝑡
)

(64)

≤ 𝑣𝑠,𝑢𝑔𝑖 ,𝑡 ≤ 𝑀𝑠,𝑢
𝑣 𝑣𝑠,𝑢𝑣,𝑡 (65)
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𝑔𝑖 ,𝑡
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𝑔𝑖,𝑡 ,𝑡−1

+ 𝑅up
𝑔𝑖 ≤ 𝑀𝑠,𝑢

𝑣

(

1 − 𝑣𝑠,𝑢𝑣,𝑡
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(66)

where 𝑣𝑠,min
𝑙,𝑡 , 𝑣𝑠,max

𝑙,𝑡 , 𝑣𝑠,min
𝜔,𝑡 , 𝑣𝑠,max

𝜔,𝑡 , 𝑣𝑠,min
𝜔,𝑡 , 𝑣𝑠,max

𝜔,𝑡 , 𝑣𝑠,min
𝜑,𝑡 , 𝑣𝑠,max

𝜑,𝑡 , 𝑣𝑠,𝑑𝑣,𝑡 , 𝑣
𝑠,𝑢
𝑣,𝑡 are

auxiliary binary variables, and 𝑀𝑠,min
𝜇 , 𝑀𝑠,max

𝜇 , 𝑀𝑠,min
𝜔 , 𝑀𝑠,max

𝜔 , 𝑀𝑠,min
𝜑 ,

𝑠,max
𝜑 , 𝑀𝑠,𝑑

𝑣 , 𝑀𝑠,𝑢
𝑣 are large enough positive constants.
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