
Towards RegOps: A DevOps Pipeline for
Medical Device Software

Henrik Toivakka1,3[0000−0003−4906−4614], Tuomas
Granlund2,3[0000−0003−3955−0926], Timo Poranen3[0000−0002−4638−0243], and

Zheying Zhang3[0000−0002−6205−4210]

1 Mylab Oy, Tampere, Finland henrik.toivakka@mylab.fi
2 Solita Oy, Tampere, Finland tuomas.granlund@solita.fi

3 Tampere University, Tampere, Finland
{timo.poranen,zheying.zhang}@tuni.fi

Abstract. The manufacture of medical devices is a strictly regulated
domain in the European Union. Traditionally, medical software com-
pliance activities have been considered manual, document-centric, and
burdensome. At the same time, over the last decade, software compa-
nies have maintained competitiveness and improved by relying on es-
sential practices of DevOps, such as process automation and delivery
pipelines. However, applying the same principles in medical software can
be challenging due to regulatory requirements. In this paper, we utilize
a systematic approach to align the essential medical device software reg-
ulatory requirements from the standards IEC 62304 and IEC 82304-1
and integrate them into the software delivery pipeline, which is the main
contribution of our work. The outcome supports practitioners to estab-
lish more efficient software delivery models while maintaining compliance
with the medical device standards.

Keywords: Medical device software · medical device standards · regu-
latory compliance · DevOps · RegOps

1 Introduction

The EU regulation strictly controls the manufacturing of medical devices. In
order to place a medical device on the EU market, the manufacturer must prove
the conformity of the product with the applicable EU regulatory requirements.
With a CE mark, the manufacturer affirms conformity to regulatory require-
ments, and a medical device without a CE mark cannot be sold or distributed,
even free of charge. In addition to specific product-related requirements, the pro-
cesses by which the device is being manufactured and maintained must comply
with the regulations. Both standalone and embedded medical software products
are regulated under the same EU regulation as physical devices.

The DevOps paradigm has significantly changed the way how software is
being developed today. The technology transformation is supported by modern
toolchains that are designed with automation in mind. In addition, public cloud

2 H. Toivakka et al.

platforms offer flexible computational environments with high availability, auto-
mated infrastructure, and reliable software delivery. As the software development
industry continues to improve, relying on the DevOps best practices [1], it seems
inevitable that DevOps will become the norm regardless of the industry. How-
ever, certain DevOps key practices, such as short lead time for changes and high
deployment frequency, can be problematic from a medical device compliance
perspective [2].

In this work, we aim at improving the medical device software development
process by utilizing the automation capabilities of the DevOps paradigm while
achieving compliance with the regulations. We focus on standalone medical soft-
ware and strive to combine the DevOps goals of short process lead time and
efficiency with regulatory goals of product safety and clinical effectiveness. To
achieve the goal, we systematically address the most relevant medical device
regulatory requirements, align them with DevOps automated software delivery
concept, and propose a software delivery pipeline compliant with the regulatory
requirements. Our research is based on several years of hands-on engineering of
standalone software medical devices in the industry, covering in-house develop-
ment and consulting roles.

The rest of the paper is structured as follows. In Section 2, we provide the
background for the paper. In Section 3, we present the basics of DevOps prac-
tices and a reference model for continuous software delivery in an unregulated
environment. In Section 4, the requirements of the standards IEC 62304 and IEC
82304-1 are aligned. In Section 5, we present our proposed Regulated DevOps
(RegOps) pipeline for regulated continuous software delivery. Finally, in Section
6, we discuss the proposed pipeline and draw some conclusions.

2 Background

In the EU region, the manufacturing of medical devices is regulated by Med-
ical Device Regulation (MDR) and In Vitro Diagnostics Regulation (IVDR).
According to the legislation, a medical device must be clinically effective for its
intended medical purpose, and it must be safe to use. Therefore, medical devices
are classified according to their potential risk for a person’s health. Determining
the correct device classification is essential, as the device class defines applicable
conformity assessment procedure and the extent of a third-party conformity as-
sessment body involvement within the process. Thus, the intended purpose and
technical properties of a device define how heavily it is being regulated. In addi-
tion, also the technical documentation of the device is part of the product. It is
not uncommon that regulatory requirements are seen as burdensome activities
for the manufacturers [4].

The EU regulatory framework can be interpreted to consist of four layers: 1)
Union harmonized legislation, 2) national legislation, 3) harmonized standards,
and 4) guidance documents endorsed by the Medical Device Coordination Group
(MDCG) [3]. Arguably, the most convenient way to conform with the EU legis-
lation is to utilize harmonized, European versions of the international standards

Towards RegOps: A DevOps Pipeline for Medical Device Software 3

that apply to the device in question as they provide presumption of conformity
to legislation. At present, there are no software-specific harmonized standards
against MDR and IVDR, which creates a certain level of uncertainty as to which
are the appropriate standards to apply. However, the EU Commission’s recent
standardization request [5] is an excellent source of information to get an insight
into the expectations of regulatory authorities. For all medical software, the
applicable set includes general requirements for health software product safety
(IEC 82304-1), software life cycle process (IEC 62304), risk management process
(ISO 14971), usability engineering (IEC 62366-1), quality management system
requirements (ISO 13485), and security activities in the product life cycle (IEC
81001-5-1). Depending on the intended purpose and technical properties of the
software product, also other standards may be relevant.

From our experience, the appliance of medical device standards to software
manufacturing can significantly slow down the development process. The time
delay between development and release can be measured with the process lead
time of a software change, which essentially means the latency between initiation
and completion of a process [6]. Modern software development paradigms, such
as DevOps, could assist in reducing the process lead time. However, a clear, uni-
versally accepted definition for DevOps and the related practices/activities does
not exist. Despite that, DevOps tries to close the gap between the development
(Dev) and the operations (Ops) [7] with a set of practices that developers and op-
erators have agreed upon. From the technological viewpoint, the goal of DevOps
is to reduce and join repetitive tasks with process automation in development,
integration, and deployment [8]. In practice, process automation is implemented
in the Continuous Integration and Continuous Delivery (CI/CD) pipelines. A
pipeline consists of an automated and repeatable set of software life cycle pro-
cesses. The key to efficient software delivery is automation, repeatability, and
reliability of the software deployment [9].

In this paper, the concept of DevOps leans towards process automation and
pipelines, which can perform automated tasks repeatedly to shorten the process
lead time and reduce the risks related to the software delivery with deterministic
deployment practices. For this reason, the term DevOps pipeline is used as the
primary term for referring to a set of sequential activities/tasks that can be
performed repeatedly and reliably.

3 DevOps and Pipelines

In this section, we present an overview of the key characteristics of DevOps
that are relevant from the viewpoint of software integrity and delivery process
automation, followed by a reference Continuous software delivery model [10].

3.1 Building blocks for a DevOps Pipeline

A DevOps pipeline helps teams to build, test and deploy software through a
combination of tools/practices. Common tasks performed by a DevOps pipeline

4 H. Toivakka et al.

are software integration and deployment. Continuous Integration (CI) is the
practice of integrating new code frequently, preferably as soon as possible [11].
The pipeline builds the software, runs an automated set of verification tasks
against the software, and places the built software artifact into the dedicated
software artifact repository [6]. A software artifact is a piece of software, such as
a binary file, which can be copied into different computational environments [9].
The artifact repository stores the builds generated by the CI pipeline alongside
the metadata of the build [9]. The purpose of the CI is to prevent the code from
diverting too much between the developers and keep the code constantly intact,
ready for release. CI is enabled by storing the code in a source code repository,
which any modern distributed version control system, such as Git, can offer.

Continuous Deployment is a concept for an automated software delivery
model. By applying this practice, the software is deployed into a specific compu-
tational environment after all automated verification activities are passed, with-
out a human-made approval, but not necessarily available to end-users [9, 10].
To establish the practice, a high level of automation in the software develop-
ment, testing, and delivery processes is required [6]. The pipeline handles the
deployment to different computational environments. Staging environments are
utilized for testing and verifying the functionality of the software. Finally, the
production environment is the environment for the final end-users of the software
product.

3.2 DevOps Pipeline Reference Model

Production Deployment

Staging Deployment

Staging
Environment

TriggersSource Code
Repository

Continuous
Integration Pipeline

Artifact Repository

Stores

Software Artifact

Production
Environment
Staging Slot

Continuous
Deployment Pipeline

Create/Publish Pulls

Production
Environment

Production Slot

Staging Configuration

Staging Deployment

Production Configuration

Swap Staging and
Production Slots

Build

Test

Create Artifact

Publish Artifact

Pull Artifact

Test

Deploy

Deploy to Staging

Fig. 1. Continuous software delivery model, adapted from [10].

For this work, we chose a Continuous software delivery model presented by
Google [10] as the primary reference for the concept of the DevOps pipeline, as

Towards RegOps: A DevOps Pipeline for Medical Device Software 5

illustrated in Figure 1. We also considered models from Humble and Microsoft
[9, 12]. Google’s model was selected because, based on our own experience from
the industry, it is well-fitting for practical use. In addition, it illustrates the basic
pipelines and relationships between different concepts well.

In the reference model, the software verification and delivery are highly auto-
mated. A check-in into the source code repository triggers the CI pipeline, which
builds the software and runs automated checks and tests against the generated
build. Software artifacts are created and published into the artifact repository. If
the CI pipeline passes successfully, the build is deployed into the staging and the
production environments. The software can be tested and verified in the staging
environment manually before being released to the end-users. However, if the CI
pipeline fails, the original developer is notified to fix the defects. A failing build
will not be deployed.

The reference model was altered to present the sequential order of the CI/CD
pipelines and the activities more accurately. Finally, the model was polished
with the concept of Blue-Green Deployment [9], which enables more frictionless
deployments. In practice, there are two identical copies of the customer envi-
ronment present, which are swapped on software release. Thus, the rollback can
be performed by swapping the slots back to the original position if any prob-
lems occur. However, databases can be quite challenging to manage while using
this technique; thus, the issue should be recognized in the system’s architectural
design.

4 Integration of Regulatory Requirements into the
DevOps pipeline

We aim to improve the medical device software development process by utilizing
the automation capabilities of DevOps pipelines while simultaneously achiev-
ing compliance with the most central regulatory requirements. Therefore, we
selected the two most important international standards related to medical de-
vice software development for this research, namely IEC 62304 [13] and IEC
82304-1 [14].

Table 1. Requirements implemented in the pipeline.

Gate ID Gate title 62304 reqs. 82304-1 reqs.

G1 Continuous Integration
5.6.3, 5.6.5, 5.6.7, 5.7.4
7.3.3, 8.1.2, 8.1.3, 9.8

n/a

G2 Change Review and Approval
5.3.6, 5.4.4, 5.5.5, 5.6.1
5.7.4, 8.1.2, 8.1.3

n/a

G3 Deployment Pipeline n/a n/a

G4 Integration Verification
5.6.2 - 5.6.7, 5.7.4, 5.7.5
7.3.3, 8.1.3, 9.8

n/a

G5 Manufacturer Release Approval
5.6.6, 5.7.4, 5.7.5, 5.8.1
5.8.3, 5.8.4, 5.8.6, 5.8.7
7.3.1, 7.3.3, 8.1.3, 9.8

6.2, 6.3, 7.1, 8.3

6 H. Toivakka et al.

Although the selected standards do not cover all regulatory requirements that
must be met to place the product on the EU market, in our experience, they
represent exactly the part of the requirements that can benefit from technical
DevOps practices.

4.1 Requirements of the Selected Standards Aligned

In our research, we aimed to identify the requirements from the standards that
can be automated or which can otherwise be implemented in a similar pipeline
process as illustrated in Figure 1. In our systematic approach, first, we went
through both standards and collected the requirements at the level of numbered
clauses. Second, we divided the requirements into three categories:

1. requirements that could be implemented in a pipeline (presented in Table
1),

2. requirements that could be partially implemented in the pipeline (presented
in Table 2), and

3. requirements excluded from the pipeline (presented in Table 3).

Finally, we mapped the requirements from categories 1 and 2 to different
logical stages, presented as Gates, in our pipeline. Because of the nature of
medical device regulatory requirements, certain Gates in our model are not fully
automated but instead contain manual, human-made decision steps. It should
be noted that the process to divide the requirements into categories and further
map them to logical stages was done iteratively.

The IEC 62304 contains three software process rigor levels based on the risk
level of the software. The levels are A, B, and C, from the lowest risk level to the
highest. Even if rigor levels A and B allow the exclusion of certain clauses of the
standard, our pipeline addresses the full spectrum of the requirements, making
it suitable for also the software with the highest risk classification.

4.2 Burdensome Requirements Arising from the Standards

From a compliance perspective, the essential aspect of the development process
is that all regulatory requirements are considered and implemented appropri-
ately. These requirements create an additional layer of challenge to the usual
complications related to software projects. The standards IEC 62304 and IEC
82304-1 contain some burdensome requirements, the automation of which could
significantly improve the efficiency of the development process.

As discussed previously, the importance of documentation is crucial in med-
ical device software development. As the software evolves during every develop-
ment iteration and change, the corresponding technical documentation must be
kept up to date, often challenging and laborious if done with manual processes.
For instance, IEC 82304-1 requires the manufacturer to have comprehensive
accompanying documentation containing information regarding the safety and
security of the software product. These documents include, for example, instruc-
tions for use and the technical description. The standard contains fairly detailed

Towards RegOps: A DevOps Pipeline for Medical Device Software 7

requirements on the content of accompanying documentation. Furthermore, IEC
62304 further extends the requirements for technical documentation to include
details of the documents that must be produced during different development
lifecycle activities and tasks. For example, IEC 62304 requires the manufacturer
to create software architecture and detailed design documentation for software
units.

The requirements related to Software of Unknown Provenance (SOUP) can
be a particularly troublesome area for manufacturers as IEC 62304 requires
appropriate management of SOUP items according to its comprehensive rules.
SOUP refers to a software or part of the software that is not intended for med-
ical use but is incorporated into a medical device. SOUP also includes parts of
software that have been developed before the medical device development pro-
cesses have been available. The manufacturer must identify and list all SOUP
components and specify functional, performance, system, and hardware require-
ments for the identified components. These documents are part of the product’s
required technical documentation.

Table 2. Requirements partially implemented in the pipeline.

62304 req. Qualifying remarks

5.1.12
The planning activities are performed before the pipeline, but the pipeline can
support the requirement by utilizing automated Linter-tools etc.

5.3.1 - 5.3.4
Even if the design activities are performed before the pipeline, the pipeline
can support the implementation of the requirement by automating the
creation of architecture documentation.

5.4.1

Even if the design activities are performed before the pipeline, the pipeline can
support the implementation of the requirement by an automated creation of
architecture documentation. In practice, the automated generation of documentation
is assisted by using annotations to document the software structure.

5.5.2
Even if process establishing activities are performed before the pipeline,
the pipeline is a tool to implement the requirement.

5.5.3
Even if the design and specification activities are performed before the pipeline,
the pipeline can support the verification of the software unit implementation.

5.7.1
Even if test establishing activities are performed before the pipeline, the pipeline
is a tool to implement the requirement, i.e. performing the tests.

5.7.3
Retesting is performed in pipeline implicitly, whereas risk management activities
must be performed before pipeline.

5.8.2
Anomaly management can be automated to a certain degree, and the
documentation generation and verification can be done within the pipeline.

5.8.5
Planning tasks, incl. the software development plan and management of the development
process are performed before the pipeline. However, infrastructure code can be part
of the documentation, and pipeline participates in the creation of the documentation.

5.8.8
Technical practices can be implemented. However, practices such as user access
management for the pipeline infrastructure, are managed outside of the pipeline.

6.3.2 See details from 5.8 requirements.

7.1.3
Even if the evaluation activities are performed before the pipeline, the pipeline can
support the implementation of the requirement by checking that evaluation
exists and offering a convenient tool to update the evaluation if it is missing.

7.4.3 See details from 7.1, 7.2, and 7.3 requirements.
8.2.3 See details from 5.7.3, and 9.7.
82304 req. Qualifying remarks

4.4, 4.7
Even if requirements management is done mainly before pipeline, use requirement
may need to be updated as a result of verification and validation activities.

7.2
Contents of documentation is created before the pipeline, but the pipeline can
support the requirement by automating the compilation of the documentation.

8 H. Toivakka et al.

5 RegOps Pipeline for Medical Software

This section presents our proposed pipeline for the medical device software, the
RegOps pipeline, which builds on the reference pipeline illustrated in Figure
1, and the results of Section 4. To ensure compliance against the regulatory re-
quirements, the RegOps pipeline contains both automated and manual activities.
The DevOps stages are modeled as Gates, with acceptance criteria that must be
met before software release activities can proceed to the next stage. When the
software release has passed all Gates, the regulatory requirements implemented
within the RegOps pipeline have been fulfilled for that specific version of the
software product. The RegOps pipeline is illustrated in Figure 2 and presented
in more detail later in this section.

It is worth noting that the RegOps pipeline relies on specific technical in-
frastructure details. For instance, we assume that the manufacturer manages
product-related user requirements, software requirements, risks, anomalies, and
change requests in electronic systems that can be integrated with the Version
Control System (VCS). The RegOps pipeline itself can be implemented with
a modern DevOps tool-set that is extended with customized improvements to
support regulatory compliance.

5.1 Gate 1: Continuous Integration

The CI is the first stage of the RegOps pipeline. When new code is checked into
the source code repository, the software build is triggered. In addition, automated
verification activities and static code analysis are performed, and the product
documentation is generated. Finally, the software artifact is published in the
software artifact repository. The associated documentation is published into the
dedicated documentation storage and made available for review.

In the Integration testing step, the covered regulatory requirements involve
software unit verification, software integration testing, and the documentation of
the results (IEC 62304 clauses 5.6.3, 5.6.5, 5.6.7, 5.7.1), which the CI stage can
perform depending on the test automation coverage. However, the verification
activities that are not covered by the test automation must be tested later manu-
ally, increasing the process lead time. In addition, IEC 62304 requires identifying
and avoiding common software defects (clause 5.1.12), and the implementation
of this requirement can be partly automated by performing a Static code analysis
against the source code. The coding conventions, errors not detected by com-
pilers, possible control flow defects, and usage of variables that have not been
assigned are audited during the analysis [15].

The major source of concern related to SOUP management, as discussed pre-
viously, is significantly reduced by automatically tracking SOUP components,
which can also be done using static code analysis [17]. In practice, the pipeline
performs SOUP analysis by identifying the SOUP items from the software (IEC
62304 clause 8.1.2). However, the IEC 62304 requirements for the manufacturer
to specify functional, performance, and hardware specifications for SOUP com-
ponents must still be implemented appropriately (clauses 5.3.3, 5.3.4). The re-

Towards RegOps: A DevOps Pipeline for Medical Device Software 9

 Production Deployment

Staging Environment

Check-in
triggers

G1
Continuous
Integration

Production Environment
Staging Slot

Publish

Pulls

Production Environment
Production Slot

Staging Deployment

Production Configuration

Swap Staging and
Production Slots

G4
Integration
Verification

QA Environment

G5
Manufacturer

Release Approval

Integration
testing

Publish artifacts

Static code
analysis

G2
Change Review and

Approval

Generation of
documentation

Review and
verification

Merge approval

SOUP review

Pull artifacts
Deploy

software
artifacts

Merge

Deploy
documentation

Manual
integration

testing

Capacity testing

Manual system
testing

System testing
evaluation and

verification

Release
approval

Archive
software
product

Validation

Build

SOUP analysis

Integration
approval

Vulnerability
analysis

Verify
installation

System testing

Used by Used by

D
ep

lo
ys

D
ep

lo
ys

Triggers
Staging
deployment

Triggers
QA
deployment

Triggers
production
deployment

G3 Deployment Pipeline

Source
Code

Repository

Artifact
Repository

Ready for
review

Approve/
Merge Approve

Flow of software lifecycle

Flow of pipeline activities

Environment dependency

Notation

Residual risk
analysis

Development
Environment

(optional)

Used by

Fig. 2. Our proposed RegOps Pipeline with the regulatory activities emerging from
the requirements of the standards IEC 62304 and IEC 82304-1 applied.

10 H. Toivakka et al.

quired specifications are documented either before the commit or in Gate 2,
at the latest. Finally, various vulnerability analyses could be performed to find
any vulnerability risks arising from the SOUP items. As an example, OWASP
dependency-check tool [16] is an efficient security utility to find vulnerabilities
from third-party components.

In the Generation of documentation step, the software documentation is au-
tomatically compiled, to the extent possible. For example, the required architec-
ture documentation (IEC 62304 clauses 5.3.1, 5.3.2) can be generated by using
an augmented C4 software architecture model [17] by appropriately annotat-
ing the source code packages. The generated decomposition diagram represents
the actual state of the software structure. In general, the source data for docu-
mentation content can be pulled from different data sources, and the generated
documentation is stored in the VCS with the software source code. Automatic
document creation also enables implementing other IEC 62304 requirements,
such as refining the system into software units (clause 5.4.1) and documenting
traceability (clause 7.3.3). In addition, the step contributes to implementing re-
quirements related to software system testing verification (clause 5.7.4), system
configuration documentation (clause 8.1.3), and test documentation (clause 9.8).
Finally, IEC 82304-1 requirements for accompanying documents (clause 7.2), as
discussed earlier, can be implemented.

To summarise, the CI stage does most of the heavy lifting in the RegOps
pipeline. It performs the automated part of the software integration verification
and prepares the software artifacts and the documentation for the following
stages of the pipeline. Aside from all the activities, CI should be a repeatable
and quick process to give feedback for the developers [18].

5.2 Gate 2: Change review and approval

Not all regulatory requirements can be implemented by automation, and certain
specific required tasks need manual verification. Such verification activities are
often characterized by the fact that they are related to the outcomes of the
previous steps. The second stage of the RegOps pipeline, the Change Review
and Approval stage, is the first manual phase of the pipeline. Its purpose is
to ensure systematic analysis and endorsement of the change made, both in
source code and documentation. The stage builds on the pull-based development
model [19]. A pull request is the developer’s way of announcing that their work
has been finished and is ready for further actions [20]. In practice, after the code
is committed and pushed into the source code repository, the pull request is
created automatically by the pipeline.

The first step in the stage is Review and verification. IEC 62304 requires
the manufacturer to verify the software units (clause 5.5.5) against the software
unit acceptance criteria (clause 5.5.3) defined in the software unit verification
process (clause 5.5.2). The verification can be done partially by automated test-
ing in Gate 1, but the requirement can only be fully met with a code review by
another developer entitled to approve the change. Other required review and ver-
ification activities include detailed design verification (clause 5.4.4) and software

Towards RegOps: A DevOps Pipeline for Medical Device Software 11

architecture verification (clause 5.3.6). Even if the planning of these activities is
done before the RegOps pipeline initiates, the outcomes can only be verified af-
ter the commit. The step also contributes to implementing requirements related
to the evaluation of verification strategies (clause 5.7.4) and system configura-
tion documentation (clause 8.1.3). In addition, IEC 82304 requires updating the
health software use and system requirements following verification, as appropri-
ate (clauses 4.4, 4.7). Therefore, in the verification review, if any contradictions
are found from the requirements, they may be updated to reflect reality.

The SOUP items were identified and analyzed in the previous stage, but
there needs to be a formal SOUP review. Only a human can approve or reject
the new SOUP components to be included in the medical software. Also, the
additional documentation contents must be verified (IEC 62304 clauses 5.3.3,
5.3.4). Additionally, the published SOUP anomaly lists must be evaluated (clause
7.1.3).

Finally, in the Merge approval step, when the verification tasks are com-
pleted, approved, and recorded, the change-set - that exists in the form of a pull
request - can be approved by a competent person. After the approval, the soft-
ware integration is performed automatically [21]. However, if any merge conflicts
appear, changes are withdrawn, and the software developer is notified to fix the
problems. In a successful Merge, the new code and documentation are integrated
into the mainline of the source code repository. As a by-product, the regulatory
requirement to integrate the software units (clause 5.6.1) is fulfilled.

5.3 Gate 3: Deployment Pipeline

The concept of Continuous Deployment, when considered as an automatic soft-
ware release for the end-user and as illustrated in Figure 1, is problematic in
medical device software development [2,4]. For instance, regulatory requirements
related to product validation can be seen as an obstacle for deploying the soft-
ware directly to use, without human-made actions. As a result, the release of the
software to the end-users must be gated by a human decision to ensure regula-
tory compliance. Furthermore, the final decision to release is human-made by the
manufacturer’s authorized employee. Therefore, the RegOps pipeline contains a
Deployment Pipeline stage, which deploys the software into a specific compu-
tational environment after approval, and only with appropriate approvals, the
software can be released to the end-users. The same stage is utilized for all de-
ployments; only the destination computational environment differs. As the soft-
ware change advances through the pipeline gates, it is deployed into inspection
of other developers, QA experts, and finally, to be used in real life.

Technically, the Deployment Pipeline pulls the software artifact generated
by the CI stage. The software artifact is then deployed into the destination
computational environment. The documentation accompanied by the software
is also published in a dedicated location for further review. Finally, the software
deployment is verified automatically by performing a set of smoke tests, which
verify that the software is up and running. If the software does not start or the
smoke tests fail, the developer is notified immediately to fix the problem.

12 H. Toivakka et al.

Our research did not identify any specific requirements from the addressed
standards to be implemented in the Deployment Pipeline stage. However, as
the deployment is a crucial part of the system, the software change cannot be
approved unless the deployment is performed successfully. Also, the deployment
must be gated by a human decision. For instance, Gate 4 and Gate 5 contain
specific approval activities, which essentially trigger the software deployment.

5.4 Gate 4: Integration Verification

As a result of the actions performed in previous stages, the software is deployed
into the Staging Environment, which is as accurate a copy as possible of the final
use environment [22]. Hence, the software product can be reviewed as a whole.
In addition, the software artifacts deployed to the Staging Environment are
already reviewed by another person and automatically tested for possible defects.
However, there may be a need to perform Manual integration testing : not all test
cases can be automated, and test automation cannot be used for exploratory
testing. Any additional tests can be performed in the Staging Environment to
test and verify that the software integration has been performed successfully
(IEC 62304 clause 5.6.2). The software integration and regression testing (clauses
5.6.3 - 5.6.7) are finished at this stage.

The software system’s functionality is verified through System testing, which
ensures that the software system meets its intended requirements and performs
as designed. The system testing must be carried out in a computational envi-
ronment that closely corresponds to the actual use environment to ensure reli-
able test results. In Gate 4, the part of the system testing that is automated
is carried out (clauses 5.7.1, 5.7.3, 5.7.5, 7.3.3, 8.2.3, 9.8), and, again, the stage
contributes to implementing requirements related to software system testing ver-
ification (clause 5.7.4) and system configuration documentation (clause 8.1.3). A
high degree of automation coverage enables efficiency by reducing the burden of
manual work during the later stages. Furthermore, as automated system testing
can take a considerable amount of time, it is only carried out in Gate 4, allowing
fast feedback for the developers from earlier stages in the pipeline [23]. In a sce-
nario where any anomalies are found during the system testing, the pipeline will
not proceed. The identified anomaly is escalated to the problem resolution pro-
cess (clause 5.7.2). Finally, the development team is notified with an automatic
problem report (clause 9.1).

The performance of the system is tested by running a set of relevant tests
in the Capacity testing step. The capacity testing provides a way for the man-
ufacturer to analyze the behavior of the system under stress. For example, any
change in the software could introduce performance issues, which can be detected
early by running performance tests against the system.

The last step in Gate 4 is Integration approval after all other integration
verification activities are completed. Technically, the approval triggers the De-
ployment Pipeline, which then deploys the software into the QA Environment.
The QA Environment is the final environment for testing and verification before
the software can be released.

Towards RegOps: A DevOps Pipeline for Medical Device Software 13

5.5 Gate 5: Manufacturer Release Approval

In Gate 5, the software is system tested, the system testing is evaluated and ver-
ified, and the software product is validated before the final release. The activities
performed in this stage are primarily manual or require human inspection.

The test cases that could not be automated are performed in the QA envi-
ronment (clauses 5.6.6, 5.7.5, 7.3.3, 9.8) within the activity of Manual system
testing. Depending on the test automation coverage, this stage may require signif-
icant amounts of resources. However, even with comprehensive test automation
coverage, exploratory testing is recommended [24].

After the system testing has been completed, the system testing activities
must be evaluated and verified within the formal System testing evaluation and
verification step. In practice, the system test results are evaluated and verified
as stated in IEC 62304 (clauses 5.7.4, 5.8.1). Essentially, all relevant test cases
are verified to have been performed properly. Furthermore, according to IEC
62304, any anomalies found from the product must be documented and evaluated
(clause 5.8.2, 5.8.3). In addition, the risk control measures are to be verified
(clause 7.3.1). Finally, the residual risk level of the medical device product must
be reduced to or remain at an acceptable level before the release to the end users
can happen. These requirements are implemented in the Residual risk analysis
step.

Before the final release, the manufacturer must ensure that all activities
mentioned in the software development plan are completed (clause 5.8.6). The
software and documentation artifacts created by the CI are labeled with a re-
lease version tag (clause 5.8.4). However, IEC 82304-1 extends this requirement
to require a Unique Device Identifier (UDI) (clause 7.2). The software artifacts
are transferred into a permanent archive (IEC 62304 clause 5.8.7). The archived
software artifacts and documentation are used to install the product into the
computational environment where it will be used. From a technical perspective,
the medical device software product is ready to be released at this point. First,
however, the manufacturer must perform the Validation according to the valida-
tion plan (IEC 82304-1 clauses 6.2, 6.3, 8.3). Essentially, the manufacturer must
obtain reliable evidence of the software to fulfill its intended purpose.

Finally, when the software product is technically intact and verified to con-
form to the regulatory requirements, the software can be released and deployed
into the customer environment by formal Release approval. In the pipeline, we
utilized the Blue-green deployment, which practically means deployment into the
staging slot of the environment, as discussed earlier. This practice allows cus-
tomer organizations to familiarise themselves with the product as it is common
that they have their validation processes. Then, when it is time to release the
software to the end-users, the staging slot can be swapped with the production
slot, making the software available for real-world use.

It should be highlighted that the pipeline implements some of the regulatory
requirements implicitly, such as documenting how the release was made, the
repeatability of the release, and re-releasing the modified system (clauses 5.8.5,
5.8.8, 6.3.2). These are the core principles of the pipeline.

14 H. Toivakka et al.

6 Discussion and Conclusions

In this paper, we have collected the most central regulatory requirements related
to medical software, that is, requirements from the standards IEC 62304 and IEC
82304-1, and integrated the aligned requirements into our proposed software
delivery pipeline. The resulting RegOps pipeline aims to reduce the lead time
of the software delivery while at the same time maintaining compliance with
regulatory requirements. We identified 110 requirements from the standards, of
which 26 are fully implemented, and 20 are partially implemented within the
pipeline. The remaining 64 requirements, shown in Table 3, were scoped out.

Table 3. Requirements scoped out of the pipeline.

62304 req. Explanation
4.1 Applies to the whole organization and all its functions.
4.2 Applies to the entire product development process.

4.3
The software process rigor level is decided outside of the pipeline.
However, it affects how many requirements are applicable for the product.

4.4
The model is intended to support software development done in
compliance with the standard.

5.1.1 - 5.1.9
5.1.11, 6.1, 8.1.1

Planning activities are performed before the verification activities.

5.1.10
Applies to the entire product development process. However, the
pipeline needs to be addressed in the supporting items management.

5.2.1 - 5.2.6,
5.4, 5.3.5, 5.4.2
5.4.3, 5.5.4, 7.1.1
7.1.2, 7.1.4, 7.2.1
7.4.1, 7.4.2, 8.2.1

The software requirements management and technical design activities
are performed before the verification activities.

5.5.1, 6.3.1 The implementation activities are performed before verification activities.

5.6.8, 5.7.2
However, anomalies detected in the pipeline can be automatically
forwarded to the software problem resolution process.

6.2.1 - 6.2.6 Problem and modification analysis activities are performed before pipeline.

7.2.2, 8.2.2
The software requirements management, technical design, and
implementations activities are performed before verification activities.

8.2.4
Change requests, change request approvals, and problem reports are
managed outside of the pipeline.

8.3 Configuration item history is stored in VCS.
9.1 - 9.7 Software problem resolution is managed outside of the pipeline.
82304 req. Explanation
4.1 Applies to general product documentation.

4.2, 4.3, 4.5, 4.6
The requirements management and technical design activities are
performed before the pipeline.

6.1 Planning activities are performed before the pipeline.
8.4, 8.5 Post-market activities are performed after the pipeline.

Ideally, the use of the RegOps pipeline could enable early customer feedback
from healthcare practitioners by allowing them to test the software in the stag-
ing slot of their computational environment before the software is released into
medical use. In addition to collecting feedback, this allocated environment could
be used to perform customer-specific acceptance testing and validation activi-
ties. First, however, it must be ensured that the unreleased software is not used
for patient treatment in any circumstances.

Towards RegOps: A DevOps Pipeline for Medical Device Software 15

The paper’s primary contribution for medical device software industry pro-
fessionals is to provide a conventional and pragmatic approach to deliver software
for real-world use. As the medical regulations introduce rather unique require-
ments in the software industry, such as a demand for extensive and traceable
documentation, the automation capabilities of the pipeline are precious in the
automatic generation of documentation. Furthermore, when the whole delivery
process is implemented within the pipeline, it is implicitly deterministic and in
control by nature in the form of version-controlled infrastructure code - a fea-
ture that regulatory professionals appreciate. For researchers, our consolidated
regulatory requirements can act as a baseline for future extensions in the use
of DevOps practices in the medical domain. Finally, for those interested in only
DevOps, our pipeline could offer a new perspective and ideas for their work.

As a limitation in our proposed approach, we acknowledge that the RegOps
pipeline does not alone fulfill every applicable regulatory requirement associated
with a medical software product. Therefore, it is only a part of the overall so-
lution for regulatory compliance. As discussed previously, in addition to these
standards, other regulatory requirements must also be taken into account when
designing and implementing the medical device manufacturing process.

In the future, we intend to perform a case study to validate our proposed
approach’s applicability in real-world use and to develop the concept further.
Then, the pipeline could be expanded to apply to the entire manufacturing pro-
cess while retaining the mindset for process automation. Finally, the applicabil-
ity of the proposed pipeline could be explored in the field of embedded medical
devices, in which case additional regulatory requirements related to electrical
equipment need to be taken into account.

Acknowledgements The authors would like to thank Business Finland and
the members of AHMED (Agile and Holistic MEdical software Development)
consortium for supporting this work.

References

1. Forsgren, N., Smith, D., Humble, J., Frazelle, J.: 2019 Accelerate State of DevOps
Report. DevOps Research and Assessment & Google Cloud (2019)

2. Granlund, T., Mikkonen, T., Stirbu, V.: On Medical Device Software CE Compli-
ance and Conformity Assessment. In: IEEE International Conference on Software
Architecture Companion (ICSA-C), pp. 185-191. IEEE (2020)

3. Granlund, T., Stirbu, V., Mikkonen, T.: Towards Regulatory-Compliant MLOps:
Oravizio’s Journey from a Machine Learning Experiment to a Deployed Certified
Medical Product. SN COMPUT. SCI. 2, 342 (2021)

4. Laukkarinen, T., Kuusinen, K., Mikkonen, T.: DevOps in Regulated Software Devel-
opment: Case Medical Devices. In: 2017 IEEE/ACM 39th International Conference
on Software Engineering (ICSE-NIER), pp. 15-18. IEEE (2017)

5. A standardisation request regarding medical devices to support Regula-
tion (EU) 2017/745 and (EU) 2017/746, https://ec.europa.eu/growth/tools-
databases/mandates/index.cfm?fuseaction=search.detail&id=599. Last accessed 2
Jul 2021

16 H. Toivakka et al.

6. Kim, G., Humble, J., Debois, P., Willis, J.: The DevOps Handbook: How to Cre-
ate World-Class Agility, Reliability, and Security in Technology Organizations. IT
Revolution Press, Portland (2016)

7. Wettinger, J., Breitenbücher, U., Leymann, F.: DevOpSlang – Bridging the Gap
between Development and Operations. In: Service-Oriented and Cloud Computing,
pp. 108–122, Springer Berlin Heidelberg, Berlin (2014)

8. Laukkarinen, T., Kuusinen, K., Mikkonen, T.: Regulated software meets DevOps.
Information and Software Technology, vol. 97, pp. 176—178. (2018)

9. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases through
Build, Test, and Deployment Automation. Addison-Wesley (2010)

10. Google Cloud Architecture Center, https://cloud.google.com/architecture/addressing-
continuous-delivery-challenges-in-a-kubernetes-world. Last accessed 21 May 2021

11. Fowler, M.: Continuous Integration https://www.martinfowler.com/articles/continu
ousIntegration.html. Last accessed 1 June 2021

12. Microsoft Documentation: DevTest and DevOps for microservice solutions,
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/dev-
test-microservice. Last accessed 8 Jul 2021

13. IEC/EN 62304:2006/A1:2015. Medical device software - Software life-cycle pro-
cesses, 2015.

14. IEC 82304-1:2016. Health software — Part 1: General requirements for product
safety, 2016.

15. Wichmann, B., Canning, A., Marsh D., Clutterbock D., Winsborrow L., Ward N.:
Industrial perspective on static analysis. Software Engineering Journal, vol.10 (2),
69–75 (1995)

16. OWASP Dependency-Check Project, https://owasp.org/www-project-
dependency-check/. Last accessed 12 Jul 2021

17. Stirbu, V., Mikkonen, T.: CompliancePal: A Tool for Supporting Practical Agile
and Regulatory-Compliant Development of Medical Software. In: 2020 IEEE Inter-
national Conference on Software Architecture Companion (ICSA-C), pp. 151-158.
IEEE (2020)

18. Duvall, P., Glover, A, Matyas, S.: Continuous Integration : Improving Software
Quality and Reducing Risk. Addison Wesley, 2007.

19. Sadowski, C., Söderberg, E., Church, L., Sipko, M., Bacchelli, A.: Modern code
review: a case study at Google. In: Proceedings of the 40th International Conference
on Software Engineering: Software Engineering in Practice, pp. 181-190. Association
for Computing Machinery, New York (2018)

20. Fowler, M.: Pull Request, https://martinfowler.com/bliki/PullRequest.html. Last
accessed 1 June 2021

21. St̊ahl, D., Bosch, J.: Automated Software Integration Flows in Industry: A
Multiple-Case Study. In: Companion Proceedings of the 36th International Con-
ference on software engineering, pp. 54-63. ACM (2014)

22. Morales, J., Yasar, H., Volkman, A.: Implementing DevOps practices in highly
regulated environments. In: Proceedings of the 19th International Conference on
Agile Software Development: Companion, Article 4, pp. 1-9. ACM (2018)

23. Laukkanen, E., Mäntylä, M.: Build Waiting Time in Continuous Integration – An
Initial Interdisciplinary Literature Review. IEEE/ACM 2nd International Workshop
on Rapid Continuous Software Engineering (2015)

24. Shah, S., Cigdem, G., Sattar, A, Petersen, K.: Towards a Hybrid Testing Process
Unifying Exploratory Testing and Scripted Testing. Journal of Software: Evolution
and Process, vol.26 (2), pp. 220-–250. (2014)

