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Tight Logarithmic Approximations and Bounds for
Generic Capacity Integrals and Their Applications
to Statistical Analysis of Wireless Systems

Islam M. Tanash

Abstract— We present tight yet tractable approximations and
bounds for the ergodic capacity of any communication system
in the form of a weighted sum of logarithmic functions, with
the focus on the Nakagami and lognormal distributions that
represent key building blocks for more complicated systems.
A minimax optimization technique is developed to derive their
coefficients resulting in uniform absolute or relative error. These
approximations and bounds constitute a powerful tool for the
statistical performance analysis as they enable the evaluation
of the ergodic capacity of various communication systems that
experience small-scale fading together with the lognormal shad-
owing effect and allow for simplifying the complicated integrals
encountered when evaluating the ergodic capacity in different
communication scenarios. Simple and tight closed-form solutions
for the ergodic capacity of many classic and timely application
examples are derived using the logarithmic approximations. The
high accuracy of the proposed approximations is verified by
numerical comparisons with existing approximations and with
those obtained directly from numerical integration methods.

Index Terms—Ergodic capacity, minimax approximation,
bounds, performance analysis, fading distributions.

I. INTRODUCTION

RGODIC capacity is an important measure for analyzing

the performance of different communication systems [1].
It specifies the maximum transmission rate of reliable com-
munication that can be achieved over time-varying channels.
Specific formulations of ergodic capacity can be referred to as
capacity integrals based on the way how they are found by
calculating the expectation of instantaneous channel capacity
using probability density functions (PDFs) that model fad-
ing. Establishing closed-form expressions for ergodic capacity
is of great importance in communication theory since they
enable us to gain scientific understanding of the behavior of
communication systems and the effect of their parameters
on the performance. In this area, our research work aims
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at facilitating the statistical performance analysis of wireless
systems by developing novel mathematical tools that build
upon the following general result in this article.

Proposition 1: For any wireless system with instantaneous
capacity C = log, (1 + ) conditioned on fading states,
where et £ 9€ _ 1 denotes effective (not necessarily actual)
signal-to-noise ratio (SNR) with average Jer = E [7yert],
the ergodic capacity can be approximated with arbitrary
accuracy as

N
C2E[C] = ) anlogy (1 + by Ferr) (1)
n=1
by choosing the coefficients {(ay, b,)}>_, appropriately.
Proof: See Appendix A. |

One will instantly notice that the generic approximation (1)
is a weighted sum of the Shannon capacities of basic static
additive white Gaussian noise (AWGN) channels. In other
words, the greatness of Proposition 1 is that it proves that any
system with fading channels is in ferms of capacity equivalent
to a system (cf. Fig. 1), wherein a scheduler employs randomly
one of N + 1 parallel static channels for the transmission of
each data block:' Channel n, n = 1,2, ..., N, having SNR of
bnesr 18 chosen with probability a,, and Channel 0 represents
a completely blocked channel (by = 0), i.e., an outage event
takes place with remaining probability ap =1—>""_, a,.

While Proposition 1 is powerful in proving the general
existence of the approximation (1) for the ergodic capacity
of any wireless system at large, it is not so applicable as
an actual approximation for any specific system. This is
because, firstly, the coefficients a,, n = 1,2,..., N, are in
the direct application computed from the PDF of C, which
is typically not derived explicitly in statistical performance
analysis, and it may be cumbersome or even impossible to
express. Secondly and more importantly, when choosing the
coefficients from the Riemann sum according to the proof, the
resulting approximations are inefficient, because a very large
number of logarithmic terms are needed for adequate accuracy.

In this paper, we aim to evolve Proposition 1 into a useful,
efficient tool in two ways. Firstly, we develop a system-
atic methodology to optimize coefficients {(a,,b,)}N_; to
approximate any communication system’s ergodic capacity

! An alternative interpretation is a scheduler that employs the parallel chan-
nels sequentially for data blocks with relative durations a,, n =0,1,..., N.
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Any system with average effective SNR, Jeg

_________________________________

(SNR=b27es)

AWGN
Channel N
(SNR=bnN"esr)

: Scheduling E
. probabilities 1
! a0 Blocked !
! Channel 0 '
. [ AweN !
| - Channel 1 !
! / (SNR=b17esr) \ :
i ZS AWGN 6 !
Input as Channel 2 :Output

Fig. 1. Interpretation of the ergodic capacity of any communication system
as a scheduler which randomly employs one of the parallel static channels
when transmitting data blocks.

C = C(1/7e)/log,(2) that can be expressed with the
generic function C(-) of some open or closed form. Secondly,
we implement the presented optimization methodology to
find {(a,,b,)}_; explicitly under Nakagami and lognormal
fading (when C(-) becomes Cy,(-), the ‘Nakagami capacity
integral’, or C,,(-), the ‘lognormal capacity integral’) and show
how to use them as building blocks for the capacity analysis
of complex systems that manifest them in intermediate steps.

A. Related Works

Capacity integrals have been investigated extensively in the
literature for countless transmission systems under various
assumptions on transmitter and receiver channel knowledge
and over different fading distributions [2], [3], [4], [5], [6],
(71, 81, [91, [10], [11], [12], [13], [14], [15], [16], [17],
[18]. In [2], [3], [4], [5], (6], (7], [8], [9], [10], [11],
and [12], the ergodic capacity over Rayleigh fading is
evaluated for single-antenna systems and multi-antenna sys-
tems — namely, multiple-input single-output (MISO),
single-input multiple-output (SIMO), and multiple-input
multiple-output (MIMO) — for correlated or non-correlated
channels and different combining techniques at the receiver.
Moreover, the ergodic capacity for single-antenna and multi-
antenna systems with non-correlated channels is evaluated over
Nakagami fading in [13] and [14] and over Rician fading
in [15], [17], and [16]. The ergodic capacity under x — p
fading is derived in [18].

Generally, the precise ergodic capacity expressions are
difficult to express in analytical forms. This has motivated the
work toward deriving approximations and bounds for capacity
integrals [19], [20], [21], [22], [23], [24], [25]. They are
also needed among many other purposes for optimal power
allocation and network design. In particular, the authors in [19]
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present a lower bound for the capacity integral of MIMO
Rayleigh channels with frequency-selective fading and/or
channel correlation, together with an asymptotic approxima-
tion of the ergodic capacity over flat fading. Other asymptotic
results are derived in [20] for specific multi-antenna scenarios
with the channel knowledge at the receiver at first, and then
at the transmitter as well.

In [21], more generic expressions for bounding the ergodic
capacity are presented. In [22], two less accurate yet tractable
approximations that enable the development of analytical
resource allocation strategies in Rayleigh MIMO systems
are derived. The authors in [23] propose two simple yet
accurate approximations for the ergodic capacity in the low-
SNR region. Closed-form bounds for the ergodic capacity in
dual-hop fixed-gain amplify and forward relay networks are
proposed in [24] over Rayleigh fading channels, and in [25]
over Nakagami fading channels.

In addition to the small-scale fading, the ergodic capacity
is also investigated under the shadowing effect that is usually
modeled by the lognormal distribution. The ergodic capacity
of communication systems under lognormal fading channels
does not admit a closed-form expression. Therefore, several
approximations and bounds have been proposed to express
it in terms of analytical functions [26], [27], [28], [29],
[30]. The very first lower and upper bounds for evaluating
the ergodic capacity over lognormal fading channels were
presented in [26], resulting in simple yet loose bounds for
lower values of SNR.

Other approximations were later developed in [27] and [28]
for single-input single-output (SISO) systems and the results
were also generalized to approximate the capacity of diversity
combining techniques with or without channel correlation,
based on the fact that the sum of lognormal random variables
can be well approximated by an equivalent lognormal one.
In [29], a tight approximation for the lognormal capacity
integral is presented and investigated for SISO and MIMO
indoor ultra-wideband systems. The authors in [30] derive
closed-form approximations for the capacity integral of various
adaptive transmission schemes under lognormal distribution.

B. Contributions and Organization of the Paper

The unified fundamental tool, i.e., (1), contributed in this
article enables the accurate evaluation of ergodic capacity
in any communication system at large in the form of the
weighted sum of logarithmic functions. It requires optimizing
the corresponding coefficients so that they work as highly
efficient replacements for those obtained from the numer-
ical methods such as the Riemann sum in the proof of
Proposition 1. Nevertheless, we also implement the pro-
posed approach to offer novel logarithmic approximations
and bounds with optimized coefficients specifically for the
Nakagami and lognormal capacity integrals. Since these two
integrals most frequently appear as building blocks for many
more-complex communication systems, this often leads to
logarithmic approximations and bounds in the same format
of (1) for their capacity expressions. This avoids the need to
formulate equivalent methodology and solve the coefficients
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specifically for every individual system despite the general
tool facilitates that too.
We can summarize the contributions in this paper as follows.

o We propose a systematic methodology to optimize the
approximations’ coefficients and obtain the best logarith-
mic approximations in terms of the minimax absolute
error for the capacity of any communication system.
This requires redeveloping the related scheme that we
previously presented in [31] for error probability analysis,
which is inherently different from capacity analysis.

e We implement the optimization methodology on the
Nakagami-m channel (and over Rayleigh fading as a
special case thereof) to derive minimax approximations
for it. Especially, the approximations are valid for any
value of m, opposing to the exact closed-form expression
in [13, Eq. 23], which is valid only for its integer values.

o We show how the optimized approximation of the Nak-
agami capacity integral can be used as a building block
to derive the capacity integral of many complicated
communication systems [2], [3], [4], [5], [6], [7], [8],
(91, [10], [111, [12], [13], [14], [15], [16], [17], [18], [32],
[33], [34], [35], [36], [37] and can even often lead to the
same logarithmic form as an end result.

o Likewise, we find the optimized coefficients for the
approximation of the lognormal capacity integral which
enables the evaluation of the ergodic capacity for various
communication systems that experience small-scale fad-
ing together with the lognormal shadowing effect, in the
form of a sum of logarithmic terms. In particular, for
a composite lognormal channel, we apply the sum of
logarithms with its optimized coefficients to approximate
the ergodic capacity over the small-scale fading channel
first. The resulting integral has exactly the same form as
the lognormal capacity integral, which we approximate
again by the sum of logarithmic functions.

o We extend the proposed minimax method to find the
optimized parameters of the logarithmic approximation
in terms of the relative error. We also extend it to find
new logarithmic lower and upper bounds with optimized
parameters in terms of both error measures.

We validate the aforementioned contributions with an exten-
sive set of application examples that demonstrate the wide
range of applicability of the proposed approximations. We fur-
ther illustrate their high accuracy by numerical comparisons
with other existing approximations or those obtained by
numerical integration methods. In fact, their accuracy is so
high that they can be considered to be virtually exact in most
applications while they allow deriving closed-form results in
cases where exact analysis is considered to be impossible.

We organize the rest of this paper as follows. Section II
introduces some needed background information to formulate
and solve the research problem. The main contribution is pre-
sented in Section III, where we propose the new methodology
to acquire tight logarithmic approximations and bounds for
ergodic capacity at large. In Section IV, a wide range of
applications are considered and their capacities are evaluated
in terms of the proposed approximations. In Section V, the
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numerical results demonstrate the high accuracy of the pro-
posed approximations compared to other existing and numer-
ical ones. Finally, we conclude the paper in the last section.

II. PRELIMINARIES

In this paper, we shall develop unified approximations and
bounds in the format of (1) that apply for the ergodic capacity
C = C(1/7es)/ log,(2) of any communication system, where
the generic capacity function C(x) can be of any mathematical
form. In most communication systems’ analysis, C'(x) can be
represented as a capacity integral that calculates the average
of C £ log, (1 + etr) per the following definitions.

Deﬁmtzon I1: Given average effective SNR 7. with G £
2%;1 = 2% whose PDF exists and is denoted by fc(-),
the ergodic capacity of the corresponding communication
system is C = C(1/7et)/ log, (2) [bit/s/Hz], where the generic
capacity integral is defined as

C(z) £ [, log, (1 +

) fotoyar @

One should note that the generic capacity function C'(z)
is not necessarily given by the above generic capacity inte-
gral when the presented tool is still applicable. Nevertheless,
we shall focus on developing the approximations and appli-
cations for the following specific integrals, which originate
from evaluating (2) for Nakagami (including Rayleigh) and
lognormal fading channels. These integrals appear frequently
as part of longer expressions or in intermediate calculation
steps when analyzing the capacity of more complex wireless
systems.

Definition 2: Given average SNR 7, the ergodic capacity
of a Nakagami-m fading channel is C = C,,(1/7)/log,(2)
[bit/s/Hz], where the Nakagami capacity integral is defined as

a [ m™ t\ eq
Cp(x) = T log, (1 —I— — )t exp(—mt)dt
m—1
= exp(mx) Z (—k,mz)(mz)", 3)
k=0
for z > 0 [13, Egs. 21 and 23] with T'((,z) =
f t~! exp(—t)dt denoting the upper incomplete gamma

function [38, Eq. 6.5.3] and m being the fading parameter;
the latter expression is valid for integer values of m only.

Substituting m = 1 in the above definition, we obtain the
ergodic capacity of a Rayleigh fading channel as a special
case as C = C1(1/7)/log.(2) [bit/s/Hz], where the Rayleigh
capacity integral is defined as

e 4
/ log, (1 + —) exp(—t)dt
0 x

exp(z) Eq1 (2),

for z > 0 [2, Egs. 4 and 5] with Ey(z) = [~ exp(—
denoting the exponential integral [38, Eq. 5.1.1].
Definition 3: Given average SNR 5 = exp(n + % )
in which 7 and o are the mean and the standard deviation
of the corresponding instantaneous SNR’s natural logarithm,

Cy(x)

4)
t)/tdt
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respectively, the ergodic capacity of a lognormal fading chan-
nel is C = C,(1/7%)/log.(2) [bit/s/Hz], where the lognormal
capacity integral is defined as

Cy(z) 2 /Z%loge <1+éexp <\/ﬁt—%2)>

x exp(—t?)dt, ®)

for x > 0 [26, Eq. 29]; this integral does not admit a
closed-form expression so its approximations are crucial to
have.

The Rayleigh capacity integral in (4) admits a sandwich
bound according to [38, Eq. 5.1.20] as

1 2 1
5 log, <1 + E) < Cy(z) < log, <1 + E> ,

and any linear combination thereof could be used as an
obvious, but loose, approximation for the ergodic capacity
over a Rayleigh fading channel. Inspired by this fact and
Proposition 1, we develop a family of tractable functions

By N b
C(z) = Z an log, (1 + f)
n=1

for x > 0, that offer right approximations and bounds for C(x)
as C’(a:), for Cp,(z) in (3) as C’m(x) and for Cy () in (5) as
C, (x) by proper parameter choice. They are directly related to
Proposition 1 as C'(1/7ex)/ log, (2) results in the logarithmic
approximation given in (1). Furthermore, it should be noted
that all N! permutations of the parameter set {(a,,b,)}_;
yield an equivalent function, although we always choose the
canonical (sorted) representation with a1 < ae < ... < ay.
The absolute and relative error functions d(x) and r(x),
respectively, as well as their first-order derivatives d'(x) and
r’(z), respectively, are needed in what follows. They are

(6)

@)

defined as
d(z) £ C(x) - Cla), @®)
s dl@) _ C(z)
= = — 1
@) 2 5 = o b ©)
and their derivatives are given by
d(x) = C'(x) — C'(z), (10)
C(x)C' (x) — C"(x)C(x)
r'(z) = , (11)
@ P
for which
Cl(w) = =20, e, (12)
and generally, whenever C'(z) is given by (2),
e t
! P — —_—
C'(x) = /0 iTo)z fa(t)dt. (13)
For Nakagami-m and lognormal fading, (13) becomes
, _om exp(mz)
Cinl@) = == +mCm(2) + [ T2
m—1
X Z k (ma:)k’F(—k:,mx)} (14)

k=0
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and
R exp (V202t — 2 — 12)
Colr) = [w N3 (exp (V202t —2”—22) + x) x

respectively.

dt, (15)

III. NEW LOGARITHMIC APPROXIMATIONS AND BOUNDS

Inspired by Proposition 1 and by the table-book bounds
restated in (6) for the Rayleigh capacity integral defined in (4),
we replace the generic capacity function C(x) as well as the
generic, Nakagami and lognormal capacity integrals in (2),
(3) and (5), respectively, by a weighted sum of logarithmic
Sfunctions and design appropriate values for the corresponding
coefficients. A possible choice would be to use the numerical
coefficients that result from applying the numerical integration
rules. However, much higher accuracy can be achieved by
optimizing these coefficients in the minimax sense to give
the best logarithmic approximations and bounds as will be
explained soon. To begin with, we can make two minor but
useful observations.

Remark 1: An approximation for the exponential integral,
Eq(z), is directly derived from approximating (4) by (7) as

Ei(x) = exp(—x) Zﬁ[:l anlog, (1+ b?") (16)
Thus, the following results are applicable also beyond ergodic
capacity analysis and in other fields of science than commu-
nication engineering, where the exponential integral occurs.

Remark 2: As originally reported in [39], the numerical
evaluation of the latter form of the Rayleigh capacity integral
in (4) is subject to a severe stability issue. In particular with
double-precision floating-point arithmetic, exp(x) overflows
and E;(x) underflows whenever x > 740 although their
product, C (), is finite and of the magnitude of 1/2 as shown
by [38, Eq. 5.1.19]: 1/(z + 1) < Ci(z) < 1/x for all z > 0.
On the other hand, all approximations and bounds according
to (7) avoid this stability issue completely.

A. Approximations From Numerical Integration

As already mentioned, a possible choice for the parameters
of (7) can be acquired by applying the Riemann sum method.
However, slightly better parameter choice is achieved by
applying the various quadrature numerical integration methods
which are more direct and efficient to be used than the
Riemann sum method. Therefore, the numerical coefficients
can be easily found as given in the following three lemmas, for
which the common proof given underneath holds for all, and
where {t,, }V_; are the nodes and {w,, }\_; are the quadrature
weights of the corresponding numerical integration rule [40].

Lemma 1: The generic capacity integral can be numerically
approximated by (7) with its numerical coefficients given as

{(@n,b)}ns = {(wa fo(ta), t)}oy - (D)
Lemma 2: The Nakagami capacity integral can be
numerically approximated as (7) with its numerical
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coefficients given as

[ b)Y, = {(w

N
mm

) tmLexp(—mt,), tn> }

n=1

(18)

Lemma 3: The lognormal capacity integral can be numeri-
cally approximated as (7) with its numerical coefficients given

as
(e bV = { (22
cen (Vi 7))}

exp(—ti),

19)

Proof: Starting from the capacity integral expressions in
Section II, we implement the quadrature numerical integra-
tion techniques, which approximate any intej:\%ral of the form
[ f(t)dt as a finite sum of the form Y7, ; wy, f(t,) for
which f(¢) is given in (2) for Lemma 1, in (3) for Lemma 2
and in (5) for Lemma 3. This yields the same logarithmic sum
as in (7) with the numerical coefficients stated in the lemmas to
approximate the respective generic, Nakagami and lognormal
capacity integrals. [ ]

In particular, the capacity integral is an improper conver-
gent integral that can be approximated directly by applying
the Gauss—Laguerre or Gauss—Hermite quadrature rules or
by considering a large yet finite integration interval with
Newton—Cotes methods [38]. Another alternative way would
be to use transformation of variables to limit the integration
interval and thus enable the application of various other inte-
gration techniques. Nevertheless, the numerical approxima-
tions have relatively low accuracy in terms of global error and
need a large number of logarithmic terms in order to achieve
adequate accuracy. Therefore, we only consider the commonly
used Gauss—Laguerre and Gauss—Hermite quadrature rules in
the analysis of the proposed approximations in this paper.

B. Minimax Approximations

The adopted weighted sum of logarithmic functions in (7)
can be optimized to establish best minimax approximations
and bounds for the generic capacity function as well as the
generic, Nakagami and lognormal capacity integrals. In par-
ticular, the best approximation or bound refers to the member
of the function family (7) that is the tightest of them all
for given N and always occur with optimal set of coef-
ficients {(a’,b:)}N_, that minimizes the maximum error
and is expressed as the solution to the following minimax
optimization problem:

{(a:ub:L)}ﬁ[:l = argmin €pax (20)

{(an,bn)}N_,

where e € {d,r} represents both the absolute and relative
errors collectively in what follows, and ey, is the maximum
error, which is defined as

x>0}

7|6L|a|eoo|}'

= sup {Je(z)|
max {|eo], le1], . ..

emax

21
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The latter expression comes from Fermat’s theorem, where
e e(r;), I = 1,2,...,L, are the error values at the
stationary points x;, [ = 1,2,..., L, at which ¢/(z;) = 0.

In the following proposition, we describe the expected shape
of the solution to the minimax optimization problem in (20)
that gives the best approximation or bound.

Proposition 2: The unique best logarithmic approximation
or bound of the function family (7) with degree D for the
capacity integral occurs when the corresponding error function
e(z) alternates D times between D + 1 extrema points of the
same value of error and alternating signs. Its extreme points
are found at the roots of its derivatives or asymptotically at
the endpoints of its open domain.

Proof:  According to the theorem in [41], the pro-
posed approximation defined in (7) with {(a}, b))}, is the
best minimax approximation to C(z) (including C,(z) and
Cy(x)), if and only if d(x) or r(z) defined respectively in (8)
and (9), alternate D times. Moreover, the uniqueness of the
solution,{(a, b} )}N_,, is guaranteed since the set of functions
{log, (1 + b?) ,n=1,2,..., N} used in the approximation
in (7) satisfies the Haar condition on (0, 00) with a null set
{00}, since for every set of N distinct points {x,}N_; 2 > 0,
the determinant of the N x N matrix, whose (i, j)th entry

is log, (1 + ;’—J), is nonzero [42]. This condition is essential
to establish a unique best Chebyshev approximation [43,
Theorem 1]. |

After characterizing the shape of the minimax error func-
tion, we need to find the solution which gives such an error
function. This is achieved by formulating a set of nonlinear
equations and solving them as explained next.

1) Optimization in Terms of Absolute Error: When consid-
ering the absolute error, the best logarithmic approximation
for the ergodic capacity can be found by optimizing its
corresponding parameters according to (20), which implies
that we seek to minimize the maximum/global error. This
problem can be solved by formulating a set of nonlinear
equations that describe the best absolute error function which
is proved to be uniform with all its extrema points alternating
in sign with the same value of error per Proposition 2.

Corollary 1: The best approximation in terms of the
absolute error is found as the solution to the following set
of equations:

d(z;) =0,

d(x;) = (=1)" dinax,

do = hmm*,o d(l’) = dmaxa
Zr]yzl an =1,

where L =2 N — 1.

The equation 25:1 an, = 1 1in (22) is actually a condition
that is necessary to construct a bounded error function from
the left, otherwise dy = Fo0. In particular, the first extrema
point occurs asymptotically at zero, i.e., we choose z( to be
a very small value near zero and assign dy = d(x¢) = dmax-
Thus, when meeting the condition, x( contributes only with
a single equation that expresses the error value at that point,
opposing to the other extrema points which contribute with
two equations; one expresses its value and the other expresses

forl=1,2,...,L,

forl=1,2,...,L
or = ) ) (22)
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the zero derivative of the error function at the corresponding
stationary point. The absolute error is also bounded from the
right, i.e., doo = lim,_. d(x) = 0. Therefore, with including
the imposed condition, a total of 4N equations are constructed
and their number is equal to the number of unknowns, namely,
{(a:zv b:z) r]y:la {xl}lel and dgnax'

It should be noted that C'(z) has a degree D = 2N
at the optimized set of coefficients {(ay,b%)}2_;. However,
the imposed condition EnN:1 an, = 1 decreases its degrees
of freedom by one to be D = 2N — 1. Therefore, C(z)
with {(az,b%)}2_; is the best Chebyshev approximation that
alternates exactly 2 N — 1 times between local maximum and
minimum values of equal magnitude according to Proposi-
tion 2. This confirms exactly with the proposed approach
in (22) which alternates 2 N — 1 times and results in a total
of 2 N extrema points including z.

2) Optimization in Terms of Relative Error: Similar to
optimizing the approximation’s parameters in terms of the
absolute error, the best approximation in terms of the relative
error is derived by solving the minimax optimization problem
in (20) through formulating a set of nonlinear equations
describing the uniform minimax relative error function.

Corollary 2: The best approximation in terms of the rel-
ative error is found by the solution to the following set of

equations:

r'(x;) =0, forl=1,2,...,L,
r(x;) = (=D s, forl=1,2,...,L, (23)
ro = limg o 7(2) = —Tmax,

N
Zn:l Up by = —Tmax + 1.

In a similar way as for the absolute error, the extrema point
To is set to be a very small value near zero and it only con-
tributes with a single equation (rg = r(zg) = —rmax). On the
other hand, the relative error converges to a constant value
when z tends to infinity opposing to d(xl)\r which converges
to zero, ie., 7o = limy oor(x) = >, _janb, — 1 and
We assign 7o = —Tmax, Which results in the last equation
in (23). A solution to this system of equations yields the
required optimized parameters {(a’,b’)}N_; that define the
best approximation. Since no condition is imposed herein,
D = 2N and, hence, r(z) alternates 2 N times as seen in
Fig. 4(a) which confirms with the proposed approach in (23).

3) Lower and Upper Bounds: The proposed minimax opti-
mization method for the logarithmic approximation in (7) can
also be extended to give upper and lower bounds in terms
of both absolute and relative errors. They are additionally
constrained in (21) by e(z) < 0 or e(z) > 0 when solving
for the best lower or upper bound, respectively. Therefore,
we construct the lower bound by shifting down the corre-
sponding error function in such a way as to make it oscillate
between zero and —e,, With 2 N extrema and ey = 0 for the
absolute error, and 2 N + 1 extrema and ey = —rpax for the
relative error. With these properties of the corresponding error
function, the optimization problem can be easily formulated in
the same manner as in (22) and (23) for both error measures.

Similarly, using the shifting approach, the error function
is forced to oscillate between zero and e,y for the upper
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bound, resulting in an error function with 2 N —1 extrema and
eo = dmax for the absolute error and with 2 N + 1 extrema
and ey = 0 for the relative error. It should be noted that for
the upper bound in terms of absolute error, an extra equation
Zgzl anb, —1 = 0 is added to the system of equations
in order to get an equal number of equations and unknowns.
In addition, for the absolute error, d., is never counted as an
extremum since it converges to zero when x tends to infinity,
whereas for the relative error, ro, is counted as an extremum
since it converges to a constant value when x tends to infinity.

C. Proof by Construction

We prove the existence of the proposed solution to (20)
by construction. While the set of equations in (22) and (23)
can be directly formulated and solved for any communication
system in order to find the optimized sets of coefficients
{(az,b:)}N_, for the novel minimax approximations in (7),
we have implemented the proposed methodology to find the
optimized coefficients in terms of the absolute error for the
Nakagami and lognormal capacity integrals which are to be
used as building blocks in the capacity analysis of the more
complicated systems as will be seen shortly. These coefficients
are calculated by constructing (22) through substituting (7)
with (3) for Nakagami capacity integral, or (5) for lognor-
mal capacity integral, in (8) together with substituting (12)
with (14) for Nakagami capacity integral, or (15) for lognormal
capacity integral, in (10). Each formulated system of equations
is then numerically solved using the fsolve command in
Matlab with an equal number of equations and unknowns after
using good initial guesses for the unknowns.

The coefficients {(a, b%)}_; are calculated for up to N =
10 or when the order of accuracy is 1079, and are released
to public domain in a supplementary digital file.” Likewise,
we prove the existence of the solutions to (23) and the bounds
by finding them for two example cases in Section V. Together
with the released data sets, we also provide a basic Matlab
code that implements solving (22) to calculate the optimized
coefficients of (7) for any communication system in terms of
the absolute error.?

Despite the simplicity of implementing this numerical
approach, the challenge is to find heuristic initial guesses for
the unknowns: {(ay, by) 21, {2}/, and emax. In this work,
we have used iteratively random values for the lower values
of N and then used curve fitting techniques to draw some
relationships that indicate their successive values for higher
values of N. We followed this procedure to find the initial
guesses for one certain value for both m and o and found the
optimized values of the corresponding unknowns which are
then used as initial guesses for the same optimization problem
but with shifted values of m and o with small steps; the new
optimized values are then used for the next shifted values and
so on. It is worth mentioning that the numerical coefficients of
{(a@n,bn)}_; in Lemma 1 can be a very good choice as initial
guesses too, especially for the lower values of NV, to converge

2Available at https://doi.org/10.5281/zenodo.6641977 for
download.
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to the optimized values or at least to work as mean values
around which small random variance is introduced.

IV. APPLICATIONS OF THE PROPOSED APPROXIMATIONS
AND BOUNDS

As discussed earlier, one can straightforwardly apply the
methodology of Section III-B in order to solve the coeffi-
cients of (1) for any communication system. Alternatively,
one can use C,(z) and C,(x) as building blocks to derive
the ergodic capacity whenever possible. Particularly in this
section, we mainly focus on the second approach for which
we study its important role in simplifying the complicated
integrals encountered when evaluating the ergodic capacity in
different communication scenarios.

A frequently seen integral in the intermediate steps when
analyzing the performance of many wireless communication
systems with respect to their ergodic capacity [2], [3], [4], [5],
(61, [71, (81, [91, [10], [11], [12], [13], [14], [15], [16], [17],
[18], [32], [33], [34], [35], [36], [37] has a similar form to
that of the Nakagami capacity integral as

Lno(z) £ /0 log, (1+xt) t™ Yexp(—¢t)dt

= " F(m) C:m((b/(x m))
~ ¢~ " I'(m) Cin(¢/(zm)).

Above, the second line has been written in terms of (3) and
the third line is correspondingly approximated in terms of (7).

In particular, C,,(z) can be used to directly approximate
the ergodic capacity of a Nakagami-m channel as C
Cn(1/7)/log,(2) including Rayleigh fading as a special
case with m 1, and C,(z) can be used to directly
approximate the ergodic capacity of a lognormal channel as
C ~ Cy(1/7)/log,(2). Next, we illustrate the use of C.,(x)
to evaluate the ergodic capacity in different communications
systems under small-scale fading, and then the use of C, ()
to approximate the ergodic capacity when the lognormal shad-
owing is introduced to the system. One can also use Ch, (x) to
evaluate the ergodic capacity of the more complicated systems
that encounter a similar integral as I,,, 4(x) in (24) and do not
eventually result in the logarithmic expression (1); such a case
is illustrated in Section I'V-D.

(24)

~
~

A. Ergodic Capacity Under Small-Scale Fading

In addition to the Nakagami-m distribution (and Rayleigh
distribution thereof), CN’m is used to approximate the capacity
integral of the single-antenna systems over the more compli-
cated distributions as

~ 1 oo o 9;
C~ log, (2) Zj:@ ®; ij (7)

~
~

SN L alogy (1+b,7),
(25)

where ®;, j = 0,1,..., are constants. Table I lists the values
of ®;, m; and 0; for the ergodic capacities of SISO systems
under different fading distributions. It should be mentioned
that the infinite series in (25) results from expanding the
modified Bessel function of the first kind as a power series
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TABLE I

VALUES OF ®;, m; AND 6; FOR THE ERGODIC CAPACITIES OF SISO
SYSTEMS UNDER DIFFERENT FADING DISTRIBUTIONS

Fading D, m; 0;
Rice fj—f exp(—K) i1 LK
. i H=27-T(1— J . 2
Nakagami-g (Hoyt) @20 q(1+q.!2)2 =T (a-q7) 2j+1 %
— VAl (2u+25)2  2H -2 F T —r=27g2%] R 2uh
s D (p+i+ )T (T (G+1) 21+ 2 2u+2)
_ (pr)? . p(+r)
KoK Jlexp(pr) pntJ (pt4)

*notes: K is the Rician factor, h = (2 + 11 +n)/4and H = (5 — n) /4 for Format 1 of the
m — p distribution and h = a 2) and H = n/(1 — n*) for Format 2
—

(which is included in the PDF of many of the fading dis-
tributions) [38, Eq. 9.6.12], and it can be truncated up to
several terms that are adequate to obtain the required accuracy.
The double-summation logarithmic terms (when including the
approximation sum) can be rearranged into a single summa-
tion, yielding the same logarithmic approximation as in (1)

Table II lists closed-form expressions for the ergodic capac-
ity of various point-to-point multi-antenna systems in terms
of Cp, (z), where they usually encounter similar integrals
as I ¢(z) in (24). In particular, we consider two diversity
combining techniques for SIMO, namely, maximum ratio com-
bining (MRC) and selection combining (SC) at the receiver
(RX). We also consider some MISO schemes including beam-
forming (BF) or distributed MISO systems with channel distri-
bution information (CDIT) at the transmitter (TX), in addition
to space time block codes (STBCs). Finally, some combined
transmit-receive diversity and spatial multiplexing schemes
are considered for MIMO channels.

B. Ergodic Capacity Under Small-Scale Fading Channels
With Lognormal Shadowing

Another side of novelty is that this tool enables the eval-
uation of the ergodic capacity for different communication
systems in the presence of shadowing and results in the same
logarithmic approximation as in (1). In particular, the capacity
integral of a composite fading channel with . = ¥ s, where
1 and s are two independent random variables representing the
respective small-scale and lognormal fading, is calculated by
averaging the small-scale distributed SNR over the conditional
density of the lognormal-distributed conditional SNR, i.e.,
the average SNR of the small-scale fading is lognormally
distributed, thus

C= E’Yerf [10g2(1 + ’)/eff)] =E; [E'Yeff\s [1Og2(1 + Pyeff)]]' (26)

The inner expectation which refers to the small-scale fading
can be directly evaluated in terms of C,,(x) and it results
in a similar expression as in (5) when considering the outer
expectation which refers to the shadowing effect, for which
we apply Cy(z).

Next, we calculate the ergodic capacity for some
single-antenna and multi-antenna systems, for which we use
{(anym; bm’m)}f}f/1 '_, to refer to the optimized coefficients of
C,, of the Nakagami capacity integral in (3). The ergodic
capacity of a Nakagami—lognormal composite fading channel
can be approximated as a function of the lognormal average
SNR (7s) as C =~ Zﬁf,;l any,m Co(1/(bny,m7s))/ 10g.(2)
including Rayleigh fading as a special case with m = 1.
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TABLE 11
THE ERGODIC CAPACITY OF SOME MULTI-ANTENNA SYSTEMS IN TERMS OF Chy, (2)

Communication system Fading C -log,(2)
Receiver spatial diversity (SIMO) with . MRC at RX [10]: C’NT (%)
optimal rate adaptation to channel fading Rayleigh Np—1 ; A s
with constant transmit power SC at RX [10]: N, ig:() % (Nri—l)cl <1451)
Nakagami-m MRC at receiver [13]: C‘NT xm (Nl ,y)
STBC for uncorrelated channels: éNt ( ﬁ
Transmitter spatial diversity (MISO) Rayleigh M K; 7
Distributed MISO system [6, Eq. 41: 3 3 ain 77Ch (nl7 )
i=1n=1 *
Nakagami-m STBC for uncorrelated channels: R Cy,x N, (W)
Rice STBC for uncorrelated channels: R Z (N K)* fol() NI Gy v <(Nt£ri)"y)
Optimum BF with CDIT at TX [17]: exp(—m—‘z’) SomE (*) lvev
. ov /o iloy i+ \ G+ Doy p =Vveo
. B w TR
Combined  transmit-receive diversity Maximum ratio transmission with MRC at RX [12]: > > aj, ,Cry1 (ﬁ)
(MIMO) Rayleigh k=1 l=n-m ’
STBC for uncorrelated channels [3], [4]: RCn,.x N, (%M)
g Vg ~
STBC for correlated channels [5]: R >~ > K; ;C; (j .
i=1j=1 i
Nakagami-m STBC for uncorrelated channels [3], [4]: R Cpyx N, x N, (W)
Rice STBC for uncorrelated channels [3], [4]: E (NTNtK&?ﬁ’l(;NTN‘K) CN, x Nyt (m)
z
(=D 2HUB—a+i)! (22—25\ (28—2a+2; ( N¢ )
Spatial multiplexing (MIMO) iid. channels [8], [9]: ZZO ]ZO 1220 222751l (B—a+j)! ( z—j ) ( 2j—i )Cﬁ'a““ (B—a+it+1)p
Rayleigh Correlated channels without CSI at TX: [11, Eq. 25] with
{T1(0)}, ;= ()T = i+ DCuia (g ) 11 =
Correlated channels with partial CSI at TX: [11, Egs. 27 and 28] with
{®25(R)}, j ST (s — i+ 1)C z+1(,,(5++1)¢j), ifi=k

F notes: Ny is the number of transmit antennas, N4 is the number of receive antennas, « = min{ Ny, NT} 5 = max{Ny¢, Ny}, p is the transmit SNR, Qjp s M and K are defined in [6],

u;c,l is derived in [12], R is the code rate of the STBC, K is the Rician factor, K'i,jv a, g and S‘i are defined in [5], my, oy and Vg are defined in [17].

Moreover, it is calculated using Table I for the more com-
plicated small-scale distributions with lognormal shadowing
as

oo Ny 9 )
é ~ an m ] éa <7J>

Q

1 ~ (1
A logy (1 4 by, s — — |, (27
Z 0= e 05 e
where the latter form occurs after applying C () twice and
rearranging the triple summation into a single one with trun-
cating the outer summation to sufficient number of terms.

In the same way as above, the ergodic capacity of some
multi-antenna systems under small-scale fading and lognor-
mal shadowing can also be approximated using C~’m(x) and
Cy(x). In particular, the ergodic capacity of MIMO spatial
multiplexing over Rayleigh fading channels with lognormal

shadowing [32], [33] is calculated as
a-1 z 25 N
CR a2 2 D D mpaki
1og
z=0 7=0 i=0 n1=1
x(—l)’(Zj).(ﬁ—oz—l—z). 22 — 27\ (20 — 20+ 25
2227l (B —a+ ) \ z2—] 25 —i
~ N, )
xC,, - - — | . (28)
((5 —a+i+1)pbn, s-atit1 s
Moreover, the ergodic capacity of cooperative spatial mul-
tiplexing systems with Rayleigh fading and lognormal

shadowing [34] is calculated as

é zg: Z Qny N, ,Q+1

10g€ ]ﬁ' 1 ny

~ 1
ol (29
((Nr —0+1)po Qrp k by N g+1) 29)

where Qrp j is the channel mean power for the link from
the kth relay to the destination, p is the number of relays and
po is the average SNR per symbol.

C. Ergodic Capacity in Recent Research Directions

After the above wide range of fundamental applications
for the proposed approximations/bounds, let us proceed to
illustrate their applicability and usefulness in timely wireless
systems with specific applications from the recent literature.?

In particular, the ergodic capacity (2) of downlink
non-orthogonal multiple access (NOMA) system over the a—
fading distribution [44] does not admit a similar integral as
I7,I,,¢(a:) in (24) as intermediate step and, thus, we cannot use
Cyn(z) to calculate its ergodic capacity. For that, we imple-
ment the first proposed approach which means directly approx-
imating the ergodic capacity (2) by (7). We have used the
openly released Matlab code® which we have modified to make
it comply with the studied system in order to find the optimized

3We had to use some notations and symbols herein which are the same
as in the original publications to preserve comparability, due to which some
unavoidable overloading exists in this subsection compared to the rest of the
article.
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coefficients for « = p = N = 2 with two users, L = 2,
(U1 and Us) in terms of the absolute error to approximate the
ergodic capacity for both users respectively as

2

Cy, ~ o2(2) [nz:l an logy (14 b, 7)
2
=Y alogy (146 B7)], GO
n=1
with {(an,bn)}2_; = {(0.336,0.172), (0.664, 0.835)}, and
Cus ™ 1omz Sonet @ 1085 (14 by B27), 31)
with {(an,bn)}2_; = {(0.409,0.610), (0.591,1.887)}. The

parameter (5;,l = 1,2,...,L is the power allocation coef-
ficient. In particular, {(a,,b,)}Y_; can be calculated for
the logarithmic approximation of C; = C;(1/(3,%))/ log,(2)
in [44, Eq. 46] by formulating (22) through substituting (7)
and (2) to (8) together with substituting (12) and (13) to (10).
The PDF fq(¢) in (2) corresponds herein to fv(%) in [44,
Eq. 8]. These equations are then solved using the fsolve
command in Matlab. The openly released code® can be used
after modification to find the optimized coefficients for any
values of «, u and L.

On the other hand, we can derive the ergodic capacity in
terms of C, (x), if the system encounters similar integral as
I, () in (24). For example, the ergodic capacity for a system
with coordinated multipoint reception for mm-wave uplink
with blockages and Nakagami-m fading [35] can be calculated

as
( > ) (32)

where m; is the Nakagami parameter of the ¢th link, N is
the number of base stations, ¢,, is defined in [35, Eq. 8] and
Ay i is recursively obtained using [35, Eq. 9 and Eq. 10].

Likewise, the ergodic capacity is calculated for a mm-wave
downlink NOMA system over fluctuating two-ray channels
under general power allocation in [36] as

> HpCin

Jp=0

+ Z H, Cj, 11

Jp=0

- Z H Jq+1

Jq=0

n o m;

N
Zzzlog qn nzkck

n=1i=1 k=1

logl( 2) l (202 (Jp +11) a@p 7)

(w757 v003)

1
(QUQ(Jq +1)aQqy

) ], (33)

where its parameters are defined in [36]. In addition, the
ergodic capacity for reflecting intelligent surface-assisted SISO
system with correlated channels [37] can be approximated as

1 - 1
i O ()

where k, and w, are defined in [37, Egs. 5 and 6], respectively.

C~

(34)
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D. Ergodic Capacity of Dual-Hop Fixed-Gain Relay
Networks in Nakagami-m Fading

This subsection gives an application example on the use
of C,, in the intermediate steps when analyzing the capacity
of the more complex wireless systems without necessarily
resulting in the same logarithmic expression as in (1). In partic-
ular, we study the performance of a dual-hop fixed-gain relay
network under Nakagami-m fading [25]. Its ergodic capacity
can be approximated as

C— 1 (ml)
~ ex —

log,(2) "7\ A1
mi1—1 No

E E Any,j+1

7=0 n2=1

—1)™ 7 og, (1 +

Ny
mlm,l

[(m1)

QAny,mo
1=1

1 B ,
<m1j ) m1 —1 ]"_)/1 mi+j+1

(7 + D)7172bn1 mobns 1
miy x

X

L — |

X

_1)m,1+j+z—1 1

jHi+1 gt

=0
_ Jjtit+1 _
) 2
Y2 by mo x

(—1)9 59~ 1

(J+i—q+2) (3 bmwu) -1

- logi( )sz (%) '

where s is a constant defined in [45, Eq. 16], 4; and ¥ are
the statistical averages of the instantaneous SNRs ~; and
~vo of the first and second hop, respectively, whose fading
parameters are m; and mso. This expression is valid for
any value of mj opposing to [25] which is valid only for
integer values of m;. It is worth mentioning that the same
expression in (35) is also obtained when evaluating the ergodic
capacity under Rician, Nakagami-q¢ (Hoyt), n — p and xk —
distributions without performing individual analysis for each
fading distribution. The detailed derivation of (35) is available
in Appendix B.

(35)

E. Tractability Comparison

In this section, we illustrate the mathematical tractability
of the proposed approximations and bounds and the insight-
ful observations gained from using them for calculating the
ergodic capacity of the different communication systems. For
that, we consider some of the previous example applications
and compare the novel analytical expressions derived herein
with the corresponding expressions in the literature.

In Sections IV-A and IV-B, the capacity of the
single-antenna and multi-antenna systems under small-scale
fading or when combined with lognormal shadowing is eval-
uated using the proposed tool into the elegant simple loga-
rithmic form in (1) which is unified for all these systems.
On the contrary, it is evaluated in the literature as different
complicated expressions that are unique always to the specific
system under study so that a complete study and analysis are
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required for each system independently and using different
mathematical steps.

In particular, the ergodic capacity is written in terms of
the exponential integral and the incomplete gamma function
in [15] for Rician fading, and in terms of the Meijer G-function
in [18] for x — p fading. In [26], [29], [27], and [28],
the ergodic capacity is written in terms of the Gaussian -
function or the multiplication of the complementary error
function by the exponential function. On the other hand, to the
best of our knowledge, there is no available ergodic capacity
analysis for the SISO system in the literature on the composite
lognormal fading models and only asymptotic analysis is avail-
able in [46]. Thus, the proposed tool renders new analytical
solutions that were previously deemed unattainable.

Table II evaluates the ergodic capacity of different
multi-antenna system models and various fading distributions
as a summation of logarithmic functions, whereas the corre-
sponding references write them using complex functions such
as the exponential integral and incomplete gamma functions.
Moreover, the ergodic capacity of the multi-antenna systems
under combined fading in (28) and (29) is written respectively
in terms of the exponential function together with exponential
integral functions in [32] and in terms of the incomplete
gamma function together with the power function in [34].

The impressive advantage in terms of analytical complexity
is best seen in the timely applications of Section IV-C.
In particular, the ergodic capacity of the downlink NOMA
over the o — p fading in [44] and of the NOMA-based mm-
wave communications in [36] are written respectively in terms
of the complicated Fox H-function and the Meijer G-function
which are themselves unsolvable integrals, whereas they are
written in (30), (31) and (33) in the unified logarithmic form.

The importance and elegance of the proposed tool are
demonstrated by its ability to provide direct or even visual
insights into the system’s performance opposing to expressions
that comprise special functions. For example, from Table II,
we can immediately see that the ergodic capacity improves
with increasing NV, and 7 for the SIMO systems, whereas it
improves with increasing V¢, 7, m under Nakagami-m fading,
K under Rician fading and R of the STBC, all for the MISO
systems. On the other hand, none of these observations can be
concluded from the corresponding complicated expressions in
the literature.

V. NUMERICAL RESULTS AND DISCUSSION

This section demonstrates the accuracy of the proposed
approximations and bounds while the actual behavior of
the corresponding systems has already been analyzed exten-
sively in the references. In particular, we compare them
with previously derived ones, in addition to the numerical
approximations obtained by applying Gauss—Laguerre and
Gauss—Hermite quadrature rules for the Nakagami and the log-
normal capacity integrals, respectively. Furthermore, we vali-
date and compare some of the application examples presented
in Section IV with those obtained from the numerical and
existing approximations and bounds.

Let us begin with plotting the global absolute error, dyax,
for the Nakagami capacity integral in Fig. 2(a) for different
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Fig. 2. (a) Comparison between our approximations and those obtained using
Gauss—Laguerre for the Nakagami capacity integral with different values of m
in terms of global absolute error. (b) Same as (a) but in terms of the absolute
error function over the whole considered range of the argument with N = 4.

values of m, using our approximations and the numerical
approximation resulting from applying the Gauss—Laguerre
quadrature rule. It is clearly realized from the figure that our
minimax coefficients result in much more accurate logarithmic
approximations in terms of the global error than those resulting
from numerical integration. Moreover, as the number of terms
increases, the accuracy increases substantially, especially for
higher values of m. We further verify the accuracy of the
proposed approximation by comparing its absolute error with
that of the Gauss—Laguerre approximation for the whole
considered range of the argument in Fig. 2(b). Obviously, our
optimized coefficients not only have the least global error, but
they also achieve higher accuracy for most of the considered
range of the argument for the different values of m.
Moreover, the same comparisons are made for the lognormal
capacity integral for different values of ¢. Our approximations
are compared with those obtained using the Gauss—Hermite
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Fig. 3. (a) Comparison between our approximations and those obtained using
Gauss—Hermite and the existing approximations for the lognormal capacity
integral with different values of o in terms of global absolute error. (b) Same
as (a) but in terms of the absolute error function over the whole considered
range of the argument with N = 8.

quadrature rule which has the same logarithmic form, in addi-
tion to the existing approximations which encounter very
complicated functions such as the complementary Gaussian
error function and the trigonometric functions [26], [27], [28],
[29]. The proposed approximations mostly outperform all the
other ones in terms of the global error as depicted in Fig. 3(a).
They also have comparable or even better accuracy than those
with the very complex form over the whole considered range
of the argument as seen in Fig. 3(b) despite their significantly
simpler form.

The minimax optimization method is not only used for
constructing the approximations in terms of the absolute
error but also for the approximations in terms of relative
error as explained in Section III-B.2, and for the lower and
upper bounds in terms of both error measures as explained
in Section III-B.3. The approximation for the special case
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Fig. 4. (a) The optimized approximation in terms of relative error for
Rayleigh capacity integral with N = 3. (b) The optimized upper and lower
bounds in terms of the absolute error for Nakagami capacity integral with
m =3 and N = 3.

of Rayleigh capacity integral is optimized in terms of the
relative error for N = 3 and the corresponding relative
error function is plotted in Fig 4(a), whereas in Fig. 4(b),
we plot the uniform absolute error functions resulting from
the optimized upper and lower bounds of the Nakagami
capacity integral for m = 3 and N = 3. As expected,
the resulting error functions oscillate uniformly and achieve
high accuracy. We can conclude from Figs. 2, 3 and 4
that the proposed approximations with the optimized coeffi-
cients achieve significant improvement in accuracy by sev-
eral orders of magnitude when compared to the numerical
and existing approximation. The absolute and relative errors
are so small that they are virtually exact with the actual
capacity measures.

Next, we numerically investigate some of the applications of
the proposed approximations which are included in Section I'V.
In Fig. 5, the ergodic capacity for Rician fading channel
with lognormal shadowing is studied and its absolute error
is plotted for different values of the Rician factor using three
approaches, namely, (i) Gauss—Laguerre and Gauss—Hermite
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Fig. 6. Comparison of the absolute error function of the proposed approxima-
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rules respectively, (ii) using (3) for the small-scale stage
and then Gauss—-Hermite rule for the shadowing stage and
finally (iii) using (27) with the necessary coefficients from
Table I. We can observe that approach (iii) results in a tighter
approximation than that of approach (i) which has exactly the
same analytical form. It also has the same accuracy as that of
approach (ii).

Figure 6 illustrates the error resulting from applying our
approximation to evaluate the ergodic capacity in 2 x 2
MIMO network over shadowed-Rayleigh channel as in (28),
and compares it with the theoretical results presented in [32]
and [33]. Our optimized coefficients yield significantly higher
accuracy than those of [33], having exactly the same loga-
rithmic form and number of terms. Despite the simplicity of
our approximation’s analytical form compared to that of [32],
it achieves higher accuracy over a wide range of the argument.
The ergodic capacity of both users, (30) and (31), is plotted
in Fig. 7 along with the exact capacity derived in [44]
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for different selections of power allocation coefficients. The
figure shows virtually exact match between the logarithmic
approximation and the exact results with only two logarithmic
terms (N = 2).

In Fig. 8, the absolute error of the ergodic capacity in a
dual-hop cooperative system is plotted as a function of the
average SNR of each hop, where we considered 7; = 5. It is
clear from the figure that the ergodic capacity resulting from
applying our approximation is extremely accurate. In partic-
ular, the mathematical form of the ergodic capacity in (35)
is not only much more tractable than that in [24] and [25],
but also its accuracy outperforms [24] for the lower and
moderate values, when considering Rayleigh fading channels,
and outperforms [25] over the whole range of the argument
when considering Nakagami-m fading channels, with less
error by three orders of magnitude.

VI. CONCLUSION

This paper presented an accurate and efficient tool for
facilitating statistical performance analysis in different wire-
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less communication systems in terms of ergodic capacity.
A novel systematic methodology was also developed in order
to optimize its accuracy in the minimax sense. This tool
was applied to a wide range of fundamental and recent
applications, including single-antenna and multi-antenna sys-
tems under small-scale fading and with or without lognormal
shadowing in order to derive tractable closed-form expres-
sions for the ergodic capacity. We validated the tightness
of the proposed tool by numerical comparisons with exist-
ing and numerical ones, in which our tool showed sig-
nificant improvement in the accuracy by several orders of
magnitude.

APPENDIX A
PROOF OF PROPOSITION 1

Denoting that the PDF of instantaneous capacity C is given
by fc(c), the ergodic capacity is calculated as

/000 ¢ fe(e)de

= /OO Yest fe(loga (1 + err g))
0 log,(2) (1 + Yetr 9)

£fa(9)

E[C]

logy (1 + et 9) dg,

(36)

where the second expression is obtained by changing the
integration variable to g 2 (2¢ — 1) /7efr. Next, we implement
the Riemann sum method to approximate the above integral
by truncating it and dividing the integration interval into [N
partitions, each of length §. Therefore, the ergodic capacity
can be approximated by a finite sum of logarithmic functions
according to (1) by choosing

a 0 ¥etr fo(logy (1 + Aer n9))
" log,(2) (1 + ¥efr nd)

while arbitrary accuracy can be achieved when § — 0 and
N — oo. Furthermore, by applying appropriately the left,
intermediate or the right rule for each partition, one can always
guarantee that ZnN:1 an, < 1, since each a, represents a
part of the total probability mass of random variable G =
(2€ — 1)/efr, whose PDF is denoted by fg(g).

In the general case without making specific assumptions
about the distribution of C, coefficients a,, n = 1,2,..., N,
will depend on A.sr, which would make (1) an inconvenient
approximation for the statistical analysis of specific systems.
However, we can express f¢(c) in terms of fo(g) as

2¢ log, (2) fo (20 - 1)
Vett Vet )

which results, by substitution into (37), in a,, = d fa(nd).
Thus, whenever f;(g) is independent of e, a, becomes
independent of A.¢ too, and the same approximation (i.e.,
the same coefficients) can be conveniently applied with any
value of A.¢. This condition is not very restrictive in prac-
tice, and it is satisfied in the applications discussed in this
article.

and b, £né,

(37)

fele) = (38)
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APPENDIX B
DERIVATION OF (35) FOR DUAL-HOP FIXED-GAIN RELAY
NETWORKS UNDER NAKAGAMI FADING

Y172
472

From [24], the end-to-end SNR herein is 7, £
the ergodic capacity is calculated as

and

A

TG {loge <1 * @)]

- @E [loge (1 + 7_%2)} .

B

c

(39)

We will consider Nakagami-m fading channels. Part B of (39)
can be directly approximated using our logarithmic approxi-

mation with the optimized parameters {(an, m.,, bnhmZ)}f},1 ',
as
_ 1 ~ P
B = O, (2). (40)

whereas part A is evaluated as

1 [e%} mi mi—1
2l () ()
log.(2) Jo \m L'(m1) M
[e%} 1 m2 mo—1
X/ log, <1+( +71)72> (@) o
0 » Y2 ['(m2)

X exp < m27—> dry2 dys. (41)

We approximate the inner integral which is of the form
I ms (H'—%“) using (24). Therefore, (41) becomes

mo, =
(1 + (1 ""71)72 by, Wu)

v2

1
loge( ) Z s mz/ toe.

1=1

mi mi—1
x (ﬁ) n exp( m1—> dr1. 42)
T I'(my) T
Using change of variables z = 1;]1, we obtain
Ny
1 mlml
A Z a"17m2
log(2) T'(m1)
/7
/ Pi(z)dz — / Pi(z)dz|, (43)
where

y y bn m —_—
Pi(z) = log, (1 B8 2 Z) B
(712 — 1)™ L exp <—m1 P @) . (44)
Al

Next, we expand (§;z—1)™~! using the binomial
theorem, and approximate the resulting expression

172bnime ) yging (24)  with

which contains  Ij41 m, P
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_,to evaluate A; = fo Pi(z)dz as

()

{(an2 ,J+1 ban-H)}

mi1—1 Ns
A1 = exp< > Z Z Ungy,j+1

] 0 nog=
Xml] 1j!7y1—m/1+]+1 (_1)M1—j—1
‘ Dmy bn m bn j
Xloge <1+ (]+ )7172 1,Mm2 27]+1>’ (45)
mi »x
whereas for A, = fol/ n Pi(2)dz, we apply [47,

oo My —

Egs. 1.110, 1.211.1, 2.729] as
my — mzl
oo (1) 3 (M)
=0 j5=0
(Y V1Y2bny ms 2
xﬁf"““* / 27" log, (1 4 = LR ) dz
0 yaa

()RS () S

J
jHit+1
) log,

Ao

(_1)m1+j+’i—1

—x

1
X——) (1= ———
At (’72 bny.m

Y bn m
X<1+72 1, 2>
s

g=1 (] +i—q+ 2) (’72 bnhmz)qil
We substitute (45) and (46) back into (43) which then are
substituted together with (40) into (39) to obtain a closed-form
approximation for the ergodic capacity in a dual-hop fixed-gain
relay networks over Nakagami-m fading channels according
to (35).

(46)
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