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ABSTRACT 

Modelling and simulation can play a significant role in enhancing the understanding 

of a complex manufacturing system and its operation. With the advent of Industry 

4.0, there is a need to integrate advanced manufacturing processes, e.g., using 

industrial internet of things (IIoT) technologies, to create manufacturing systems 

that are not only interconnected, but communicate better and can analyse and use 

information to drive intelligent action into the physical world. Such progress requires 

traditional manufacturing paradigms of mass production to move into more 

complex and diverse production technology domains of mass customization and 

enhanced product differentiation, modification, and innovation. Additive 

manufacturing has emerged as a reliable alternative to conventional manufacturing, 

including subtractive processes, often attributed to its claim for unprecedented 

design freedom and versatility for the production of highly customized products. 

However, for successful adoption of additive technologies into mainstream 

production, modelling and simulation of the manufacturing system in the entirety of 

its complexity is required to simulate and optimize its design, operation, and use, 

while achieving desirable production outcomes. At present, models developed to 

characterize the various activities in an additive manufacturing process take different 

forms (e.g., analytical, empirical, physics-based, and machine learning models) at 

varying levels of granularity. Thus, holistic system modelling requires an array of 

heterogenous models for characterizing a single additive manufacturing technology. 

However, the inclusion of different process activities, geometries, and materials 

makes it a challenge to compose the necessary subsystem-level heterogenous models 

into a holistic system model. To address this gap, this research aims to develop a 

graph-based metamodelling framework for digitally integrating the product design 

and manufacturing strategies to develop holistic and simulatable multi-domain 

metamodels. The developed framework supports 1) integration of different forms 

of knowledge to develop multi-domain metamodels, 2) application of deterministic 

and probabilistic machine learning approaches to enable simulation of developed 

metamodels, and 3) predictive analysis and optimization through simulation of the 

developed metamodels to enable design and manufacturing decision making. This 

research enables systemic characterization of additive manufacturing process inputs 
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and outputs using pre-existing knowledge and experimental data. Additive 

manufacturing process modelling was driven by product design and process 

data/information, and supported by simulation for decision making. Underpinning 

models within the research encompass two commercially available additive 

manufacturing processes. This research demonstrates that the use of data-driven and 

other approaches that utilize both collected data and pre-existing knowledge can 

enable the development of accurate and explainable metamodels for close 

monitoring and control of additive manufacturing to ensure desirable product 

quality.   
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TIIVISTELMÄ 

Mallinnuksella ja simuloinnilla voi olla merkittävä rooli monimutkaisen 

valmistusjärjestelmän ja sen toiminnan ymmärtämisen lisäämisessä. Teollisuus 4.0:n 

myötä on tarpeen integroida kehittyneitä valmistusprosesseja, esimerkiksi 

käyttämällä esineiden internetin (IIoT) -teknologioita, jotta voidaan luoda 

valmistusjärjestelmiä, jotka eivät ole vain yhteydessä toisiinsa, mutta kommunikoivat 

keskenään paremmin sekä pystyvät analysoimaan ja käyttämään informaatiota 

fyysisen maailmaan sijoittuviin älykkäisiin ohjaus menetelmiin. Tällainen edistys 

edellyttää perinteisten massatuotannon valmistus paradigmojen siirtymistä 

monimutkaisempiin ja monipuolisempiin tuotantoteknologia-alueisiin, jotka 

koskevat massaräätälöintiä ja tehostettua tuotteiden eriyttämistä, modifiointia ja 

innovaatioita. Ainetta lisäävät valmistus menetelmät ovat nousseet esiin luotettavana 

vaihtoehtona tavanomaisille tuotantomenetelmille, mukaan lukien ainetta vähentävät 

menetelmät, johtuen usein kyseisten menetelmien ennennäkemättömistä muotoilun 

vapauksista ja monipuolisuudesta pitkälle räätälöityjen tuotteiden valmistuksessa. 

Lisäainevalmistusteknologioiden onnistunut ottaminen käyttöön valtavirran 

tuotannossa edellyttää kuitenkin lisäaine valmistusjärjestelmän mallintamista ja 

simulointia kokonaisuudessaan sen muotoilun, toiminnan ja käytön simuloimiseksi 

ja optimoimiseksi, samalla kun saavutetaan halutut tuotantotulokset. Tällä hetkellä 

mallit, jotka on kehitetty karakterisoimaan eri toimintoja additiivisessa 

valmistusprosessissa, saavat eri muotoja (esim. analyyttisiä, empiirisiä, 

fysiikkapohjaisia ja koneoppimismalleja) vaihtelevalla tarkkuudella. Täten, 

kokonaisvaltainen järjestelmän mallinnus vaatii joukon mallinnuksia yksittäisistä 

lisäainevalmistus teknologioiden karakterisoinneista. Erilaisten prosessitoimintojen, 

geometrioiden ja materiaalien yhdistäminen tekee kuitenkin haasteelliseksi 

tarvittavien osajärjestelmätasojen heterogeenisien mallien kokoamisen 

kokonaisvaltaiseksi järjestelmämalliksi. Tämän puutteen korjaamiseksi, tämän 

tutkimuksen tavoitteena on kehittää graafipohjainen metamallinnuskehys 

tuotesuunnittelun ja valmistusstrategioiden integroimiseksi digitaalisesti 

kokonaisvaltaisten ja simuloitavien monialaisten metamallien kehittämiseksi. 

Kehitetty viitekehys tukee 1) eri tiedon muotojen integrointia monialaisten 

metamallien kehittämiseen, 2) determinististen ja todennäköisyyspohjaisten 
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koneoppimislähestymistapojen soveltamista kehitettyjen metamallien simuloinnin 

mahdollistamiseksi ja 3) ennustavaa analyysiä ja optimointia simuloimalla kehitettyjä 

metamalleja, jotta voidaan mahdollistaa suunnittelun ja valmistuksen päätöksenteko. 

Tämä tutkimus mahdollistaa lisäainevalmistusprosessin syöttö arvojen ja tulosten 

systeemisen karakterisoinnin olemassa olevan tiedon ja kokeellisen tiedon avulla. 

Lisäainevalmistusprosessin mallintamista ohjasivat tuotesuunnittelu- ja 

prosessitiedot, ja sitä tuettiin simulaatiolla päätöksentekoa varten. Tutkimuksen 

taustalla olevat mallit kattavat kaksi kaupallisesti saatavilla olevaa 

lisäainevalmistusprosessia. Tämä tutkimus osoittaa, että datalähtöisten ja muiden 

lähestymistapojen käyttö, joissa hyödynnetään sekä kerättyä dataa että olemassa 

olevaa tietoa, voi mahdollistaa tarkkojen ja selitettävissä olevien metamallien 

kehittämisen lisäainevalmistuksen tarkkaan seurantaan ja valvontaan halutun 

tuotteen laadun varmistamiseksi. 
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1 INTRODUCTION 

1.1 Motivation 

In recent years, major technological advancements in manufacturing (e.g., additive 

manufacturing (AM), industrial internet of things (IIoT) and cloud computing, 

nanomanufacturing, and advanced materials) have brought about paradigm shifts in 

the way products are designed and manufactured. Metal-based AM, in particular, has 

emerged as an arena that is receiving interest from various technology domains, and 

from traditional and non-traditional manufacturers. Further, AM research has 

enabled the growth of innovative techniques and functional products, framing the 

technology as a feasible alternative to subtractive, forming, and consolidating 

manufacturing techniques (Bourell, Leu, and Rosen 2009; Abdulhameed et al. 2019).  

The favourability of AM as a mainstream manufacturing option is founded on 

the potential advantages over traditional manufacturing technologies. AM supports 

design freedom enabling customizable and complex product realization, selective 

deposition strategies for better material utilization, elimination of tools and fixtures 

simplifying the product supply chain, and production on demand leading up to 

distributed manufacturing, cloud manufacturing, and just-in-time manufacturing. 

These advantages have helped drive AM processes into the mainstream and have 

generated enthusiasm for future economic and social development (Gibson, Rosen, 

and Stucker 2015; Bourell, Leu, and Rosen 2009; Altıparmak and Xiao 2021).  While 

AM enables unprecedented versatility and flexibility in part production, industrial 

practice for their broad integration into production remains conservative and has 

progressed slowly, with primary applications in specialized industries (e.g., 

aeronautics/aerospace, medical device production, and custom consumer products) 

(Frazier 2014; Abdulhameed et al. 2019).  

Research focused on the adoption of AM within industry has highlighted close 

monitoring and control of the production process to ensure repeatable and desirable 

product quality as a crucial step towards successful technology integration 

(Vasinonta, Beuth, and Griffith 2001; Craeghs et al. 2011; Bandyopadhyay, Zhang, 

and Bose 2020; Z. Chen et al. 2022; Abdulhameed et al. 2019). Application of 
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modelling, simulation, and optimization techniques to product design and process 

operation can improve reliability and repeatability in AM (Z. Chen et al. 2022). 

Presently, AM processes tend to function as a one-step solution to product 

development, wherein several functions are bundled in a single piece of equipment, 

resulting in a complex multi-physical-chemical-metallurgically dependent system. 

Thus, modelling the system in the entirety of its complexity is required to simulate 

and optimize its design, operation, and use, which presents a number of technical 

and practical challenges. 

1.2 Problem Statement and Research Objective 
 

Modelling and simulation can play a significant role in enhancing the understanding 

of the complex multi-physical-chemical-metallurgical nature of AM technologies. 

Developing models of the activities/functions of AM systems involves mapping the 

non-linear interrelationships between the process outputs and the influencing 

process variables. However, the multidisciplinary nature of the modelling and multi-

objective optimization of large systems makes the development and simulation of 

models time-consuming and expensive. The use of surrogate modelling to develop 

metamodels for holistic system representation can help reduce the simulation time, 

but fully data-driven approaches require large volumes of data to consistently 

provide the level of fidelity required for monitoring and control of multi-criteria 

manufacturing performance measures. Models developed to represent the various 

activities/ functions take different forms (e.g., analytical, empirical, physics-based, 

and machine learning models) at varying levels of granularity. Thus, holistic system 

modelling requires an array of heterogenous models for a single AM technology. 

However, the inclusion of different AM process activities/functions, geometries, 

and materials makes it a challenge to compose the necessary subsystem-level 

heterogenous models into a holistic system model. Composability and 

interoperability of individual heterogenous functions becomes increasingly 

important with the advent of Industry 4.0 where, there is a need to integrate 

advanced manufacturing processes, e.g., using industrial internet of things (IIoT) 

technologies, to create manufacturing systems that are not only interconnected, but 

communicate better and can analyse and use information to drive intelligent action 

into the physical world. Such progress requires traditional manufacturing paradigms 

of mass production to move into more complex and diverse production technology 
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domains of mass customization and enhanced product differentiation, modification, 

and innovation (Khorasani et al. 2022).  

Toward this future vision of advanced manufacturing, the overarching goal of 

this research is to develop a framework for digitally integrating the product design 

strategies and data structures (e.g., material data, design data, and process data) 

through modelling and simulation for different advanced manufacturing 

technologies. The metamodelling framework supports development of production 

solutions for enhancing the quality and efficiency of advanced manufacturing 

systems, with a reasonable cost of simulation and analysis. 

 The main objectives of this dissertation research are the following:  

1. Present a holistic modelling approach that supports integration of different 

forms of knowledge to develop multi-domain metamodels. 

2. Apply deterministic and probabilistic machine learning approaches to enable 

simulation of developed meta-models for inference.  

3. Provide predictive analysis and optimization capabilities to developed 

metamodels to support design and manufacturing decision making.  

 

The above-mentioned objectives are achieved in this research by addressing the 

following research questions:  

1. How can different types of knowledge at varying levels of granularity (e.g., 

expert knowledge, product and process data, and prior models) be integrated 

into a holistic metamodel? 

2. How can heterogenous models be combined from different manufacturing 

science and engineering domains into a holistic metamodel? 

3. What type of inferences can be made from the simulation of the developed 

metamodels? 

1.3 Dissertation Structure 

The research conducted as part of this dissertation is reported in manuscript format 

and is composed of five chapters (Figure 1). Chapter one introduces the research 

including motivation, background, problem statement, objectives, and tasks. Chapter 

2 presents a review of existing literature and describes the background on additive 

manufacturing focusing on process modelling, simulation, and multi-domain multi-

objective optimization. Chapter 3 presents the research methodology including 

modelling and simulation framework and their application to different case studies. 
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Chapter 4 presents the results and contributions of the dissertation from the 

published articles. Chapter 5 summarizes and concludes the research. 

Recommendations for future work are also discussed to improve on findings and 

carry forward the research. The publications developed as part of this research are 

presented as a collection at the end of this dissertation.  

Figure 1.  Dissertation Structure 
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2 BACKGROUND 

This chapter briefly introduces the existing literature on which this research is 

grounded and shows how the research in this dissertation will go beyond the existing 

knowledge base. This chapter draws from five manuscripts produced as part of this 

dissertation research.   

2.1 Additive Manufacturing 

AM is the process of joining materials layer-by-layer using three-dimensional model 

data (F42.91 Subcommittee 2012). AM systems can utilize a variety of materials such 

as polymers, paper, ceramic, metal, and composites. Different feedstocks and 

binding processes are used to form the desired geometry, layer-by-layer, usually by 

fusing ceramic, polymer, or metal powders through application of heat (e.g., through 

curing or sintering). ASTM International (F42.91 Subcommittee 2012) defines seven 

key process types that form the set of AM technologies (Figure 2): (1) Vat 

photopolymerization, including stereolithography (SL) and digital light processing 

(DLP); (2) Material jetting, including multi-jet modelling (MJM); (3) Material 

extrusion, including fused deposition modelling (FDM) and fused filament 

fabrication (FFF); (4) Powder bed fusion, including electron beam melting (EBM), 

selective laser sintering (SLS), selective heat sintering (SHS), and direct metal laser 

sintering (DMLS); (5) Binder jetting, including powder bed and inkjet head 3D 

printing (PBIH), and plaster-based 3D printing (PP); (6) Sheet lamination, including 

ultrasonic consolidation (UC) and laminated object manufacturing (LOM); and (7) 

Directed energy deposition, including wire and arc additive manufacturing (WAAM) 

and laser metal deposition (LMD). 
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Figure 2.   Additive Manufacturing Technologies (F42.91 Subcommittee 2012) 

 
 

2.2 Relevance of Additive Manufacturing for Functional Part 
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methods (Bourell, Leu, and Rosen 2009). The growth in popularity of AM is related 
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to the advantages it provides in terms of material and design freedom to produce 

unprecedented shapes with high geometric complexity. A key aspect of AM and its 

future success is its ability to quickly produce parts and components customized to 

application- or customer-specific needs. The layer-based process allows for the 

design of almost any geometry, a drastic expansion of the previously constrained 

design space (Frazier 2014). As introduced above, the benefits that make AM 

advantageous compared to traditional subtractive and formative processes are 

compatible with the principles of environmental responsibility, economic growth, 

and social prosperity (Chan, Manoharan, and Haapala 2017; S. H. Huang et al. 2013; 

Abdulhameed et al. 2019). These benefits include elimination of tooling, the ability 

to manufacture complex geometries, optimized product design, increase product 

functionality, and the selective placement of material only where necessary, which 

contribute to a reduction in waste and an increase in process efficiency (Gibson, 

Rosen, and Stucker 2015). It has been shown that the ability to update, repair, and 

remanufacture tooling presents opportunities for significant reductions in energy 

consumption, emissions, and costs (Kellens et al. 2017). The optimal design of 

products can be exploited to increase product performance and add value through 

embedded functionality. Furthermore, benefits to the supply chain can be realized 

through the displacement of inefficient and detrimental production processes, 

improvement of supply chain flexibility, elimination of work-in-process and stock 

obsolescence, compression of the supply chain, manufacturing closer to the 

distribution location, and implementation of on-demand (just-in-time) 

manufacturing (Mashhadi, Esmaeilian, and Behdad 2015). AM, therefore, has the 

potential to impact the life cycle of products directly and indirectly by increasing 

affordability, longevity, and likability of products and to reduce the burden placed 

on the environment by manufacturing processes ( Nagarajan and Haapala 2017). 

2.3 Adoption of Additive Manufacturing for Mainstream Production 

Research on AM processes and their integration as a mainstream manufacturing 

approach has been growing steadily over the years. Currently, AM is used in 

development of fully functional products in a range of industries such as aerospace, 

automobile, biomedical, electronics, and consumer product industries (Wohlers et 

al. 2021; Abdulhameed et al. 2019). However, despite the use of AM in niche 

applications, successful adoption and integration of AM into production 

environments is still challenging for businesses (Lavoie and Addis 2018). The 
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integration of the new technologies in mainstream manufacturing is often limited 

due to the lack of technical knowledge of AM capabilities, as well as repeatability and 

reliability issues, and costs incurred by the integration of AM equipment into final 

production (Z. Chen et al. 2022). Often, the full potential of AM technologies is not 

leveraged since existing design paradigms have been developed for conventional 

(e.g., subtractive or for forming) processes (Thompson et al. 2016). In addition, 

direct application of AM for products designed for existing traditional 

manufacturing solutions is not economically viable or cost competitive.  

To elaborate on adoption and integration issues in AM, let us consider material 

extrusion technology, such as fused deposition modelling (FDM), and DED, such 

as wire and arc additive manufacturing (WAAM), which are among the most well 

researched and most widely used AM processes. A review of these two process 

technologies and their associated subsystems can provide an overview of the 

knowledgebase available for the processes as well as to portray the vast differences 

between the various AM technologies. These unique characteristics as well as 

differences between AM technologies need to be understood for successfully 

integrating AM in mainstream manufacturing.   

2.3.1 Fused Deposition Modelling 

The FDM process (Figure 3) involves successive melting, extrusion, deposition, and 

solidification of thermoplastic polymer melts (Gibson, Rosen, and Stucker 2015). 

Typical FDM equipment consists of a material delivery system or extrusion system, 

heating system, build plate, and filament feeder. The process begins with the 

generation of layer profile information using a rapid prototyping (RP) software for 

any given 3D CAD model. The FDM equipment then deposits semiliquid molten 

polymer beads onto a heated build plate following the layer information provided 

from the RP software (F42.91 Subcommittee 2012). This process remains a source 

of innovation; new technologies are being developed using this approach for metal 

printing using a metal and polymer matrix, for example, see Refs. (X. Wang et al. 

2017) and (Rabinovich 2000).  

2.3.1.1 Polymer Extrusion Technology 

The FDM process involves storage of thermal energy in the molten material, 

distribution of this energy into the part through a thermal conduction process, and 
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energy dissipation from the part by convection cooling. The redistribution of the 

thermal energy ensures the bonding between layers. Several methods exist for 

thermoplastic delivery in the process, namely, use of liquefiers for self-extruding 

filament, fluid metering rotary pumps, and high-pressure plunger systems 

(Batchelder et al. 1994; Hilmas et al. 1996).  

Figure 3.  FDM Process (“Material Extrusion-Based Additive Manufacturing” 2022) 

 

Furthermore, for FDM parts, the cross section of a deposited layer is shaped through 

the direct flow of polymer melt between the previous layer and the printing nozzle. 

This results in shapes having the form of flattened ellipsoids. Since the 1980s, 

process models have been developed for understanding the complex phenomena 

taking place in FDM, such as thermal transfer, layer creation, and bonding processes 

(Bellehumeur et al. 2004; Yardimci et al. 1996). Existing research on FDM modeling 

has focused on the cooling of single and multiple filaments, thermal behavior of the 

liquefier, analysis of melt front location, degree of cooling in the nozzle and impact 

of its design on operational stability, temperature distribution across different part 

design configurations, and impact of the build file (Batchelder et al. 1994; Yardimci 

et al. 1996; Atif Yardimci and Güçeri 1996). The vast knowledge about the process 

available along with the advancements need to be mapped and utilized strategically 
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for a successful integration in a production facility to effectively use the technology 

for functional part production.  

Additionally, switching over to a metal additive manufacturing processes can 

bring its own share of system complexities to untangle to make sense of the 

information available. For that reason, let’s consider a direct energy deposition 

process such as wire and arc additive manufacturing.  

2.3.2 Wire and Arc Additive Manufacturing 

WAAM (Figure 4) has gained importance due to its ability to economically fabricate 

metal products, including those made of aluminium, titanium, and nickel alloys (Ding 

et al. 2015). WAAM is a DED process classified by ASTM (F42 Committee 2016) 

that utilizes an electric arc to melt and deposit metal filler wire. WAAM processes 

have high-energy efficiency (~90%) and high material deposition efficiency; almost 

100% of the filler material wire is deposited, resulting in reduced waste and 

emissions. Furthermore, the process is characterized by a high material deposition 

rate (up to 2500 cm3/hr) and low equipment cost, making it one of the fastest and 

most economical metal manufacturing processes (Wu et al. 2018). However, the 

current capability of WAAM to produce functional metal components is limited due 

to the relatively low accuracy and quality of the prints.  

Figure 4.  WAAM Equipment Setup 
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expansion and contraction of the material. These thermally induced stresses produce 

distortions in the part that affect part accuracy and part surface quality (Ding et al. 

2015; Wu et al. 2018; Sequeira Almeida 2012). To improve weld quality by reducing 

the high heat input in WAAM, the cold metal transfer (CMT) process was introduced 

by Fronius (Fronius International GbmH n.d.) 

2.3.2.1 Cold Metal Transfer Welding Technology 

 

WAAM has innovated in the metal printing industry with its high material deposition 

rates and printing speed. However, in WAAM using conventional arc welding, high 

deposition rates are often associated with very high heat input, unstable arc, and 

spatter. To overcome these deficiencies, the CMT process uses high-speed digital 

control to alter the arc length and the thermal input during welding by mechanically 

feeding and retracting the wire electrode, thereby controlling material transfer to the 

melt pool (Pickin and Young 2006). For the same amount of material deposited, 

CMT requires less current compared to pulsed metal inert gas (MIG) welding and 

generates less heat input to the workpiece. CMT makes it possible to weld certain 

metals and alloys, such as aluminium, titanium, nickel, steel, and bimetal alloys, which 

otherwise is difficult using traditional welding processes. The major advantages of 

CMT are the ability to weld thin-walled structures (a few millimetres in thickness) 

with greater accuracy, reduced spatter, lower part distortion, improved weld bead 

characteristics, and higher welding speeds (Välimäki 2017). The functional model of 

a typical WAAM-CMT process is illustrated in Figure 5. 

Thermal deformation and defects in WAAM parts are commonly caused by 

accumulated heat energy and unstable weld pool dynamics resulting from poor 

process parameter settings and control (Wu et al. 2018). These defects tend to be 

material specific; for instance, titanium alloys are prone to oxidation and aluminium 

alloys often develop porosity, while severe deformations and surface roughness are 

common in steel alloys and cracks are common in bimetal alloys. Inherent residual 

stresses in WAAM result in part distortion, loss of geometric tolerance, 

delamination, and deterioration of fatigue performance and fracture resistance of the 

part (Wu et al. 2018). Improper selection of process parameters, e.g., welding current, 

welding voltage, wire feed rate, shielding gas flow rate, and welding temperature, 

gives rise to residual stresses. Thus, modelling the interrelationships between welding 

parameters, part mechanical properties, and part dimensional accuracy is essential 

for meeting the demanding product quality requirements of industry. WAAM 
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process models also offer an efficient way to reduce the variability induced by the 

complexity of the process.  

Figure 5.  Function model of a typical WAAM-CMT process 

 
 

In CMT process technology, on/off arcing is carried out in three phases, namely, 

the boost, burn, and short-circuit phases, in order to reduce the overall heat input to 

the weld (Mezrag, Deschaux-Beaume, and Benachour 2015). The arc is on during 

the boost and burn phases of the welding cycle, while no current is maintained during 

the short-circuit phase for metal transfer using the controlled dip transfer 

mechanism. Metal transfer is carried out by dipping the molten droplet into the weld 

melt pool and retracting the wire at a specific frequency (50-130 Hz) to force the 

droplet to detach due to surface tension. The fast retraction movement ensures 

spatter free welding, since no metal transfer occurs in the gap between the wire and 

base material (Almeida and Williams 2010). In addition, the heat input to the weld 

only occurs during the arcing period and detachment of droplets occurs when the 

process current is switched off (Välimäki 2017).  

The CMT welder functions as a closed system with only a small number of 

principal parameters available for tuning by the operator. The welder employs 

synergic lines that have been predesigned by the equipment manufacturer (Fronius) 

for combinations of different filler materials, filler wire diameters, and shielding 

gases. These synergic lines enable automated control of the voltage and current 

cycles during welding for the desired wire feed rates in each phase of the CMT 

process, while also controlling the parameters for wire retraction (Välimäki 2017; 
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Näkki 2018). In addition to the required wire feed rate, the operator is able to adjust 

two fine-tuning parameters that modify the synergic line: arc length correction (ALC) 

and dynamic correction (DC). ALC and DC influence the average power and 

deposition rate. In addition, ALC influences the bead characteristics, such as bead 

shape, dilution, and penetration (Sequeira Almeida 2012). Figure 4 illustrates the 

influencing variables in WAAM-CMT.  

2.3.2.2 Effects of Welding Parameters during Layer-by-Layer Deposition  

To establish process settings, the user defines the filler wire feed rate and travel speed 

for industrial robot movement. The wire feed rate governs the deposition rate of the 

filler material (wire), the working current, and the working voltage based on the 

synergic line to ensure heat input is sufficient for proper melting of deposited wire 

[13]. The travel speed also influences the weld deposition rate and is defined in the 

code that commands the welding robot. Hence, by tuning these parameters, the 

operator can control the dimensions (width and height) of the weld bead produced. 

Further, the combination of wire feed rate (WFR) and travel speed (TS) also defines 

the linear heat input and, consequently, the interpass temperature of each layer 

before deposition. The linear heat input (Q) is given by Eq. 1 (Näkki 2018): 

 

   

P I UQ k
TS TS


= = 

    (1) 

 

where P is the welding power, k is the process efficiency factor (0.85 for CMT 

(Pépe et al. 2011)), I is the average current, and U is the average voltage. 

The heat input and interpass temperature have a high influence on the melt pool 

shape and grain structure of the solidified material (Kou 2003). Specifically, the 

interpass temperature plays a major role in determining the grain structure and, in 

turn, the mechanical properties of a part produced using WAAM. For instance, a 

higher interpass temperature generally provides a finer grain structure and improved 

toughness for high strength steel. However, this trend tends to reverse as interpass 

temperature exceeds a particular threshold, causing the weld pool to puddle and 

collapse (X. L. Wang et al. 2017). An unstable melt pool will negatively affect the 

geometric quality of the weld. Thus, controlling the heating and cooling during 

welding to maintain a desirable interpass temperature is essential for achieving a 

high-quality weld.  
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The dimensionless WFR/TS ratio plays an important role in governing heat input 

in WAAM; experimental process testing of different materials has shown that 

relatively precise operational boundaries exist for this ratio. To obtain good 

dimensional quality in the weld, it is necessary to model the influence of this ratio 

and to tune the parameters not to exceed its value limits during printing. This 

dimensionless ratio plays the role of a model invariant, and governs heat input, 

material deposition, and, ultimately, the bead shape after solidification. This invariant 

can be rediscovered using dimensional analysis theory [18]. Rather than undertaking 

a number of experiments, a suitable WFR/TS value can be more easily determined 

using the conservation of mass between the volume of wire added and deposited 

weld geometry (G. Barenblatt 1979) (Eq. 2): 

        

   weld

wire

AWFR
TS A

=      (2) 

where Awire is the wire cross-sectional area and Aweld is the weld cross-sectional 

area. This dimensionless ratio can be used as supplementary information in 

modelling the process. For the given wire properties and process parameters, the 

expected weld cross-sectional area can be determined. This information can help the 

manufacturing engineer in defining potential welding strategies (e.g., weaving 

pattern, nozzle travel direction, and wire feed direction) to best achieve the specified 

weld geometry and quality. 

Differences in quality for different metallic materials have been reported for front 

feeding, back feeding, or side feeding of the wire. In the case of wire laser additive 

manufacturing (WLAM), (Ding et al. 2015) indicated the wire feed orientation 

influences droplet transfer and the quality of the deposit. Torch angle, which 

determines the wire feed orientation, is not well documented as a factor in prior 

work. Further, in WLAM, the deposition width is mainly determined by the laser 

power, while the height is influenced by welding speed. The deposition area is 

determined using the ratio of the wire feed rate to the welding speed. Increasing 

power for WLAM implies a decrease of the deposition height and an increase of the 

deposition width. These experimental results could be adopted for WAAM-CMT 

since power is directly controlled by the wire feed rate through the control algorithm 

of the predefined synergic lines for different materials. 
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2.4 Process Modelling and Simulation  

Industries adopt new technologies to remain competitive in the marketplace. Effects 

of new technologies are often uncertain at the outset, and over time new information 

regarding their capabilities becomes better known. Modelling of new processes and 

systems must utilize the breadth of knowledge available at the earliest phases to 

develop models more quickly and efficiently. Pre-existing manufacturing knowledge 

is available in many different forms and spans across various science and engineering 

domains due to its multidisciplinary nature, especially for new process technologies 

(e.g., additive manufacturing). Additionally, simulation of developed models must be 

flexible to enable the use of new-found knowledge when making predictions.  

While additive manufacturing has rapidly grown in popularity, AM systems have 

not been broadly adopted across manufacturing industry due to large capital (AM 

equipment, monitoring and control systems, and post processing equipment) and 

material costs as well as production challenges (Thomas and Gilbert 2014). Crucially, 

AM technologies function as multi-parameter-dependent processes, which require 

knowledge of the process physics to dynamically monitor and control the process 

(Huang et al. 2015; Song and Mazumder 2011; Mazumder et al. 2000). A vast amount 

of disparate knowledge exists about the various AM technologies as well as their 

individual subsystems (Witherell et al. 2014a; Pal et al. 2014; Francois et al. 2017; 

Almeida and Williams 2010; Batchelder et al. 1994; Yardimci and Güçeri 1996; 

Yardimci et al. 1996).  

Though available knowledge for AM technologies provides a set of dispersed 

sub-models supporting the understanding of localized phenomena, it does not 

provide a systemic perspective or a system model. Further, the use of high-fidelity 

models for holistic system simulation would result in many control variables, which 

may not be suitable for implementation in fast control solutions. Simulation and 

control are challenging due to the computing requirements for processing large and 

complex sets of variables. Thus, surrogate modelling for development of meta-

models that can integrate different forms of knowledge and models together for 

holistically representing the AM technology has been gaining traction for system-

level simulation, optimization, and control, as discussed below. 
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2.4.1 Metamodelling Approaches 

Several metamodelling approaches such as kriging models, polynomial models, and 

neural network models exist in literature for modelling complex systems. A meta-

modelling approach using machine learning approaches (artificial neural networks 

(ANNs), Bayesian networks (BNs), etc.) can provide a number of advantages for 

characterizing AM processes. For example, ANNs enable the development of global 

predictive models that integrate a variety of parameters and support the 

implementation of a closed loop control system to improve part quality and process 

repeatability. In other meta-modelling approaches, such as kriging or Gaussian 

process regression, modelling is performed as black boxes built over a designed set 

of experiments. This surrogate approach, like most applied meta-modelling 

approaches, views the modelled system as a black box. However, the cost of 

experiments for training black box models can be very high due to the need for large 

experimental data sets, which can be mitigated by using pre-existing process or 

system knowledge. Thus, for successful integration of AM in mainstream 

manufacturing, current efforts must focus on using this untapped knowledge of the 

process or system, thus, enabling a grey or white box meta-modelling approach. Such 

approaches differ from classical surrogate modelling methods in the volume of data 

needed for training models. The need for experimental data sets can be reduced by 

integrating existing system knowledge available for the observed process into a 

machine learning model by using knowledge extraction and management (E. 

Coatanéa et al. 2016; Efthymiou et al. 2015). Additionally, meta-modelling 

approaches can enable the development of models that reduce the inaccuracies 

arising from incomplete knowledge. Classical meta-models are often statistical 

models that represent unknown systems. Meta-modelling focuses on correlating the 

parametric input/output values, while ignoring the nature of complex inter-

relationships within the system. Hence, these approaches do not require detailed 

knowledge of the underlying physical phenomena (Shao 2007). In place of physical 

knowledge, the predictability of meta-models relies upon statistical features, such as 

sampling strategy and modelling algorithms, requiring experimental data.  

Depending on the visibility of the internal design, structure, and implementation 

of the computational models, with increasing opacity they can be classified as white 

box, grey box, and black box models (Kroll 2000). White box models are transparent, 

meaning the internal relationships between inputs, physical phenomena, and outputs 

are known. Black box models are input/output statistical correlation models, where 

knowledge of internal relationships is unknown. Grey box models combine the 
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attributes of white box (using pre-existing knowledge to understand system 

structure, though physical phenomena may be unknown) and black box (statistical 

data correlation) models to holistically model the system. The use of pre-existing 

knowledge enables the characterization of the system’s internal structure, which can 

then facilitate the design of experiments to collect only the necessary data for 

modelling the unknown aspects of the system. However, directly characterizing a 

system’s structure from pre-existing knowledge can be a challenge, since knowledge 

such as data and models are present in multiple forms and lack interoperability 

(Witherell et al. 2014a). For this reason, a framework is needed to translate different 

forms of knowledge into a compatible, unified structure that supports simulation 

and optimization. This framework will help clarify the parametric relationships that 

describe the system, which are necessary for building a grey box modelling approach.  

2.4.2 Graph-based Visualization to Support Manufacturing Metamodelling 

Graph-based visualization of a system in the form of directed graphs, input-output 

graphs, or causal graphs unifies system knowledge (e.g., data and mathematical 

relationships) and provides a foundation for building metamodels of manufacturing 

systems at different levels of abstraction (e.g., a process or set of processes) 

(Borutzky 2011). These metamodels can be constructed by integrating subsystem 

models of varying fidelity, i.e., representing pre-existing knowledge as known 

physical/chemical relationships and unknown relationships using machine learning 

and other empirical approaches (e.g., ANNs or Bayesian networks (BNs)). A causal 

graph that characterizes the explainable cause-and-effect relationships within the 

system of interest can serve as a basis for developing a dynamic model, which can 

support simulation and enable prediction, monitoring, and control of the modelled 

system. The dynamic nature of the system can be characterized by employing 

empirical approaches to the unified graph-based representation. The key advantages 

of a using graphs in this research are 1) integration and composability of pre-existing 

knowledge, 2) establishing a causal ordering with directed graphs, and 3) topology 

design for ANN and BN development as explained below in the next sections.  

2.4.3 Empirical Learning Using Artificial Neural Networks 

Empirical learning techniques, including machine learning methods, usually require 

little theoretical knowledge about the problem domain to derive generalized models 
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from available data. This advantage of modelling with little theoretical knowledge of 

the domain is offset by the need for large training data sets. For example, ANNs 

have proven to be equal, or superior, to other empirical learning systems over a wide 

range of domains, when evaluated in terms of their generalization ability (Shavlik, 

Mooney, and Towell 1991; Atlas et al. 1990). ANNs are usually comprised of layers 

(k) with nodes (j), where each node sums up i weighted outputs of the nodes from 

the previous layer as per Eq. 3 

  , , , 1 0,j k ij k i k k
i

s w x w−= +     (3) 

Here, sj,k represents the weighted sum of node j at layer k, wij represents the 

weight of the ith output at node j, wo,k represents the initial weight of layer k at the 

first node. This summation of sj,k is then passed through a non-linear activation 

function, the output of which acts as input for the next layer. A common choice for 

the activation function is the sigmoid function, also called the continuous unit step 

function (Eq. 4). 
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The computational power attributed to ANNs originates from the non-linear 

functions of the weighted sums, h(sj,k). However, the non-linearity also makes it 

difficult to mathematically analyze these networks and requires a large set of training 

data to capture the desired relationship. In ANNs, a state pi of a neural network can 

be uniquely described by {w1 … wn}p, where wi represents a weight within the 

network. During the training process, the network iteratively traverses a subset of 

the state space p, continuously improving the model performance. The total number 

of states p and the total number of weights n of an ANN can be reduced by 

incorporating prior knowledge about the system, which can increase the efficiency 

of the model while reducing the computational cost (Tu 1996). 

The initial weights allocated to the network nodes impacts the learning efficiency 

of ANNs (Ahmad and Tesauro 1989), and is the central source of the well-known 

vanishing gradient problem associated with ANNs (Hochreiter et al. 2001). This 

problem is present when training ANNs with gradient-based learning methods and 

backpropagation. According to (Hochreiter et al. 2001), in such methods, each of 

the ANN’s weights receives an update proportional to the gradient of the error 

function with respect to the current weight, in each iteration of training. In some 

cases, the gradient will be vanishingly small, preventing the weight from changing its 

value. In the worst case, this may completely stop the ANN from training. This 
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problem is more probable when too many hidden layers of neurons are used in an 

ANN. Heuristic rule can be used to constrain the potential size of an ANN (Panchal 

et al. 2011). However, this implies the design of ANNs must reduce the number of 

inputs, number of outputs, size of hidden layers, and number of hidden layers.  

2.4.4 Manufacturing Process Modelling using Artificial Neural Networks 

ANNs as a modelling strategy have been widely used to approximate complex 

functions.  In this context, they can be considered a metamodeling approach 

(Papadrakakis, Lagaros, and Tsompanakis 1998; Varadarajan, Chen, and Pelka 2000; 

Atashkari et al. 2007; Magnier and Haghighat 2010). ANNs are utilized in numerous 

domains and form the backbone of deep learning algorithms. ANNs are utilized in 

process modelling for forecasting output variables using numerous architectures and 

training algorithms. ANNs, with the assistance of data standardization, data pre-

processing, and model performance optimization, have become a key enabler in 

modelling different manufacturing processes. The main advantages of ANNs 

compared to other process modelling approaches have been reported as: (i) the 

ability to handle noisy and ambiguous data, (ii) a lower difficulty of implementation 

than other approaches, (iii) the suitability for accurate representation of dynamic 

problems, and (iv) the ability to provide novel solutions for complex systems inputs-

outputs (Dawson and Wilby 2001). However, it is only possible to perform black 

box modelling using classical ANNs. Hence, limited information about the hidden 

layers and relations between the layers is known. Such empirical modelling can result 

in model overfitting as explained in the previous section (Tu 1996). In addition, 

ANNs require large number of experimental tests for training, which demands high 

computational costs to reach an acceptable model fit. Thus, in addition to model 

compactness, research must be focused on designing ANN architectures that are 

more transparent and require less computation to improve cost-effectiveness.  

The architecture of an ANN is problem-dependent, and requires extra training to 

explore and progressively generate a suitable architecture via the weights allocated 

to each of the nodes within an ANN. ANN models tend to be difficult to interpret, 

which has led the technique to lose its lustre as a metamodeling approach (G. G. 

Wang and Shan 2006). The reliability of ANNs for process modelling can be 

challenged when there is limited training data available or if the training data is 

subject to large variability due to the complexity of the modelled system. Deep 

learning approaches can overcome the challenges of modelling large, complex 
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systems, but the duration of training can be extremely long (up to several years) and 

costly (G. G. Wang and Shan 2006; Schmidhuber 2015; Bengio, Goodfellow, and 

Courville 2015). In addition, the topology (architecture) of an ANN must be 

specified before the training; thus, available system knowledge can be considered in 

the design of a network’s topology.  

ANNs are an effective empirical method for characterizing the non-linear 

interactions between variables of a complex manufacturing system as explained 

above. However, for large modelling problems (number of variables to model > 20), 

the deterministic nature of the approach may lead to poor model accuracy (lack of 

ANN generalization due to overfitting for small datasets) and low model 

transparency (black box nature of ANNs) especially in a complex manufacturing 

setting with competing performance objectives. Thus, probabilistic machine learning 

was investigated to overcome model size limitation and improve model 

transparency. Specifically, the use of Bayesian networks are investigated as explained 

next. 

2.4.5 Bayesian Networks as a Meta-modelling Strategy 

Bayes’ theorem describes the probability of occurrence of an event based on the 

prior knowledge of conditions that might have some relation to the event (Nielsen 

and Jensen 2009). A BN uses this Bayesian inference (Eq. 6) to assign and update 

probabilities for a hypothesis as it is exposed to more evidence or information.  

( ) ( ) ( | )i i iP U P V рa V=     (6) 

 

In Eq. 6, P(U) represents the joint probability of the network, and pa(Vi) is the 

set of parent nodes for variable Vi.  

A BN is often used as an inference tool, which can use available information from 

a subset of variables in a system to predict the behaviour of other parts of the same 

system (Nielsen and Jensen 2009). In recent times, BNs have been employed in 

various disciplines such as engineering, natural sciences, medicine, sports, and 

economics, largely due to their advantages, as explained by Heckerman (Heckerman, 

Geiger, and Chickering 1995): 1) ability to handle incomplete datasets by encoding 

statistical dependencies between the variables, 2) ability to learn causal relationships 

between the variables within a system to perform interventions and investigate 
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predicted results, and 3) ability to model domain knowledge and data simultaneously, 

making it a sophisticated package for data analysis. 

A BN uses directed acyclic graphs (DAGs) to represent the dependencies within 

a system (comprising all the variables). Each variable is represented as a node in the 

BN. The type of node (e.g., parent, child, or constraint node) to be used is 

determined based on the type of variable to be modelled.  The dependency between 

variables are represented by arcs (unidirectional arrows) connecting the respective 

nodes. Parent nodes feed dependencies into the dependent child nodes, forming a 

hierarchy of decisions. Based on the dependencies between different variables, their 

joint probability distribution can be factorized into a set of conditional and marginal 

probability tables. The network uses these probability tables at each node to make 

inferences during simulations (Koller et al. 2007).  

The use of BNs to model and simulate solutions can enable fast design 

exploration opportunities with good data visualization for engineers. BNs can 

provide an accurate representation of the design space with limited computational 

expense by learning representative network structures from data and pre-existing 

knowledge. In comparison to function-oriented methods and resampling methods, 

BN modelling is progressive, i.e., the graph-based approach to develop the network 

enables the combination of multi-disciplinary models, knowledge, and data by 

providing a global and intuitive view of dependencies. Thus, the user can model the 

system using both quantitative and qualitative data. Data can be directly used to 

identify interrelationships between nodes in a BN during the graph generation using 

supervised and unsupervised learning algorithms such as Tabu, Maximum Spanning 

Tree, Naïve Bayes, Markov Blanket, to name a few (Aliferis et al. 2010; Tsamardinos 

et al. 2003; S. Chen et al. 2020; Monma et al. 1990; Asano et al. 1988; de Werra and 

Hertz 1989). Alternately, knowing the interactions between variables from expert 

knowledge or the literature, this information can be fed to the network in the form 

of connections (arcs) between nodes, as well as the conditional probabilities between 

variables. Furthermore, any new data or knowledge can be seamlessly integrated into 

the model at any stage of model development without difficulty. It is important to 

note that any existing data or knowledge can be excluded from the model without 

affecting the other elements of the model.  BNs intrinsically enable the integration 

of data- or knowledge-related uncertainty to the model. This allows for the 

determination of confidence levels linked to the feasibility of identified solutions. 

Thus, product/process performance estimations and filtering of solutions based on 

thresholds can be performed easily. The above-mentioned advantages of BN have 

made it an attractive option for complex manufacturing process modelling and 
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simulation (Pradhan et al. 2007; Jing et al. 2021; Jones et al. 2010; Lewis and Ransing 

1997).   

2.5 Discussion  
 

Many of the products we use every day are multi-component integrations that require 

an array of multi-disciplinary and multi-granular approaches during product 

development to combine and compare multiple numerical solutions. For such 

complex problems, engineering intuition cannot always be relied upon for making 

accurate design and manufacturing decisions. Thus, characterizing product and 

process performance through modelling is warranted. However, the 

multidisciplinary nature of the modelling and multi-objective optimization of large 

systems make the development and simulation of models time-consuming and 

expensive. The continuous advancement of information technology is increasing the 

efficiency and accuracy of computational tools such as finite element analysis (FEA) 

and computational fluid dynamics (CFD) to run complex simulations. Currently, 

high fidelity simulation results also serve as accurate data for development of 

surrogate and graph models. Depending on the length-scale (micro, meso- or macro 

scale) as well as type of finite element model ( multi-physics, pure conduction model, 

thermo-mechanical, and thermo-metallurgical), the accuracy and computation time 

might vary (Bayat et al. 2021). However, despite these advancements, simulating 

large, complex system models with high precision remain highly time-consuming, 

and iteration of simulations becomes difficult (Schoinochoritis, Chantzis, and 

Salonitis 2017; G. G. Wang and Shan 2006).  

The use of surrogate modelling to develop metamodels for holistic system 

representation can help reduce the simulation time, but fully data-driven approaches 

do not consistently provide the level of fidelity required for monitoring and control 

of multi-criteria manufacturing performance measures. In addition, during 

conceptual design, product/process engineers tend to rely on their experience and 

knowledge, as quantitative data about the product is either unknown or uncertain. 

Such design problems present multifunctional, multidimensional, and multimodal 

responses at different levels of scale, which make it difficult for traditional 

optimization algorithms to effectively search the design space. Thus, there is a need 

for modelling frameworks to incorporate a variety of data driven and other 
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approaches which utilize both collected data and pre-existing knowledge to build 

accurate and explainable metamodels.  

The review of existing literature on AM process modelling approaches presented 

above forms the basis for the graph-based metamodelling framework developed in 

this research. The developed framework utilizes pre-existing knowledge and data to 

develop graph-based representations, which act as a pre-cursor for machine learning 

approaches to build a holistic metamodel for simulation. A detailed description of 

the developed framework and its functional elements are next documented in the 

methodology section of this dissertation next.  
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3 METHODOLOGY 

This chapter introduces the graph-based metamodelling approach developed in this 

research. The theoretical backgrounds of the processes, methods, tools, and 

techniques used in the research have been presented in the background section. The 

use of graph models in simulation for parameter prediction, design space 

exploration, and optimization are presented. The capabilities of graph modelling and 

simulation are demonstrated for two additive manufacturing processes: fused 

deposition modelling, and wire and arc additive manufacturing.  

 

3.1 Graph-Based Metamodelling  

The graph-based metamodelling approach presented in this section focusses on the 

development of input-output causal graphs or knowledge graphs representing the 

interactions between the different variables of a system of interest. At its core, the 

knowledge or causal graph only models the input-output relationship and does not 

explain on the inner workings of the system of interest. Thus, the graphical model 

can be envisioned as a type of surrogate modelling approach. The main attribute of 

this approach is determining the directional causality between the variables of the 

system. Causality in the physical world can be explained as the mechanisms that 

result in phenomena. For example, let us consider the stem of a bicycle as a 

mechanism; the phenomena are then the movements of objects connected to this 

mechanism (i.e., the handlebar and the front wheel). The stem serves as the linkage 

that transfers the movement of the handlebar (input action) to the movement of the 

front wheel (output phenomenon). However, it is important to note that causal 

relations are in fact not symmetric and do not correspond to linkage of moving 

bodies alone (Filippo et al. 1991). For example, let us consider an example of a part 

printed using WAAM. The phenomena are the heating and cooling of the part and 

the resultant mechanical properties. The link that connects these phenomena is the 

mechanism of microstructural evolution of the printed material. In mathematical 

terms, these two phenomena are represented as the variables and their related 
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equations that the mechanism links. However, the mathematical function 

representing the microstructural evolution defines a symmetrical linkage between the 

phenomena (variables) and mechanism (function) wherein any one of the variables 

can be represented as dependent, while the others are independent. Such a 

representation is a functional linkage as opposed to a causal linkage; hence, additional 

assumptions must be made to assign a causal ordering (Iwasaki and Simon 1994; A. 

Simon and Iwasaki 1988).  

Intuitively, we can assign a temporal order to these events in WAAM, wherein 

the temperature profile of the part results in microstructural evolution, which jointly 

affect the resultant mechanical properties. Such a temporal representation allows for 

defining the order and, in turn, the direction in which the dependency between 

variables flow in the system. Simultaneously, when representing an input-output 

relationship for surrogate modelling, a predefined directional dependency of the 

variables is established in the training dataset. Here, the performance variables, or 

outputs of the system, and the inputs that influence these outputs are clearly defined. 

Though the relationships between the variables cannot be directly linked to causality 

in its traditional meaning, the directional flow of variable dependencies provides a 

strong basis for a causal relationship in the direction of the flow determined by the 

modeler. Thus, graphical models present a promising avenue for characterizing the 

linkages between a mechanism and resultant phenomena and provide more model 

transparency than data-driven surrogate modelling approaches.  

3.1.1 Graph-based Metamodelling Framework  

The graph-based metamodelling framework developed in this research uses 

knowledge in the form of functional and non-functional design requirements and 

collected data to model the system of interest in the form of a directed knowledge 

graph. The directed knowledge graph represents the relationships between the 

variables of the system and enables qualitative and quantitative design/system 

analysis using simulation. The approach starts with the definition of a system 

boundary and modelling objectives followed by the collection of available knowledge 

about the system of interest. A functional model is developed for the system of 

interest based on the available knowledge, which is then translated into graphical 

elements to build the graph metamodel. A detailed description of the framework 

implementation is presented next, and summarized graphically in Figure 6.  
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3.1.2 Framework Implementation 

The metamodelling framework developed in this research enables the extraction and 

encoding of knowledge associated with system architectures, equations, data, and 

units of measure. Figure 6 visualizes the sequential steps in the metamodelling 

framework; this iterative process ends when a computable model of the system of 

interest is available with the required level of detail. As noted above, modelling starts 

with the definition of a system boundary and modelling objectives. Next, the 

available knowledge about the system of interest is documented and collected from 

various sources. For example, market research provides an enterprise with the 

information of essential and non-essential requirements of a new design. This 

information combined with expert knowledge about the design helps designers to 

determine the functional requirements of the system of interest. The architectural 

knowledge of a system in the form of a functional decomposition can be further 

broken down into the units of measurements used for the variables, and their 

decomposition into fundamental dimensional blocks (mass, length, and time) to be 

used as initial knowledge. Similarly, experiments and computational studies are often 

key sources of process and product data which can be used to fit equations. Product 

use and service data collected through observation, manual measurement, and/or 

automated sensing technology may also be used to compliment the process and 

product data from experiments/computations. Thus, in the developed framework, 

the functional requirements of the design as well as the collected data/equations are 

termed as available knowledge and are used for system modelling.  

After aggregating the available knowledge, it is synthesized into a functional 

representation/model, i.e., the sequence of functions that describe the behaviour of 

the observed system. Depending on the available knowledge, two types of functional 

models can be developed namely, an initial function model or a generic function 

model. The initial function model development is followed when the available 

knowledge about a system is in the form of design requirements or data. A generic 

function model is developed when the available knowledge is in the form of existing 

models or equations describing the performance of the system of interest. Functions 

present abstractions of a system’s activities by relating the inputs and outputs for an 

intended purpose. They enable analysis of complex systems through the 

decomposition of a system into its components performing the functions. 

Development of a functional model requires defining the purpose of the model, 

required detail and availability of the knowledge and equations prior to the modeling 

process. 
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Figure 6.  Graph-based metamodelling framework  
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For developing a function model, the overall functionality of the system is 

decomposed into the sequence of functions interacting with each other. Functions 

are represented with verbs of actions in boxes and are connected to each other with 

arrows that indicate the sequence of occurrence. Function model development is 

followed by assignment of variables associated with the function, guided by the 

fundamental categories presented in Table 1. The power variables (including flow 

and effort) are attributed to the arrows that connect functions and the state variables 

are assigned inside function boxes. Following the development of a functional 

representation/model, the dimensional analysis conceptual modelling (DACM) 

framework is used to transform the initial functional model into a generic functional 

model formed around a limited set of fundamental functions using the causal rules 

extracted from bond graph theory (Hirtz et al. 2002; Karnopp, Margolis, and 

Rosemberg 2000; Shim 2002). It is important to note that the generic function model 

is directly developed when the knowledge about a system is available as equations. 

Figure 7 presents an algorithm to compose equations into a generic function model. 

Next, dimensional analysis (DA) is applied to each node of the graph to form 

behavioural equations (G. I. Barenblatt 1987). A colour pattern is applied to different 

variables to highlight their design nature as shown in Table 2.  

Table 1.  Fundamental categories of variables 

Fundamental variable category Secondary variable category 

System variable 

Energy 

Efficiency rate 

Power variable 

Generalized effort  

Generalized flow  

State variable 

Generalized displacement  

Generalized momentum  

Connecting variables  

 

Generic functions represented by Bond graph organs (elements) are used as 

intermediates between the initial functional models and the final graph model (Shim 



 

45 

2002; Karnopp, Margolis, and Rosemberg 2000). To facilitate the systematic 

assignment of variables to the generic functional representation, all variables are 

classified into five generalized categories, namely, flow, effort, momentum, 

displacement, and connecting (Eric Coatanéa 2005). While the connections between 

input and output variables may be known, the causal nature of these connections 

must be represented mathematically. The sequence of functions in the functional 

model provides initial insight into the global causality. Mapping these functions to 

the generic bond graph organs enables the evaluation of the causality among the 

variables characterizing those functions. The causal relationship among variables for 

generic functional models is built upon the existing validated causal rules in Bond 

graph theory (Paynter 1961).  

Figure 7.  Algorithm for composing equations into a generic function representation 
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Table 3 summarizes the causal rules (bond graph organs) used in the modelling 

approach.  The cause-effect relationship is not only dependent on the sequence of 

functions, but also dependent on the nature of the bond graph organ and the type 

of the assigned variables.  

Table 2.  Colour coding in graph models 

 

Type of variable Description and colour coding 

Exogenous variables  

Grey/Black – Variables associated with 

the system’s environment. These are 

imposed on the modeller and have fixed 

values. 

Independent variables 

Green – Variables of the system that are 

not influenced by other variables. Values 

are not fixed. 

Dependent variables 

Blue – Variables of the system that are 

influenced by other exogenous and 

independent variables. Values are 

determined based on their 

interrelationship with other variables of 

the system. 

Performance/output variables 

Red – Dependent variables that 

characterize different performance 

attributes of the system. These variables 

are defined by the modeller based on 

their objectives. 

 

Figure 8 represents a causal extraction algorithm used to automate the modelling 

process. First, the algorithm checks if a generic functional organ is defined for each 

functional box. Then, the algorithm explores each functional box of the model from 

start to end, to verify that there is no conflict in the coherence of the generic 

functional representation in terms of causality. Finally, according to categories of 

assigned variables and using the causal rules (Table 3), the cause–effect relationships 

between variables are established (Paynter 1961; E. Coatanéa et al. 2016). The causal 

ordering process follows the established mapping of bond graph elements and 
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functions following the order from variables → equations → architecture → 

causality.  

Table 3.  Causality for generic functions and bond graph organs (Paynter 1961).  

 

Once the relationships between all the variables of the system are assigned and 

colour coded, the final graph model can be obtained. The primary result of this 

modelling is a coloured hypergraph with a list of governing equations for the system 

of interest. In the research reported here, the coloured graph model is then used as 

precursor to build two type of machine learning models. First, the causal graph is 

used in combination with ANNs to build a predictive model for system performance 

evaluation and process parameter prediction. The causal graph developed using a 

combination of different knowledge archetypes can be used to guide the topology 

definition and optimization in an ANN. Second, the developed graph model is 

composed into a directed acyclic graph (DAG) to be used for probabilistic modelling 

using BN. The BN model can then be used for qualitative or quantitative simulations 

Bond Graph Element Schematic view Bond Graph Element Schematic view

Source of  effort (Se)

Fixed effort-out 

causality

Source of  flow (Sf)

Fixed flow-out causality

Capacitor (C)

Fixed effort-out 

causality

Inertia (I)

Fixed fow-out causality

Resistor (R)

Preferable effort-out 

causality

(Resistive)

Resistor (R)

Preferable flow-out causality

(Conductive)

Transformer (TF)

Maintain incoming 

causality 

(two-port element)

Transformer (TF)

Switch incoming causality 

(two-port element)

Effort Junction (JE) 

or (0)

(Multi-port element)

Only one incoming 

effort

e1 =e2 =e3 =e4

f1 +f2 +f3 +f4 =0

Flow Junction (JF) or (1)

(Multi-port element)

Only one incoming flow

f1 =f2 =f3 =f4

e1 +e2 +e3 +e4 =0



 

48 

to perform design and manufacturing decision making through prediction analysis, 

multi-domain optimization, and design space exploration.  

Figure 8.  Algorithm for causal rule extraction from functional model 
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The usability of the developed modelling framework is demonstrated in this research 

with the help of additive manufacturing modelling case studies. Each case study has 

been presented as a part of peer-reviewed, published research articles, and provided 

in the publications section of this dissertation. Next, a summary of the methods 

applied for each case study is presented.  

3.2 Graph-based Metamodelling Case Studies 

The graph metamodelling framework developed as part of this research is 

demonstrated for modelling and simulation of two additive manufacturing process 

technologies namely, material extrusion and direct energy deposition as presented 

next. 

3.2.1 Application of Graph-based Metamodelling for a Material Extrusion 
Process  

The manufacturing process evaluated in the first case study (Publication I) is a 

material extrusion process, fused deposition modelling (FDM). The process involves 

several steps that need to be characterized to holistically model the system. In 

addition, the interactions between the different processing steps also need to be 

presented in the form of variable interactions. The process starts with a polymer 

filament heated to melting temperature at the nozzle before being deposited onto a 

build plate in a layer-by-layer fashion. Thus, modelling of the filament feed rate, melt 

location within the nozzle, heat transfer to the filament and molten polymer, 

flowability of the molten polymer through the nozzle, and the mechanism facilitating 

the flow of the polymer through the nozzle need to be performed to evaluate 

dimensional quality and resulting manufacturing time for the FDM part. The 

research hypothesizes that the exploration of the manufacturing space can be 

effectively performed using a modelling approach combining graph-based 

metamodelling and machine learning to improve FDM part quality and build time, 

while keeping the number of required training data sets low.  The mechanisms 

associated with the FDM process are discussed in Section 2.3.1 and Publication I.  

Several metamodelling approaches, including Kriging models, polynomial 

models, and neural network models, have been reported in literature for modelling 

complex systems. A metamodelling approach using causal graphs and ANNs can 
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provide numerous advantages as detailed in Section 2.5 ANNs enable the 

development of global predictive models integrating numerous parameters. The 

proposed approach differs from classical surrogate methods in using existing 

knowledge; thus, the number of required experiments is reduced. The experiments 

are used to train only parts of the model, rather than the entire model. Through 

knowledge extraction and management, we limit the need for experimental data sets 

by integrating the existing system knowledge available for the observed process into 

the ANN (Efthymiou et al. 2015; E. Coatanéa et al. 2016). Nevertheless, existing 

knowledge in literature is represented in multiple forms and lacks interoperability 

(Witherell et al. 2014b). For this reason, the graph-based modelling framework is 

utilized to integrate and harmonize different types of knowledge to be coherent with 

each other, and to visualize the cause-effect relationships in the form of causal 

graphs. The conceptual modelling framework used in the study is presented in 

Section 3.1 and Publication I.  

Following the development of the causal graph, which represents the different 

functions (mechanisms) and associated variables of the FDM process, ANN 

modelling was carried out. A comparative study was conducted, wherein the outputs 

were first modelled using classical ANNs without using the pre-existing knowledge 

documented in the form of a causal graph. Next, the causal graph was used as a pre-

cursor to build a knowledge-based artificial neural network (KB-ANN) in the form 

of modular ANNs applied on top of the causal graph. Both models (classical ANN 

and KB-ANN) were experimentally validated, and conclusions were drawn based on 

their relative performance in terms of fit and prediction accuracy (see Publication 

I).  

The findings of the study support the hypothesis that the integration of pre-

existing knowledge through a graph-based modelling approach fitted with modular 

ANNs can provide better prediction performance when compared to classical 

ANNs. Though the use of pre-existing knowledge allowed for development of 

modular ANN models with good prediction performance, the possibility of 

overfitting in the ANNs was visible and generalization of the developed ANN 

models could not be verified for the small number of experimental data points 

available for modelling. In addition, the uncertainty involved with pre-existing 

knowledge included in KB-ANN models cannot easily be accounted for, which may 

lead to higher prediction error. Nevertheless, the case study highlights the usability 

of causal graphs as precursors for developing machine learning models of complex 

systems.  



 

51 

3.2.2 Application of Graph-based Modelling for Direct Energy Deposition 
Processes 

 

The manufacturing process evaluated in the second set of studies is a direct energy 

deposition process, namely, wire and arc additive manufacturing (WAAM). Four 

studies were conducted for modelling this technology to demonstrate the capabilities 

of the developed graph-based metamodelling framework. The different case studies 

for WAAM are as follows: (1) multidomain modelling of worker health effects during 

WAAM; (2) modelling dimensional quality of parts built using WAAM-CMT; (3) 

characterizing the thermal effect on microstructure and mechanical properties of 

WAAM built parts; and (4) multidomain metamodelling of WAAM-CMT for 

optimization. 

3.2.2.1 Evaluating Worker Health and Safety in WAAM 

The disruptive nature of advanced manufacturing technologies, such as AM, requires 

extensive characterization of the emissions and wastes that can increase safety and 

health risks to operators and others. Characterizing worker health and safety requires 

expertise in manufacturing processes, and delves into domains such as measurement 

science, environmental science, and public health and safety. Currently, production 

risk and reliability assessments can overshadow worker health and safety evaluations 

due to increasing demand for quick, seamless integration of new technologies on the 

shop floor. To address this gap, a review of research literature was conducted 

focusing on the influence of welding process parameters, welding fumes, and fume 

exposure on worker health. The reviewed literature on WAAM worker safety and 

health effects are documented as part of Publication II. 

The literature was used as pre-existing knowledge to graphically model the 

interrelationship between WAAM process variables (parameters), their influence on 

process emissions and waste, and associated worker impacts. Following the 

development of the graph model, implementation of a Bayesian network (BN) that 

integrates process knowledge (process operation, emissions, and related impacts), 

worker habits and exposure pathways, health and safety factors (health risks and 

severity of risks), and suitable safety protocols from the developed graph is 

discussed. The research demonstrates the use of the graph-based metamodelling 

framework to integrate pre-existing knowledge to hasten the development of multi-

domain models which are simulatable for decision making.  
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3.2.2.2 Evaluating Dimensional Quality in WAAM 

Achieving predictable, reliable, and cost-effective operations in WAAM is a key 

concern during production of complex-shaped functional metallic components for 

demanding applications, such as in the aerospace and automotive industries. An 

approach using causal graph-based modelling and Bayesian networks was proposed 

to develop a meta-model for a test case using WAAM-CMT. The causal graph 

developed for the process was used as a precursor to develop a BN model of the 

WAAM process for dimensional quality. The BN model was simulated to perform 

scenario analysis and predictive analysis. The advantages of using a probabilistic 

machine learning approach as opposed to a deterministic approach such as ANN are 

detailed in Sections 2.5.5 and 2.5.6, Publication III, and Publication V. To 

summarize, BNs provide an interactive and fast modelling approach for AM process 

and product characterization taking into account the uncertainty in the knowledge 

used to develop the network. BN modelling starts with the development of a directed 

acyclic graph (DAG), which is supported by the causal graph-based modelling 

approach developed in this research.  

The research in Publication III uses the graph-based metamodelling approach 

to model WAAM for dimensional quality. Two experimental strategies were utilized 

in this research. First, single layer experiments were conducted varying nine process 

parameters to identify the most influential parameters on dimensional quality. Next, 

a multilayer part was printed using WAAM by varying three influential parameters, 

namely, wire feed rate (WFR), travel speed (TS), and number of layers (n). Causal 

graphs were developed for the single layer experiments and multilayer experiments, 

respectively. The two causal graphs were developed as a collection of different 

models. For the multi-layer experiments, the interrelationships between wire feed 

rate, travel speed, and interpass temperature were characterized through empirical 

modelling with the help of power laws. The regression equations obtained via the 

power law approach were then used to develop a BN model. The fundamental 

advantage of the BN approach used in this study is the ability to translate the causal 

graph directly into a BN model and to enable two-way simulation, for forward 

prediction (prognosis) of targets and backward prediction (diagnosis) of input 

parameters. The simulation of the BN allows the user to choose values for WFR, TS 

and n to obtain the required target values and, simultaneously, allows the user to 

visualize the effects of inputs on the target values. The backward prediction is useful 

in manufacturing since the final part dimensions are defined up front by the design 

requirements. In addition, the BN method provides a validated approach to generate 



 

53 

grey box models in which analytic knowledge in form of equations can be used 

together with experimental knowledge (data).  

3.2.2.3 Characterizing Microstructure and Mechanical Properties in WAAM 

 

The study in Publication IV was developed to characterize the influence of thermal 

phenomena on the resultant microstructure and mechanical properties of WAAM-

built parts. The work focused on developing the required knowledge base for holistic 

metamodelling of the WAAM process, which was reported in Publication V, and 

integrated material- and process-related parameters, the thermal history of the parts, 

part microstructures, and their associated mechanical properties (Vickers hardness). 

Two steel alloys were used in this experimental research, namely G4Si1, a mild steel 

alloy, and AM70, a high-strength low-alloyed steel (HSLA). WFR and T0 were varied 

at two levels for both materials to achieve a low heat input level and high heat input 

level, resulting in four thin wall structures for testing. Samples were taken from the 

deposited walls to investigate the microstructure evolution (optical microscopy 

specimens) and mechanical properties (tensile and microhardness specimens) under 

the different weld conditions explored. Microstructure and mechanical property 

analysis were performed for samples taken along the entire height of the wall to 

characterize the effect of successive heating and cooling of the layers on the 

microstructure. For tensile testing, horizontal samples (cut along print nozzle travel 

direction) and vertical samples (cut along wall build direction) were chosen to check 

for isotropy in the printed wall’s mechanical properties. Microstructure and 

mechanical property analyses are presented in Publication IV. 

3.2.2.4 Multi-Domain Metamodel for WAAM Product Quality 

The study presented in Publication V developed a holistic metamodel for WAAM 

integrating dimensional quality, thermal phenomena, microstructure, and mechanical 

properties. A BN model was built on top of a graph model for simulation and 

decision making. The study integrates results of Publication III and Publication 

IV as pre-existing knowledge for metamodel development. A combination of 

existing models from previous publications, literature on process physics, and 

experimental data were used as pre-existing knowledge for the development of the 

graph model. Three categories of models and associated levels of detail exist in this 
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research. The first two models used to represent the geometry and the thermal 

profile of the weld have the highest level of fidelity owing to the significant amount 

of experimental data points obtained. The thermal profile of the weld is modelled in 

two different ways: 1) modelling the thermal profile as an average cooling rate of the 

weld layer using a Gaussian process regression (GPR) model and 2) modelling the 

thermal profile as the wait time between layers using Lasso (Least Absolute 

Shrinkage and Selection Operator) and ordinary least squares (OLS) regression. The 

third model is less granular and models microhardness using an artificial neural 

network with two inputs. The geometric model for the width and height of the weld 

was developed in Publication III. The geometric model was developed in the form 

of a power law using ordinary linear regression. The resultant graph model integrates 

the empirical models for WAAM part geometry from Publication III; the GPR and 

OLS models developed for thermal phenomena using process data from physical 

experiments (heating and cooling data); and an ANN model for mechanical 

properties data. The developed BN model is validated using physical experiments.  

3.3 Discussion 

This chapter described the graph-based modelling framework developed as part of 

this research for holistic metamodelling of additive manufacturing processes. The 

framework offers simulation capabilities with the help of machine learning to 

perform physics-based reasoning, systematic search for contradictions, predictive 

analysis of outputs and pre-tuning of process parameters, and design space 

exploration. The development and application of the framework as described in the 

foregoing addresses the three research questions presented in the introduction 

chapter. Specifically, the developed framework allows designers to model systems 

with different levels of detail and abstraction depending on the availability of 

knowledge associated with the different components of a system. The framework 

allows for transformation and integration of knowledge available into a unified graph 

representation. The algorithms offer a systematic approach to assign variables for 

describing functions, extract causality among variables, and establish governing 

equations among variables in the model. The framework focuses on the functionality 

of system using function modelling and graph representation as the fundamental 

modelling strategy. The graph representation acts as a precursor for facilitating the 

development of machine learning models. The use of pre-existing knowledge in the 

graph development stage reduces the need for large datasets for training a machine 
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learning algorithm.  In this research, the graph-based metamodelling framework has 

been applied to several additive manufacturing process modelling case studies.  

3.3.1 Characteristics and Bounds of the Graph-based Metamodelling 
Framework 

The development of the methodology explained in this chapter has its limitations, 

which can be addressed by future developments. Several distinguishing 

characteristics of the framework are as follows:  

1. The framework can represent functions at different levels of granularity. 

The framework combines knowledge of different types and levels of 

detail as functions and bond graph elements, which are then composed 

into a knowledge/causal graph. Thus, representation of functions and 

variables, while ensuring their dimensional homogeneity influences the 

accuracy of the metamodel.   

2. The framework results in two outputs: a graph model and a machine 

learning model, which combine to form a metamodel.  

The framework first develops a graph model. The graph model does not 

provide simulation capabilities but does allow for qualitative reasoning 

based on its architecture. It is used as pre-cursor for developing a 

machine learning model, which allows for simulation and quantitative 

reasoning through layering of the two models into a metamodel.     

3. The framework can be used for simulation and computational studies. 

The type of machine learning model used can determine the scope of 

computational analysis that can be performed using the developed 

metamodel. Deterministic machine learning using ANN has only been 

tested for predictive analysis in this work. Probabilistic modelling using 

BN has been used for prediction, multi-domain optimization, and design 

space exploration.  

4. The framework can be characterized as a metamodelling tool.  

The framework is a metamodelling tool because it enables the integration 

of models with different purposes at different level of detail into a single 

composite model. However, it can be differentiated from conventional 

metamodelling techniques (e.g., surrogate modeling), since this approach 

offers more transparency into the various model elements.     

5. The framework can be applied to different research domains.  
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The framework offers a generic modelling approach applicable to 

disciplines beyond the manufacturing domain presented in this research. 

The framework has been successfully applied to applications in systems 

engineering, product design, manufacturing systems modelling and 

optimization, and cybersecurity (in development), and network analysis. 

Nevertheless, future work should validate the usability of the approach 

for other research domains.    
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4 RESULTS AND THESIS CONTRIBUTION 

The following chapter articulates the results and contributions of the publications 

presented in this research. Table 4 highlights the contribution of each published 

article with relation to the research objectives detailed in Chapter 1.  

4.1 Graph-based Metamodelling for a Material Extrusion Process  
 

The article presented in ASME JMD 2019 (Publication I) presents the graph-

based modelling framework for defining the topology of a knowledge based artificial 

neural network (KB-ANN). The detailed analysis of the results has been presented 

in Publication I of this dissertation. A summary of the results is presented below.   

The FDM process was initially modelled using the developed framework to 

develop a causal graph to be translated into an ANN topology. Three classical ANNs 

and a KB-ANN topology were evaluated in this study. The ANN’s topology is 

designed for maximum compactness to maintain all the connections in the causal 

graph. The KB-ANN topology is developed in the form of modular ANNs as shown 

in the causal graph (Figure 9 and 10).  

Three classical ANNs were designed to model the three outputs, namely, wall 

thickness (e), part height (Ht), and mass (Mt) using three inputs: layer height (hi), 

travel speed (TS), and extruder temperature (Tset). The mean squared error (MSE) 

for best performance was found to be 5.43e-04 after nine iterations, 1.15e-04 after 

10 iterations, and 2.01e-03 after 23 iterations for wall thickness, part height, and mass 

respectively.  

The KB-ANN was designed as four modular ANNs following the simplified 

causal graph shown in Figure 9. The first modular ANN is designed for one output, 

ratio of viscosity (μ) of molten polymer at extrusion temperature to the viscosity (μi) 

of molten polymer at a reference temperature (175 °C). The filament feed rate (FFR) 

and extruder temperature (Tset) are used as inputs. Here, the output of the modular 

ANN 1 is an intermediate blue variable, which cannot be directly measured and 

hence has to be estimated using numerical simulations 
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Table 4.  Contributions of author’s publications and their associated research tasks 

Source 
Contribution of 

Dissertation Research 

Research 

Objective 

H.P.N. Nagarajan, H. Mokhtarian, H. 

Jafarian, S. Dimassi, S. Bakrani, A. Hamedi, 

E. Coatanea, G. Wang, and K.R. Haapala, 

2018 “Knowledge-Based Design of Artificial 

Neural Network Topology for Additive 

Manufacturing Process Modelling: A New 

Approach and Case Study of Fused 

Deposition Modelling,” ASME Journal of 

Mechanical Design, Volume 141(2), pp. 

021705-12, Dec 

2018.  https://doi.org/10.1115/1.4042084 

The work demonstrates a 

proof of concept for 

knowledge reuse and 

integration using graph 

metamodelling. 

1 

The ANN and KB-ANN 

modelling developed in 

this research allows for 

simulation of the 

developed metamodel. 

2 

The KB-ANN modular 

setup allows for partial 

and holistic simulation of 

the modelled sub-systems 

for decision-making. 

3 

H.P.N. Nagarajan, S. Panicker, H. 

Mokhtarian, E. Coatanea, and K.R. Haapala, 

“Improving Worker Health and Safety in 

Wire Arc Additive Manufacturing: A Graph-

based Approach,” Procedia CIRP, 2020, 

Proceedings of the 27th CIRP International 

Conference on Life Cycle Engineering 

(LCE2020), May 13-15, Grenoble, France. 

https://doi.org/10.1016/j.procir.2020.01.116 

The literature review 

develops the knowledge 

base for characterizing 

worker health effects in 

WAAM using causal 

graphs.  

1 

 The use of graph 

metamodelling 

demonstrates the ability 

to integrate multi-domain 

knowledge from 

literature.  

H.P.N. Nagarajan, S. Panicker, H. 

Mokhtarian, T. Remy-Lorit, E. Coatanea, R. 

Prod’hon, H. Jafarian, K.R. Haapala, and A. 

Chakraborti, 2019 “Graph based Meta-

modelling to Characterize Cold Metal 

Transfer Process Performance,” Smart and 

The research 

demonstrated a 

knowledge driven 

experimental effort for 

modelling WAAM 

dimensional quality using 

causal graphs.  

1 

https://doi.org/10.1115/1.4042084
https://doi.org/10.1016/j.procir.2020.01.116
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Sustainable Manufacturing Systems 3, no. 2 

(2019): 169-189. doi:10.1520/SSMS20190026 The use of casual graphs 

as pre-cursors for 

probabilistic machine 

learning was developed. 

2 

The work highlights the 

advantage of BNs over 

deterministic models 

(ANN) to perform 

holistic two-way 

simulation and decision 

making.   

3 

S. Panicker, H.P.N. Nagarajan, J. 

Tuominen, M. Patnamsetty, E. Coatanea, and 

K.R. Haapala, 2022, “Investigation of 

Thermal Influence on Microstructure and 

Mechanical Properties in Wire Arc Additive 

Manufacturing of Steels, Material Science and 

Engineering A. (Accepted for Publication) 

The literature review 

conducted on the 

microstructural effects in 

WAAM supports the 

development of the 

knowledge base for 

holistic metamodelling. 
1 

The experimental 

characterization supports 

identification the part-

process-property 

structure in WAAM-

CMT. 

H.P.N. Nagarajan, S. Panicker, D. Wu, S. 

Bakrani, E. Coatanea, and K.R. Haapala, 

“Modelling the Geometrical and Mechanical 

Responses in Wire Arc Additive 

Manufacturing: A Concept for Graph 

Metamodel based Design Space Exploration. 

(Prepared and Unpublished) 

The holistic metamodel 

combines multi-domain 

knowledge from material, 

manufacturing, and 

product domain. 
1 

Different types of 

knowledge (data, ANN, 

and regression models) 

are integrated into a single 
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graph model using the 

developed framework. 

The use of BN allowed 

for propagation of 

optimization objectives 

to perform design space 

exploration and decision-

making.  

3 

 

The second modular ANN is designed for output wall thickness (e). To reduce the 

dimensionality of the ANN, the inputs to predict thickness were represented in the 

form of Pi numbers (dimensionless primitives) using dimensional analysis theory 

(DA) (Bridgman, n.d.). The third modular ANN was designed for height (Ht) as 

output and inputs, layer height (hi) and number of layers (n).  

Figure 9.  A modular KB-ANN topology of the FDM process using graph based metamodelling 
framework (Nagarajan et al., 2019) 

  

The fourth modular ANN was designed for mass (Mt) as output with inputs, wall 

thickness (e), height (Ht), and density of the material (ρ) used. The results shows that 

the modular ANN 1 was able to obtain the best validation performance at 53rd 

iteration with MSE = 7.7186e-05. The MSE for modular ANN 2 for wall thickness 
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(e) was found to be 9.30e-05 after 93 iterations. The modular ANN 3 results obtained 

best-fit performance with MSE = 1.41e-04 after four (4) iterations. The best 

performance at four (4) iterations indicates a mediocre fit to the training data. Finally, 

the results of the modular ANN 4 for mass (Mt) observed MSE of 2.54e-04 after 23 

iterations. 

Figure 10.  A simplified modular KB-ANN topology for the FDM process using causal graph developed 
(H. Nagarajan et al. 2019) 

 

The validation of the developed models was carried out with nine (9) experimental 

tests. The values for the independent input variables (layer thickness, extruder 

temperature, and travel speed) were chosen at random. From validation, the standard 

prediction error for thickness, height, and mass in the KB-ANN were found to be 

0.1627, 0.3647, and 0.4621 respectively. Similarly, the prediction error for the fully 

connected classical ANN was found to 0.1376 (thickness), 0.5898 (height), and 

0.4667 (mass). The propagated global error of the KB-ANN model was found to be 

0.5220. A comparison of the MSE and standard error calculated after validation for 

the two types of networks are shown in Figure 11. It was seen that the errors for the 

KB-ANN are in the same range as the prediction error of the classical ANN.  

The KB -ANN has performed better than the classical fully connected ANN in 

terms of fit to the provided experimental data. From validation, the prediction error 

of the KB-ANN was found to be almost the same for thickness and mass, while 

lower for height. This prediction error was largely the result of loss of information 

when streamlining the complete causal graph in Figure 9 to the simpler version in 
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Figure 10. Specifically, the regression fit for the height KB- ANN was poor, largely 

due to the absence of adequate knowledge or models to represent the phenomenon 

that can define part height. The addition of more variables to the study in the form 

of simulations or experimental estimation would improve the training and result in 

lower prediction error. The key difference between the models lies in the total 

number of weights that define the state space for each model. In this case, the KB-

ANN had 12 fewer weights than its classical counterpart did. 

Figure 11.  Validation error comparison of fully connected classical ANN and KB-ANN 

 

Furthermore, the hidden layer of the KB-ANN operates within the dimensionally 

homogenous space. The combination of these factors results in improved efficiency 

during fit and similar performance for the same number of training (27) samples. 

This is visible in the training and its robustness. The KB-ANN provides robust 

results in term of generalization compared with the classical ANN. Nevertheless, the 

small amount of the data set used in this effort, limit the conclusions that can be 

drawn from the training, validation, and test. The higher number of epochs obtained 

for the KB-ANN compared to its classical ANN counterpart demonstrate that the 

difference will increase with bigger datasets. It also indicates that KB-ANN can 

provide better results for smaller datasets. 
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The KB-ANN modelling was able to limit the number of required experiments 

to develop a metamodel capable of dynamically predicting control factors of FDM. 

The causal graph representation enabled the design of KB-ANN as modular ANNs 

with reduced dimensionality.  The results demonstrated the superiority of the KB-

ANN over classical full-connected ANN in terms of fit and regularization for the 

same performance and same number of training samples. The case study was limited 

to the prediction of three target variables using four modular ANNs using the 

simplified causal graph in comparison to the large number of target variables that 

essentially need to be modelled for a complex FDM system. In reality, more 

intermediate variables and phenomena (Figure 9) need to be modelled to represent 

the FDM process holistically. The current work addresses the first research task to 

allow the developed framework to combine knowledge in modular manner and to 

reduce dimensionality of complex problems using knowledge extraction, 

representation, and integration techniques such as dimensional analysis. 

Furthermore, the use of ANN modelling on the graph model allowed for simulation 

of the developed metamodel for process parameter prediction in line with research 

objective 3.  

4.2 Graph-based Metamodelling for a Direct Energy Deposition 
Process  

The modelling framework developed in this research was used to model the WAAM-

CMT process to characterize, a) worker/operator health and safety impacts, b) 

dimensional quality in printed parts, and c) product quality (dimensional and 

mechanical).  

4.2.1 Worker Health and Safety Impacts in WAAM 

 The body of research for modelling worker safety in welding was identified to fall 

into two domains namely, manufacturing technology (process) and public health. A 

detailed account of the literature study and model development effort has been 

presented in Publication II of this dissertation. The background study on welding 

emissions/wastes and public health research was used as pre-existing knowledge to 

graph-based model for worker health in WAAM. The developed graph-based model 

enables visualization of the potential cause-effect relationships and correlations 
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between the different variables of the system based on the referenced literature, as 

shown in Figure 12. At this stage, some of the relations can be considered to be 

causal, especially in area A, while in area B more efforts are needed to validate the 

causality of elements. This causal graph provides a unified structure to integrate the 

knowledge from the two identified domains. In the manufacturing technology 

domain, research has focused on characterizing the influence of the process and 

parameters on generation of emissions/fumes (Li et al. 2004; Sjögren and Ulfvarson 

1985; Antti-Poika, Hassi, and Pyy 1977; Saito et al. 2000; Jafari and Assari 2004; I. J. 

Yu 2001; Cole, Epstein, and Peace 2007; Niemelä, Koskela, and Engström 2001; 

Balkhyour and Goknil 2010; Alfaro and Cayo 2012; Topham et al. 2010; Il Je Yu et 

al. 2003; Heung et al. 2007; Keane et al. 2016). 

Figure 12.  Graph model of operator health impacts in WAAM 

 

The public health domain has focused on characterizing the influence of emissions 

and components on worker health (Koh et al. 2015; Li et al. 2004; Sjögren and 

Ulfvarson 1985; Antti-Poika, Hassi, and Pyy 1977; Jafari and Assari 2004; Topham 

et al. 2010; Gube et al. 2013; Rongo et al. 2004; Hammond et al. 2005; Chinn et al. 

1995; Cotes et al. 1989; Jayawardana and Abeysena 2009; Bradshaw et al. 1998; 

Stǎnescu et al. 1967; Nakadate et al. 1998; Luo, Hsu, and Shen 2009; Sharifian et al. 

2011; Z. P. Wang et al. 1994; Fogh, Frost, and Georg 1969; Storaas et al. 2015; Qin 
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et al. 2014; El-Zein et al. 2003; Nemery 1990; Hjortsberg, Orbaek, and Arborelius 

1992; McCormick, Goddard, and Mahadeva 2008; McMILLAN and Pethybridge 

1983; Barhad, Teculescu, and Crăciun 1975; Kilburn et al. 1989; Mur et al. 1985). 

Mathematical relationships linking process parameters to welding emissions have 

been documented in literature, while epidemiological studies related to health 

impacts are based on statistical analysis. From Figure 12, the process parameters 

(welding current, voltage, speed, shielding gas flow rate, shielding gas composition, 

and filler wire composition) function as independent variables, represented as green 

nodes. 

Variables representing emissions, such as fume generation rate, fume 

composition, particle size, and cumulative exposure time, are considered as outputs 

which influence worker health (red target node). Intermediate variables are 

dependent variables whose values need to be monitored using sensors or, need to 

be simulated or predicted based on models. They also function as hubs within the 

graph model and provide a bridge for knowledge integration from the two domains. 

In addition to the intermediate variables, worker health is affected by exogenous 

variables (grey nodes), such as smoking habits, age, and prior health condition. The 

causal relationships between these variables can be established using experimental 

data, equations, and/or functional models. Here, causal relationships between 

variables have been established using the modelling framework.  

The causal graph can be used as a precursor to the development of machine 

learning models, such as BNs, for simulation (H. P. N. Nagarajan et al. 2018; 

Mokhtarian et al. 2019). The BN will comprise multiple nodes that represent the 

different variables of the system of interest. These nodes will be connected in the 

form of direct acyclic graphs (DAGs), developed based on their causal relationships. 

The causal relationships shown in Figure 12 will help generate the DAG for worker 

health for the WAAM process. Simulation of the BN model can enable the 

following: 1) monitoring the effect of changes in process parameters on emissions 

and worker health, 2) suggesting safety equipment and procedures required based on 

exposure time, fume composition, and fume generation rate, and, conversely, and 

3) prescribing optimal process parameters based on available safety equipment to 

control emissions rates and prevent adverse worker health effects. The 

implementation of such a model would allow engineers and managers to monitor 

shop floor processes and ensure the safety of workers a priori or as conditions change. 
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4.2.2 Dimensional Quality in WAAM-CMT 

The metamodelling approach has been employed in this research to analyse and 

summarize the results of different models that currently exist in literature for 

WAAM. A detailed account of the results of this study has been presented in 

Publication III of this manuscript.   

The selection of the papers presented in the current effort to model the WAAM 

process was completed using three key criteria. First, the research should support 

the creation of a simple model for geometry modelling and mechanical property 

modelling of WAAM produced parts. Second, the process reported by the research 

should exhibit globally similar deposition and thermal phenomena as for the WAAM 

process. Third, the modelled phenomena should be compatible with the modelling 

of the CMT WAAM used in this research. Figures 13 and 14 show the causal 

relationships identified and modelled graphically for single-bead and multi-bead 

models, respectively based on literature. 

Figure 13.  Causal graph model summarizing literature on single bead wire additive manufacturing 
(Ding et al. 2015; Girinath, Siva Shanmugam, and Sankaranarayanasamy 2018) 
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Figure 14.  Causal graph summarizing literature on multi-bead wire additive manufacturing (Y. Huang 
et al. 2015; Ríos et al. 2018; Rosenthal 1941; Nguyen 2004; Kwak and Doumanidis 2002)  

From the causal graphs, it can be seen that two variables are required in the WAAM 

process to generate a model of the wall width and three independent variables are 

needed for modelling wall height. The graphs provide multiple paths from the 

independent variables (i.e., WFR, TS, and n) to the two variables of interest here (i.e., 

w and h). In future research, several parameters considered as exogenous variables 

here will be integrated into the set of independent variables. This modification allows 

for expansion of the scope of the causal models, while consequently integrating 

additional parameters that jointly affect bead geometry and mechanical properties.  

The background study and initial causal graphs were used to develop an 

experimental approach to model bead width and height. The article analysed the 

current literature models and concluded that the bead geometry in WAAM can be 

modelled using a small number of independent variables. This conclusion was 

experimentally verified for a single bead geometry. Two experimental efforts have 

been carried out in this research. The first focuses on single-bead geometry by 

varying nine independent parameters using a Taguchi design of experiment (DOE) 

approach. The second effort focuses on building straight walls with stacked beads 

(varying the number of layers) and constant length (80 mm). A rectangular plate (300 

x 200 x 20 mm) made of mild steel was used as the base plate for depositing the 

single-bead and multi-bead geometry. Table 5 reports the experimental welding 

parameters, consumables, and equipment used.  
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Table 5.  Weld parameter settings, consumables, and equipment for single bead and multi-bead 
geometries 

Equipment /Material/ Method Single bead Multi-bead 
Base plate size (material) 300*200*20 mm 

(mild steel) 
300*200*20 mm 
(mild steel) 

Bead length (material) 50 mm (TD MAK-
10S) 80 mm (TD MAK-10S) 

Robot ABB 4600 40/2.55 ABB 4600 40/2.55 

Shielding gas type 
MISON 8 (Ar + 
8% CO

2 
+ 0.03% 

NO) 
MISON 8 (Ar + 8% CO

2 
+ 0.03% 

NO) 
DOE type (number of experiments) Taguchi L32 (96) Full factorial (27) 
Measurement of outputs Laser scanning CMM, profilometer 
Parameter of study (levels) 
Ignition time (t

ign
) (100, 200, 300, 

400) ms F (400) ms 
Ignition current (I

ign
) (90, 100, 110, 120) 

A F (46, 47.7, 49.2) A 
Arc length correction (ALC) (-15, -10, 0, 15) % F (0) % 
Wire feed rate (WFR) (53.3, 58.3, 63.3, 

68.3) mm/s (33.3, 41.6, 50) mm/s 

Travel speed (TS)  (6.6, 8.3, 10, 11.6) 
mm/s (10, 11, 12) mm/s 

Shielding gas flow rate (SGFR)  (14, 16, 18, 29) 
L/min F (14) L/min 

Torch angle (Φ) (70, 90, 120) 
degrees F (90) degrees 

Ending time (t
end

) (100, 200, 300, 
400) ms F (400) ms 

Ending current (I
end

) (125, 135, 145, 
155) A F (46, 47.7, 49.2) A 

Number of layer (n) F (1) layer (9, 12, 15) layers 
Wire stick out  F (15) mm F (15) mm 
Interpass temperature N/A  150 °C 
Note: F- Fixed parameter 

 

A detailed account of the experimental procedure followed in this article is presented 

in Publication III of this dissertation.  

4.2.2.1 Experimental Results for Single Bead Geometry in CMT  

Statistical analysis of the data collected from the single-bead experiments was used 

to characterize the influence of different WAAM process parameters on print 

quality. The recorded data was subjected to standard data cleaning. The input 

parameters and output data (h and w) were normalized, and a two-way analysis of 
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variance (ANOVA) test was conducted to identify the most influential process 

parameters on the height of the printed bead. The P-test associated with the 

ANOVA found that five out of the nine initial input parameters were statically 

significant in affecting the variation in height (Table 6), namely, WFR, TS, torch 

angle, ignition time, ending time, and ending current [37]. The effect of input 

variables on the mean of height (H) for the single bead geometry are shown in Figure 

15. 

Figure 15.  Effect of input variables on the mean height for a single bead geometry 

 

The influential parameters inferred from this initial study helped validate the high 

influence of WFR and TS on the weld dimensional quality as identified in the 

background section.  
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Table 6.  Two-way ANOVA for single bead experiments 

Source 

Deg. 

of 

Freedom 

Adjusted 

Sum of 

Squares 

Adjusted 

Mean 

Squares 

F-

value 

P-

value 

WFR  3 0.104 0.035 11.270 0.000 

TS 3 0.816 0.272 88.560 0.000 

α 2 0.346 0.017 5.630 0.004 

tign 3 0.050 0.017 5.410 0.002 

Iign 3 0.009 0.003 0.950 0.421 

ALC 3 0.182 0.006 1.980 0.121 

SGFR 3 0.003 0.001 0.290 0.832 

tend  3 0.099 0.033 10.800 0.000 

Iend  3 0.457 0.152 49.620 0.000 

Error 133 0.408 0.003     

Total 159 2.151       

4.2.2.2 Experimental Evaluation of Multi Bead Geometry in CMT  

 

The preliminary analysis conducted on the outputs of the first set of experiments for 

the single bead geometry and the background study, led to the identification of 

welding parameters that have higher impact on the quality of weld deposition. 

Previous experiments found that WFR, TS, heat input, and interpass temperature 

are the most influential parameters in CMT WAAM. A full factorial DOE was 

feasible for the multi-bead geometry due to the low number of input parameters 

chosen for this study. Two regression models were developed, one for predicting the 

height and the other for predicting the width of the part. Welding parameters WFR, 

TS, and n were considered as the independent variables. A power law was adopted 

to relate the independent parameters to the dependent parameters; power laws are 

suited for representing nonlinear relationships between variables in welding. The 

regression equations developed for height (h) width (w) are shown in Eq. 7 and Eq. 

8, respectively:  
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  (7) 

  (8) 

subject to 

2.5 ≤ λ ≤ 5.0 

To = 150 °C 

Two quality metrics (i.e., R2 and RMSE) were computed for each model with respect 

to the data from the 27 experiments (Table 7). The equations obtained from the 

regression analyses were then used to develop a BN using BayesiaLab 8 modelling 

software (Bayesia USA n.d.). 

Table 7.  Quality metrics for the regression equation 

Quality metric For w For h 

R2 0.8562 0.9665 

RMSE (root mean square error) 0.1056 0.2689 

The BN model (Figure 16) for the geometrical features (height and width) for an 

additively manufactured wall is developed using the regression equations. Five 

validation experiments were performed for forward simulation, wherein the users 

defined the WFR, TS, and n values and the BN model was used to predict the 

resultant width and height values. Consequently, three experiments were performed 

for backward simulation, wherein the user defined height and width target values 

and the BN model predicted the values of input parameters to achieve the targets. 

During backward simulation, the user defined the target width and height of the part 

to be printed as 3.6 mm and 11.0 mm, respectively. The Bayesian inference engine 

was then used to prescribe the values for WFR (2.5 mm/min), TS (11 mm/s), and n 

(9 layers) to achieve the target width and height. The printed part was then measured 

using a CMM. The average error for the predicted wall width and height were found 

to be 7.72% and 8.76%, respectively.  

In addition, two quality metrics were computed for the forward and backward 

simulation, namely, maximum relative error magnitude (MREM) and average relative 

error magnitude (AREM), to assess the predictability of the model. Together, these 

1.4978 0.3953 0.0286 0.6730
2 . . .ew e WFR n TS− −

 =

0.0946 0.3539 0.8608 0.3583
1 . . .eh e WFR n TS −

 =
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two metrics evaluate both overall predictability and worst case predictability of the 

meta-model (Yang et al. 2017). Error relative to the variation range of h and w values 

was also computed. The MREM and AREM metrics for width and height are given 

in Table 8 and Table 9 for the regression models and Bayesian models, respectively. 

MREM, which assesses the predictable error in the worst-case scenario, was found 

to be 2.84% for width and 3.69% for h. AREM was found to be 1.83% for w and 

1.44% for h. Finally, ε assesses the accuracy of the model with respect to the range 

of possible variation of both w and h to characterize the error magnitude better than 

through relative error computation. The relative error for the developed regression 

models was found to be slightly higher than that of the best-performing models for 

width of multi-bead prints from literature. Sequeira Almeida (Sequeira Almeida 

2012) predicted the width for multi-bead prints with relative errors of 0.41%, 6.49%, 

and 5.42% for three experimental validation tests. 

Figure 16.  Visualization of the Bayesian inference for backward simulation 

 
 

A relative error of 2.76% was observed through validation for the model in the worst 

case (Sequeira Almeida 2012). However, in the current work, the error computation 

follows a more conservative approach to characterize the magnitude of the error.  
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Table 8.  MREM and AREM values for the regression model 

Quality metric For w For h 

MREM 2.84% 3.69% 

AREM 1.83% 1.44% 

Average ε 4.93% 2.35% 

Table 9.  MREM and AREM values for the backward Bayesian model 

Quality metric For w For h 

MREM 4.38% 3.62% 

AREM 3.03% 3.09% 

Average ε 8.12% 4.60% 

The quality metrics presented in this study show an acceptable accuracy of the model 

for predicting geometrical dimensions of multilayer parts. These validation results 

support the hypothesis that the considered input parameters (WFR, TS, and n) are 

sufficient to predict geometric dimensions of multi-bead prints for the CMT WAAM 

process.  

4.2.2.3 Discussion 

This research presented a graph-based modelling approach combined with 

regression analysis and Bayesian networks to model the width and height of a multi-

bead geometry printed using WAAM. The model performance from validation 

shows a good prediction capability and potential for generalization. The Bayesian 

network (BN) implementation enables model expansion to include more variables, 

such as torch angle and filler material type, with verification through future 

experiments. Since the BN is modular, its scope could be gradually expanded to 

model other targets. Modularity allows for combining analytical and experimental 

developments into a single model. However, to switch between different material 

systems, additional experiments to determine the optimal value ranges of the two 

constraints (λ and Tw) are required. In addition, cooling rate has been observed to 

have a high influence on the final mechanical properties and dimensional quality of 

the weld. Thus, modelling the cooling rate for different materials will allow for 

expansion of the BN model to include more targets such as hardness and tensile 

strength.  
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4.2.3 Thermal Influence on Microstructure and Mechanical Properties in 
WAAM-CMT 

The research presented in Publication IV of this manuscript is an experimental 

characterization of the thermal phenomena observed during WAAM, and its effect 

on the microstructure and mechanical properties of the final printed part. The results 

of the study are utilized in Publication V of this manuscript for holistic 

metamodelling of the WAAM process. A detailed account of the results for the study 

are presented in Publication IV of this dissertation. The wall temperature data, 

hardness and tensile strength properties, and microstructure images were used to 

characterize the effect of different process parameters (i.e., filler wire material, WFR, 

TS, and T0) on the weld properties as detailed below. 

A schematic of the printed wall for microstructure and mechanical properties 

characterization is shown in Figure 17. Using the collected temperature data, four 

zones of interest from the bottom to the top of the wall, labelled Z1, Z2, Z3, and 

Z4 in Fig. 16 were identified. The cooling rate of the weld tends to decrease moving 

from zone Z1 to Z4. This trend has the effect of increasing the wait time to reach 

the specified interpass temperature between successive depositions. It was observed 

that the cooling rate reaches a steady state value as the height of the part and number 

of layers deposited increases; this value appears to be dependent on the material type 

and energy input. This phenomenon was not examined further in this study. 

Image analysis was used to identify the material grain sizes and microstructure 

phase constituents of the printed specimens. Figure 18 shows the microstructural of 

the WAAM-built walls for the two parameter sets (M1E1 and M1E2) using G4Si1. 

The walls printed using AM70 steel alloy also exhibit distinctive microstructural 

variations as a result of layer-by-layer deposition (Figure 19). A summary of the 

mechanical property measured is presented below: 

The measured YS, UTS, and % elongation values for parameter sets M1E1 and 

M1E2 for both materials are reported in Table 10. Lower heat input resulted in 

higher YS and UTS and lower uniform strain (Figure 22). YS and UTS increased by 

13 % and 3.8 %, respectively, in G4Si1 steel deposits with the lower energy input 

parameters (M1E1) than with higher energy input parameters (M1E2). YS increased 

by 9 % in AM70 steel deposits with the lower energy input parameters (M2E1) than 

with higher energy input parameters (M2E2). However, in case of UTS the lower 

energy input parameters (M2E1) saw a 1 % decrease compared to high energy input 

parameter (M2E2). 
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Figure 17.  Schematic of the deposited wall with locations of temperature measurement and 
mechanical samples marked along build direction 

 

Percentage elongation at failure was 10 % and 3 % lower in G4Si1 and AM70 

deposits respectively, for printing with lower energy input parameters (M1E1 and 

M2E1) than with higher energy input parameters (M1E2 and M2E2).  Higher energy 

input parameters resulted in increased ductility and reduced hardness for both 

materials. Owing to a lack of significant anisotropy in G4Si1 deposits due to an 

equiaxed grain structure, the mechanical properties in the travel direction showed 

negligibly higher UTS (0.38%) than the samples taken in the build direction. A similar 

trend was observed for AM70 (increases of 2.7% and 0.24% in YS and UTS, 

respectively). Even though energy input varied for both materials for the different 

parameter sets, no significant microstructural changes were observed across the 

parameter sets for G4Si1, though energy input variation had a significant influence 

on the material microstructure for AM70. Prior austenite grains were 

equiaxed/polygonal for M2E1, while they were columnar for M2E2. Higher heat 

input settings normalized the columnar grains, increasing the sub-grain size. The 

observed microstructures for M2E1 and M2E2 were comprised of similar phases 

(i.e., ferrite + bainite + martensite + inclusions).  
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Figure 18.  Optical micrographs (25 μm scale) of WAAM built parts using G4Si1 welding wire for 
M1E1. Micrographs reported along wall height from top to bottom (sample A1, A2, and B). 
Phases identified: AF – Acicular ferrite, ALF – Allotriomorphic ferrite, WF – Widmanstätten 
ferrite, and F – Equiaxed ferrite.  
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Figure 19.  Optical micrographs (25 μm scale) of WAAM built parts using AM70 welding wire for 
M2E1. Micrographs reported along wall height from top to bottom (samples A1, A2, and 
B). Phases identified: AF – Acicular ferrite, and B – Bainite  

 

Smaller grain sizes due to higher solidification rates and limited grain growth in lower 

energy input parameter sets (M1E1 and M2E1) resulted in higher YS and hardness 
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in both alloys. Since grain boundaries play an essential role in resisting dislocation 

movement in polycrystalline materials, the observed mechanical property trends are 

attributed to the presence of more grain boundaries in samples printed using lower 

energy input parameters.  

Table 10.  Microstructure and mechanical property results for G4Si1 and AM70 deposits 

Tested 

Sample 
HV1 

Grain 

Size (μm) 

YS 

(MPa) 

UTS 

(MPa) 
% e Phase 

M1E1-A1 
191.90 ± 

9.45 

3.21 ± 

2.90 

447.20 

± 0.78 

628.35 

± 17.78 
31% 

Acicular ferrite with 

traces of 

Widmanstätten and 

allotriomorphic ferrite, 

bainite 

M1E1-A2 
168.65 ± 

5.39 

4.21 ± 

3.92 

Equiaxed ferrite, 

remanent acicular 

ferrite, traces of 

pearlite and bainite 

M1E1-B 
168.60 ± 

4.85 

4.03 ± 

4.30 

Equiaxed ferrite and 

traces of pearlite  

M1E1-C1 
173.55 ± 

4.10 

5.61 ± 

3.15 

Equiaxed ferrite and 

pearlite, 

allotriomorphic ferrite, 

remanent acicular 

ferrite, and traces of 

bainite 

M1E1-C2 
248.25 ± 

28.27 

2.46 ± 

1.95 

Acicular ferrite and 

traces of 

Widmanstätten, 

allotriomorphic ferrite 

and bainite 

M1E2-A1 
165.25 ± 

11.92 

4.55 ± 

4.83 

395.55 

± 1.62 

605.00 

± 10.60 
41% 

Acicular ferrite with 

traces of 
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Widmanstätten and 

allotriomorphic ferrite, 

bainite 

M1E2-A2 
155.10 ± 

3.26 

5.40 ± 

4.78 

Equiaxed ferrite, 

remanent acicular 

ferrite, traces of 

pearlite and bainite 

M1E2-B 
155.15 ± 

2.16 

5.38 ± 

4.58 

Equiaxed ferrite with 

trace amounts of 

pearlite 

M1E2-C1 
170.45 ± 

6.00 

3.92 ± 

2.34 

Equiaxed ferrite and 

pearlite, 

allotriomorphic ferrite, 

remanent acicular 

ferrite, and traces of 

bainite 

M1E2-C2 
190.5 ± 

10.63 

2.79 ± 

2.07 

Bainite, acicular ferrite 

and traces of 

Widmanstätten and 

allotriomorphic ferrite 

 

M2E1-A1 
311.00 ± 

26.18 

2* 
771.82 

± 0.84 

932.96 

± 28.67 
25% 

Acicular ferrite and 

bainite 

M2E1-A2 
271.55 ± 

7.58 

Bainite and acicular 

ferrite 

M2E1-B 
271.45 ± 

9.56 

Bainite, acicular 

ferrite, and martensite 

M2E1-C1 
286.90 ± 

11.03 

Bainite and acicular 

ferrite  
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M2E1-C2 
339.17 ± 

15.34 

Bainite, martensite, 

acicular ferrite with 

trace amounts of 

retained austenite 

M2E2-A1 
305.30 ± 

9.30 

2-3* 
707.58 

± 3.53 

943.34 

± 9.98 
28% 

Acicular ferrite and 

bainite 

M2E2-A2 
266.50 ± 

10.62 

Bainite and acicular 

ferrite 

M2E2-B 
244.95 ± 

7.96 

Bainite, acicular 

ferrite, and martensite 

M2E2-C1 
281.95 ± 

12.45 

Bainite and acicular 

ferrite  

M2E2-C2 
346.25 ± 

24.07 

Bainite, martensite, 

acicular ferrite with 

trace amounts of 

retained austenite 

*Obtained using manual measurement following ASTM E112. 

For printing WAAM parts with uniform microstructure, reducing or eliminating the 

need for stress relief heat treatment requires understanding the variation in 

microstructure caused by process-related thermal phenomena. Capturing data 

related to changes in cooling rates and wait times as a function of part height can 

help create better computational models which can enable process tuning and 

optimization. For example, cooling rate can be manipulated through forced heat 

transfer (conduction and convection) to attain desirable phases in different steels. 

The work herein will support development of models capable of characterizing the 

process parameter-process physics-property relationships for a family of steels in 

Publication V. 
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4.2.4 Holistic Metamodelling of Geometrical and Mechanical Responses in 
WAAM-CMT 

Modelling the impact of the process parameter window to predict part mechanical 

and geometrical response simultaneously is essential for meeting the demanding 

product requirements of the industry. Consequently, the specific research objective 

in Publication V is to model the geometrical dimensions of the weld, cooling rate of 

the weld and the wait time between layers, and the weld microhardness. 

Furthermore, the concurrent modelling, simulation, and prediction of material and 

geometrical response in CMT-WAAM is envisioned in the form of an integrated 

metamodel. This research presents the integration of the three developed models 

into a metamodel using the developed modelling framework for mapping the feasible 

design and performance space for combined process parameter tuning. A detailed 

account of the study is presented in Publication V of this manuscript. A summary of 

the modeling and results are presented below: 

Three categories of models and associated levels of details exist in this research. 

The first two models used to represent the geometry and the thermal profile of the 

weld have the highest level of fidelity due to the significant amount of experimental 

data points obtained. The thermal profile of the weld is modelled in two different 

ways: 1) modeling the thermal profile as an average cooling rate of the weld layer 

using a gaussian process model and 2) modeling the thermal profile as the wait time 

between layers using Lasso (Least Absolute Shrinkage and Selection Operator) and 

ordinary least squares regression.   The third model representing the mechanical 

property (microhardness) is less granular and models the microhardness using an 

artificial neural network with two inputs. The geometric model for the width and 

height of the weld has been developed by the authors in a previous work (H. P. N. 

Nagarajan et al. 2019). The geometric model was developed using an ordinary linear 

regression with the final model obtained in power-law like the thermal model.   

Like the geometric model, the wait time between layers is predicted as a function 

of the WFR, interpass temperature (t0), n, max temperature of later (MaxT), and the 

minimum temperature of the layer (MinT) using ordinary least squares (OLS) 

regression. Additionally, the thermal profile represented by the average cooling rate 

(CR) of the weld layer is developed as a Kriging model aka. Gaussian process 

regression (GPR).  

The last model is the model for the material’s Vickers hardness (HV). The model 

in this effort focuses on correlating the WFR and t0 with their measured HV values.  
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Figure 20.  Composite graph-based meta model integrating models for geometry, thermal profile, and 
microhardness 

 

A compact artificial neural network model with two hidden layer and six nodes in 

total are fit for the experimental DOE. The models are composed together using the 

developed modelling framework into a causal graph as shown in Figure 20.  

Figure 21.  a) Model prediction and design space for microhardness, dash-line represents the region 
and point of the validation experiments, b) Model prediction and design space for weld 
height, dash-line represents the region and point of the validation experiments, and c) 
Experimental validation results for microhardness and weld height. 
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The developed graph is converted into a DAG for implementing a BN for 

simulation. Multiple objectives can be propagated for model simulation within the 

probabilistic BN model and the predicted value ranges effectively present the global 

design space within which targeted optimization strategies can be implemented. The 

initial simulation of the BN was performed for design space exploration.  

The simulated values of the developed Bayesian meta model were used to model 

the design space for HV1 and weld height in Figure 21a and 21b respectively in the 

form of surface response graphs. The simulated values of HV and weld height from 

the BN is shown in Figure 21c. The values are decomposed in two groups, (A, B, C, 

D) for the microhardness tests and (E, F, G, H) for the weld height validation. The 

dash-line in the 2D response surfaces in Figure 21 represents the region in the design 

space where the validation prints lie. The results of the BN metamodel simulation 

shows that the developed approach can support design space exploration to 

concurrently tune the input parameters to obtain the desired microhardness HV1 

and weld height h. The metamodel is helpful in characterizing known and new 

materials alike for process parameter tuning to achieve desired geometric and 

mechanical strength characteristics. 

4.3 Usability of the Developed Framework  

This dissertation research presents a metamodelling framework for advanced 

manufacturing process and product characterization using directed graphs and 

machine learning. The usability of the framework has been demonstrated through 

modelling use cases for the FDM and WAAM processes. The development of 

directed graphs allowed for integration of pre-existing knowledge to develop 

multidomain metamodels for the two AM processes. Simulation of the developed 

metamodels was facilitated using machine learning approaches such as ANNs and 

BNs to perform in-process decision making for process parameter tuning and 

optimization. However, the developed metamodels are not able to holistically 

represent all functional aspects of the two AM processes. For example, topology 

optimization is an ongoing design strategy for developing low weight, low-cost 

functional components using AM which introduces a high level of geometrical 

complexity in the process. This increased geometrical complexity must be addressed 

in future work such that models integrate the trajectory planning of the nozzle along 

with precise temperature control of the polymer or molten metal. Trajectory 

planning plays an important role in affecting the flow of deposited material and the 
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temperature profile. In WAAM, multi-axis arm robots are employed for nozzle 

trajectory control; thus, collision detection algorithms must also be integrated to 

ensure defect free deposition. Thus, to support development of holistic metamodels 

for use in process control applications, future modelling efforts must integrate path 

planning with process parameter control in the form of new functions and attributes. 

These additional function models can be used to update existing graph models. In 

this manner, it can be seen that the modular nature of the developed framework 

allows for easy integration of new knowledge about a process or product to be 

introduced into an existing model.  

The framework developed herein supports homogenous composition of 

different forms of knowledge into a simulation model at the early stages of design 

using only partial or incomplete knowledge about the product or process. 

Knowledge is composed together using functions and bond graph elements to form 

a homogenous graph model. However, the accuracy of the model can be affected by 

the completeness and level of detail included in the functions. Thus, a designer must 

be conscious in introducing the influencing variables associated with each function. 

Detailed function modelling can help alleviate accuracy issues, provided the 

completeness of functions can be ensured.  

A challenge in the development of simulatable metamodels is the presence of 

looping functions in the graph. A prerequisite for the development of probabilistic 

machine learning models such as BN is the use of a directed acyclic graph for model 

fitting. Looping functions in the graph model would therefore need to be addressed 

to ensure that a simulation model can be developed. The TRIZ principles of ideation 

and separation may be applied in the functional architecture to de-loop functions and 

ensure one-directional dependency flow in a graph model. The process of function 

restructuring is not directly supported by the framework and the user is responsible 

for analysing and minimizing the effect of the changes on model performance.  

Finally, the causality of parameters captured by the developed graph models can 

be affected by the type of data and models used as pre-existing knowledge. The 

framework suggests functional models should be mapped to BG elements to 

concretize the abstract functional models. The causality extraction algorithm applied 

is adapted from existing validated causal rules in BG theory. However, establishing 

the graph from existing models is also possible without mapping the functions to 

the BG elements, since the framework separates variables into defined categories. 

Though the variable relationships modelled can be verified to be causally linked (e.g., 

(Harding and Seefeldt 2013; Chockler 2016), the developed framework does not 

suggest an approach for such a validation. Thus, evaluation of the effectiveness of 
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the model as a causal graph is left up to the user. Nevertheless, the demonstrated 

framework is a generic modelling approach whose maturity can be improved 

through application to different process and system modelling across various 

domains (e.g., product design and development, supply chain management, and 

network cybersecurity). The addition of new attributes, methods, and tools and 

analysis capabilities can improve upon the framework through future research. These 

potential extensions are briefly presented in the next section.  



 

86 

5 CONCLUSIONS AND FUTURE WORK 

This research was undertaken to advance technology integration efforts for AM in 

response to the increasing need for product and process performance improvement. 

In additive manufacturing, product customization enables unique product benefits, 

but simultaneously introduces a higher level of process complexity, which directly 

affect the reliability and repeatability of production. Thus, it is important for 

manufacturers to make informed decisions towards development of products for 

AM through holistic system modelling and simulation. Additionally, it is important 

that such decisions rely on accurate product and process data to improve production 

efficiency. At present, holistic system modelling requires an array of heterogenous 

models for a single AM technology. However, the inclusion of different AM process 

activities/functions, geometries, and materials makes it a challenge to compose the 

necessary subsystem-level heterogenous models into a holistic system model.  

Thus, the main goal of this research is to present a digitized approach for 

holistically modelling AM systems for quantitative analysis (scenario analysis, 

decision making, design space exploration, and optimization) through simulation. 

This goal is pursued by addressing three primary research objectives in the five 

publications as shown in Table 4 of this dissertation. Thus, a graph-based 

metamodelling framework is developed for holistic characterization of AM systems 

through the following tasks: 

1. Development of a modelling approach using knowledge graphs or 

causal graphs for characterizing AM systems. The graph-based 

modelling enables the integration of different forms of knowledge 

(functional requirements, pre-existing models/equations, and data) into 

a unified representation. Graphical models presented in this research 

characterize linkages between a mechanism and resultant phenomena 

and provide more model transparency than data-driven surrogate 

modelling approaches. 

2. The developed graph metamodel is used as a precursor to train different 

machine learning algorithms to enable simulation analysis of the 

metamodel. The graph-based representation allows for training both 

deterministic and probabilistic machine learning approaches. The 
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developed approach is lean and enables faster simulation of the holistic 

metamodel when compared to higher fidelity simulation models. 

3. The developed framework is applied for characterizing two additive 

manufacturing processes namely, FDM and WAAM in four modelling 

case studies as presented in Publication I, II, III, and V of this 

manuscript. The simulation of the developed case study metamodels aid 

in quantitative analysis of the evaluated system for prediction analysis, 

decision support, design space exploration, and system optimization. 

Learnings from this research support adoption of AM technology for mainstream 

manufacturing as follows:  

1. The graph-based metamodelling framework provides a uniform 

approach for representing the cause-effect relationships between 

different variables of a system. In addition, it allows for composing 

different forms of knowledge from different domains together into a 

unified representation. The use of pre-existing knowledge enables faster 

development of models with less demand for time-intensive experiments.  

2. The graph metamodel acts as a pre-cursor for applying machine learning 

algorithms to enable simulation analysis. Simulations play an important 

role in facilitating an efficient design process through sensitivity analysis, 

multi-domain optimizations and at early design stages, analysis of risk and 

uncertainty resulting from limited knowledge. The graph metamodel 

enables faster computation of performance measures in comparison to 

high-fidelity simulation models. Faster simulation times can support 

development of monitoring and control systems for AM.  

3. Translating product design information, manufacturing process 

information, and mathematical process models through holistic 

modelling and simulation will enable for better design and production of 

products for additive manufacturing through quantitative analysis. The 

use and development of the metamodelling framework allowed for 

predicting and controlling the process outputs in FDM and WAAM. This 

understanding can promote reliable and repeatable AM operations 

through informed decision making. 

The future research development envisioned for the methodology have been 

identified as a direct result of this research, which include:  
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1. Automation of the developed modelling approach. The current 

modelling efforts implement the different steps in the framework 

independently. The development of a software-based solution can 

provide a standardized approach to modelling and accelerate the 

development time for graph metamodels. A dedicated software package 

can provide more functionality and accessibility to users for quantitative 

analysis of the metamodels.   

2. Integration of qualitative and quantitative analysis methods into the 

framework for simulating the developed metamodel at different levels of 

fidelity.  Coupling of the graph metamodelling framework with machine 

learning has been shown in this research to be beneficial in simulation. 

Similarly, principles from system dynamics can help evaluate looping 

functions in the graphs and constraint programming may be integrated 

to expand the analysis capabilities of the developed framework.  

3. The use of transfer learning may be investigated for using the graph 

model structure and functions as pre-existing knowledge for modeling 

similar technologies or systems.  Transfer learning can drastically reduce 

model development time and promote interoperability in AM.  
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ABSTRACT 
 

Additive manufacturing (AM) continues to rise in popularity due to its various advantages over traditional 

manufacturing processes. AM interests industry, but achieving repeatable production quality remains 

problematic for many AM technologies. Thus, modeling different process variables in AM using machine 

learning can be highly beneficial in creating useful knowledge of the process. Such developed artificial 

neural network (ANN) models would aid designers and manufacturers to make informed decisions about 

their products and processes.  However, it is challenging to define an appropriate ANN topology that 

captures the AM system behavior. Towards that goal, an approach combining dimensional analysis 

conceptual modeling (DACM) and classical ANNs is proposed to create a new type of knowledge-based 
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artificial neural network (KB-ANN). This approach integrates existing literature and expert knowledge of 

the AM process to define a topology for the KB-ANN model. The proposed KB-ANN is a hybrid learning 

network that encompasses topological zones derived from knowledge of the process and other zones 

where missing knowledge is modeled using classical ANNs. The usefulness of the method is demonstrated 

using a case study to model wall thickness, part height, and total part mass in a Fused Deposition 

Modeling (FDM) process. The KB-ANN based model for FDM has the same performance with better 

generalization capabilities using fewer weights trained, when compared to a classical ANN.  

Keywords: Additive manufacturing, fused deposition modeling, dimensional analysis, empirical learning, 

knowledge-based artificial neural networks 

 
INTRODUCTION 

 

Major technological and industrial advancements in manufacturing (e.g., additive 

manufacturing, cloud computing, nano-manufacturing, and advanced materials) have 

brought about great paradigm shifts in the way products are designed and 

manufactured. Additive manufacturing (AM) research has enabled the growth of 

innovative techniques and functional products, framing AM as a feasible alternative to 

subtractive and formative techniques [1]. AM processes are being adopted at an ever-

increasing pace for mainstream manufacturing. Particularly, polymer extrusion 

technology, such as fused deposition modeling (FDM) are among the most well 

researched and most widely used AM processes. The FDM process involves successive 

melting, extrusion, deposition, and solidification of thermoplastic polymer melts [2]. 

Typical FDM equipment consists of a material delivery system or extrusion system, 

heating system, build plate, and filament feeder. The process begins with the generation 

of layer profile information using a rapid prototyping (RP) software for any given 3D CAD 
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model. The FDM equipment then deposits semi-liquid molten polymer beads onto a 

heated build plate following the layer information provided from the RP software [2]. 

This process remains a source of innovation; new technologies are being developed 

using this approach for metal printing using a metal and polymer matrix, for example 

[3,4]. The FDM process involves storage of thermal energy in the molten material, 

distribution of this energy into the part through a thermal conduction process, and 

energy dissipation from the part by convection cooling. The redistribution of the 

thermal energy ensures the bonding between layers. Several methods exist for 

thermoplastic delivery in the process, namely, use of liquefiers for self-extruding 

filament, fluid metering rotary pumps, and high-pressure plunger systems [5,6]. The 

liquefier-based material delivery method is dominant in most FDM machines. In this 

research, material delivery using a liquefier, which employs a self-extruding filament, is 

modeled.  

For FDM parts, the cross-section of a deposited layer is shaped through the 

direct flow of polymer melt between the previous layer and the printing nozzle. This 

results in shapes having the form of flattened ellipsoids. Since the 1980s, process 

models have been developed for understanding the complex phenomena taking place in 

FDM, such as thermal transfer, layer creation, and bonding processes [7,8]. Existing 

research on FDM modeling has focused on the cooling of single and multiple filaments, 

thermal behavior of the liquefier, analysis of melt front location, degree of cooling in the 

nozzle and impact of its design on operational stability, temperature distribution across 

different part design configurations, and impact of the build file [5,9,8]. This available 
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knowledge provides a set of dispersed sub-models supporting the understanding of 

localized phenomena, but does not provide an overall system perspective nor a global 

process model of FDM. Thus, it raises two main questions for qualification of FDM 

technology in mainstream manufacturing: i) Are the part requirements achievable with 

current FDM technology? and ii) What are the optimal manufacturing parameters that 

need to be selected to achieve required part specifications? Further, existing localized 

models cannot be used effectively in closed-loop control of FDM machines. Thus, 

metamodeling approaches can be evaluated for effective modeling and control of FDM 

processes [10]. 

Artificial neural networks (ANN) have been widely used as a modeling strategy to 

approximate complex functions. In this context, ANNs can be considered as one type of 

metamodeling approach [11–14]. ANNs are utilized in numerous domains and form the 

backbone of deep learning algorithms. The main challenge of developing and 

implementing an ANN is that it demands a large number of training data. Moreover, the 

architecture of an ANN is problem-dependent and it requires extra training to explore 

and progressively generate a suitable architecture via the weights allocated to each of 

the edges [15]. After training, ANNs are often difficult to interpret. Hence, ANNs have 

lost their lustre as a metamodeling approach over the past two decades [16]. This is 

specifically the case when a limited amount of training data is available or if the system 

to be modeled is subject to large variability due to its complexity. Deep learning 

approaches can be used for such large complex systems but the duration of the training 

can be extremely long (up to several years) and extremely costly [16–18]. The amount of 
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training data required sometimes implies the need of resources often only available in 

large companies. In addition to data challenges, an ANN topology has to be specified 

before the training, and available system knowledge is often not considered in designing 

such topologies. However, in engineering design and manufacturing, one needs to 

understand system behaviors in detail in order to produce better systems or products. 

Towards this goal, a methodology to design a modular ANN topology by 

integrating existing knowledge is proposed in this research. The modular ANN is 

composed of zones where system-related knowledge is available and synapses/weights 

of neurons in the ANN can be precomputed without training. In addition, detected 

zones where knowledge about the system is insufficient to precompute weights, 

classical ANNs are trained using experimental data. This proposed methodology is 

applied to an FDM process to elucidate how the topology of a modular ANN is derived. 

The approach helps to understand how a modular ANN structure composed of a mixture 

of known zones with precomputed weights and unknown zones requiring training can 

improve the performance of ANNs compared to the classical ANN approach. The 

existing process knowledge is integrated into this research using the Dimensional 

Analysis Conceptual Modeling (DACM) framework [19]. The DACM framework recently 

has been applied in various engineering domains, including reverse engineering, early-

stage design, multi-disciplinary optimization (MDO), and in this research is applied to 

artificial intelligence (AI). This conjoint modeling approach, combining DACM and 

classical ANNs, results in a new type of modular KB-ANN, differing greatly from existing 

KB-ANN methods. The expected outcome of this article is to benefit from the existing 
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knowledge of a system and encode this knowledge in the form of causal graphs linking 

different variables of a system. Specifically, in this research, variables are termed as 

neurons and causal graphs generated using DACM are considered as an ANN. Training 

datasets from experiments are required only for the zones in the KB-ANN where existing 

knowledge is limited, non-existent, or difficult to extract. For zones with sufficient pre-

existing knowledge, the training process is replaced by pre-computed weights for 

neurons using the DACM methodology. This conjoint experimental and modeling 

approach using KB-ANN is used to predict wall thickness, height, and mass of a part 

produced using the FDM process. The developed KB-ANN model is compared to a 

classical, fully connected ANN model under prescribed performance metrics. 

The research is organized as follows: Section 2 describes the experimental 

procedure used in the study and the approaches considered to encode knowledge for 

designing the ANN topology. Section 3 presents the case study and the application of 

the developed methodology for the case study. Section 4 discusses the key results of the 

study and Section 5 concludes the work and briefly describes future development 

efforts. 

 
BACKGROUND 

Design of Experiments 
 

Performing experiments by varying one-factor-at-a-time is cost intensive. Thus, 

design of experiments (DOE) proposes a set of principles to maximize the efficiency of 

experiments by minimizing the number of experiments to be conducted. One of those 
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principles is the use of factorial experiments. Full factorial DOE explores all the possible 

combinations of factors and levels [20]. In AM, the number of factors influencing the 

part quality is potentially large, and it is impractical and difficult to explore all the 

potential combinations of these possible factors. Sampling, which is the use of a subset 

of the experimental space, is consequently required to explore this space at an 

acceptable cost [21,22]. Currently, there are multitude of sampling methods available to 

explore the experimental space, such as stratified sampling, probability sampling, and 

sequential sampling [20,22–25]. In this research, DOE plays a role in collecting training 

datasets for zones of non-existent knowledge. Thus, the sampling method must explore 

the experimental space in those zones to ensure good generalization for the ANN 

training. Plackett-Burman design or Taguchi's Orthogonal Arrays are proven to be useful 

in evaluating a small number of sample points considering interaction between the 

studied variables [20,26,27]. However, the Taguchi method has come under scrutiny 

due to its many weaknesses in terms of confusing signal-to-noise ratio statistics, non-

adaptive and non-sequential approach to experimentation, and ignorance of 

randomization, and old data analytical approaches [28]. Hence, some of the classical 

Taguchi tools such as signal-to-noise ratio are not utilized in this study. Nevertheless, 

randomization is considered via the selection of Taguchi tables and the analytics are 

developed as part of the KB-ANN approach. The Taguchi method is employed in this 

study mainly for its simplicity. In addition, optimizing the experimental design for AM is 

not the central idea of the study, but such optimization could further improve the 

accuracy of the developed process models in this research. 



ASME Journal of Mechanical Design 
 

9 
 

 
Metamodeling using Artificial Neural Networks 

 

Several metamodeling approaches, such as Kriging models, polynomial models, 

and neural network models, exist in literature for modeling complex systems. A 

metamodeling approach using ANNs can provide numerous advantages for the FDM 

process and AM, in general.  ANN enables the development of global predictive models 

integrating numerous parameters. Furthermore, ANNs can support the implementation 

of a closed-loop control system to improve part quality and process repeatability. In 

other metamodeling approaches, such as Kriging or Gaussian process regression, 

modeling is performed as black boxes built over a designed set of experiments.  This 

means that existing knowledge of the process or system (e.g., process physics) is not 

used. The current effort is using this untapped knowledge of the process or system to 

enable a grey box or white box metamodeling approach. The proposed approach differs 

from classical surrogate methods in using existing knowledge; thus, the number of 

required experiments is reduced. The experiments are not used to train the entire 

model, but to train only parts of the model. Through knowledge extraction and 

management, we can limit the need for experimental data sets by integrating the 

existing system knowledge available for the observed process into the ANN [19,29]. 

Nevertheless, existing knowledge in literature is represented in multiple forms and lacks 

interoperability [30]. For this reason, the DACM framework is utilized to integrate 

different knowledge to be coherent with each other, and to visualize the cause-effect 

relationships in the form of causal graphs. 
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Dimensional Analysis Conceptual Modeling Framework 
 

Coatanea et al. [19] developed a method to extract and encode knowledge 

associated to system architectures, equations, and measuring units. The encoded 

knowledge is represented in the form of causal graphs. DACM can be an efficient 

approach to the creation of surrogate models and for adaptively training an ANN. 

Modeling starts with designation of the system boundary and definition of the model’s 

objectives. Functional representation is used to represent the sequence of functions 

taking place in the system of interest. Those sequences of functions describe the 

different behavior of the observed system. DACM transforms the initial function model 

into a generic functional model formed around a limited set of fundamental functions 

and uses the causal rules extracted from bond graph theory [31–33]. The dimensional 

analysis is applied to each node of the graph to form behavioral equations. A color 

pattern is applied to different variables to highlight their design nature. The primary 

result of this modeling is a colored hypergraph with a list of governing equations for the 

system of interest. The model can then be used for qualitative or quantitative 

simulations, and to search for contradicting variables during optimization. Fig. 1 

visualizes different steps in the DACM Framework; the process ends when a computable 

model of the system of interest is available with the required level of detail. 

Generic functions represented by bond graph organs are used as an 

intermediate level between the classical functional models and the final causal graphs 

[32,33]. To facilitate the systematic assignment of variables to the generic functional 

representation, regardless of the energy domain, all variables are classified into five 
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generalized categories, namely, Flow, Effort, Momentum, Displacement, and Connecting 

[34]. 

_Figure 1_ 

The mathematical relationship between generic variables describes how the 

variables relate to each other. The sequence of functions in the functional model 

provides initial insight into the global causality. Mapping functions to the generic 

functional elements enables the extraction of the causality among the variables 

characterizing those functions. Table 1 summarizes the causal rules in the DACM 

approach. Fig. 2 represents a causal extraction algorithm used to automate the DACM 

modeling process. First, the algorithm checks if a generic functional organ is defined for 

each functional box. Then, the algorithm explores each functional box of the model 

from start to end, to verify that there is no conflict in the coherence of the generic 

functional representation in terms of causality. 

_Table 1_ 

Finally, according to categories of assigned variables and using the causal rules 

(Table 1), the cause-effect relationships between variables are established [19,35]. The 

causal graph generated using DACM is used to define the topology of ANNs during 

process modeling. 

_Figure 2_ 

 
Empirical Learning Using Artificial Neural Networks 
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Machine learning methods are empirical learning techniques. Empirical learning 

systems inductively generalize from specific examples. They usually require little 

theoretical knowledge about the problem domain. This advantage is compensated by 

the need for a large training data set. ANNs have proven to be equal, or superior, to 

other empirical learning systems over a wide range of domains, when evaluated in 

terms of their generalization ability [36,37]. ANNs are usually comprised of layers (k) 

with nodes (j), where each node sums up i weighted outputs of the nodes from the 

previous layer as per Eq. 1. 

, , , 1 0,j k ij k i k k
i

s w x w−= +  (1) 
 

 

In Eq. 1, sj,k represents the weighted sum of node j at layer k, wij represents the 

weight of ith output at node j, wo,k represents the initial weight of layer k at the first 

node. This summation is passed through a non-linear activation function, the output of 

which acts as input for the next layer. A common choice for the activation function is the 

sigmoid function, which is also called the continuous unit step function (Eq. 2). 

( )
( ),

,

1
1j k

j k
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The computational power attributed to these networks originates from these 

non-linear functions h(sj,k) of the weighted sums. However, the non-linearity also makes 

it difficult to mathematically analyze these networks at a deeper level and requires a 

large set of training data to capture the desired relationship. In ANNs, a state pi of a 

neural network can be uniquely described by {w1 … wn}p where wi represents a weight 
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within the network. During the training process, the network goes through a subset of 

the state space (p) continuously improving the model performance. The hypothesis for 

the following investigation is that the total number of states p and the total number of 

weights n of an ANN can be reduced by incorporating prior knowledge about the 

system. Thus, this approach can increase the efficiency of the model, while reducing the 

computational cost. 

The initial weights allocated to the network can greatly affect how well ANNs can 

learn [38]. The initial weights allocated is also the central source of the well-known 

vanishing gradient problem associated with ANNs [39], which is present when training 

ANNs with gradient-based learning methods and backpropagation. According to 

Hochreiter et al. [39], in such methods, each of the ANN’s weights receives an update 

proportional to the gradient of the error function with respect to the current weight in 

each iteration of training. In some cases, the gradient will be vanishingly small, 

preventing the weight from changing its value. In the worst case, this may completely 

stop the ANN from training. This problem is more likely when too many hidden layers of 

neurons are used in an ANN. Some heuristic rules can be used to constrain the potential 

size of an ANN [40]. This implies that ANN designs must be small in terms of the number 

of inputs, number of outputs, size of hidden layers, and number of hidden layers. 

 
ANN-based Process Modeling 

 

ANNs with numerous architectures and training algorithms are utilized in process 

modeling and forecasting output variables. ANNs with the assistance of data 
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standardization, data preprocessing, and model performance optimization have become 

a key enabler in modeling different processes. The main advantages of ANNs in 

modeling when compared to other process modeling methods are, (i) its ability to 

handle noisy and ambiguous data, (ii) lower cost of implementation than other 

approaches, (iii) and their suitability for accurate representation of dynamic problems 

[41,42]. However, it is only possible to perform black box modeling using classical ANNs, 

resulting in limited information about the hidden layers and relations between the 

layers. This lack of process information during ANN topology design can result in 

overfitting models due to the empirical nature of ANNs [42]. Thus, research must be 

focused on designing ANN architectures that are transparent and require less 

computation to improve cost-effectiveness. 

 
Relevance of Designing an Artificial Neural Network Topology for Manufacturing 

 

In manufacturing, several problems are associated with capturing and using 

existing knowledge. This knowledge can be efficiently used to reduce the size and 

complexity of engineering models and be applied to the design of ANN topologies. 

Dimensional analysis offers a way to reduce problem dimensionality by combining 

variables. For example, inputs of an ANN can be combined into dimensionless groups. 

This transformation directly affects the number of weights to be trained and, intuitively, 

should have a positive effect on ANN performance. Similarly, the DACM method 

generates causal graphs that can be seen as elementary ANN topologies. Such ANNs can 

quickly grow in size and face the problems presented above, such as, vanishing gradient 
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issue and overfitting. For this reason, a modular approach to model the target variables 

is presented. For example, causal graphs such as the one presented in Appendix B can 

be seen as an ANN topology having multiple zones. For zones where sufficient process 

knowledge is available, weights can be pre-computed without the need for training 

datasets. A small portion of the causal graph in Appendix B is shown in Fig. 3 as an 

example of a knowledgeable zone. The bubbles in the figure represent different 

variables within a knowledgeable zone. The pre-computed weights are shown on the 

connectors between these variables.   

For the zones where knowledge is non-existent, a combination of modules 

consisting of classical ANNs are modeled. The modules are smaller ANNs that can be 

trained separately. The intermediate blue nodes represent, in an explicit manner, the 

locations where sensors could be implemented in the AM process to collect data 

required to train the local ANNs. If sensing in these locations is not possible, the 

intermediate data will need to be simulated or otherwise predicted. The central concept 

of a knowledge-based ANN remains, i.e., to use existing knowledge of a specific problem 

to develop a topology supporting faster training and better performance using smaller 

datasets [43]. This approach is a “hybrid learning system” because it combines empirical 

learning and domain theory learning [44]. Experimental training examples are used for 

empirical learning and domain theory learning is completed by encoding existing 

knowledge.  

_Figure 3_ 
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As described above, a knowledge-based artificial neural network (KB-ANN) is a 

hybrid-learning network that uses both theoretical knowledge and empirical data to 

construct a model of a physical system. Knowledge extraction and encoding in a KB-ANN 

can enable superior interpolation and extrapolation to estimate unmeasurable 

parameters. The main aim of the KB-ANN is to apply, transfer, and translate pre-existing 

knowledge into a hybrid neural network [45]. This allows for consolidation of knowledge 

to develop a global model of the system. Traditional KB-ANN development algorithms 

for a system to learn from both existing knowledge and empirical examples are shown in 

Fig 4. The hybrid-learning approach starts with the conversion of existing knowledge to 

symbolic rules using the rules-to-network algorithm. These rules are used to construct 

and initialize a neural network that performs as a classifier that adheres to the rules 

upon which it is built. The next step involves using the network-training algorithm to 

train the classifier (initial ANN structure) using empirical examples to obtain a final 

trained ANN. Hence, the traditional KB-ANN method involves training all nodes within 

the developed ANN. 

_Figure 4_  

However, the KB-ANN approach developed herein follows one central objective: 

the significant reduction in the size of training data. The resulting approach is unique, 

because a significant portion of the KB-ANN produced using this approach does not 

require training.  Training can be eliminated for portions of the network by using the 

DACM framework to encode existing knowledge in the form of an ANN architecture. 

This initial architecture, which forms the backbone of the KB-ANN structure, is 
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connected to smaller classical ANNs that represent the zones of the model where 

knowledge is non-existent. Thus, the proposed approach differs from existing KB-ANN 

methods in terms of initial structure development and training; however, the proposed 

approach is similar to classical ANNs in terms of training knowledge-limited zones. 

Hence, using the approach described in the foregoing, classical ANNs and a KB-ANN are 

developed to model an FDM process, as described next. 

 
FUSED DEPOSITION MODELING CASE STUDY 

 

In this section, it is demonstrated that exploration of the manufacturing space 

can be effectively performed using KB-ANN modeling to improve AM part quality, while 

keeping the number of required training data sets low. The printed FDM part used in 

this case study is shown in Fig. 5. 

_Figure 5_  

The FDM part has a wall thickness e = 0.5 +/-0.05 mm and height Ht = 12 +/-0.05 

mm, constant for the entire profile. The concurrent modeling and experimental process 

applied in this study are decomposed into six steps summarized below (Fig. 6). 

Step 1: Four initial printing tests are completed using pre-selected printing 

process parameters proposed by the slicing software (Repetier). 

Step 2: The printing process parameters are analyzed and process parameters 

that will potentially affect the targets, namely, wall thickness (e), part height (Ht), and 

part mass (Mt) are extracted.  
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Step 3: A rapid evaluation of the effects of process parameters on the targets is 

performed with a few supplementary experiments, implying simultaneous variation of 

the parameters using orthogonal arrays. This evaluation is performed to find high 

latency variables that can later be fixed at a level minimizing their effect on the targets. 

Step 4: The most significant parameters to achieve the expected thickness e = 

0.5 +/-0.05 mm and height Ht = 12 +/-0.05 mm are selected for developing a predictive 

model. 

Step 5: The prediction model for thickness, height, and mass are built for the 

remaining control factors: nozzle travel speed (TS), layer height (hi), and extruder 

temperature (Tset). A colored causal graph is first developed using the DACM approach 

to encode the knowledge. The variables are classified into four main classes (i.e., colors). 

Exogenous variables (shown in black) are outside the system boundary and part of the 

surrounding environment of the system. They cannot be modified by the designer, but 

are imposed on the system. Independent design variables (shown in green) are not 

influenced by any other variables in the system, and their value can be modified by 

designers (examples include the nozzle travel speed, extruder temperature, and layer 

height). Dependent design variables (shown in blue) are influenced by other variables 

such as exogenous and independent variables, and are difficult to modify and control. 

Performance variables (shown in red) are the objective variables (selected by the 

designers to evaluate the performance of a system) and are usually dependent 

variables. In this case, wall thickness, part height, and mass are the dependent variables 

selected as the performance variables. Finally, the developed causal graph is translated 
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into an ANN topology, which is designed for maximum compactness to maintain all the 

connections in the causal graph. Three classical ANNs and a KB-ANN topology are 

evaluated in this study. The KB-ANN topology developed in the form of modular ANNs is 

shown in the causal graph in Appendix B.  

Step 6: The three classical ANNs and the KB-ANN are compared for performance 

and prediction capability to evaluate the relative utility of the selected approaches. 

 
RESULTS AND DISCUSSION 

 

In Steps 1 and 2, initial experimental prints were created and the process 

parameters that could affect printed part quality were detected. In Step 3, the most 

influencing factors were taken into consideration, i.e., the layer height (hi) in mm, the 

extruder temperature (Tset) in °C, the nozzle travel speed (TS) in mm/s, and the fan 

speed (Fan) in rpm. In Step 4, these four input parameters influencing the wall 

thickness, part height, and mass were analyzed at three possible levels. An L27 standard 

orthogonal array was adopted, and each of the necessary 27 experiments was replicated 

once to ensure repeatability of the FDM machine. In Step 4, fan speed variations were 

removed from the model because of the latency of its effects on the three performance 

variables. The fan speed parameter was fixed to a value of ON at 50%.   

_Figure 6_  

In Step 5, the prediction model for thickness, height, and mass was developed. 

The causal graph developed using the DACM framework for FDM is presented in 

Appendix A. The developed causal graph is simplified and represented in the form of 



ASME Journal of Mechanical Design 
 

20 
 

modular ANNs for designing the KB-ANN topology (Appendix B). In both causal graphs, 

the independent variables (TS, hi, and Tset) are represented in green. The dependent 

variables of the system are represented in blue. The performance, or target, variables 

are represented in red. The nodes of the causal graph from DACM are connected using 

black leader lines, where the arrows represent the direction of causality and the 

numbers represent pre-computed weights for knowledgeable zones. Classical ANNs are 

presented in zones where knowledge is non-existent. From the developed causal graph 

structure, two types of ANNs are developed, namely, a classical fully-connected ANN 

and a KB-ANN. 

 
Classical Artificial Neural Network 

 

Three classical ANNs (Fig. 7) are designed to model the three outputs, namely, 

wall thickness, part height, and mass using three inputs: layer height, travel speed, and 

extruder temperature. The ANNs are designed with two hidden layers consisting of 

three (3) neurons each and one output layer with one (1) neuron. The performance of 

the network is measured in terms of mean squared error (MSE). The Levenberg-

Marquardt algorithm was chosen as the training function and the tangent sigmoid 

function was chosen for the transfer function [46]. The input data for the ANN was 

divided, using 70% for training, 15% for validation, and 15% for testing. 

Typical performance graphs contain three curves, namely, a training curve, a 

validation curve, and a test curve, which together indicate the mean square error of a 

training process. The performance curves indicate the quality of the training in terms of 
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error reduction, under-fitting (bad training), and overfitting. For a good fit performance, 

the three curves must follow a downward trend indicating low MSE. In addition, the 

curves must be smooth and must follow the pattern of training and testing curves at the 

very bottom, followed by a validation curve.   

_Figure 7_  

The performance curves (Figs 8a, 8b, and 8c) for the fully connected classical 

ANNs are shown in Fig 8. The MSE value for best performance was found to be 5.43e-04 

after nine iterations (Fig 8a), 1.15e-04 after 10 iterations (Fig 8b), and 2.01e-03 after 23 

iterations (Fig 8c) for wall thickness, part height, and part mass respectively. 

_Figure 8a, 8b, 8c_  

The performance curves obtained from the classical ANN (Fig. 8a, 8b, 8c) are 

compared to the performance curve (Fig. 9) of a standard function, z=sin(x)cos(y), 

modeled as a best fit performance using a classical ANN for 100 training samples. It is 

seen from Fig. 8a (wall thickness) and Fig. 8c (mass) that the training curve follows a 

downward trend, while the testing and validation curves follow a downward slope until 

the lowest MSE value achievable; it then trends slightly upwards, indicating a low 

generalization to inputs with values lying outside the range of the training data. In 

addition, the upward trend of the validation and testing curves against the continuous 

downward trend of the training curve indicate the possibility of overfitting. In Fig. 8b, 

curves are steady at a fixed MSE value with the validation curve trending below the 

testing curve, indicating a poor fit to the provided data samples and a low level of 

generalization for inputs that lie outside the training state. 
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_Figure 9_  

All performance curves show MSE value at low number of iterations indicating 

that the ANNs could not find a better fit or any reduction in MSE past that iteration 

point. This is opposed to the best-fit scenario shown in Fig. 9, which obtained best 

performance MSE value at 1000 iterations. 

 
Knowledge-Based Artificial Neural Network 

 

The KB-ANN was designed as four modular ANNs following the simplified causal 

graph, as shown in Appendix B. The first modular ANN is designed for one output: ratio 

of viscosity (μ) of molten polymer at extrusion temperature to the viscosity (μi) of 

molten polymer at a reference temperature (175 °C). The filament feed rate (FFR) and 

extruder temperature (Tset) are used as inputs. Here, the output of the modular ANN 1 is 

an intermediate (blue) variable, which cannot be directly measured and, hence, has to 

be estimated using numerical simulations. A direct solution to the simulation of all the 

missing data is not provided in this study. In some cases, these data can be computed 

using the DACM method or numerical simulation, or can be directly measured using 

sensors. In this research, numerical simulation of viscosity was carried out using the CFD 

Module of COMSOL Multiphysics® software. The Navier-Stokes equation (Eq. 3) and 

continuity equation (Eq. 4) are solved for the conservation of the momentum and 

conservation of the mass [47]. 
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( ). 0u u  =  (4) 
 

 

Viscosity of the fluid has been considered using the Carreau model in the 

numerical simulation (Eq. 5). 
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The viscosity of polylactic acid (PLA) has been previously determined by 

measurement from a parallel-plate rheometer for frequency range 100 s-1 to 0.1 s-1. 

Tests were carried out at four different temperatures: 175°C, 185°C, 195°C, and 205°C 

[48]. The viscosity curves were fitted with the Carreau-Yasuda equation using Origin 

software. The terms of the Carreau-Yasuda equation for the studied temperatures are 

shown in Table 2. These terms have been implemented in the Origin software in order 

to determine the flow properties in the liquefier. 

_Table 2_  

The second modular ANN is designed for the output, wall thickness. To reduce 

the dimensionality of the ANN, the inputs to predict wall thickness were represented in 

the form of Pi numbers (dimensionless primitives) using dimensional analysis (DA) [49]. 

A widely used theory in DA is the Vashy-Buckingham π theorem [50], which identifies 

the number of these independent dimensionless primitives (Pi numbers) that 

characterize a given physical problem. The dimensionless primitives are the invariants of 

the problem, where the term “invariant” is understood here as a relationship deeply 

connected with the behavior of certain aspects of a phenomenon. The DA method 
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offers a way to simplify complex problems by grouping variables into dimensionless 

primitives. Every law which takes the form yo= f(x1, x2, x3, …,xn) can take the alternative 

form shown in Eq. 6, where πi (for i = 1 to n) is the dimensionless product for the 

variable xi and π0 is the dimensionless product of variable y0. 

( )0 1 2, , , nf   =   (6) 
 

 

Eq. 6 is the final form of the dimensional analysis and is the consequence of the 

Vashy-Buckingham theorem for the variable xi, which takes the form shown in Eq. 7. 

ij il im
y i j l my x x x   =  (7) 

 
 

Here, xj, xl, and xm are called repeating variables, yi is the performance variable, 

and the α values are exponents ensuring the dimensional homogeneity of the relation. 

The third modular ANN was designed for part height (Ht) as the output, with 

layer height (hi) and number of layers (n) as the inputs. The fourth modular ANN was 

designed for mass (Mt) as output, with wall thickness (e), height (Ht), and density of the 

material (ρ) used as the inputs. ANN performance was measured using mean squared 

error (MSE). The Levenberg-Marquardt algorithm was chosen as the training function 

and tangent sigmoid function was chosen for the transfer function [46]. The input data 

for the ANN was divided, using 70% for training, 15% for validation, and 15% for testing. 

The modular ANNs are designed with one hidden layer consisting of three (3) nodes 

each. The performance curves for the four modular ANNs are shown in Figs. 10a-d. 

_Figure 10a, 10b, 10c, 10d_ 



ASME Journal of Mechanical Design 
 

25 
 

Figure 10a shows that the modular ANN 1 was able to obtain the best validation 

performance at the 53rd iteration with an MSE of 7.7186e-05. The performance curves 

show training, testing, and validation following each other in a downward trend, 

indicating a good fit and good generalization capability. The downward trend also 

implies that a better model could be obtained by increasing the number of training 

samples. The results for modular ANN 2 for wall thickness (e) is shown in Fig. 10b. The 

observed MSE was found to be 9.30e-05 after 93 iterations. The curves show overlap 

during the first 10 iterations, but soon smoothen and follow a uniform trend. This shows 

that the ANN was able to train for 93 iterations without failure, indicating a good fit to 

the training data. The modular ANN 3 results for part height shown in Fig. 10c have best-

fit performance with an MSE of 1.41e-04 after only four iterations. The curves are 

smooth and follow each other in the graph; however, the ANN achieved the best 

performance at four iterations, indicating a mediocre fit to the training data. Finally, the 

results of modular ANN 4 for part mass (Mt) are shown in Fig. 10d. The observed MSE is 

2.54e-04 after 23 iterations. It was seen that the performance curves follow a 

downward trend with the validation curve below or at par with the testing curve. This 

indicates an average fit to the provided data samples, but with the possibility of 

overfitting. 

 
Validation 

 

The validation of the developed models was carried out with nine experimental 

tests. The values for the independent input variables (layer thickness, extruder 
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temperature, and travel speed) were chosen at random. The range of values for the 

independent variables are as follows, layer thickness (0.1 mm to 0.4 mm), extruder 

temperature (175 ֯C to 215 ֯C), and travel speed (5 mm/s to 19 mm/s).  From validation, 

the standard prediction errors for thickness, height, and mass using the KB-ANN were 

found to be 0.1627, 0.3647, and 0.4621, respectively. Similarly, the prediction errors for 

the fully connected classical ANN were found as 0.1376 (thickness), 0.5898 (height), and 

0.4667 (mass). The propagated global error of the KB-ANN model was found to be 

0.5220. 

_Figure 11_  

It can be noted that the KB-ANN global model error is propagated due to the 

output of modular ANN 1 (viscosity) acting as input for modular ANN 2, and similarly, 

the output of modular ANN 2 (thickness) acting as input for modular ANN 3 (mass). The 

MSE and standard error calculated after validation for the two types of networks are 

compared in Fig. 11. It is seen that the errors for the KB-ANN are in the same range as 

the prediction error of the classical ANN. 

 
Model Comparison 

 

In the case presented above, the KB-ANN method performed better than the 

classical fully-connected ANN in terms of fit to the provided experimental data. 

Specifically, the prediction error for the KB-ANN method was found to be nearly the 

same as the classical approach for wall thickness and part mass, while lower for part 

height. This prediction error was largely the result of lost information when streamlining 
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the complete causal graph (Appendix B) to the simpler version (Appendix A). In 

particular, the regression fit for the height using the KB-ANN method was poor largely 

due to the absence of adequate knowledge or models to represent the phenomena that 

influence part height. For instance, the cooling effect of the fan may affect the 

solidification rate of the molten polymer, resulting in tight bonding or sparse bonding of 

layers, which would have a direct impact on part height. The addition of key variables to 

the study through simulation results or experimental estimates would improve the 

training and reduce the prediction error. The key difference between the classical ANN 

model and KB-ANN model lies in the total number of weights that define the state space 

for each model. In this example, the KB-ANN model had 12 fewer weights than its 

classical counterpart. Further, the hidden layer of the KB-ANN model operates within 

the dimensionally homogenous space. The combination of these factors (number of 

weights trained and dimensionally homogenous hidden layer) results in improved 

efficiency during fit to training and similar MSE performance for the same number of 

training (27) samples. This increase in efficiency is visible in the training and its 

robustness. The KB-ANN method provides more robust generalization compared with 

the classical ANN approach. Nevertheless, the small number of data in the training set 

used in this effort, limit the conclusions that can be drawn from the training, validation, 

and testing. The higher number of epochs required for training in the KB-ANN method 

demonstrate that the difference in training epochs will increase with bigger datasets. It 

also indicates that KB-ANN can provide better results for smaller datasets. 

 
CONCLUSIONS 
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This research developed a knowledge-based artificial neural network (KB-ANN) 

approach to limit the amount of required experiments for training and validating ANNs 

for characterizing a manufacturing system. The approach was applied to develop a 

metamodel capable of dynamically predicting control factors of Fused Deposition 

Modeling. Benefits were gained from causal graph representation, which enabled the 

design of KB-ANN as modular ANNs with reduced dimensionality. The results 

demonstrated the superiority of the KB-ANN approach over classical full-connected 

ANNs in terms of fit and regularization for the same performance and same number of 

training samples. The case study was limited to the prediction of three target variables 

in comparison to the large number of target variables that essentially need to be 

modeled for a complex FDM system. In reality, more intermediate variables and 

phenomena (Appendix A) need to be modeled to represent the FDM process holistically. 

The work reported herein demonstrates an initial proof of concept for the techniques 

and approaches that can be used to combine knowledge in a modular manner and to 

reduce dimensionality of complex problems using knowledge extraction, representation, 

and integration techniques such as dimensional analysis. 

 
FUTURE WORK 

 

The authors are expanding the case study analysis to model a larger set of target 

variables for FDM using the current methodology to obtain a holistic FDM process 

model. The developed model will be usable for real production simulations and process 
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parameter tuning. In addition, the DACM method in this study generated causal graphs 

that were used to define elementary ANN topologies. Such elementary ANNs when 

expanded for a larger set of variables can grow quickly in size and be faced with 

problems such as, high training time, high training cost, requirement of large training 

data, high probability of model fitting issues (under-fitting or over-fitting), and vanishing 

gradient issue. Thus, a multi-level hierarchy approach to ANN topology creation as well 

as the use of regulators for the flow of values similar to long short-term memory neural 

networks is being investigated. This would allow for the development of a hierarchy of 

variables ranked based on importance and modular ANNs for variables in sequence 

following the hierarchy. This method could help in prioritizing variables and constrain 

the size of each modular ANN in the holistic KB-ANN model reducing training time and 

cost. The approach would also improve the accuracy of the ANN training and in turn 

reduce the prediction error of the holistic FDM model.  

 
NOMENCLATURE 
 

λ Relaxation time index 

Af Cross-sectional area of filament (mm2) 

a Dimensionless parameter describing the transition between the first 

Newtonian plateau and the power law zone 

cp Heat capacity (J/kg.K) 

df Diameter of filament (mm) 
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di Diameter at ith section of liquefier nozzle (mm) 

dx/dt Nozzle velocity in x direction for dx (mm/s) 

dy/dt Nozzle velocity in y direction for dy (mm/s) 

e Intended wall thickness (mm) 

FFR Filament flow rate (mm/s) 

hi Layer height (mm) 

Ht Part height (mm) 

k Coefficient of conduction (W/m.K) 

Li Length at ith section of liquefier geometry (mm) 

Mt Part mass (g) 

n Power index 

T0 Output temperature (°C) 

Ti Initial filament temperature (°C) 

Tref Reference temperature (°C) 

TS Nozzle travel speed (mm/s) 

Tw Wall temperature (°C) 

VFR Volumetric flow rate of filament (mm3/s) 

β Conical angle of liquefier geometry 

ΔPi Pressure drop (Pa) at ith section of nozzle 



ASME Journal of Mechanical Design 
 

31 
 

ΔV Change in nozzle travel velocity (mm/s) 

θ Dimensionless temperature 

μ Viscosity of polymer filament (Pa s) 

μi Kinematic viscosity (m2/s) at reference temperature 

μinf Viscosity at the infinite shear rate (Pa s) 

μ0 Viscosity of fluid at zero shear rate (Pa s) 

ρ Filament density (kg/m3) 

γ Shear rate (s-1) 

Fst Force resulting from surface tension (N) 
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Table 1: Causality for generic functions and associated bond graph elements [31] 
 

Bond Graph Element Schematic View Bond Graph Element Schematic View 
 Source of effort (Se) 
 Fixed effort-out causality  

 Source of flow (Sf) 
 Fixed flow-out causality  

 Capacitor (C) 
 Fixed effort-out causality  

 Inertia (I) 
 Fixed flow-out causality  

 Resistor (R) 
 Preferable effort-out causality  
 (Resistive) 

  Resistor (R) 
 Preferable flow-out causality  
 (Conductive) 

 

 Transformer (TF)  
 Maintain incoming causality  
 (two-port element) 

   Gyrator (GY) 
 Switch incoming causality  
 (two-port element) 

 

 Effort Junction (JE) or (0) 
 (Multiport element) 
 
   e1=e2=e3=e4 
   f1+f2+f3+f4=0 
 

 
 
 
 
 

 Flow Junction (JF) or (1) 
 (Multiport element) 
 
   f1=f2=f3=f4 
   e1+e2+e3+e4=0 
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Table 2: Values for Carreau-Yasuda viscosity curve fitting 
 

 175°C 185°C 195°C 205°C 

μ0 
(Pa.s) 

5169  5 2480  14 1945  16 726  6 

μinf 
(Pa.s) 

0 0 0 0 

 0.048  0.02 0.09  0.5 0.08  0.02 0.05  0.01 

a 0.82  0.3 1.6  0.8 1.931  0.5 2.60  0.01 

n 0.52  0.3 0.7  0.3 0.693  0.2 0.79  0.11 
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Figure 1: Visual representation of the DACM framework 
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Figure 2: The causal relationship extraction algorithm 
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Figure 3: Knowledgeable zone in the causal graph with pre-computed weights 
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Figure 4: Traditional KB-ANN development algorithm [44] 
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Figure 5: Solid model (left) and dimensions (right) for the sample part [51] 
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Figure 6: Concurrent experimental and modeling process 
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Figure 7: A classical ANN model for fused deposition modeling 
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Figure 8: Performance curves for classical fully-connected ANN to model: a) part wall 

thickness, b) part height, c) part mass 
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Figure 9: Performance curve for best-fit scenario (standard function z=sin(x).cos(y)) 
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Figure 10: Performance curves for: a) modular ANN 1 (viscosity) in the KB-ANN, b) 

modular ANN 2 (thickness) in the KB-ANN, c) modular ANN 3 (height) in the KB-ANN, 
and d) modular ANN 4 (mass) in the KB-ANN 
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Figure 11: Comparison of validation error for the fully-connected classical ANN and the 

developed KB-ANN 
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APPENDIX A: Detailed causal graph for fused deposition modeling using dimensional 
analysis conceptual modeling 
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APPENDIX B: Simplified causal graph with modular KB-ANN topology for fused 
deposition modeling using dimensional analysis conceptual modeling 
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Keywords: 
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a b s t r a c t 

Research on human health and safety impacts of wire arc additive manufacturing is often overshadowed 

by the need for weld quality and mechanical strength improvements. To address this gap, a review of 

research literature is conducted focusing on the influence of welding process parameters, welding fumes, 

and fume exposure on worker health. The review uses a causal graph to classify research literature into 

two domains: manufacturing technology and public health. The graph serves as a precursor to develop- 

ment of a Bayesian network model, whose expected benefits, steps for implementation, and likely chal- 

lenges that would be encountered during implementation are discussed. 

© 2020 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

Despite the confluence of new trends and technologies in man- 

ufacturing, the workforce remains pivotal in driving innovation and 

productivity. New advancements, such as those introduced by In- 

dustry 4.0, portend to be of great benefit to the dynamic work- 

force of the future. In particular, adaptive management cultures 

will ensure safe working environments that deliver broad societal 

and economic benefits. The rapid development of technology, cou- 

pled with reduced timelines for technology assimilation, makes it 

a challenge to perform holistic evaluation of related worker health 

and safety impacts. Production risk and reliability assessments of- 

ten overshadow worker health and safety evaluations due to in- 

creasing demand for quick, seamless integration of new technolo- 

gies on the shop floor. Existing safety procedures, such as those 

prescribed by the U.S. Occupational Safety and Health Administra- 

tion (OSHA), are effective in reducing worker accidents and injuries 

( OSHA, 1970 ). However, the disruptive nature of advanced man- 

ufacturing technologies, such as additive manufacturing (AM), re- 

quires extensive characterization of emissions and wastes that can 

increase safety and health risks to operators and others. Further, 

characterizing worker health and safety requires expertise in man- 

ufacturing processes, and also delves into domains such as mea- 

surement science, environmental science, and public health and 

safety. 

∗ Corresponding author. 

Metal AM systems operate as multi-physical-chemical- 

metallurgical processes, with myriad interrelated parameters 

that must be characterized to understand their functionality. 

Mapping the interrelationships between process variables (pa- 

rameters), their influence on process emissions and waste, and 

associated worker impacts is crucial for making informed decisions 

on the safety equipment and procedures required by emerging 

metal AM technologies. Integration of pre-existing knowledge (e.g., 

models and expert knowledge) can hasten the development of 

meta-models for process characterization. 

A causal graph-based approach is presented in this research as 

means for integrating pre-existing knowledge in modelling AM- 

related worker health and safety impacts. Operator safety in a di- 

rected energy deposition process, wire and arc additive manufac- 

turing (WAAM), is discussed as an application case. Implementa- 

tion of a Bayesian network (BN) that integrates process knowledge 

(process operation, emissions, and related impacts), worker habits 

and exposure pathways, health and safety factors (health risks and 

severity of risks), and suitable safety protocols from the developed 

causal graph is discussed. Simulation results using the developed 

BN could be used to evaluate potential health risks associated with 

WAAM and to prescribe potential corrective/preventative measures. 

The remainder of the manuscript is organized as follows: 

Section 2 discusses literature reporting emissions and health risks 

associated with the WAAM process; Section 3 discusses develop- 

ment of the causal graph representing the factors and interconnec- 

tions as well as possible BN implementation; and Section 4 dis- 

https://doi.org/10.1016/j.procir.2020.01.116 
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Nomenclature 

BMC blood mineral content 

C.Filler composition of filler weld 

C.Fume composition of fume 

C.sgas composition of shielding gas 

CFE cumulative fume exposure 

d filler wire diameter 

FC fume concentration in working space 

FGR fume generation rate 

HI heat input 

I arc current 

P arc power 

PPY packs per year 

SGFR shielding gas flow rate 

t exp exposure time 

v welding speed 

V arc voltage 

WFR wire feed rate 

cusses the findings of the presented work and opportunities for 

future research. 

2. Background 

AM processes can produce 3D objects in a layer-by-layer fashion 

using polymers, metals, and ceramics. The advantages provided by 

AM in terms of unhindered design freedom, higher material effi- 

ciency, faster product realization, and less constrained supply chain 

have accelerated the adoption of AM in high value industries such 

as medicine, automotive, and aerospace ( Bourell et al., 20 0 0 ). With 

the increased adoption of polymer and metal AM technologies in 

mainstream manufacturing, studies must be conducted to evaluate 

the potential health impact of operators exposed to emissions and 

other risks. 

Stefaniak et al. (2019 ) explored the operator health impact of 

emissions and exposures from industrial scale machines for ma- 

terial extrusion and material jetting based AM technologies. They 

found that the emission rate for both technologies were in the 

range of 10 9 –10 11 particles per minute, with particle sizes predom- 

inantly below 300 nm. They concluded that exposure to released 

particles is prevalent in AM work settings, but that total expo- 

sure must take into consideration other contributing factors, such 

as pre- and post-processing activities. The health impacts from ex- 

posure to particle/vapor emissions were not studied, but it was re- 

ported that the inhalation of emissions from ABS filament could 

result in asthma in operators and hypertension in rodents. The 

authors suggested that evaluation of potential emission points in 

industrial-scale AM machines is required to adequately measure 

heavy metal and volatile organic compound (VOC) exposure levels. 

Similarly, Graff et al. (2017 ) characterized the presence of nano- 

sized metal particles during metal AM. They studied different mea- 

surement techniques to characterize particles based on the number 

of particles, masses, sizes, and identities, focusing on alloys con- 

taining chromium, nickel, and cobalt. They found that a range of 

nanoparticles were present in the AM work environment. Specifi- 

cally, exposure was greater for workers who directly handle metal 

powders. They suggested that improved material handling and 

measurement techniques for nanoparticles is essential; their devel- 

opment could provide useful knowledge that can be translated into 

workplace safety. 

There is lack of information on emissions and related health im- 

pacts due to the infancy of WAAM technology and its mainstream 

use. However, WAAM functions similar to robot-assisted electric 

arc welding, wherein the arc is used as a power source to melt 

filler metal wire onto a substrate. The arc welding process is mod- 

ified to produce welds that overlap one another in the form of lay- 

ers to build a 3D metal product. Thus, emissions from WAAM and 

their associated health impacts are similar to those of traditional 

welding processes. 

Koh et al. (2015 ) measured the exposure of Korean shipyard 

welders to welding fumes and evaluated the potential of fume ex- 

posure to lead to chronic obstructive pulmonary disease (COPD). 

They studied 240 male subjects with an average age of 48 and ex- 

posure duration of 15 years. The study subjects’ smoking habits, 

occupational history, and medical history were used to determine 

the number of packs per year (PPY) of cigarettes smoked and cu- 

mulative fume exposure (CFE). They found average fume exposure 

was 7.7 mg/m 
3 -years, and reported a statistically significant excess 

risk of COPD for intermediate and high exposure groups. How- 

ever, the authors concluded that a longitudinal study with more 

test subjects was required to confirm a causal relationship between 

welding fume exposure and risk of COPD. 

Li et al. (2004 ) studied the effects of welding fumes on welders 

working in a vehicle manufacturing facility by using workers from 

a nearby food manufacturer as control subjects. It was found that 

welders had 4.3- and 1.9-times greater serum levels of manganese 

and iron, respectively, in comparison to the food industry work- 

ers. Based on linear regression analysis, no relation was found be- 

tween the presence of the heavy metals in the blood with the age 

of the subjects. Of the 500 welders at the facility, thirty-seven who 

had frequent exposure to fumes from electric arc welding were se- 

lected for the study. The study included 22 males and 15 females 

in the age group of 38 ±1.5 years, who worked 7–8 h shifts per 

day. Among the bodily fluid samples that were collected were 24-h 

urine specimens and blood samples. In addition, air samples from 

the breathing zone of the welding space were collected. Conclu- 

sions from the study reflected upon higher concentrations of man- 

ganese (above prescribed safety regulations) in the work atmo- 

sphere, and long-term, low-level exposure to fumes inducing ox- 

idative stress in the welders. 

Sjögren and Ulfvarson (1985 ) studied respiratory symptoms and 

pulmonary functions among aluminum, stainless steel, and rail- 

road industry welders. Non-welding industrial and railroad work- 

ers were included in the study as referents. The study found that 

welders exhibited a higher frequency of chronic bronchitis symp- 

toms than their respective referents. The authors reported that 80% 

of chromium concentration measurements exceeded the Swedish 

occupational exposure limit of 20 μg/m 
3 for hexavalent chromium 

in stainless steel welding, resulting in respiratory symptoms. More 

than 50% of ozone concentration measurements were above the 

allowable limit of 0.1 ppm for aluminum welders. However, pul- 

monary function did not appear to be affected for the welding 

group. The authors mentioned that smoking habits affected the fre- 

quency of chronic bronchitis more than welding. 

A related study was conducted to investigate prevalence of res- 

piratory symptoms, impairment of lung function, and occurrence 

of pulmonary radiography findings in 157 electric arc welders and 

108 control subjects ( Antti-Poika et al., 1977 ). In addition, air qual- 

ity measurements were taken in the work environment for 88 

of the welders. They found welders had simple chronic bronchi- 

tis more often than the unexposed workers (all men). However, 

no significant difference was found when accounting for time and 

level of exposure. In addition, no significant findings were reported 

for impairment of lung function or for pulmonary radiography 

measurements for all test and control subjects. 

Saito et al. (20 0 0 ) experimentally measured and verified the 

presence of hazardous welding fumes in the breathing zone of 

welders for a CO 2 shielded arc welding process. They used a weld- 

ing robot and three kinds of welding wires. Shielding gas flow 
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Fig. 1. Causal model of operator health impacts in wire arc additive manufacturing. 

rate and the welding current were fixed at constant values. Ex- 

periments were conducted without local exhaust ventilation. Gas 

concentrations, fume concentrations, and particle size distributions 

were measured. Sampling involved synchronously moving and col- 

lecting data along a 200 mm horizontal and 300 mm vertical dis- 

tance from the moving arc (the effective breathing zone for manual 

metal arc welding). It was found that fumes exceeded safe levels 

prescribed by safety standards; using half-face masks for protec- 

tion was deemed to be insufficient. The authors suggested that use 

of supplied air respirators and/or use of half-face dust respirators 

along with a local exhaust ventilation system would be required to 

handle emission concentrations. 

Popovi ́c et al. (2014 ) explored the influence of two types of filler 

materials, i.e., metal-covered wire and self-shielded wire, on the 

emission of toxic substances. They were able to detect and quan- 

tify the concentrations of dust, CO 2 , CO, SO, Mn, Al, Ni, Cr, Cr (VI), 

Ca, and P. It was found that the concentrations of Mn and CO were 

high for metal-covered wires, while concentrations of P and Al 

were high for self-shielded wires. They suggested that the chemi- 

cal composition of the shielding gas, filler material, and base metal 

determines the amount and composition of the welding fumes. 

These welding fumes are typically metal oxides formed when va- 

porized metal condenses rapidly on exposure to air. Other stud- 

ies (i.e., Pires et al., 2006 ; Yoon and Kim, 2003 ) have established 

causality between fume generation rate and welding parameters 

such as electric current, arc voltage, wire diameter, shielding gas 

flow rate, welding speed, and the type of welding process (steady 

current or pulsed current welding). Welding fumes range from in- 

dependent spherical particles less than 20 nm to conglomerated 

particles greater than 20 nm. Prior studies evaluated the health ef- 

fects of short and long-term exposure to elemental metals in weld- 

ing fumes, as shown in Table 1 . 

From the background literature study, we can infer that the 

body of research for modeling worker safety in welding falls 

into two domains: manufacturing technology (process) and pub- 

lic health. Findings from existing literature has been represented 

as a graph ( Fig. 1 ) that indicates the causal relationships between 

different variables in the process domain and in the public health 

domain. 

The developed causal graph can be combined with a Bayesian 

inference system to predict the effects of individual variables on 

worker health and safety measures. Section 3 describes the de- 

veloped causal graph model and discusses the requirements and 

challenges for the development and implementation of a Bayesian 

network. 

3. Causal modeling of worker health impacts in WAAM 

The background study reported in Section 2 is used to develop 

a graph-based model for worker health in WAAM. The developed 

graph-based model enables visualization of the potential cause- 

effect relationships and correlations between the different vari- 

ables of the system based on the referenced literature, as shown 

in Fig. 1 . At this stage, some of the relations can be considered 

to be causal, especially in area A, while in area B more effort s are 

needed to validate the causality of elements. This causal graph pro- 

vides a unified structure to integrate the knowledge from the two 

identified domains. In the manufacturing technology domain, re- 

search has focused on characterizing the influence of the process 

and parameters on generation of emissions/fumes ( Li et al., . 2004 ; 

Sjögren and Ulfvarson, 1985 ; Antti-Poika et al., 1977 ; Saito et al., 

20 0 0 ; Jafari and Assari, 20 04 ; Yu, 20 01 ; Cole et al., 2007 ; Niemelä

et al., 2001 ; Balkhyour and Goknil, 2010 ; Alfaro and Cayo, 2012 ; 

Topham et al., 2010 ; Yu et al., 2003 ; Heung et al., 2007 ; Keane et 

al., 2016 ). The public health domain has focused on characterizing 

the influence of emissions and components on worker health ( Koh 

et al., 2015 ; Li et al., 2004 ; Sjögren and Ulfvarson, 1985 ; Antti- 

Poika et al., 1977 ; Jafari and Assari, 2004 ; Topham et al., 2010 ; 

Gube et al., 2013 ; Rongo et al., 2004 ; Hammond et al., 2005 ; Chinn 

et al., 1995 ; Cotes et al., 1989 ; Jayawardana and Abeysena, 2009 ; 

Bradshaw et al., 1998 ; St ̌anescu et al., 1967 ; Nakadate et al., 1998 ; 

Luo et al., 2009 ; Sharifian et al., 2011 ; Wang et al., 1994 ; Fogh et 
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al., 1969 ; Storaas et al., 2015 ; Qin et al., 2014 ; El-Zein et al., 2003 ; 

Nemery, 1990 ; Hjortsberg et al., 1992 ; McCormick et al., 2008 ; 

McMillan and Pethybridge, 1983 ; Barhad et al., 1975 ; Kilburn et al., 

1989 ; Mur et al., 1985 ). Mathematical relationships linking process 

parameters to welding emissions have been documented in liter- 

ature, while epidemiological studies related to health impacts are 

based on statistical analysis. From Fig. 1 , the process parameters 

(welding current, voltage, speed, shielding gas flow rate, shielding 

gas composition, and filler wire composition) function as indepen- 

dent variables, represented as green nodes. 

Any change in independent variables will affect intermediate 

variables (blue nodes), which are the variables associated with the 

fume emissions. Variables representing emissions, such as fume 

generation rate, fume composition, particle size, and cumulative 

exposure time, influence worker health (red target node). Inter- 

mediate variables are dependent variables whose values need to 

be monitored using sensors or, need to be simulated or predicted 

based on models. They also function as hubs within the graph 

model and provide a bridge for knowledge integration from the 

two domains. 

In addition to the intermediate variables, worker health is 

affected by exogenous variables (grey nodes), such as smoking 

habits, age, and prior health condition. The causal relationships 

between these variables can be established using experimental 

data, equations, and/or functional models. Here, causal relation- 

ships between variables have been established using the dimen- 

sional analysis conceptual modeling (DACM) framework ( Coatanéa 

et al., 2016 ). The DACM framework is a systems design approach 

that uses functional modeling, dimensional analysis, and bond 

graph theory to model the cause-effect relationship between vari- 

ables in a system in the form of a causal graph. DACM can also be 

used to build a causal graph in a reverse engineering fashion when 

equations are known. 

A causal graph can be used as a precursor to the develop- 

ment of machine learning models, such as BNs, for simulation 

( Nagarajan et al., 2018 ; Mokhtarian et al., 2019 ). BNs use Bayesian 

inference for computing conditional probabilities for variables rep- 

resented in the graphical model. The BN satisfies the Markov chain, 

meaning that the conditional probability of a node is independent 

of its non-descendants, which simplifies the computation of the 

joint probability distribution of the whole network ( Pearl, 20 0 0 ). 

Causal relationships that exist between process parameters, ma- 

chine specifications, measured emissions, prescribed safety mea- 

sures, practiced safety measures, and worker health could be used 

to generate BN models. The BN model can be updated based on 

new information or knowledge that is obtained as evidence. The 

emphasis given to cause-effect relationships via the use of a causal 

graph provides an intuitive approach to explicitly evaluate the un- 

certainties in potential outcomes with the use of probability tables 

( Wade, 20 0 0 ; Ascough et al., 2008 ). Thus, the BN can serve as an 

interactive multi-objective decision-making approach, wherein the 

computational losses can be minimized by using available knowl- 

edge, combined with a statistical framework, taking into account 

uncertainties in variables, decisions, and outputs of different do- 

mains. 

Using this approach, the BN will comprise multiple nodes that 

represent the different variables of the system of interest. These 

nodes will be connected in the form of direct acyclic graphs 

(DAGs), developed based on their causal relationships. The causal 

relationships shown in Fig. 1 will help generate the DAG for worker 

health for the WAAM process. Apart from the parameter and de- 

pendent nodes, the network may also contain constraint nodes. 

Constraint nodes are Boolean (true/false) clauses that help restrict 

the network from generating conditional probabilities for certain 

interactions between nodes that do not exist in the physical world 

or that are inaccurate. 
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Simulation of the BN model can enable the following: (1) mon- 

itoring the effect of changes in process parameters on emissions 

and worker health, (2) suggesting safety equipment and proce- 

dures required based on exposure time, fume composition, and 

fume generation rate, and, conversely, and (3) prescribing optimal 

process parameters based on available safety equipment to con- 

trol emissions rates and prevent adverse worker health effects. The 

implementation of such a model would allow engineers and man- 

agers to monitor shop floor processes and ensure the safety of 

workers a priori or as conditions change. 

4. Discussion and future work 

Industries adopt new technologies in order to remain competi- 

tive in the marketplace. Effects of new technologies are often un- 

certain at the outset, and over time new information regarding 

their effects on workers becomes better known. Modeling new 

processes and systems must utilize the breadth of knowledge avail- 

able at the earliest phases to develop models more quickly and 

efficiently. Pre-existing manufacturing knowledge is available in 

many different forms and spans across various science and engi- 

neering domains due to its multidisciplinary nature, especially for 

new manufacturing technologies (e.g., additive manufacturing pro- 

cesses). 

Simulation of developed models must be flexible to enable use 

of new-found knowledge when making predictions. The graph- 

based modeling approach presented here enables cross-functional 

integration of knowledge of different forms, using causal relation- 

ships and correlations between the different variables in a system. 

The causal graph allows decision makers to bridge knowledge in 

different domains and acts as a precursor to the development of 

machine learning models, such as Bayesian networks (BNs), en- 

abling rapid, system-wide simulation and scenario analysis. 

Future work will develop and implement a BN model for mon- 

itoring worker health and safety in WAAM operations. Pre-existing 

knowledge and experimental data will be used to train and sim- 

ulate the developed BN. The network will be trained and simu- 

lated using different sources of data, including pre-existing knowl- 

edge, sensor data for machine parameters and emissions, accident 

reports, machine-specific safety brochures, and standards from 

worker health and safety organizations. Finally, connecting the BN 

model to different sources of data that can be utilized by the net- 

work in the form of evidence during simulation will provide a ba- 

sis for reinforced learning of the existing causal relationships. 
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A B S T R A C T   

Alloy steels are commonly used in many industrial and consumer products to take advantage of their strength, 
ductility, and toughness properties. In addition, their machinability and weldability performance make alloy 
steels suitable for a range of manufacturing operations. The advent of additive manufacturing technologies, such 
as wire and arc additive manufacturing (WAAM), has enabled welding of alloy steels into complex and 
customized near net-shape products. However, the functional reliability of as-built WAAM products is often 
uncertain due to a lack of understanding of the effects of process parameters on the material microstructure and 
mechanical properties that develop during welding, primarily driven by thermal phenomena. This study 
investigated the influence of thermal phenomena in WAAM on the microstructure and mechanical properties of 
two alloy steels (G4Si1, a mild steel, and AM70, a high-strength, low-alloy steel). The interrelationships between 
process parameters, heating and cooling cycles of the welded part, and the resultant microstructure and me
chanical properties were characterized. The welded part experienced multiple reheating cycles, a consequence of 
the layer-by-layer manufacturing approach. Thus, high temperature gradients at the start of the weld formed fine 
grain structure, while coarser grains were formed as the height of the part increases and the temperature gradient 
decreased. Microstructural analysis identified the presence of acicular ferrite and equiaxed ferrite structures in 
G4Si1 welds, as well as a small volume fraction of pearlite along the ferrite grain boundaries. Analysis of AM70 
welds found acicular ferrite, martensite, and bainite structures. Mechanical testing for both materials found that 
the hardness of the material decreased with the increase in the height of the welded part as a result of the 
decrease in the temperature gradient and cooling rate. In addition, higher hardness and yield strength, and lower 
elongation at failure was observed for parts printed using process parameters with lower energy input. The 
findings from this work can support automated process parameter tuning to control thermal phenomena during 
welding and, in turn, control the microstructure and mechanical properties of printed parts.   

1. Introduction 

Directed energy deposition (DED) is a class of additive 
manufacturing technologies that fuse together powder or wire/filament 
material layer by layer as it is deposited using a heat source such as a 
laser, electron beam, or electric/plasma arc [1]. In particular, wire and 
arc additive manufacturing using cold metal transfer (WAAM-CMT) 
process, with its flexible material deposition rates (1–5 kg/h) and its 
ability to accommodate metallic materials with poor weldability, has 
enabled the timely and cost-effective production of large-scale metal 

products without the need for costly manufacturing setups [2,3]. WAAM 
is an emerging DED process technology used to manufacture large metal 
components [3]. Specifically, welding of alloy steels has become more 
widespread with the use of WAAM [4]. With the increased development 
of functional steel components using additive manufacturing, it is 
important to understand the influence of process parameters on the 
evolution of microstructure and the resulting mechanical properties [5]. 
Broad research around WAAM is focused on qualification efforts for 
dimensional quality, mechanical strength, and welding path planning 
for different metal wire feedstocks, as summarized by Rodrigues et al. 
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[6] in their state-of-the-art review. They discussed the different types of 
welding technologies used in WAAM, common defects in WAAM printed 
parts, and stress relief strategies to improve mechanical strength. They 
found that residual stress buildup due to inhomogeneous heat distri
bution was a common occurrence in WAAM. Employing stress relief 
strategies such as cold interlayer rolling, machine hammer peening, or 
laser peening was found to help achieve grain growth refinement, 
providing better control of mechanical properties, path width, and 
surface finish. 

In addition, Rodrigues and co-workers [6] found that interlayer 
temperature, or interpass temperature, had a high influence on final 
printed part quality and microstructure. A higher interpass temperature 
generally provides finer grain structure and improved toughness for 
high-strength steel. However, this characteristic reverses as interpass 
temperature exceeds 260 ◦C; increasing the interpass temperature 
beyond this limit causes the weld pool to puddle and collapse, affecting 
the quality of the part [7]. The wait time for cooling to the required 
interpass temperature is influenced by the cooling rate of the layer, 
which varies as a function of energy density and product height. 
Increasing part height influences conduction, convection, and radiation 
and, in turn, causes a reduction in the cooling rate of subsequent weld 
layers. Thus, controlling the thermal cycles during the process to 
maintain stable interpass temperatures is essential for achieving high 
quality welds (and parts). While their in-depth review provides an 
overview of WAAM part quality, Rodrigues and co-workers in Ref. [6] 
did not provide information on the microstructure and mechanical 
properties of alloys used in WAAM. Thus, several studies are detailed 
below that are relevant to the experimental work presented in this 
manuscript. These studies examine the microstructure and mechanical 
properties of similar steel alloys printed using a range of WAAM 
technologies. 

Sun et al. [8] investigated the microstructure and mechanical prop
erties of low-carbon, high-strength steel fabricated using WAAM. A 
907-steel alloy plate substrate and an A-Fe-W-86 welding alloy wire 
feedstock were used. They found the microhardness values varied from 
290 HV to 260 HV along the build direction of the welded part. In 
addition, the average UTS of longitudinal specimens (976.53 MPa) was 
significantly lower than transverse specimens (1017.8 MPa), confirming 
anisotropic behavior. The inclusion of more interlayer zones in the 
microstructure resulted in higher stress concentrations in the longitu
dinal specimens. Electron back-scatter diffraction (EBSD) revealed a 
higher Taylor factor (0.907) for interlayer zones compared to the 
deposited weld (0.865), which indicates the presence of non-uniform 
deformation and local stress concentrations in the interlayer zones. 
Phase transformation analysis revealed that the bottom zone of the 
printed part was comprised of tempered bainite and sorbite, while the 
middle zone was comprised of tempered bainite and the top zone was 
comprised of tempered bainite, tempered sorbite, and ferrite. The order 
of occurrence of the phases also corresponded with the microhardness 
results, where hardness decreased along the build direction. Addition
ally, two crucial control parameters were found to influence the 
microstructure formation: temperature gradient (G) and solidification 
velocity (SV). Based on solidification theory, the G/SV ratio determines 
the microstructure formation. When G/SV is extremely high 
(approaching infinity), planar grains form, when G/SV is relatively high, 
columnar grains form, and when G/SV is small, equiaxed grains form. 

Lu et al. [9] investigated the microstructure and mechanical prop
erties of copper-coated mild steel welding wire (0.8 mm diameter) 
deposited on an ASTM 1045 steel substrate using an open-source 
GMAW-AM process. In their study, forced cooling of the weld zone 
facilitated a successful deposition of a thin-walled structure with 150 
layers. The YS and UTS values of horizontal specimens (519.5 ± 8.3 MPa 
and 693.5 ± 8.5 MPa) were higher than for specimens from the vertical 
build direction (461.5 ± 6.3 MPa and 618.5 ± 10.8 MPa). Elongation 
along the horizontal and vertical directions were found to be 36.8 ±

0.2% and 28.2 ± 0.5%, respectively. The microstructural evolution 

shows the presence of primary austenite dendrites along the building 
direction. In addition, acicular ferrite and reticular ferrite intergranular 
structures were observed in the bottom zone, due to continued air 
cooling and conduction. 

While the prior study focused on mild steel, Rodrigues et al. [10] 
investigated the thermal influence of WAAM on microstructure and 
mechanical properties of high-strength, low-alloy steel using a 
commercial-grade wire electrode (AWS A5.28 ER110S-G) deposited 
onto a mild steel substrate. Two samples were printed at two levels of 
heat input (P1 at 511 J/mm and P2 at 221 J/mm). The voltage (21 V), 
current (95 A), and wire feed rate (3 m/min) were maintained constant 
for both samples, while travel speed and shielding gas flowrate was 
maintained at two different levels for the experiments. Sample P1 used a 
travel speed of 3.9 mm/s and a shielding gas flowrate of 8 L/min, while 
sample P2 used 9 mm/s and 16 L/min, respectively. 

The microstructural analysis in the above study found that ferrite, 
bainite, martensite, and retained austenite were present for both levels 
of heat input. Further, it was reported that heat input directly affected 
the cooling rates, interlayer temperatures, and residence times in the 
800 ◦C–500 ◦C cooling interval. These findings align with well- 
established knowledge that cooling rate has a significant impact on 
the microstructure obtained for steels [11]. Two primary cooling in
tervals (1300 ◦C–800 ◦C and 800 ◦C–500 ◦C) are known to promote 
phase transformations and grain growth development. Austenite grain 
growth occurs in the 1300 ◦C–800 ◦C range, while in the 800 ◦C–500 ◦C 
range, a phase transformation from austenite to distinct ferrite mor
phologies and bainite can be observed. Oxide inclusions, weld metal 
hardenability, and cooling conditions are known to be associated with 
acicular ferrite formation. Also, cooldown to room temperature can 
cause full or partial transformation of the remaining austenite to 
martensite, depending on the carbon content of the weld. 

In the experiments reported by Rodrigues et al. [10], 
martensite-austenite (MA) microstructures were observed for cooling 
rates in the range of 10–40 ◦C/s. Bainite formed under intermediate 
cooling rates (between martensite and pearlite phases), and its presence 
increased the UTS of the printed parts. The presence of bainite has been 
reported to play a critical role in crack initiation and propagation [12]. 
Rodrigues and co-workers found that the welds deposited with the 
higher heat input had a smoother, less bumpy top surface, which was 
credited to improving the weldability of subsequent layers. For both 
heat input levels, it was observed that overall part temperature 
increased with part height, while cooling rates and temperature gradi
ents decreased through the weld. For the higher heat input level, higher 
residence times were observed in the 800 ◦C–500 ◦C temperature range 
at higher layer numbers (as part height increases). Despite using 
different heat inputs for the two samples, no significant difference was 
observed in the microstructure of the parts. Both samples had the same 
phase constituents (i.e., ferrite, bainite, and MA). Uniaxial tensile tests 
and Charpy impact tests found the mechanical properties in the build 
and travel directions to be similar, exhibiting isotropic behavior. Sample 
P1 (higher heat input) was found to have slightly higher UTS (by ~50 
MPa) than sample P2 (lower heat input). Consequently, for sample P2, 
lower and more uniform microhardness values were measured along the 
part height compared to sample P1. 

The above studies have characterized the microstructure and me
chanical properties of metal alloys printed using WAAM and found that 
the thermal cycles of the layer-by-layer fabrication process influence the 
microstructural evolution of the part material. Specifically, controlling 
the cooling rates and maintaining stable interpass temperatures in the 
build can aid in controlling microstructure phase evolution, hence 
improving the mechanical properties of the final part. Process parame
ters directly influence welding energy density and part temperature 
gradients, which in turn affect cooling rates of printed parts. Thus, 
characterizing the influence of WAAM process parameters on part mi
crostructures and mechanical properties can support qualification ef
forts for different metal alloys, and enable product quality improvement 
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and repeatability in production. Towards that goal, this research in
vestigates the influence of two sets of process parameters on thermal 
cycles during WAAM as well as the resultant microstructures and me
chanical properties for two alloy steels: G4Si1, a mild steel, and AM 70, a 
high-strength, low-alloy steel. This research adds to the state of the art 
by qualifying the WAAM-CMT process for two alloy steel wires and 
enables the development of material models for simulation and opti
mization purposes. The remainder of the manuscript is organized as 
follows: Section 2 describes the experimental study undertaken, and 
Section 3 presents the experimental study results characterizing the 
interconnections of WAAM process parameters and thermal and me
chanical properties. Section 4 provides a discussion on the mechanisms 
influencing the microstructure of WAAM printed components, and 
Section 5 discusses the findings and opportunities for future work. 

2. Materials and methods 

2.1. Materials and equipment 

For the WAAM-CMT experimental work, G4Si1 and AM70 alloy steel 
wire feedstock (1.2 mm diameter) is used; their chemical compositions 
are presented in Table 1. An S355 mild steel plate (300 × 200 × 20 mm) 
was used as a substrate for the fabrication of a thin wall. The WAAM- 
CMT setup (Fig. 1) consists of a welding unit (Fronius CMT Advanced 
4000), a 6-axis industrial robot with a 3-axis worktable (ABB 4600 40/ 
2.55), a wire feeder, and an inert gas supply. The welding torch is 
mounted on the industrial robot arm such that the travel direction is in 
the X axis, build direction is in the Z axis, and traverse direction is in the 
Y axis. 

The robot path program was generated using Robot Studio 6. An 
infrared pyrometer (Micro Epsilon w/max temperature 1000 ◦C) in 
tandem with temperature measurement software (Compact Connect 
v1.9) was used to measure and record the temperature of the weld 
during fabrication. In addition, a contact-type digital thermal probe 
(Center 314 humidity temperature meter with a K-Type thermocouple) 
was used to monitor the interpass temperature between consecutive 
weld passes. 

Welding was performed with CMT technology, which alters arc 
length and thermal input during welding by controlling material transfer 
(droplet removal) to the melt pool through a short-circuiting phase [15]. 
During this phase, the wire feeder dips the molten droplet into the weld 
pool and retracts the wire at a specific frequency (50–120 Hz) to detach 
the droplet through surface tension. The controlled wire oscillating 
motion in the nozzle is carried out at zero current, lowering heat input to 
the weld. The fast-retracting motion results in near spatter-free droplet 
transfer. Further, the lowering of heat input enables the fabrication of 
thin-walled structures (a few millimeters in thickness). 

2.2. Product and process parameters 

A schematic of the thin wall structure built using WAAM-CMT is 
shown in Fig. 2. The steel baseplate was sandblasted and cleaned with 
ethanol before the first print and cleaned using a wire brush for each 

subsequent wall to remove residual spatter from the print area. Wire 
feed rate (WFR) and interpass temperature (T0) parameters were chosen 
for Material 1 (G4Si1) and Material 2 (AM70) to achieve low-heat input 
and high-heat input levels, resulting in four printed wall structures. The 
travel speed and shielding gas flow rate were kept constant at 10 mm/s 
and 15 L/min, respectively, for all experiments. The process parameters 
chosen for the experiments are shown in Table 2. A WFR of 6 m/min was 
used in printing the first layer to avoid incomplete deposition of sub
sequent layers. 

This higher WFR provides a thicker base layer and preheats the 
baseplate, resulting in better bonding between subsequent layers. A two- 
directional travel strategy was implemented for the weld nozzle during 
deposition to aid in maintaining a constant printed wall height along its 
length. Samples were taken from the deposited walls to investigate the 
microstructure evolution (optical microscopy specimens) and mechan
ical properties (tensile and microhardness specimens) under the 
different weld conditions explored, as shown in the figure. 

2.3. Thermal profile during welding 

As discussed in Section 1, the thermal profile during welding in
fluences solid state transformations and grain formation during cooling, 
which affect the microstructure and mechanical properties of the welded 
part. The ratio of wire feed rate to travel speed influences the amount of 
heat input to the weld, with higher wire feed rates increasing heat input 
for a fixed travel speed. Thus, WFR was varied for the different wall 
specimens to investigate the effect of heat input on the weld 
microstructure. 

A wait time was introduced before depositing each layer to allow the 
previously deposited layer to cool to the desired interpass temperature 
(150 ◦C or 250 ◦C). The interpass temperature was measured at the 
middle of each layer before depositing the next layer, as shown in Fig. 2 
using the contact-type digital thermal probe. From literature [16], it is 
seen that the thermal profile of a layer changes as new material is 
deposited, impacting microstructure evolution. Initially, the heat input 
to the weld is dissipated by conduction to the baseplate, forced con
vection through the shielding gas, and radiation to the surroundings. 
The increase in the number of layers affects the heat accumulation in the 
part, resulting in varying thermal cycles in the deposited layers. Thus, 
the pyrometer was used to measure the thermal profile of every 10th 

layer of material deposited. This data is used to characterize the effect of 
successive heating and cooling of one weld layer on associated micro
structure evolution and mechanical properties. 

2.4. Mechanical characterization 

A total of four walls were printed for the different process parameter 
settings. The walls printed using the higher energy input setting (M1E2 
and M2E2) resulted in thicker walls (~1–2 mm thicker) than their lower 
energy counterparts. Thus, post-process machining (face milling) was 
performed to ensure uniform thickness (~2.5 mm) for all walls. 
Following the initial machining, hardness test specimens were cut along 
the build direction from the bottom, middle, and top of each wall using a 
CNC mill (Fig. 2). For the tensile tests, specimens were cut along the 
build direction (wall height) and along the travel direction (wall length). 
Microhardness tests were performed in accordance with ASTM test 
standard E92-17 using a Vickers microhardness tester (Matsuzawa 
MMT-X7) with a test load of 9.8 N and dwell time of 10 s. Tensile 
properties (i.e., YS, UTS, and percent elongation) were investigated 
according to EN ISO 6892-1:2019 (Annex B) with tests conducted using 
an Instron 8800. A crosshead speed of 0.01 mm/s and an initial strain 
rate of 0.00025/s were set, based on the test standard. 

2.5. Microstructure characterization 

Five samples for optical measurement (metallographic analysis) 

Table 1 
Wire feedstock chemical composition [13,14].  

Elements G4Si1 (wt. %) AM70 (wt. %) 

C 0.090% 0.08% 
Mn 1.670% 1.700% 
Si 0.87% 0.60% 
S 0.006–0.010% 0.000% 
P 0.004–0.010% 0.000% 
Cr 0.000% 0.200% 
Mo 0.000% 0.500% 
Ni 0.000% 1.500% 
Fe 98.133–98.143% 95.42%  
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were selected at different heights along the build direction of each wall 
with a sample cross section length of 15 mm. These specimens were 
mechanically polished and etched using 4% Nital solution. The micro
structures of the prepared specimens were observed and recorded using 
a Leica DMi8 optical microscope. The microstructural images obtained 
for G4Si1 were used to estimate grain size in Leica Application Suite X 
(LAS X version 5) software following the ASTM E112 standard using the 
Jeffries planimetric method [17]. Image analysis for grain size estima
tion was not conducted using LAS X for AM70 due to lack of equiaxed 
grains in the specimen. Instead, grain size estimation for AM70 was 
performed manually following the Jeffries planimetric method. 

Electron back-scatter diffraction (EBSD) was used to analyze the 
prior austenite grain structure of the evaluated metallographic speci
mens for AM70. EBSD was not conducted for G4Si1 due to the lack of 
prior austenite grains in the microstructure. Following OM, the metal
lographic samples were polished further using a 0.02 μm colloidal silica 
suspension to enable EBSD analysis. Data acquisition for EBSD was done 
using a Zeiss Ultra Plus field emission scanning electron microscope 
(FESEM) equipped with a Symmetry® EBSD detector (Oxford In
struments). Data was acquired with a step size of 0.7 μm over a 300 μm 
× 1500 μm area using an acceleration voltage of 20 kV. The collected 
data was analyzed using Channel 5 EBSD software. The grain boundaries 
were categorized based on a minimum cut-off misorientation angle of 
15◦, and only the grains above 10 pixels (at 2048 × 1536 resolution) 
were considered for noise reduction. 

Fig. 1. WAAM equipment setup.  

Fig. 2. Schematic of the deposited wall with locations of temperature measurement and mechanical samples marked along build direction.  

Table 2 
Description of experimental setup and process parameters.  

Study Material and 
Equipment 

Material 1 Material 2 

Base Plate Size (Material) 300*200*20 mm (S355 steel) 
Wire Material (Diameter) G4Si1 (1.2 mm) AM70 (1.2 mm) 
Wall Length 160 mm 
Wall Height 100 mm 
Robot ABB 4600 40/2.55 
Shielding Gas Type 

(Composition) 
Mison 8 (Ar + 8% CO2 + 0.03% NO) 

Study Parameter 
F - Ignition Time 0.2 s 
F - Ignition Current 80% 
Wire Feed Rate (Level) 2 m/min (M1E1), 4 m/ 

min (M1E2) 
3 m/min (M2E1), 6 m/ 
min (M2E2) 

Interpass Temperature 
(Level) 

150 ◦C (M1E1), 250 ◦C 
(M1E2) 

150 ◦C (M2E1), 250 ◦C 
(M2E2) 

Step Height 1.2 mm (M1E1), 1.5 mm 
(M1E2) 

1.5 mm (M2E1 and 
M2E2) 

F - Travel Speed 10 mm/s 
F - Shielding Gas Flow 

Rate 
15 L/min 

F - Arc Ending Time 0.2 s 
F - Arc Ending Current 80% 
F - Wire Stick Out 15 mm 

Note: F- Fixed Parameter. 
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3. Results and analysis 

The wall temperature data, hardness and tensile strength properties, 
and microstructure images were used to characterize the effect of 
different process parameters (i.e., filler wire material, WFR, TS, and T0) 
on the weld properties. 

3.1. Thermal analysis 

Using the collected temperature data, four zones of interest from the 
bottom to the top of the wall, labeled Z1, Z2, Z3, and Z4 in Fig. 2 were 
identified. The cooling rate of the weld tends to decrease moving from 
zone Z1 to Z4. This trend has the effect of increasing the wait time to 
reach the specified interpass temperature between successive de
positions. It was observed that the cooling rate reaches a steady state 
value as the height of the part and number of layers deposited increases; 
this value appears to be dependent on the material type and energy 
input. This phenomenon was not examined further in this study. 

At the bottom of the wall (Z1), for one to ten layers (up to ~10–15 
mm wall height), the weld experiences the fastest cooling rate, with wait 
times between subsequent weld passes of 10–15 s. In the lower middle 
section of the wall (Z2), for ten to thirty layers (~15–45 mm wall 
height), the weld experiences a much slower cooling rate, with wait 
times of 20–48s per layer, increasing with layer number. At the start of 
the upper middle section of the wall (Z3, >45 mm), the cooling rate sees 
a slight decrease from zone Z2. However, the rate of decrease of cooling 
rate is comparatively slower for zone Z3 than Z2. For example, in the 
wall printed using parameter set M1E1, the average interpass wait time 
at layer 10 (~12 mm) was found to be 12s, while at layers 20 (~ 24 mm) 
and 30 (~ 36 mm) the wait time increased to 26s and 48s between 
deposition, respectively. We can see that the cooling rate reduces ~50% 
between layers 10–20, and ~75% between layers 10–30. However, in 
zone Z3 of this wall (M1E1), the average wait time at layers 40, 50, and 
60 were found to be 58s, 62s, and 64s, respectively. 

From this data, it is evident that the rate of decrease in the cooling 
rate is not uniform as the height of the part increases. The decrease in 
cooling rate appears to reach a steady state in zone Z3, which was also 
observed for other prints in this study and is maintained through 
printing of zone Z4. A key difference in thermal phenomena between 
zones Z3-Z4 is a decrease in the number of heating and cooling cycles 
that each subsequent layer undergoes in this metal additive process. 

Fig. 3 presents the temperature profile for the 40th layer (M1E1) to show 
the reheating and cooling cycles undergone by a single layer. In WAAM, 
arc energy is used to melt the filler material and substrate to tempera
tures above 1000 ◦C. Thus, as a new layer is deposited, a number of 
previously deposited layers undergo conductive heating to temperatures 
above 1000 ◦C. This successive heating and cooling of the part highly 
influences the resultant material microstructure (e.g., grain sizes and 
shape, and microstructural phase constituents) and its mechanical 
properties. 

Fig. 3. Temperature profile of layer 40 (M1E1) extracted from infrared py
rometer showing reheating and cooling cycles. 

Fig. 4a. Optical micrographs (25 μm scale) of WAAM built parts using G4Si1 
welding wire for M1E1. Micrographs reported along wall height from top to 
bottom (sample A1, A2, and B). Phases identified: AF – Acicular ferrite, ALF – 
Allotriomorphic ferrite, WF – Widmanstätten ferrite, and F – Equiaxed ferrite. 
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3.2. Microstructure and mechanical properties 

Image analysis was used to identify the material grain sizes and 
microstructure phase constituents of the printed specimens. Fig. 4a–d 
shows the microstructural variation along the height of the WAAM-built 
walls for the two parameter sets (M1E1 and M1E2) using G4Si1. As 
shown in Fig. 2, sample A1 was taken from zone Z4 and sample A2 from 
zone Z3, sample B overlaps zones Z2 and Z3, sample C1 was taken from 
zone Z2, and sample C2 was taken from zone Z1 adjacent to the base 
plate. For the G4Si1 alloy, both welded walls exhibit distinctive micro
structural (grain size) variations resulting from layer-by-layer deposi
tion. For M1E1, sample C2 (Fig. 4b) experiences the highest cooling rate 
due to the large temperature difference between the new weld layers 
and the non-preheated baseplate, resulting in faster heat dissipation 
from the weld. In addition, a higher WFR for the first layer results in a 
higher heat input and contributes to the temperature difference between 
the base plate and the weld. This thermal phenomenon results in small 
grain sizes (2.46 ± 1.95 μm) in zone Z1 with the microstructure largely 
composed of bainite and acicular ferrite with traces of Widmanstätten 
and allotriomorphic ferrite. The hardness at the bottom of the wall was 
measured to be 248.25 ± 28.27 HV1. The large variability in the 
hardness at this location is due to the rapidly changing cooling rate at 
the bottom of the wall. As the height of the wall increases to the lower 
middle zone Z2, the cooling rate decreases to less than half of the cooling 
rate at the bottom of the wall. The microstructure of sample C1 (Fig. 4b) 
consists of equiaxed ferrite, allotriomorphic ferrite, and with small re
gions exhibiting bainite, pearlite islands, and remnant acicular ferrite 
with average grain size of 2.96 ± 3.15 μm and hardness of 173.55 ±

4.10 HV1. Sample B (Fig. 4a) is largely comprised of equiaxed ferritic 
grains with trace amounts of pearlite at the grain boundaries. The 
average grain size and hardness at this location were found to be 4.03 ±
4.30 μm and 168.60 ± 4.85 HV1, respectively. Sample A2 (Fig. 4a) was 
similar in microstructure to sample B, with remnant acicular ferrite 
grains also observed, indicating a lack of transformation time during 
welding. 

The average grain size and hardness at this location were found to be 
5.39 ± 4.21 μm and 168.65 ± 5.39 HV1, respectively. Sample A1 
(Fig. 4a), taken from zone Z4 of the weld, was largely comprised of 
acicular ferrite with allotriomorphic ferrite found along the prior 
austenitic grain boundaries. 

Fig. 4b. Optical micrographs (25 μm scale) of WAAM built parts using G4Si1 
welding wire for M1E1. Micrographs reported along wall height from top to 
bottom (sample C1 and C2). Phases identified: AF – Acicular ferrite, ALF – 
Allotriomorphic ferrite, WF – Widmanstätten ferrite, and F – Equiaxed ferrite. 

Fig. 4c. Optical micrographs (25 μm scale) of WAAM built parts using G4Si1 
welding wire for M1E2. Micrographs reported along wall height from top to 
bottom (samples A1, A2, and B). Phases identified: AF – Acicular ferrite, ALF – 
Allotriomorphic ferrite, WF – Widmanstätten ferrite, and F – Equiaxed ferrite. 
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In addition, Widmanstätten ferritic grains were observed at the grain 
boundaries of allotriomorphic ferrite as shown in Fig. 4b. The grains in 
this region have an average hardness value of 191.90 ± 9.45 HV1 and 
average grain size of 3.21 ± 2.90 μm. 

The hardness of the material increases (~20 HV1) as we move from 
zone Z3 to zone Z4. The increase in hardness at the top of the wall 
(sample A1) can be associated with the variation in constituent phases 
and smaller grain sizes compared to sample A2. In addition, the top of 
the wall experiences fewer reheating and cooling cycles, limiting 
recrystallization and the number of phase transformations in the region. 
From the microstructure and hardness characterization for experimental 
wall M1E1, it was seen that the material becomes softer as we move from 
zone Z1 to zone Z3, with an increase in average grain size. The micro
structure phase analysis (Fig. 4c and d) for wall M1E2 showed a similar 
phase structure to that of M1E1, but with increased ferritic grain sizes. It 
was seen that the higher energy printing parameters (M1E2) resulted in 
a wall with lower hardness than M1E1. Though the trends for cooling 
rate, hardness, and grain size for M1E2 were similar to M1E1, micro
structure analysis found a small fraction of bainitic structures in the C2 
(Fig. 4d) sample close to the base plate. The resulting microstructure 
phases, grain sizes, and mechanical properties for the experiments are 
presented in Table 3. 

Similar to G4Si1, the walls printed using AM70 steel alloy exhibit 
distinctive microstructural variations as a result of layer-by-layer 
deposition (Fig. 5a–d). The walls produced using AM70 (M2E1 and 
M2E2), resulted in a fine-grained steel consisting of ferrite, martensite, 
and bainite, along with trace amounts of oxide inclusions. The grain 
sizes of walls printed using AM70 were smaller than their G4Si1 

Fig. 4d. Optical micrographs (25 μm scale) of WAAM built parts using G4Si1 
welding wire for M1E2. Micrographs reported along wall height from top to 
bottom (sample C1 and C2). Phases identified: AF – Acicular ferrite, ALF – 
Allotriomorphic ferrite, WF – Widmanstätten ferrite, and F – Equiaxed ferrite. 

Table 3 
Microstructure and mechanical property results for G4Si1 and AM70 deposits.  

Tested 
Sample 

HV1 Grain 
Size 
(μm) 

YS 
(MPa) 

UTS 
(MPa) 

% e Phase 

M1E1- 
A1 

191.90 
± 9.45 

3.21 
±

2.90 

447.20 
± 0.78 

628.35 
±

17.78 

31% Acicular ferrite 
with traces of 
Widmanstätten 
and 
allotriomorphic 
ferrite 

M1E1- 
A2 

168.65 
± 5.39 

4.21 
±

3.92 

Equiaxed ferrite, 
remanent acicular 
ferrite, traces of 
pearlite and 
bainite 

M1E1- 
B 

168.60 
± 4.85 

4.03 
±

4.30 

Equiaxed ferrite 
and traces of 
pearlite 

M1E1- 
C1 

173.55 
± 4.10 

5.61 
±

3.15 

Equiaxed ferrite 
and pearlite, 
allotriomorphic 
ferrite, remanent 
acicular ferrite, 
and traces of 
bainite 

M1E1- 
C2 

248.25 
±

28.27 

2.46 
±

1.95 

Acicular ferrite 
and traces of 
Widmanstätten, 
allotriomorphic 
ferrite and bainite 

M1E2- 
A1 

165.25 
±

11.92 

4.55 
±

4.83 

395.55 
± 1.62 

605.00 
±

10.60 

41% Acicular ferrite 
with traces of 
Widmanstätten 
and 
allotriomorphic 
ferrite 

M1E2- 
A2 

155.10 
± 3.26 

5.40 
±

4.78 

Equiaxed ferrite, 
remanent acicular 
ferrite, traces of 
pearlite and 
bainite 

M1E2- 
B 

155.15 
± 2.16 

5.38 
±

4.58 

Equiaxed ferrite 
with trace 
amounts of 
pearlite 

M1E2- 
C1 

170.45 
± 6.00 

3.92 
±

2.34 

Equiaxed ferrite 
and pearlite, 
allotriomorphic 
ferrite, remanent 
acicular ferrite, 
and traces of 
bainite 

M1E2- 
C2 

190.5 
±

10.63 

2.79 
±

2.07 

Bainite, acicular 
ferrite and traces 
of Widmanstätten 
and 
allotriomorphic 
ferrite  

M2E1- 
A1 

311.00 
±

26.18 

2a 771.82 
± 0.84 

932.96 
±

28.67 

25% Acicular ferrite 
and bainite 

M2E1- 
A2 

271.55 
± 7.58 

Bainite and 
acicular ferrite 

M2E1- 
B 

271.45 
± 9.56 

Bainite, acicular 
ferrite, and 
martensite 

M2E1- 
C1 

286.90 
±

11.03 

Bainite and 
acicular ferrite 

M2E1- 
C2 

339.17 
±

15.34 

Bainite and 
martensite 

M2E2- 
A1 

305.30 
± 9.30 

2-3a 707.58 
± 3.53 

943.34 
± 9.98 

28% Acicular ferrite 
and bainite 

(continued on next page) 
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counterparts, averaging at 2–3 μm throughout the part. 
AM70 material showed overall higher hardness and strength 

compared to G4Si1. For sample C2 (Fig. 5b) in M2E1, the microstructure 
was largely composed of bainite and martensite. The hardness at the 
bottom of the wall was measured to be 339.17 ± 15.34 HV1. The large 
variability in the hardness at this location is due to the rapidly changing 
cooling rate at the bottom of the wall. 

As the height of the wall increases to zone Z2, the microstructure of 
sample C1 (Fig. 5b) is similar to that of C2, comprised of bainite and 
acicular ferrite in a weave basket pattern with average hardness of 
286.90 ± 11.03 HV1. Sample B (Fig. 5a) taken at the intersection of 
zones Z2 and Z3 is largely comprised of lower bainite, upper bainite, 
acicular ferrite, and martensite with an average hardness of 271.45 ±
9.56 HV1. Sample A2 (Fig. 5a) was comprised of bainite and acicular 
ferrite, exhibiting an average hardness of 271.55 ± 7.58 HV1. Sample 
A1 (Fig. 5a) was found to be largely comprised of acicular ferrite and 
bainite. The hardness in this region was 311.00 ± 26.18 HV1. The in
crease in hardness at the top of the wall can be associated with fewer 
heating and cooling cycles resulting in more harder phases in the 
microstructure, as observed in the experiments using G4Si1 steel alloy. 

The microstructure analysis for M2E2 (Fig. 5c and d) showed a 
similar phase structure to M2E1. It was seen that the higher energy 
printing parameters (M2E2) resulted in a wall with lower hardness than 
M2E1. The trends for cooling rate, hardness, and grain size were 
observed to be the same for M2E1 and M2E2. The only difference in 
microstructural phases was seen in prior austenite grains observed 
through EBSD analysis. It was observed that prior austenite grains were 
polygonal with parameter set M2E1, while prior austenite grains were 
columnar using parameter set M2E2, as shown in Fig. 6a and b, 
respectively. 

The higher energy parameter set (M2E2) normalized the columnar 
grains and increased the sub-grain size. The variation of hardness along 
the build direction for both materials (all parameter combinations) is 
shown in Fig. 7. From the figure, it is seen that the hardness is uniform 
through the part, with a slight increase at the bottom and top of the 
printed walls. 

Following the optical microscopy of the hardness samples, tensile 
specimens cut along the build direction (vertical) and nozzle travel di
rection (horizontal) were tested. For both materials, the strength did not 
vary with orientation of the tensile specimen (horizontal and vertical) 
implying that mechanical properties favor isotropy in WAAM-CMT. The 
wall with parameter combination M1E1 showed higher YS (447.20 
MPa), UTS (628.35 MPa), and lower elongation at failure (31%) than the 
wall built using parameter set M1E2 (395.55 MPa, 605 MPa, and 41%, 
respectively). The samples from wall M1E2 experienced greater elon
gation (~5% higher strain) than M1E1. The M1E2 specimens experi
enced higher heat input per layer and a slower cooling rate than M1E1, 
resulting in specimens with lower hardness and higher ductility, but 
with slightly lower strength. The difference in average UTS between the 

two parameter sets (M1E1 and M1E2) was found to be 15 MPa. 
The measured YS, UTS, and % elongation values for parameter sets 

M1E1 and M1E2 are reported in Table 3, and the true stress strain curves 
for the two parameter sets tested for material G4Si1 in shown in Fig. 8. 
For the AM70 alloy, specimens from the lower weld energy parameter 
set M2E1 exhibited higher YS (771.82 MPa), lower UTS (932.96 MPa), 
and lower elongation (25%) than the wall using parameter set M2E2 
(707.58 MPa, 943.34 MPa, and 28%, respectively). 

The measured YS, UTS, and % elongation values for parameter sets 
M2E1 and M2E2 are shown in Table 3, and the true stress strain curves 
for the two parameter sets tested for material AM70 in shown in Fig. 8. 
The findings indicate that lower energy input results in higher YS and 

Table 3 (continued ) 

Tested 
Sample 

HV1 Grain 
Size 
(μm) 

YS 
(MPa) 

UTS 
(MPa) 

% e Phase 

M2E2- 
A2 

266.50 
±

10.62 

Bainite and 
acicular ferrite 

M2E2- 
B 

244.95 
± 7.96 

Bainite, acicular 
ferrite, and 
martensite 

M2E2- 
C1 

281.95 
±

12.45 

Bainite and 
acicular ferrite 

M2E2- 
C2 

346.25 
±

24.07 

Bainite and 
martensite  

a Obtained using manual measurement following ASTM E112. 

Fig. 5a. Optical micrographs (25 μm scale) of WAAM built parts using AM70 
welding wire for M2E1. Micrographs reported along wall height from top to 
bottom (samples A1, A2, and B). Phases identified: AF – Acicular ferrite, and B 
– Bainite. 
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UTS for both materials. However, the ductility of both materials 
increased when printing using the higher energy input parameters. 

4. Discussion and validation 

Microstructural characterization for the two steel alloys (G4Si1 and 
AM70) showed presence of acicular ferrite, bainite, equiaxed ferrite, 
Widmanstätten ferrite, allotriomorphic ferrite phases, and pearlite. In 
addition, martensite was also formed in the AM70 welds. The fraction of 
each of these microstructure phases identified influences the mechanical 
properties observed during testing of the welds. Acicular ferrite is a 
desired phase in inoculated steels due to its influence on the overall 
toughness of the material. Acicular ferrite grains are usually formed at 
intragranular nucleation sites formed at inclusions. Similar to bainite, 
which nucleates at austenite grain boundaries and grow inwards as 
sheaves or plates, transformation to acicular ferrite occurs below the 
bainite start temperature. The growth of acicular ferrite phase over 
bainite may be favored based on the prior austenite grain size and in
clusion density in the alloy used for printing [18]. In addition, the 
presence of Widmanstätten ferrite and allotriomorphic ferrite along 
prior austenite grain boundaries have been seen to favor acicular ferrite 
growth over bainite. The increased amount of acicular ferrite grains may 
be favored in applications where higher ductility is warranted. Similar 
to acicular ferrite, the presence of bainite may also bring good strength 
to ductility performance but with higher hardness. Widmanstätten 
ferrite structures generally possess higher hardness due to a higher 
phase boundary area where dislocations at short distances may be hin
dered resulting in an increase in the hardness. In addition, microcracks 

are common in Widmanstätten ferrite which can limit the impact 
strength of the material and thus, only preferable in select applications. 
A high cooling rate can result in an increase in Widmanstätten ferrite 
since it provides less time for ferrite nucleation sites. Pearlite on the 
other hand forms when the material is slowly cooled from the austeni
tizing temperature for steels. Pearlites are generally lamellar with 
alternating layers of ferrite and cementite and are formed in steels with 
lower than eutectoid carbon content (~ 0.75–0.85 wt % of carbon). The 
presence of pearlite can increase hardness, strength, and ductility of 
steels, but can have a detrimental effect on the toughness properties of 
the material. Finally, martensite structures are generally the hardest and 
strongest phase in steel alloys but also constitute the most brittle 

Fig. 5b. Optical micrographs (25 μm scale) of WAAM built parts using AM70 
welding wire for M2E1. Micrographs reported along wall height from top to 
bottom (samples C1 and C2). Phases identified: AF – Acicular ferrite, B – 
Bainite, and M − Martensite. 

Fig. 5c. Optical micrographs (25 μm scale) of WAAM built parts using AM70 
welding wire for M2E2. Micrographs reported along wall height from top to 
bottom (samples A1, A2, and B). Phases identified: AF – Acicular ferrite, B – 
Bainite, and M − Martensite. 
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structure [18]. 
The SEM micrographs for G4Si1 welds (both process parameter 

settings) indicated the presence of allotriomorphic ferrite and Wid
manstätten ferrite phases along the prior austenite grain boundaries at 
the bottom (Zone Z4) and top (Zone Z1) zones of the part as shown in 
Fig. 9a. Thus, G4Si1 welds exhibited a higher percentage of acicular 
ferrite phase in their microstructure than bainite. Additionally, the 
higher energy input parameters (M1E2) resulted in an increase in the 
percentage of equiaxed ferrite, acicular ferrite, and pearlite phases and 
also increased the grain sizes in the microstructure (Fig. 9b). The com
bination of the phases as well as the larger grain sizes resulted in 
decreasing the hardness, while increasing the ductility of the high 

energy input G4Si1 welds without a considerable loss in strength (UTS 
for M1E2 was 23 MPa less than M1E1). On the other hand, AM70 is a 
bainitic steel with chromium, manganese, and molybdenum concen
trations which may lower the formation of allotriomorphic ferrite in the 
final microstructure [18]. Hence, the resulting microstructure saw a 
decrease in the presence of acicular ferrite. 

However, it is important to note that, the concentration of acicular 
ferrite in AM70 was significantly higher than the G4Si1 welds. All four 
temperature zones in AM70 samples exhibited largely bainitic grains 
(mean grain size of 2–3 μm) with smaller regions of acicular and 
martensitic phases. 

Martensitic laths were identified in the microstructure of AM70 de
posits at the top of the wall and near the base plate (A1 and C2 zones) as 
shown in Fig. 10. The formation of martensitic laths along the prior 
austenite grain boundaries can be attributed to the high cooling rates 
near the base plate and lack of remelting (due to addition of layers of 
top) at the top of the wall. Acicular ferrite phases can be linked to the 

Fig. 5d. Optical micrographs (25 μm scale) of WAAM built parts using AM70 
welding wire for M2E2. Micrographs reported along wall height from top to 
bottom (samples C1 and C2). Phases identified: AF – Acicular ferrite, B – 
Bainite, and M − Martensite. 

Fig. 6. EBSD scans of AM70 welds with parameter set a) M2E1 and b) M2E2.  

Fig. 7. Microhardness values for G4Si1 (top) and AM70 (bottom) deposits 
measured along build direction. 

S. Panicker et al.                                                                                                                                                                                                                                



Materials Science & Engineering A 853 (2022) 143690

11

presence of microscopic inclusions as seen in the micrographs of AM70 
welds (Fig. 4). Similar to G4Si1, the AM70 micrographs show an in
crease in the fraction of acicular ferrite phase when using higher energy 
input parameters (M2E2) compared to M2E1, which slightly increased 
ductility and strength. 

This performance improvement can be associated with the largely 
bainitic microstructure of AM70 welds. Specimens for both process 
parameter settings (M2E1 and M2E2) resulted in similar UTS (~930 
MPa for M2E1 and ~940 MPa for M2E2). However, despite having 
similar UTS, the YS for M2E1 and M2E2 have a difference of 70 MPa (~ 
10%), indicating that M2E1 is more brittle. The microstructural phases 
obtained for AM70 are in accordance with prior research investigating 
HSLA steels, where in the major constituents were ferrite and bainite 
phases [10,19]. Further, the small grain size and presence of bainite 
(Fig. 11) and acicular ferrite throughout the sample contributed to 
higher hardness, UTS, and YS, but lower ductility than G4Si1 samples. 
The relative lower ductility of AM70 may be associated with the large 
number of fine inclusions found throughout the welded microstructure 
which can aggravate microcracks and their propagation in the weld. The 
hardness and strength of fully bainitic microstructures decrease during 
tempering; this change is more evident in high strength steels. The 
repeated heating and cooling cycles in the WAAM process results in a 
non-uniform tempering of the printed part. Consequently, a clear vari
ation in the microstructure and mechanical properties can be seen due to 
the layer-by-layer building approach. For printing WAAM parts with 
uniform microstructure, reducing or eliminating the need for stress relief 
heat treatment requires understanding the variation in microstructure 
caused by process-related thermal phenomena. Capturing data related to 
changes in cooling rates and wait times as a function of part height can 
help create computational models which can enable process tuning and 
optimization. 

Fig. 8. Stress-strain curve for G4Si1 deposits (top) and AM70 deposits (bottom) 
characterized in the build (vertical) and travel (horizontal) direction. 

Fig. 9. SEM micrographs of G4Si1 deposits for M1E1 (top) and M1E2 (bottom); 
(a) AF- acicular ferrite, WF- Widmanstätten ferrite, and ALF- allotriomorphic 
ferrite, (b) P- pearlite and F- equiaxed ferrite. 

Fig. 10. SEM micrographs of AM70 deposits for M2E1 with martensite 
(M) laths. 
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5. Conclusions and future work 

Thin walls (160 × 100 × 5 mm) of mild steel (G4Si1) and high- 
strength, low-alloy steel (AM70) were fabricated using WAAM-CMT. A 
fixed travel speed and two different sets of wire feed rates and interpass 
temperatures were employed, resulting in four walls for subsequent 
microstructural analysis and mechanical testing. Microstructural evo
lution (using an optical microscope, SEM, and EBSD scans) and me
chanical properties (i.e., YS, UTS, and %e) were investigated (in the 
horizontal and vertical directions of material deposition) to better un
derstand the associated influence of thermal cycles of layer-by-layer 
deposition. 

From these investigations, the following observations were made:  

• Based on observed phenomena, four different temperature zones 
were identified, which are characterized by differences in cooling 
rate, wait time between layers, and number of reheating cycles.  

• Cooling rate decreases as the height of the part increases until it 
reaches a steady state value. The decrease in cooling rate leads to an 
increase in wait time between layers as the height of the part 
increases.  

• Lower heat input resulted in higher YS and UTS and lower uniform 
strain.  
o YS and UTS increased by 13% and 3.8%, respectively, in G4Si1 

steel deposits with the lower energy input parameters (M1E1) than 
with higher energy input parameters (M1E2).  

o YS increased by 9% in AM70 steel deposits with the lower energy 
input parameters (M2E1) than with higher energy input parame
ters (M2E2). However, in case of UTS the lower energy input pa
rameters (M2E1) saw a 1% decrease compared to high energy 
input parameter (M2E2).  

o Percentage elongation at failure was 10% and 3% lower in G4Si1 
and AM70 deposits respectively, for printing with lower energy 
input parameters (M1E1 and M2E1) than with higher energy input 
parameters (M1E2 and M2E2).  

• Higher energy input parameters resulted in increased ductility and 
reduced hardness for both materials.  

• Owing to a lack of significant anisotropy in G4Si1 deposits due to an 
equiaxed grain structure, the mechanical properties in the travel 
direction showed negligibly higher UTS (0.38%) than the samples 
taken in the build direction. A similar trend was observed for AM70 
(increases of 2.7% and 0.24% in YS and UTS, respectively).  

• Even though energy input varied for both materials for the different 
parameter sets, no significant microstructural changes were 
observed across the parameter sets for G4Si1, though energy input 

variation had a significant influence on the material microstructure 
for AM70. Prior austenite grains were equiaxed/polygonal for M2E1, 
while they were columnar for M2E2. Higher heat input settings 
normalized the columnar grains, increasing the sub-grain size. The 
observed microstructures for M2E1 and M2E2 were comprised of 
similar phases (i.e., ferrite + bainite + martensite + inclusions).  

• Smaller grain sizes due to higher solidification rates and limited 
grain growth in lower energy input parameter sets (M1E1 and M2E1) 
resulted in higher YS and hardness in both alloys. Since grain 
boundaries play an essential role in resisting dislocation movement 
in polycrystalline materials, the observed mechanical property 
trends are attributed to the presence of more grain boundaries in 
samples printed using lower energy input parameters. 

The work herein will support development of models capable of 
characterizing the process parameter-process physics-property re
lationships for a family of steels. Specifically, graph-based modeling and 
machine learning approaches are being investigated to combine 
knowledge from different domains into one integrated system model. 
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