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The capture of human pose has been deployed in various applications, such as auto-
matically generating 2D animations from human pose and healthcare applications.
The human pose can be predicted by the deep neural network, thus different archi-
tectures of neural network were proposed. However, the proposed human pose esti-
mation models were trained and tested on the different datasets, through which, the
performances of different architectures cannot be evaluated on a common standard.
Therefore, this thesis trained and tested five architectures for human pose estima-
tion on the same dataset (Human3.6M), compressing stacked Hourglass, HRFormer,
LiteHRNet, MobileNetV2 and MobileHumanPose model and qualitative evaluation
results show that stacked hourglass model can produce the most accurate predicted
keypoints among these models, while the LiteHRNet is fastest for inference. Addi-
tion to testing prediction errors of different architectures on a determined dataset,
this thesis built an application in Unreal Engine 4 (UE4) game engine to generate
character’s animations in real time based on the predicted 3D human keypoints,
which are acquired from applying human pose estimation models for continuous
frames, captured by WebCam. The generated real-time animations by using differ-
ent models haven’t shown the visible differences, but the depth values (z-axis) of
predicted keypoints are not realistic compared to the human actions, which can be
shown from the unexpected animations when human pose is rotating or moving in
z-axis.
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1 Introduction
Generally, in most software, like games, the character animations are manually
crafted by artists, which is predefined assets. The motion capture is a common
technique, utilizing specific equipment and software to capture the motions and
actions of human and the motion data can be used for making animation in games
or for other purposes. However, the equipment used in motion capture is expensive
and operating it requires professional training, thus the most of artists design and
create animations manually. If character performs different actions and movements,
artists need to make different animations. For games, providing various animations
increases playability, but making huge number of animations, especially very realistic
animations leads to heavy workloads. Moreover, for an interactive application, a
real-time actions of human needs to be captured, for example, in games, players can
use own actions to control character’s animations and real-time actions of human
can be used in self-driven filed, like detecting actions of pedestrian.

Therefore, the main objective of this thesis is creating an application in Unreal
Engine 4 (UE4) game engine where the character is animated based on the player’s
actions by utilizing 3D human pose estimation (HPE), involving training and testing
3D single pose estimation models using different neural network architectures to
generate 3D locations of skeletal joints from an RGB image and animating character
in real-time by calculating rotations of character skeletal joints, which utilizes inverse
kinematics(IK) provided by UNREAL animation system.

HPE is estimating the configuration of human body parts (like locations of skele-
tal joints, body shapes) from images or videos. This thesis only built the models
for estimating 3D locations of humane skeletal joints, which is also called pose land-
mark’s estimation.

The accuracy of 240 research papers from 2014 to 2020 were analyzed and com-
pared in a survey (Zheng et al. 2020), based on that, 2D to 3D lifting approaches
outperform direct estimation approaches in general, which is because 2D HPE with
2D pose annotations is easily achievable and high performance has been reached for
a single person while acquiring accurate 3D pose annotations for 3D HPE is more
difficult than its 2D counterpart.

The evaluation results of 240 research papers provided by the survey (Zheng
et al. 2020) show that the models, Stacked Hourglass (Yuan et al. 2021), HRFormer
(Yu et al. 2021), Lite-HRNet (Sandler et al. 2018), MobileNetV2 (Newell, Yang, and
Deng 2016), have relatively higher accuracy in 2D HPE. And the model, Mobile-
HumanPose has relatively better performance in 3D HPE (Sangbum Choi, Seokeon
Choi, and Kim 2021). However, the performances provided by these research works
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were evaluated by using different test datasets and different evaluation metrics.
Therefore, this thesis tested several relatively better models mentioned in this sur-
vey using the same test dataset and evaluation metrics. Moreover, the speed of
model is very important in the real-time applications, thus this thesis also evaluated
the inference speed by using different pose models.

The existing 2D pose models produce 2D landmark positions while the 3D po-
sitions are needed for animating characters in the 3D world (Yuan et al. 2021; Yu
et al. 2021; Sandler et al. 2018; Newell, Yang, and Deng 2016), so the 2D to 3D
lifting method was applied following the 2D HPE models (Martinez et al. 2017).

The structure of this thesis is composed of five parts. Chapter 2 introduces the
necessary concepts and theories applied in the human pose estimation, including
deep neural network, inverse kinematics, etc. Chapter 3 explains the advanced
architectures of deep neural networks for 2D pose estimation and 3D pose estimation.
Chapter 4 provides experimental training and evaluation of different human pose
estimation models from a single RGB image and in a real-time application. Chapter
5 makes a conclusion of this thesis project.
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2 Theory
In recent researches, the neural network model is popular for human pose estimation
(HPE) due to its excellent prediction accuracy and most of neural network models
for HPE are based on convolutional neural networks (CNN), which is very good in
image processing.

Generally, neural network is an artificial intelligence method, used for training
computers to process data and make prediction from the input data. Inspired by the
human brain, the neural network model consists of the artificial neurons that form
a complex and interconnected network to simulate human brain. The first artificial
neuron model is called M-P Neuron that process the input data by multiplying it
with its corresponding weights. However, the weights of M-P neuron is determined
in advance and in order to adjust weights based on the input data and output data,
the perceptron model is proposed. Multiple perceptrons constitute a perceptron
layer and multiple perceptron layers constitute the neural network.

In state-of-art neural network architectures, different layers are designed to pro-
cess data on different purposes, like convolutional layer, and different neural net-
works are used for different tasks. Thus the details of layers in neural networks
and weight computations are introduced in Chapter 2 and Chapter 3 describes the
several neural network architectures used for HPE. Additionally, writing the com-
puter program to build and train a neural network is complex, but it’s convenient to
use existing frameworks, like TensorFlow and PyTorch. This thesis tests the neural
network model in the real-time, thus it’s good to use TensorFlowLite for fast infer-
ence. Therefore, after training with PyTorch, the conversion from PyTorch model
to TensorFlowLite model is required and this conversion needs to use ONNX format
as an intermediary. These neural network frameworks are introduced in Chapter 2
as well. In addition to neural network model, generating character animations needs
IK techniques, by which rotations of each character joint are acquired by defining
locations of joints.

In this section, the basic knowledge of neural network, Convolutional Neural
Networks (CNN), some deep learning frameworks and Unreal Engine 4 (UE4) game
engine are introduced.

2.1 Supervised and unsupervised learning

Machine learning (ML) is a relatively recent field of artificial intelligence study (AI).
In general, machine learning (ML) learns from data, which means it detects the reg-
ulation in the data and predicts the outcomes for previously unknown data based on
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that regulation. There are two types of learning: supervised and unsupervised. Both
learning methods find features, which are measurable data retrieved from datasets
using a specific extraction approach. A model gets features from the input data
and the expected output in supervised learning. During training, the model is fine-
tuned until it can accurately predict unknown data. Unsupervised learning, on the
other hand, does not require the intended output and instead extracts features from
the data. Computers or robots are trained to perform natural language processing
(NLP), image recognition, and other tasks.

2.2 Deep learning and its applications

Deep learning (DL) is the neural network with multiple layers in general. Its origin
is traced back to the perceptron and the Boltzmann machine. Multilayer Percep-
tron (MLP), which incorporates many layers of perceptrons, is the structure of
perceptron-based deep learning. Because it trains the neural network using pre-
dicted output, it is classified as supervised learning. For Boltzmann Machine-based
deep learning (RBM), deep Boltzmann Machine and Deep Belief Network (DBN)
are derived from numerous Restricted Boltzmann Machines. They are examples of
unsupervised learning.

DL is aided by the advancement of the Internet, communication technologies, and
hardware. On the Internet, people can quickly download massive public databases
of images, audios, and other media. Hardware support for DL is provided by the
GPU’s high performance. The Graphics Processing Unit (GPU) is responsible for
rendering graphics for display on electronic devices. Because it incorporates mul-
tiple processing units, it excels at parallel computing. As the Figure 2.1 shows,
NVIDIA created a series of GPUs, such as the GeForce, Jetson, and Titan RTX
for gaming, embedded systems, and scientific computation respectively. NVIDIA’s
CUDA Toolkit, which provides a development environment for constructing high-
performance GPU-accelerated applications, is created to assist parallel computing
(NVIDIA 2022a). CUDA reduces the time it takes for a GPU to complete a task.
NVIDIA also built and developed cuDNN, a a GPU-accelerated library of primitives
for deep neural networks (NVIDIA 2022b), in order to speed up DL.

Speech recognition, image recognition, and games are just a few examples of
how DL can be used. According to the research, traditional voice recognition al-
gorithms use Gaussian Mixture Model (GMM) and Hidden Markov Model (HMM)
(G. Hinton et al. 2012). However with the help of DL, the initial performance
limit was breached. Traditional picture identification algorithms include the Scale-
Invariant Feature Transform (SIFT), Fishier Vector (FV), and others. According
to the research, the performance of image recognition has substantially increased
(Krizhevsky, Sutskever, and Geoffrey E Hinton 2012). In games, DL assists the
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(a) Geforce RTX 3090 Ti (b) Titan RTX

(c) Jetson TX2 NX Module

Figure 2.1 NVIDIA GPU series (NVIDIA 2022c)

computer in achieving high scores. For a game like StarCraft II, it is complicated
because it has difficulties in multi-agent problem, imperfect information, a large ac-
tion space, a large state space and delayed credit assignment. DeepMind conducts
research and developed SC2LE, a learning environment for experimenting with deep
reinforcement learning (Vinyals et al. 2017).

2.3 Neural Network

2.3.1 The brief history of Neural Network

Mcculloch and Pitts realized the mathematical model of a neural network, McCulloch-
Pitts Neuron (M-P Neuron), of a neural network by modeling biological neuron in
the 1940s (Mcculloch and Pitts 1943). The perceptron proposed was in 1958, which
could have its weights calculated by a computer after training (Rosenblatt 1958).
Minsky, on the other hand, discovered that the perceptron is incapable of learning
the exclusive-or function. This problem was solved in the 1980s by developing the
Back Propagation (BP) technique on MLP (D. E. Rumelhart, McClelland, and PDP
Research Group 1986). The pooling layer, which was the structure of Convolutional
Neural Networks, was added to the neural network in 1989 (LeCun et al. 1989).
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To train this network, they employed the BP algorithm. Nonetheless, the training
is time-consuming, and overfitting was a problem. Since 2011, GPU advancements
have boosted DL’s performance in image recognition, speech recognition, and other
areas. In addition, the growth of the Internet and communication technology has
bolstered DL.

2.3.2 M-P Neuron

Mcculloch and Pitts proposed M-P Neuron (Mcculloch and Pitts 1943). As the
Equation 2.1 shows, multiple input nodes, {xi|i = 1, . . . , n}, correspond to a single
output node, y, in an M-P Neuron. Each input xi is multiplied by its weight wi,
and the result is y. If the sum is more than the threshold h, y will be 1. Otherwise,
y will be 0.

y = f

(
n∑

i=1

wixi − h

)
(2.1)

The M-P Neuron’s form is altered to perform logical operations, such as NOT,
OR and AND. Here, humans decide on their own weight and threshold. As the
following Figure 2.2 shows, M-P Neuron hassingle-input-single-output (SISO) and
double-inputs-single-output (DOSO) model. The M-P Neuron’s SISO model is used
to accomplish the NOT operation. The outcome will be 1 if the input was 0. If the
input is 1, on the other hand, the output will be 0.

(a) single-input-single-output M-P Neu-
ron

(b) double-inputs-single-output M-P
Neuron

Figure 2.2 M-P Neurons

Similarly, the OR and AND operations are performed using the M-P Neuron’s
DOSO model. The expected output is shown on the Table 2.1. OR is used if
w1 = 1, w2 = 2, h = 0.5. In this way, y = f(x1 + x2 − 0.5). AND is implemented if
w1 = 1, w2 = 2, h = 1.5 is used. In this way, y = f(x1 + x2 − 1.5).

2.3.3 Perceptron

One of the M-P neuron’s flaws is that the weight and threshold must be determined
before to the operation. During training, the perceptron automatically pick these
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Table 2.1 M-P Neuron’s input and output of OR, AND

input x1 input x2 output of OR output of AND
0 0 0 0
0 1 1 0
1 0 1 0
1 1 1 1

parameters based on the dataset (D. E. Rumelhart, McClelland, and PDP Research
Group 1986). The dataset and predicted output should be confirmed prior to train-
ing. The error between the actual and expected output are then be corrected. This
process is depicted by the Equation 2.2 and Equation 2.3, where r is the expected
output. The learning rate is α, and it is used to control the speed with which errors
are corrected. The training will not be stable if the α is too large. If it is too small,
the rate of convergence will be slower.

wi ← wi + α(r − y)xi (2.2)

h← h− α(r − y) (2.3)

The value of the expected output and real output determines whether or not to
change the weight and threshold. The weight and threshold will not change if they
are the same. If they aren’t, they should be. If the perceptron is inactive in this case,
the threshold will be lowered. Meanwhile, xi = 1’s weight will be increased. The
threshold will be raised if the perceptron is overly activated. Meanwhile, xi = 1’s
weight will be reduced. On the algorithm 1, this updating procedure is depicted
as a pseudocode. The final parameters are different because the parameters are
initialized by random numbers in the beginning of training.

2.3.4 Multilayer Perceptron (MLP)

MLP stands for multiple perceptron layers in a neural network. In this network, the
input propagates forward. As the following Figure 2.3 shows, MLP contains three
kinds of layers in general: input layer, hidden layer, and output layer. Weights
connect the hidden layers to the other layers. Weights are used to connect each unit
of the input layer to the perceptrons in the hidden layers. The outputs produced by
these perceptrons are sent to the output layer. This link is based on weights as well.
Without backpropagation (BP), the weights between the input and hidden layers
are set at random. The algorithm 1 fine-tunes them between the hidden and output
layers.
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Algorithm 1: A pseudocode of updating weight and threshold of percep-
tron

Data: N training samples xi, the expected output ri
Result: ideal wi

wi ← random value;
h← random value;
decide threshold of error eh;
while error = 0 or error < eh do

while i ≤ N do
fed new xi;
calculate y;
if y! = ri then

if y = 0 and r = 1 then
decrease h;
increase wi(xi = 1);

end
if y = 1 and r = 0 then

increase h;
decrease wi(xi = 1);

end
else
end

end
end

Figure 2.3 Multilayer Perceptron with one output
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2.3.5 Loss function and activation function

Loss function measures the difference between the actual output r and expected
output y. The Equation 2.10 is used in recursion. The loss function of bipartition
is shown in the Equation 2.4.

E = −
N∑

n=1

(rnlnyn + (1− rn)ln(1− yn)) (2.4)

The activation function inputs u, which is the sum of xi and wi (Equation 2.5)
and transforms it into a linear or nonlinear form. The M-P neuron’s activation
function is the Step function (Equation 2.6). The output changes rapidly on u = 0

between 0 and 1. MLP used Sigmoid (Equation 2.7). As the following Figure 2.4
shows, the output of Sigmoid becomes gently compared to the Step function.

u =
n∑

i=1

wixi (2.5)

y =

1, if u > 0

0, if u < 0
(2.6)

f(u) =
1

1 + e−u
(2.7)

Another activation function is tanh, as the Equation 2.8 shows. The Figure 2.5
shows that its output ranges between −1 and 1.

tanh(u) =
exp(u)− exp(−u)
exp(u) + exp(−u)

(2.8)

Another activation function is Rectified Linear Unit (ReLU), as the Equation 2.9
shows. Its output ranges between 0 and 1. The Figure 2.6 shows that if u ≤ 0, the
output will be 0. If u ≥ 0, the output will be same as the input.

R(u) = max(u, 0) (2.9)

2.3.6 Backpropagation (BP)

Backpropagation (BP) (David E. Rumelhart, Geoffrey E. Hinton, and Williams
1988) calculates the error by comparing the actual output r and expected output y.
Then, the error is converted from the output layer to the previous layers to obtain
the error for each layer. By fine-tuning weights in each layer using the gradient
descent approach, the error is reduced. The error of the real and expected outputs,
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Figure 2.4 Step and Sigmoid

Figure 2.5 tanh
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Figure 2.6 ReLU

as well as the gradient, are used to determine the new weight in this method. The
inaccuracy is then reduced by fine-tuning the weights in each epoch until the best
weight is obtained. As the following Figure 2.7 shows, the adjusted weight is the
segment between w0 and w1. The new weight is decided given the adjusted weight
until the optimum weight wopt is obtained.

In the Gradient Descent Method (Lemaréchal 2010), the error is estimated using
the Least Squares Error Function, Equation 2.10, which considers both the real and
expected output. The discrepancy between the real and predicted outputs will be
less if this error E approaches zero. In this way, MLP training is the process of fine-
tuning the weights until the error approaches zero. The gradient is calculated using
Equation 2.10’s derivative. The adjusted weight will be raised if the inaccuracy is
large, and vice versa. Equation 2.11 is used to get the adjusted weight. The learning
rate is η, which is changed by the error.

E =
N∑

n=1

||rn − yn|| (2.10)

∆w = −η∂E
∂w

(2.11)

For a single perceptron, its error is calculated by Equation 2.12.
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Figure 2.7 Gradient Decsent

∂E

∂wi

=
∂E

∂y
· ∂y
∂wi

(2.12)

If the activation function is f(u), assuming y = f(u), the Equation 2.12 is
calculated in this way, as the Equation 2.13 shows.

∂E

∂wi

= −(r − y)
∂y

∂wi

= −(r − y)
∂f(u)

∂wi

= −(r − y)
∂f(u)

∂u

∂u

∂wi

= −(r − y)xi
∂f(u)

∂u

(2.13)

If the activation function is Sigmoid, its derivative is shown in the Equation 2.14.

∂f(u)

∂u
= f(u)(1− f(u)) (2.14)

Then, the Equation 2.14 is plugged into the result of Equation 2.13 and get the
Equation 2.15.
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∂E

∂wi

= −(r − y)xif(u)(1− f(u)) (2.15)

Hence, given the y = f(u), the adjusted weight is shown in the Equation 2.16

∆wi = η(r − y)y(1− y)xi (2.16)

For a MLP, its error E is the sum of the error of each unit, as shown in the
Equation 2.17

E =
1

2

q∑
j=1

(rj − yj)
2 (2.17)

If the MLP does not have hidden layers, as shown in the Figure 2.8. The deriva-
tive of its error is shown as the Equation 2.18, where wij denotes the weight between
xi and yj.

Figure 2.8 Multilayer Perceptron without hidden layers

∂E

∂wij

=
∂E

∂yj
· ∂yj
∂wij

(2.18)

The way of calculation is similar as the way of single perceptron, the adjusted
weight is Equation 2.19.

∆wij = η(rj − yj)yj(1− yj)xi (2.19)
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If a MLP has hidden layers with one output units, the figure is shown on the
Figure 2.3. The adjusted weight between the input layer and hidden layer is shown
as the Equation 2.20. The other weight between the hidden layer and output layer
is shown as the Equation 2.21. In this equation, w1ij denotes the weight between the
input layer and the hidden layer and w2j1 denotes the weight between the hidden
layer and the output layer. The hidden layer unit is shown as z. The suffix i, j

represents the units of the input layer and hidden layer respectively.

∆w1ij = η(r − y)y(1− y)w2j1zj(1− zj)xi (2.20)

∆w2j1 = η(r − y)y(1− y)zj (2.21)

2.3.7 Optimization Algorithms

In the training of neural networks, optimization algorithms are used. Batch Learn-
ing, Sequential Learning, Mini-batch Learning, Stochastic Gradient Descent, and so
on are some examples.

In each training epoch, batch learning traverses all of the training data, which
takes much time in training data. The Equation 2.10 or another functions is used to
determine the error of each training data Et

n. The error of all the training data Et

in an epoch t is the total of Et
n, as the Equation 2.22 shows. The adjusted weight

of the network is fine-tuned based on all the training data for one of the network’s
training epochs. After then, this weight tests all of the training data. Every epoch,
the network is corrected. The Equation 2.23 represents the total weight of the neural
network, w(t+1).

Et =
n∑

n=1

Et
n (2.22)

w(t+1) = wt − η · ∂E
t

∂wt
(2.23)

The training data is entered one by one in Sequential Learning. It sees Et = Et
n

and fine-tunes the adjusted weight. The adjusted weight from the previous epoch
is used to test the next training data and determine the new adjusted weight in the
following epoch. Sequential Learning requires the training data does not have much
difference or the epoch’s result will not converge.

The training data is divided into sub-datasets through Mini-batch Learning,
and each sub-dataset is used in each epoch. The Equation 2.24 shows the Mini-
batch Learning, where D is a sub-dataset. After traversing all of the sub-datasets,
the adjusted weight is fine-tuned from the first to the last. Mini-batch Learning
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combines the advantages of Batch and Sequential Learning, reducing training time
and reducing epoch outcome variability.

Et =
∑
n∈D

Et
n (2.24)

The Stochastic Gradient Descent (SGD) (Robbins 2007) use a portion of the
training data to avoid the epoch’s outcome becoming a local optimal solution. SGD
encompasses Sequential Learning as well as Mini-batch Learning. In most cases,
data is chosen at random to create a sub-dataset from the training data.

2.4 Convolutional Neural Networks (CNN)

2.4.1 The brief history and structure of CNN

Neocognitron was proposed based on David Hunter Hubel’s study on the visual
cortex of cats (Fukushima and Miyake 1982). The Neocognitron is a neural network
model with a hierarchical structure. The Neocognitron will add more cells to learn if
no cells respond to the input. Backpropagation is used to introduce Convolutional
Neural Networks (CNN) after being inspired by Fukushima’s work (LeCun et al.
1989). Convolution layer, pooling layer, fully-connected layer, and output layer
make up CNN. The Figure 2.9 shows the structure of CNN.

Figure 2.9 the structure of CNN

2.4.2 Convolutional layer

The input image is processed by the convolutional layer using the kernel to do
convolution. When the input data is received by the first convolutional layer, the
kernel performs convolution to obtain the feature map, which is then passed on to
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the next layer. The feature map created by the previous layer is processed by all
subsequent convolutional layers. The following Figure 2.10 shows the convolutional
layer with one channel kernel. In this figure, the orange part is the selected area
which will does convolution with the kernel. The result is processed by the activation
function and put the upper-left corner of the feature map.

Figure 2.10 the convolutional layer with one channel kernel

The 3 × 3 kernel convolutions the 10 × 10 input image to produce the 8 × 8

feature map. Padding is used to process the input image first and then do the
convolution, e.g. zero-padding adds 0 around the edges of the image to keep the
size of the feature map the same as the size of the input. During the convolution
process, each pixel value on the kernel multiplied another value on the input image
at the corresponding place. The result of each multiplication is then added together
to create a new value. The updated value is processed by an activation function,
which will be displayed on the feature map.

Furthermore, stride has an impact on the size of the feature map. If the stride is
greater than 1, the kernel will take a larger step on the input picture, reducing the
size of the feature map. The result of the convolution is processed by the activation
function and turn into a feature map.

There are several kernels in a convolutional layer. If the input image has three
channels, the kernel will be 3×M ×M , where M ×M being the a kernel’s size. n

feature maps will be generated if there are n kernels. The kernel size of the next
convolutional layer should be the same. As the following Figure 2.11 shows the
convolutional layer with three channels kernel. The result of each channel is put on
the upper-left corner of the feature map.

2.4.3 Pooling layer

The size of the feature map created by convolutional layers is reduced by using a
pooling layer. The pooling window processes the input feature map in the same
way as the convolution kernel, but instead of multiplying pixel values, it does other
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Figure 2.11 the convolutional layer with three channels kernel

pixel-by-pixel operations such as average, maximum, and so on. The Max Pooling
layer finds the highest value in a given area and puts it to the new feature map.
The Average Pooling Layer determines the average of the pixel values in the chosen
area. The following Figure 2.11 shows the max and average pooling layer. In this
figure, the pooling window selects 2× 2 area and do max or average pooling.

Figure 2.12 the max and average pooling layer

2.4.4 Fully-connected layer

The output from convolutional layers or pooling layers is received by the fully-
connected layer. It first performs a linear transformation on the inputs before feeding
them into the activation function to produce the final output. The green circles on
the right part of the Figure 2.9 is the fully-connected layer.
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2.4.5 Output layer

The likelihood of each category is calculated by the output layer of CNN using
likelihood functions. CNN’s final decision has the greatest chance of determining a
category. LeNet-5 was proposed in 1998 as a way to recognize handwritten numbers
(Lecun et al. 1998). The number from 0 to 1 is referred to as the category in this
model. If one of the categories has the highest likelihood, the model will output the
number for that category. The orange circles on the right part of the Figure 2.9 is
the output layer.

Softmax is used to calculate the likelihood in multi-classification issues. Its
denominator adds together all of the output layer’s units. As the following Equa-
tion 2.25 shows, the units are q = 1, ..., Q. Softmax selects the unit with the greatest
probability as its output.

p(yk) =
exp(u2k)∑Q
q=1 exp(u2q)

, for q = 1, ..., Q (2.25)

2.5 Deep Learning Frameworks

Different deep learning frameworks models were applied in this thesis work. They
were transformed to TensorFlow Lite so that Unreal Engine 4 (UE4) game engine
can use them. The PyTorch model must first be converted to ONNX format before
being imported into TensorFlow. The TensorFlow Lite converter can be used to
convert the TensorFlow model.

2.5.1 TensorFlow

TensorFlow was derived from Google’s DistBelief and was released on November 9,
2015. It’s a end-to-end framework for implementing machine learning algorithms.
It runs on Windows, Mac OS X, Linux, and other operating systems. TensorFlow
includes a variety of deep learning APIs, such as vector and matrix calculations,
optimization algorithms, CNN and RNN construction, and so on. With the help of
TensorFlow, users can create, train, test, and save neural network models.

TensorFlow provides the following advantages over a variety of deep learning li-
braries: great flexibility and portability, multi-programming languages’ support, and
extensive documentation. First, TensorFlow, for starters, is extremely adaptable.
TensorFlow graphs can be used to create networks. They can also use TensorFlow
to construct their own libraries or APIs in Python or C++. Second, TensorFlow
has high portability. It is run by a CPU or one or more GPUs. Personal PCs,
servers, and mobile devices are used to run it. Third, TensorFlow supports some
programming languages, e.g. Python, C++, R, etc. Users can run TensorFlow with
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the help of these languages’ API. Forth, TensorFlow has extensive documentation
published in a variety of natural languages, making it accessible to individuals all
around the world.

TensorFlow’s calculation is represented by a graph. There are ”nodes” and
”edges” in the graph. The operators are represented by ”nodes,” and the tensor is
represented by ”edges.” The default graph in TensorFlow is tf.get_default_graph(),
and users can design graphs using tf.Graph. To operate, the graph puts the cal-
culation part to a Session. When TensorFlow is operating, the session controls all
resources and releases them when the program is finished.

Tensor is the data type used by TensorFlow. It’s a multidimensional array; for
example, a zero-dimensional array is scalar, a one-dimensional array is vector, and
so on. Name, shape, and type are the three characteristics of a tensor. The name of
a tensor is a unique string; its shape is its dimension; and its type, such as tf.int8,
is unique. Tensors are calculated using the same type of data.

On September 30, 2019, Google launched TensorFlow 2.0. TensorFlow 2.0 fea-
tures the following main advantages over TensorFlow 1.0: easier to use, easier to
build and deploy models, eager execution, and a simplified data pipeline. Some
old libraries were deleted (e.g. tf.contrib) or combined; Eager Execution replaces
tf.Session; Users can build models by Keras; TensorFlow Estimator API allows
users run their models on local host or distributed multi-server environment; Ten-
sorFlow DataSet was introduced so users don’t fed data to model by Placeholders.

2.5.2 PyTorch

PyTorch is a Facebook-developed open source deep learning framework. Torch, a
library for calculating multidimensional matrices, is used to create it. PyTorch is
a Python implementation of Torch. It has the properties of Lua-based Torch and
GPU-based hardware acceleration.

PyTorch uses distributed training, a hybrid frontend, and libraries to make deep
learning quicker and more customizable. It is fully integrated into Python and can
be used in conjunction with Cython. Open Neural Network Exchange (ONNX) can
also export the PyTorch model, allowing users to adapt it to other deep learning
frameworks.

2.5.3 Open Neural Network Exchange (ONNX)

ONNX is an open format of deep neural network models. It is unrelated to system
environment. Different AI models are interacted in a common format of ONNX. It
supports many deep learning framework, e.g. PyTorch, TensorFlow, Caffe2, etc.
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The ONNX format is comprised of three components. For starters, ONNX of-
fers a definition for an extensible computation graph model, which dictates how
graphs are represented in the intermediate stage. Second, ONNX offers definitions
for common data types such as tensors, sequences, and maps. Third, ONNX con-
tains built-in operator definitions. The default operators for neural networks, for
example, are ai.onnx. Non-neural network machine learning models are represented
by ai.onnx.ml.

2.5.4 TensorFlow Lite

TensorFlow Lite was launched by Google in May 2018. It’s a deep learning frame-
work for running TensorFlow Lite models on mobile, embedded, and Internet of
Things devices. It has the following benefits: it is lightweight and cross-platform.
TensorFlow Lite optimizes hardware acceleration and model load speed for mobile
devices. It can swiftly initialize and run machine learning models on devices. It can
also run on a variety of platforms, including Android and iOS.

The TensorFlow Lite interpreter and TensorFlow Lite converter are the two
major components of TensorFlow Lite. A library serves as the interpreter. It has
a simple API that allows mobile devices to run TensorFlow Lite models, as well as
Linux devices. The Python API is used to convert TensorFlow models to TensorFlow
Lite. It also makes binary files smaller.

As the following Figure 2.13, to use TensorFlow Lite, users should first convert a
TensorFlow model to a TensorFlow Lite model in the form of .tf lite using the Ten-
sorFlow Lite converter. This .tf lite file might then be used on mobile devices. On
Android, the Java API simplifies the encapsulation of C++ APIs. The TensorFlow
Lite model is loaded and the interpreter is called using the C++ API. The model is
run by the interpreter, which makes advantage of the Android neural network API
to speed up the process.

Figure 2.13 The architecture of TensorFlow Lite
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2.6 Unreal Engine

2.6.1 Unreal Engine 4 (UE4)

Epic Games, Inc, a video game and software firm based in the United States, created
the Unreal Engine (UE4) game engine. It is utilized to create games and deploy
neural network models in this thesis. This engine combines game development,
simulation, and visualization features to fulfill a variety of game development needs.

UE4 game engine provides a lot of benefits. First and foremost, it excels at
real-time rendering. Physically Based Rendering (PBR), Lighting Channels, Screen
Space Reflection (SSR), and other abilities are greater in UE4. Second, UE4 intro-
duces Blueprints Visual Scripting, a novel approach to script development. When
compared to C++ code, it is easier for developers to define their own game logic
events. The professional animation production is the third step. The Sequencer in
UE4 is a set of non-linear and real-time animation tools. It contains a multi-track
editor for creating cinematics in games. Fourth, UE4 includes robust game devel-
opment frameworks, such as game rules, player I/O, camera and UI, and so on. It
comes with a number of built-in games and character templates. Fifth, UE4 has
advanced AI, such as Environment Query System (EQS), Behavior Trees, and so
forth. Sixth, UE4 makes its source code available for developers to study.

2.6.2 Skeletal Mesh Animation

In UE4, Skeletal Mesh Animation System is a system for deforming skeletal meshes
based on keyframed animation data and morph targets (Unreal Engine 4.27 docu-
mentation 2021). This section introduces the fundamental elements and process of
this system.

Skeleton, skeletal mesh, and animation sequence are the three basic elements.
The skeleton is the foundation of this system, and it contains information such as
skeleton hierarchy, bone names, sockets, curves, and so on. The skeleton’s mesh is
referred to as skeletal mesh. It includes data such as Level of Details (LOD), Morph
Target, Physics Asset, skin weight, and more. An animation component that records
the movement of a skeletal mesh is called an animation sequence. In each frame of
the animation, there are keyframes for the transformation of the bones. The skeletal
mesh is animated by sequentially playing these keyframes.

To create skeleton mesh animation, you’ll need the UE4 Animation Tools. Skele-
ton Editor is a tool used by developers to arrange bones into skeletons in a given
hierarchy. The skeletons are then linked to their meshes using Skeletal Mesh Editor.
After that, users create and alter animations in Animation Editor. The Animation
Blueprint Editor creates the animation logic. The Physics Asset Editor is used to
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edit the physical bodies. In UE4, it calculates the pose of each bone, which is a col-
lection of transforms (displacement, rotation, and scale). Following the calculation,
UE4 does skinning, which involves deforming the vertices of a mesh based on the
pose of the bone and the skinning weight.

2.6.3 Forward Kinematics and Inverse Kinematics

Forward kinematics (FK) are used in UE4 Animation Sequence. The parent node
of a bone leads the child node to complete actions in this system. This method’s
calculation load is light, reducing the system’s resource requirements. The child
node of a bone, on the other hand, drives the parent node in the Inverse Kinematics
(IK). It is appropriate for actions such as grabbing items and bending knees in
response to the surroundings. The position of the target object is unpredictable in
these scenarios. IK is preferable to FK for avoiding the need to create an animation
sequence for each target object.
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3 Human Pose Estimation Algorithms
Human pose estimation (HPE) can be divided into 2D HPE and 3D HPE. 2D HPE
predicts horizontal coordinates and vertical coordinates of skeletal joints and in addi-
tion to x-axis and y-axis, 3D HPE predicts z-axis, the depth of the joints. In further,
they can be divided into single pose estimation and multiple pose estimation. This
thesis only built 3D human single pose estimation model because the application in
this project is designed for a single human and 3D positions of joints are required
for animating 3D character. 3D single pose estimation model can be classified into
direct estimation approaches and 2D to 3D lifting approaches. Direct estimation
approaches directly estimate 3D locations of joints from input 2D images and the
latter leverage 2D predicted locations as intermediate representations to predict 3D
location via 2D to 3D lifting model.

3.1 2D Pose Estimation

3.1.1 Neural network architectures

To learn dense prediction tasks, a High-Resolution Transformer (HRFormer) was
presented (Yuan et al. 2021). To learn the high-resolution representation, this model
was built based on HRNet. The HRNet, a high-resolution convolutional network,
was built in a multi-resolution parallel approach (Wang et al. 2019). HRFormer im-
proves the work of Vision Transformer (ViT) in ImageNet classification jobs (Doso-
vitskiy et al. 2020). HRFormer, in comparison to ViT, can model multi-scale varia-
tion and reduce feature granularity loss.

The following are some of HRFormer’s features. HRFormer starts with the first
stage of convolution and the three streams: high-resolution, medium-resolution, and
low-resolution. Second, HRFormer maintains a high-resolution stream throughout
the entire procedure. The representation of the high stream is improved by the other
parallel streams. Third, HRFormer combines short-term and long-term attention.

As the Figure 3.1 shows, a representation map is separated into four non-
overlapping portions in the HRFormer block. Multi-head self-attention (MHSA) is
used to process each part, which improves memory and reduces computation com-
plexity. However, there is not information exchange between these windows. The
information is crucial since it aids in the expansion of the receptive field. As a result,
the MHSA results are combined and fed into a feed-forward network (FNN) with
3× 3 depth-wise convolution. This method improves the transformer’s localisation.

The transformer modules and blocks in each module (except for the first stage
module) all have a parallel construction, referenced the work of HRNet, as shown
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Figure 3.1 the HRFormer block

in Figure 3.2. As a transformer module, there is a high-resolution convolution block
in the first stage. There are two blocks in the second stage: a high-resolution block
and a medium-resolution block. The blocks are gradually added from the highest to
the lowest in the following steps. Each stage updates the feature representation of
each block. In a transformer module, information is exchanged among the blocks.

Figure 3.2 the architecture of HRFormer

To tackle the issues of human pose estimation remaining constrained by compu-
tational resources, Lite-HRNet was introduced (Yu et al. 2021). Their work increases
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the efficiency of high-resolution models.
The Lite-HRNet is made up of the high-resolution stem and the main body, as

shown in Figure 3.2. The stem is the first stage. The stem has a 3× 3 convolution
with stride 2 and a shuffle block in the first stage. The main body is a sequence
of modules and each module represents each stage (except the first stage). In each
module of the main body, there are 2 conditional channel weighting blocks and 1

multi-resolution fusion. In the fusion, the streams are gradually added from the
highest to the lowest. As the Figure 3.3 shows, in the conditional channel weighting
block, the weight map is computed in each module across multiple resolutions. This
calculation is called ”cross-resolution weight computation”. In each resolution, the
spatial weights are computed.

This paper combines the shuffle block from ShuffleNet V2 (Ma et al. 2018), with
the HRNet high-resolution stem to create a naive lightweight network. The shuffle
block takes the place of the initial 3 × 3 convolution as well as the remainder of
the residual block. The separable convolution substitutes the usual convolutions in
the multi-resolution module of the main body (Chollet 2016). The naive lightweight
network is replaced by the naive Lite-HRNet.

To reduce the complexity of channel weighting from quadralic to linear, the
pointwise (1× 1) convolution is replaced with a ligitweight unit called ”conditional
channel weighting” in a shuffle block. The weights in this replacement are calculated
using lightweight units throughout the multi-resolution channels. As a result of the
weights, information can be exchanged between channels.

MobileNetV2 was proposed for mobile use in environments with limited resource
(Sandler et al. 2018). It applies depth-wise separable convolutions, linear bottlenecks
and inverted residuals. This model enhances the efficiency of mobile models, such as
spectrum of models, benchmark, and so on, by reducing the number of operations
and memory used while maintaining the accuracy of the model.

A factorized version of a full convolutional operator is replaced by two convolu-
tional layers: a depth-wise separable convolution and a pointwise convolution. Each
input channel is filtered in the former convolution. In order to create new features,
the latter calculates the linear combination for those channels. The depth-wise sep-
arable convolution can reduce computation as compared to a typical convolutional
layer.

The application of the inverted residual with linear bottleneck as a layer module
is a highlight of this paper. The researchers decided to employ bottleneck convo-
lution in MobileNetV2 because the linear layer has all of the information and can
prevent non-linearity. This module gets the compressed representation in lower di-
mension as its input. Then, it expands the input to a higher dimension and makes
it filtered by lightwight depth-wise convolution. The features are projected back
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Figure 3.3 the conditional channel weighting block of Lite-HRNet

to the input. To promote gradient propagation across numerous layers, they use
shortcuts between bottlenecks.

The bottleneck depth-separable convolution with residuals is employed as the
main building block in the MobileNetV2 architecture. To keep the performance
curve obvious, the constant expansion rate is between 5 and 10. As the Equation 3.1
reveals, the activation function is ReLU6 to improve the robustness of low-precision
computation. The convolution block of MobileNetV2 is similar as the FNN part
in the Figure 3.1. The input is processed by two convolution layer and one 3 × 3

depth-wise layer in the middle of them.

ReLU6(x) = min(max(0, x), 6) (3.1)

The stacked hourglass (Hourglass) is made up of multiple stacked hourglass mod-
ules (Newell, Yang, and Deng 2016). Bottom-up and top-down inference is possible
with these modules. The goal of this model is to determine the pixel location of
the body’s keypoints. The features are processed and consolidated in their model to
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acquire the body’s spatial relationships. Across all image scales, this procession and
consolidation are completed. Bottom-up, top-down, and intermediate supervision
all help to improve the model’s performance.

Hourglass is built on a foundation of pooling and upsampling in a sequential
order. As an hourglass output, they generate a set of predictions. This paper
creates a stacked hourglass after first implementing an hourglass.

Hourglass’ goal is to make pixel-by-pixel forecasts of the body’s keypoints. It
reduces the features to 4 × 4 pixels in order to compare them with smaller spatial
filters. The features will be upsampled to a greater resolution after that. These
features will be blended at various resolutions. The hourglass is built in the following
steps: initially, the convolutional and maxpooling layers reduce the resolution of the
features to a very low level. Second, to merge features across scales, the top-down
sequence is upsampled. Third, Tompson’s work references the nearest upsampling
of lesser resolution Tompson et al. 2014. Fourth, if the input resolution is equal to
the output resolution, the model’s predictions will be generated by a series of 1× 1

convolutions. Hourglass generates heatmaps, one of which shows the probability of
joint occurrence at each pixel.

An hourglass module has a symmetrical construction. The layers that are de-
scending match to the layers that are ascending one by one. A residual module is
represented by each block in this structure. The hourglass process is illustrated as
the Figure 3.4 follows: the network begins with an 7 × 7 convolutional layer with
stride 2. The output of the first step is then processed by the residual module in
the second phase. Third, the max-pooling layer reduces the resolution to 64, which
is quite low. There are two remaining modules at the fourth place. The output is
generated in the fifth step. The output has 256 features and an 64× 64 resolution.

Figure 3.4 The part of hourglass

The stacked hourglass (Hourglass) is completed by stacking many hourglasses,
so the network will have the mechanism for repeated bottom-up and top-down in-
ference.
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3.2 3D Pose estimation by end-to-end network

The top-down approach was utilized to predict volumetric heatmaps for each skele-
tal joints by neural network and then got the 3D coordinates of these joints from
heatmaps (Sangbum Choi, Seokeon Choi, and Kim 2021; Moon, Chang, and Lee
2019). Although they were estimated multi-person human pose, they are applied in
single-person pose estimation and their performance exceed many other models for
single-person pose estimation. The following will introduce the neural network archi-
tectures and the algorithm of generating 3D coordinates from volumetric heatmaps.

3.2.1 Overall pipeline

As Figure 3.5 shown, this pipeline consists of three neural networks, DetectNet,
RootNet and PoseNet. DetectNet is responsible for detecting humans and generating
bounding box for each human body from the input image and cropping the input
image based on the bounding box to make each sub-image only contain single person,
then applying RootNet and PoseNet to cropped images respectively. RootNet is used
for predicting camera-centered coordinates of the detected human’s root, a reference
point in body, such as pelvis. PoseNet is used for estimate root-relative 3D single-
person pose and then output the 3D multi-person pose by adding root coordinates
and each root-relative skeletal joints coordinates.

Figure 3.5 Overall pipeline propose for multi-person 3D pose estimation (Sangbum Choi,
Seokeon Choi, and Kim 2021)

Other approach often used in pose estimation is called bottom-up approach,
which is predicting all the body keypoints, no matter which person these keypoints
belong to and then group them into each person using clustering techniques.

3.2.2 Neural network architectures

In DetectNet and PoseNet, the same neural network frames were used while the new
architectures for PoseNet to make network more efficient and have less computing
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cost, which is suitable for resource limited device, such as phones and suitable for
the application that requires less time to predict results, such as games as well
(Sangbum Choi, Seokeon Choi, and Kim 2021; Moon, Chang, and Lee 2019).

The framework of DetectNet used (Sangbum Choi, Seokeon Choi, and Kim 2021
and Moon, Chang, and Lee 2019), is Mask R-CNN (He, Gkioxari, et al. 2018).
Mask R-CNN includes a backbone to extract features from the input image via
deep residual network (He, Zhang, et al. 2015) and pyramid network (Lin, Dollár,
et al. 2017), a region proposal network to propose body bounding box candidates
and then extract the features of each proposal bounding box, and finally, a head
network to output the refined bounding box of human body and probability if the
input image contains the human body. This architecture was used as their DetectNet
(Sangbum Choi, Seokeon Choi, and Kim 2021; Moon, Chang, and Lee 2019) because
high performance was achieved (He, Gkioxari, et al. 2018 ) on several public object
detection datasets (Lin, Maire, S. Belongie, et al. 2015).

Sangbum Choi, Seokeon Choi, and Kim 2021 proposed a new network archi-
tecture as RootNet to estimate 3D coordinates of human root R = (xR, yR, zR), as
Figure 3.6 shows that it predicts depth value zR (the distance between camera and
human root) and 2D coordinate (xR, yR) respectively. First, a backbone network
(ResNet) extracts image features from the input image and the features are passed
to two networks respectively, 2D pose estimation network and depth estimation
network (He, Zhang, et al. 2015). 2D pose estimation network includes a upsam-
pling layer, three consecutive deconvolutional layers with batch normalization layers
(Ioffe and Szegedy 2015) and ReLU activation layer, and a 1X1 convolution layer to
produce a 2D heatmap of the human root. Then soft-argmax is applied to generate
2D coordinates xR, yR from a 2D heatmap (Sun et al. 2018).

Figure 3.6 RootNet framework proposed (Moon, Chang, and Lee 2019)

The Depth Estimation part estimates the distance from camera to the root,
which ie calculated by Equation 3.2, where αx, αy are the focal lengths divided by
the per-pixel distance factors of x-axes and y-axes. Ireal is the area of human body
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in the real space (mm2) and Iimage is the area of human body in the image space
(pixel2).

d =

√
αxαy

Ireal
Iimage

, (3.2)

Equation 3.2 is be derived from a pin-hole camera model, which can be visualized
in Figure 3.7, where d is the distance between camera and human root (mm), f is
the focal length of the camera (mm), Hreal, Wreal, Hsensor, Wsensor are the heights
and widths of the human body in real space and on image sensor respectively.

Figure 3.7 Visualization of pinhole camera model

According to the definition of tan,

tanθx =
Wreal

2d
=

Wsensor

2f
, (3.3)

tanθy =
Hreal

2d
=

Hsensor

2f
, (3.4)

As the Equation 3.5 shows the distance d, where px, py are the per-pixel distance
factors for x-axes and y-axes.

d = f
Wreal

Wsensor

= f
Hreal

Hsensor

= fpx
Wreal

pxWsensor

= fpy
Hreal

pyHsensor

= αx
Wreal

Wimage

= αy
Hreal

Himage

(3.5)
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(a) Different measured distances (b) Same measured distances

Figure 3.8 Examples of wrong measured distances by Equation 3.2 (Moon, Chang, and
Lee 2019)

Then we can get Equation 3.2 by taking square root of Equation 3.6.

d2 = dxdy
WrealHreal

WimageHimage

= αxαy
Ireal
Iimage

(3.6)

However, directly using d as the depth value zR leads to mistakes in several cases.
For example, as Figure 3.8(a) shows that the measured distances from Equation 3.2
of two people are different although the true distances should be same due to the size
of bounding box while Figure 3.8(b) shows that measured distances of two people
are same, but the true distances should be different. To correlate it, a depth network
was trained to generate correlation factor γ (input is the image feature extracted
from a backbone network) ( Sangbum Choi, Seokeon Choi, and Kim 2021), then
k/
√
γ is regarded as the final depth value ZR.

The PoseNet in this pipeline derives from the model (Sun et al. 2018) and then
we can get the volumetric heatmaps from the PoseNet. Based on the pipeline (Moon,
Chang, and Lee 2019; Sangbum Choi, Seokeon Choi, and Kim 2021), a new network
for PoseNet was proposed, which has better trade-off between quality and time.
The network architecture consists of a convolution layer with batch normalization
and PReLU activation layer, seven inverted residual blocks and three deconvolution
blocks and a convolution layer as final layer. Specifically, two different types of con-
catenation structures were proposed, residual concatenation and skip concatenation
(Sangbum Choi, Seokeon Choi, and Kim 2021). The both types can be visualized
in Figure 3.9 and Figure 3.10 respectively. Comparing with the residual concatena-
tion structure, skip concatenation structure increases the estimated quality without
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decrements of efficiency.

Figure 3.9 Skip concatenation structure used in MobileHumanPose (Sangbum Choi,
Seokeon Choi, and Kim 2021)

Figure 3.10 Residual concatenation structure used in MobileHumanPose (Sangbum Choi,
Seokeon Choi, and Kim 2021)

The Convolution block is a convolution layer followed by a batch normaliza-
tion and PReLU activation function, where PReLU is parametric ReLU (see Equa-
tion 3.7) and it has been shown that the performance increases when PReLU is
used as activation function in 2D human pose estimation (Bulat et al. 2019). The
inverted residual block contains two consecutive convolution blocks followed by a
batch normalization and PReLU activation function. The deconvolution blocks con-
tains a two convolution layers with batch normalization and PReLU function and
a upsampling layer. These three structures are shown in Figure 3.11, where ai is a
learnable parameter and yi is a input signal.

f(yi) =

yi, if yi > 0

aiyi, if yi ≤ 0
(3.7)
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(a) Convolution block (b) Inverted residual block

(c) Deconvolution block

Figure 3.11 Structures of convolution block,inverted residual block and deconvolution
block used in MobileHumanPose (Sangbum Choi, Seokeon Choi, and Kim 2021)

3.3 3D Pose Estimation by Lifting Approach

Lifting approach consists of two stages: image-to-2D-pose Network and 2D-to-3D
Network. Compared to end-to-end networks, lifting method is much simpler and
faster and more easily to understand and reproduce (Martinez et al. 2017).

To estimate the locations of human body joints in 3-dimension space, xi, they
employed an array of points in 2-dimension space, yi. To maintain the prediction
accurate, As the Equation 3.8 shows, they should keep the prediction error to a
minimum, where, xi ∈ R2n, yi ∈ R3n; L is loss function; f ∗ denotes a deep neural
network.

f ∗ = min
f

1

N

N∑
i=1

L(f(xi)− yi) (3.8)

As the following Figure 3.12 shows, the architecture of their model is a multi-
layer neural network with a simple and deep design. They picked 2 − d points as
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input for the following reasons: training time will be reduced; network training and
design will be accelerated; and the dataset is readily stored on GPU during training.

Figure 3.12 The architecture of the lifting approach model

There are 6 linear layers in the architecture.The first and last linear layers are
placed after and before the input and output, respectively. The first layer increases
the input dimension to 1024, while the last layer reduces the output size to 3n. The
remaining 4 linear layers are added to the building blocks which repeated for two
times.

Two structures are repeated in a building block. A linear layer, batch normal-
ization, ReLU, and dropout are all present in each structure. To solve this model’s
poor performance in training the 2−d detector’s output, training 2−d ground truth,
and assessing noisy 2− d observations, batch normalization and dropout are added.
Between batch and dropout, the ReLU is applied, because the input and output
are low-dimensional, it was decided to include nonlinearity in their model. Weights
are added constraints for each layer in the block to keep the training stable and
increase generalization in situations when training and testing data have distinct
distributions.
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4 Experiments
This thesis trained and tested different pose estimation models in terms of prediction
accuracy, computation complexity and inference time in a real-time application. For
the training part, COCO (Microsoft Common Objects in Context) dataset is used
for training and testing 2D pose models because these datasets contains images
and 2D coordinates of landmarks, and training and testing 3D pose models is on
Human3.6M dataset, containing 2D coordinates of landmarks or images as input
and 3D coordinates as ground-truth, which can be utilized to train 2D-to-3D lifting
model and 3D pose models.

4.1 Dataset

4.1.1 Microsoft Common Objects in Context

The MS COCO (Microsoft Common Objects in Context) dataset was created (Lin,
Maire, S. J. Belongie, et al. 2014). It is used to aid in the detection and segmentation
of items in their natural environment by extending object recognition to scene com-
prehension. There are 91 object categories in the MS COCO. 82 of these categories
have more than 5000 labeled instances. In this dataset, there are 2.5 million labeled
instances in 328000 images. These labeled cases help in the model’s acquisition of
contextual knowledge.

By distinguishing between ”staff” and ”object,” this dataset selects common
categories. The term ”staff” refers to objects that have no obvious borders. The
easily named things are the ”thing.” The ”staff” is dropped in favor of the ”thing” in
order to get precise object instance localisation. In addition, MS COCO’s categories
are all entry-level. Based on the types of images, this dataset selects non-iconic
images. In the case of iconic-object and iconic-scene photographs, the quality is
excellent, but there is less contextual information. Non-iconic images, the third
type, are good at generalizing.

The MS COCO addresses three issues: first, detecting non-iconic views of ob-
jects; second, detecting non-iconic views of items; and third, detecting non-iconic
views of objects. Existing object recognition systems are hard to distinguish objects
in the background that are partially occluded by clutter (Hoiem, Chodpathumwan,
and Dai 2012). The second issue is object-to-object contextual reasoning. Because
the identities of items can be determined from their surroundings, images of scenes
are more important than images of objects. The images in this dataset not only
have contextual relationships but also have non-iconic object views. The exact 2D



36

localisation of objects is the third issue. As the following Figure 4.1 show, the spa-
tial location of a object is determined by bounding boxes. Every instance of each
object’s category is labeled and segmented in this dataset.

(a) the original image (b) the image with its bounding boxes and
keypoints

Figure 4.1 The images in MS COCO (Lin, Maire, S. J. Belongie, et al. 2014)

The researchers used the following steps to annotate images: The first step
is to label the categories. The object categories were amalgamated into super-
categories in order to speed up the classification process. Image spotting is the next
phase. Crossings are used to designate all of the instances in an image. Instance
segmentation is the third phase. The instances are divided into groups. Then they
are subjected to verification to confirm that the segmentation was of high quality. If
there are less than or equal to 10 instances of a category in the photos, the instances
will have been segmented separately. The instances will be grouped if there are more
than 5 instances. Finally, descriptive captions are written for each image.

4.1.2 Human3.6M

Using marker-based motion capture equipment, Human3.6M dataset was created
and asked professional actors to perform a wide range of gestures in indoor areas
(Ionescu et al. 2014). This dataset provides a wide range of human poses, motions,
and activity scenarios. This dataset can be used to train human sensing systems
and evaluate novel human posture estimation methods.

Human3.6M covers four aspects: For starters, this dataset is quite enormous.
It includes over 3.6 million various human positions photographed from 4 perspec-
tives. The everyday scenarios are accomplished by 11 professional actors. Second,
the dataset contains data that is synchronized. Depth sensor, video cameras, and
progressive scan synchronize 2D and 3D data in Human3.6M. Third, Human3.6M
supports mixed-reality environments. Motion capture data is generated by insert-
ing the characters into the video environment. Fourth, this dataset is utilized to
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estimate poses.
During the image capture, 15 sensors, like as motion cameras, video cameras,

and time-of-flight sensors, collect the data in this dataset. Hardware and software
keep them in sync. The actions are carried out by 6 actors and 5 actresses, and they
belong to the Body Mass Index range of [17, 29]. 7 and 4 people complete the motions
of the training and testing sets, respectively. As a result, the dataset includes a wide
range of body types and mobility. Moreover, the data is in the parametrization of
”relative 3D joint positions” and ”kinematic representation”. Human3.6M includes
a complete skeleton with 32 joints as well as bounding box annotations for humans
in photos. Bounding boxes are derived from the projection of skeletons in images,
which employ a bounding box to fit around the projection.

4.2 Training 2D and 3D pose estimation models

This thesis trained 5 different pose models, shown in the Table 4.1. The stacked-
Hourglass, HRFormer, Lite-HRNet and MobileNetV2 are trained on COCO dataset,
where the input is single image and bounding box of a human in the images and
output is 2D coordinates (x and y) of 17 keypoints, consisting of nose, left eye, right
eye, left ear, right ear, left shoulder, right shoulder, left elbow, right elbow, left
wrist, right wrist, left hip, right hip, left knee, right knee, left ankle, right ankle, as
the same order of the output from model, as Figure 4.2 shows. Additionally, these
2D models were trained 200 epochs with learning rate 0.0005 and the the training
curves of MSE (mean squared error) loss of these 4 2D models can be seen in the
Figure 4.3.

Table 4.1 The trained models

model input output datasets
StackedHourglass (Newell, Yang, and Deng 2016) single image 17 2D points COCO

HRFormer (Yuan et al. 2021) single image 17 2D points COCO
Lite-HRNet (Yu et al. 2021) single image 17 2D points COCO

MobileNetV2 (Sandler et al. 2018) single image 17 2D points COCO
2D-3D Lifting (Martinez et al. 2017) 17 2D points 17 3D points Human3.6M

The 2D-to-3D lifting model was trained on the Human3.6 dataset, containing
17 keypoints of human body, but the locations of these 17 keypoints (pelvis, right
hip, right knee, right ankle, left hip, left knee, left ankle, torso, neck, nose, head,
left shoulder, left elbow, left wrist, right shoulder, right elbow, right wrist), which
is shown in the Figure 4.4. This model was trained 200 epochs as well with learning
rate 0.001 and the Figure 4.5 shows the loss curve. According to the loss curve,
where the loss is reduced rapidly at the first epoch and the curve is quite flat after
couple of epochs, which means that the regression of 2D points to 3D points is
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Figure 4.2 Keypoints and index of human pose in COCO dataset
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(a) Stacked Hourglass Network (b) HRFormer

(c) Lite-HRNet (d) MobileNetV2

Figure 4.3 The curves of training loss of different models

converged quickly and 2D-to-3D regression model can be trained only one epoch or
several epochs for fast training. The Figure 4.6 shows the loss curve at the first
epoch.

4.3 Test prediction accuracy of human pose of pose models

This section shows the prediction accuracy of 3D keypoints and some visualizations
of predicted results on Human3.6 dataset from the models trained in the section4.2
and the pretrained MobileHumanPose model (Sangbum Choi, Seokeon Choi, and
Kim 2021).

4.3.1 Inference pipeline

There are two stages for inference with the model, MobileHumanPose: detecting
pelvis location using RootNet and predicting 3D points using PoseNet.

But generally, generating 17 keypoints from a single image required three stages:
human detection, 2D points prediction and 3D points prediction. In the human
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Figure 4.4 Keypoints and index of human pose in Human3.6 dataset
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Figure 4.5 The training loss curve of 2D-3D pose lifting model for 200 epochs

Figure 4.6 The training loss curve of 2D-3D pose lifting model for 1 epoch
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detection stage, this thesis used the model YOLOv3 (Redmon and Farhadi 2018)
to detect the location of human, represented as a bounding box. Then the cropped
image within the bounding box is a input of 2D pose models and the 2D pose models
was used to generate 2D points. Finally these predicted 2D points were passed to
the 2D-to-3D lifting model to get 3D keypoints. But between the second and third
stage, there was required a keypoint transforming process, because the indices of
keypoints of datasets are different between COCO dataset and Human3.6 dataset,
where 2D models were trained on the COCO dataset while lifting model is trained
on Human3.6 dataset. The transformation method is described below:

First, pelvis, neck, head, torsor are in the Human3.6 but not in the COCO, but
pelvis is in the middle of left hip and right hip; neck is in the middle of left shoulder
and right shoulder; head is in the left eye and right eye; torsor is in the middle of
neck and pelvis, then these points can be calculated as Equation 4.1 shows.

pelvis =
left hip+ right hip

2
, (4.1)

neck =
left shoulder + right shoulder

2
, (4.2)

head =
left eye+ right eye

2
, (4.3)

torsor =
neck + pelvis

2
, (4.4)

(4.5)

Second, changing the index order. For example the index of left shoulder is 5

in the COCO dataset, but it’s 11 in the human3.6 dataset, thus the order of index
should be changed before passing 2D keypoints data into lifting model.

4.3.2 Prediction accuracy

The 2D pose models were evaluated based on distance accuracy, which represents the
percentage of positive predictions. First, the distance between normalized predicted
keypoints and normalized ground-truth was calculated, and if the value of distance
was less than a threshold. i.e 0.5, we thought this prediction is positive and accuracy
equals number of positive predictions divided by total number of keypoints. 3D
pose models were evaluated based on MPJPE (Mean Per Joint Position Error),
which is the Euclidean distance between coordinates of ground-truth and estimated
keypoints as Equation 4.6 shows, where, Ji is the coordinates of ground truth of the
ith keypoint, J∗

i is the coordinates of ith estimated keypoints and N denotes the
number of keypoints.
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MPJPE =
||Ji − J∗

i ||2
N

(4.6)

The Figure 4.7 shows the accuracy of 4 different 2D pose, which is only evaluated
on COCO datasets for 2D keypoints prediction. From the figure, stackedHourglass
model shows the highest accuracy for 2D pose predicting. Furthermore, the 3D pose
models (lifting model, stackedHourglass + lifter, HRFormer + lifter, Lite-HRNet +
lifter, MobileNetV2 + lifter and MobileHumanPose) were tested on the Human3.6
dataset, and the MPJPE score is shown in the Table 4.2. From the table, the
Lifting model has the lowest MPJPE score, which means Lifting model has the least
prediction errors. This is because the input of lifting model is the ground-truth 2D
keypoints while for other models, the input is the RGB images. The combination of
stackedHourglass model and lifting model shows the best prediction results and the
performances of most combination methods (2D model + lifting model) are better
than the MobileHumanPose, which is the end-to-end 3D pose model.

Figure 4.7 Accuracy of pose prediction of different 2D pose models
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Table 4.2 MPJPE score of different models tested on Human3.6 dataset

model MPJPE(mm) score
Lifting model(use 2D ground truth as input) 52.17

StackedHourglass+lifting 54.58
HRFormer+lifting 58.70
Lite-HRNet+lifting 58.72

MobileNetV2+lifting 61.24
MobileHumanPose 60.79

4.3.3 Visualization of prediction results

Apart from comparing the prediction accuracy of different models, the plots of
predictions of 2D points and 3D points are showed to compare them in terms of
visualization. The Figure 4.8 shows the prediction results from 2D-to-3D lifting
model, including 2D ground-truth points, 3D ground-truth points and 3D predicted
points. The Figure 4.9 shows the bounding box and 2D estimated keypoints of a
single person and the Figure 4.10 shows the 3D estimated keypoints from the same
models that produced the predicted 2D points. The Figure 4.11 shows the different
prediction stages from the MobileHumanPose model, where 4.11(a) is the results of
prediction of root/pelvis joints and 4.11(b) and 4.11(c) are the plot of 2D predicted
and 3D predicted joints by MobileHumanPose model respectively. According to
these figures, no obvious differences of 2D poses or 3D poses using different mod-
els was observed and the visualization results show that the human poses can be
predicted correctly using all of models, tested in the section 4.3.2.

4.3.4 Model complexity

In addition to show the accuracy of predicted keypoints, the complexity of models
should be considered when we deploy these models in real-time games or application.
If visualization of predicted results of two models are similar, then the complexity of
model is a key factor to select which model that can be utilized in a large software.

The complexity of model can be evaluated by number of parameters in a model
and number of Floating-point Operations (FLOPs), and these floating operations
can be an addition, subtraction, division and multiplication. The FLOPs of different
layers (such as convolutional layer, pooling layer, etc.) were computed following the
Equation 4.7.

FLOPs of Conv2D layer = 2× kernel size× output size (4.7)
FLOPs of Pooling layer = inputsize (4.8)

FLOPs of Linear layer = 2× input size× output size (4.9)
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Figure 4.8 The visualization of 3D pose predictions using 2D-3D lifting models

In Equation 4.7, kernel, input, output is a tensor with the shape (B,C,W,H) and
B denotes the batch size, that is the number of samples in a batch, c denotes the
number of channel and W and H are width and height respectively. Therefore, the
size of kernel, input and output is calculated by B × C ×W ×H.

The Table 4.3 shows the input size, number of parameters and FLOPs of these
tested models. From the table, for the 2D pose models, the Stacked Hourglass
model has the most parameters and the Lite-HRNet model has the least parame-
ters. Additionally, the 2D-3D lifting model is very small, but in the meantime, the
prediction accuracy is the highest shown in the table 4.2, which means that the 3D
pose estimation can be improved by simplifying the 2D pose models and increasing
the prediction accuracy from the 2D pose models.

Table 4.3 The number of parameters and FLOPs of different pose models

model input shape number of parameters/M GFLOPs
Stacked Hourglass Network (1,3,256,256) 94.85 28.67

HRFormer (3,256,192) 7.75 2.99
Lite-HRNet (3,256,192) 1.13 0.27

MobileNetV2 (3,256,192) 9.57 1.59
2D-3D Lifting (34,1) 4.29 0.04

MobileHumanPose (3,256,256) 34.34 14.32
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(a) Stacked Hourglass Network (b) HRFormer

(c) Lite-HRNet (d) MobileNetV2

Figure 4.9 Visualization of 2D pose predictions of different pose models
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(a) Stacked Hourglass Network (b) HRFormer

(c) Lite-HRNet (d) MobileNetV2

Figure 4.10 Visualization of 3D pose predictions of different pose models

4.4 Testing pose models in real-time

Addition to testing accuracy of predicted keypoints from pose models on a dataset,
the reality and fluency of character animation generated by predicted keypoints
were tested in Unreal Engine 4 game engine. The reality of animation was observed
manually, to test if animation matches user current pose and fluency of anima-
tion is represented by FPS (Frames Per Second). FPS was obtained by the equation
1/timedifferencebetweenlastframeandcurrentframe(seconds). In Unreal Engine
4 game engine, the time difference between two consecutive frames can be obtained
from the parameter, named DeltaTime in a in-built function, void Tick(float Delta-
Time), which is called every frame.

The whole pipeline to generate character animation is firstly reading frame from
WebCam, next producing 3D coordinates of human keypoints and finally generat-
ing animation by setting locations of character’s keypoints based on the predicted
keypoints and finally the rotation of joints is calculated by inverse kinematics tech-
niques provided by Unreal Engine 4 game engine. The detailed implementations of
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(a) Root point (b) 2D keypoints

(c) 3D keypoints

Figure 4.11 Visualization of predictions of MobileHumanPose model

these stages are introduced in the section4.4.1, 4.4.2, 4.4.3 respectively.
The Table 4.4 shows the average FPS within around 3 minutes by using different

models to predict human landmarks, and based on the result, the Lite-HRNet has a
promising FPS, which can be used in games, where requiring pretty high FPS. But
using other models, like HRFormer, MobileNetV2, MobileHumanPose, the program
runs smoothly as well and no obvious lagging is observed.

However, the animation generated by real human pose is not very good, and the
distinguished differences by using these models are not observed. Some animations
are shown in the Figure 4.12. For the action, ”turning the body”, the animation
seems quite real but for the action, like ”lifting the arm” or ”lowering the head”,
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Table 4.4 The FPS of using different models in Unreal Engine 4 game engine

model FPS
Stacked Hourglass Network + Lifting 23

HRFormer + Lifting 48
Lite-HRNet + Lifting 55

MobileNetV2 + Lifting 54
MobileHumanPose 37

the animation of head is not similar as real actions, which means the prediction of
depth (z axis) of the neck joint is not accurate.

4.4.1 Reading and processing frame from Webcam

I created a C++ class, called AWebCamReader, inheriting AActor class, and in
this AWebCamReader class, I utilized OpenCV library to open webcam and reading
and processing a single frame from the webcam, including, resizing the input frame,
converting the color space of the input frame from BGR to RGB because the color
space of frame from webcam is BGR but the input image of Pose estimation model
is RGB.

In the AWebCamReader class, mainly we need three variables to store the web-
cam stream, frame data and frame size.

1 cv::Mat m_videoFrame;
2 cv::VideoCapture m_videoStream;
3 cv::Size m_frameSize;

Additionally, there are some functions in the AWebCamReader class, to open the
webcam, check if webcam is available, read frame data from webcam stream and
process the frames, including resizing, converting color space and normalizing, such
as BeginPlay(), UpdataFrame() and DoProcessing(), where the function BeginPlay()
is overridden AActor::BeiginPlay() to initialize the class member variables at the
beginning of the program. The implementation is shown in the Figure 4.13.

4.4.2 Model inference using input frame

To get 3D pose coordinates, I created a class called ATfLiteInference, which also
inherits from AActor class. The functionality of this class is to acquire the instance
of AWebCamReader class in the main program, get output from model and then
store the 3D pose points. When initializing the object, we should define the model to
use, and hyperparameters of the model, like the size of input tensor, the amount of
the pose points we want to get from the output. At the beginning of the program, I
firstly loaded the model, and initialized the Tensorflow Lite interpreter, which is used
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(a) Lifting arms (b) Lowering head

(c) Turning body

Figure 4.12 The animation generated by pose models

for inference. In every iterator, the functions UpdateFrame(), FillInputBuffers() and
InvokeInterpreter() are called one by one, where I got the frame data by calling the
function UpdateFrame(), and filled the frame data into to the input tensor of model
by calling FillInputBuffers() and made an inference by calling InvokeInterpreter().
The implementation is shown in the Figure 4.14.

Generally, the outputs, number of joint points are different if we use different
models and the correspondences between skeletal name and output index are differ-
ent. For instance, in model1, the output is x, y, z, score of 17 joints, and the 15th
point represents the skeletal joint of left feet. While in the model2, there are 32

joints and 15th point represents the skeletal joint of left hand. Thus, addition to
outputting 3D points, we need a variable to store the pairs of names of skeletal joint
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Figure 4.13 C++ implementation for reading frames from WebCam

and landmark IDs in this class, because they are related to the which model to use.

4.4.3 Animating character based on 3D joint points

The animation of the character is controlled by the UNREAL class, called UPhysic-
sHandleComponent, where we set the locations of skeletal joints and UNREAL will
use IK techniques to calculate the rotations of the skeletal joints and finally we can
see the animation of the character by seeing the rotation of each skeletal joints of
the character. In the function InitialBone(), I initialize the instance of the class UP-
hysicsHandleComponent for each skeletal joint and in the function UpdateBone(), I
acquire the 3D points from the model object, and the set the new location to each
skeletal joints if the possibility of visibility of the points is larger than a determined
threshold. The implementation is shown in the Figure 4.15.

4.5 Discussion

This thesis estimates 3D human pose using two approaches, the end-to-end model
and 2D-to-3D lifting method. The output of end-to-end model is 3D skeletal lo-
cations while 2D-to-3D lifting method has two stages that feeding input images to
2D pose model to obtain 2D skeletal locations and then feeding them to 2D-to-3D
lifting model to get 3D skeletal locations. There are four 2D models with the same
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(a) Part1 of functions in the implementation

(b) Part2 of functions in the implementation

(c) Part3 of functions in the implementation

Figure 4.14 C++ implementation for generating 3D human landmarks
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Figure 4.15 C++ implementation for animating characters

2D-to-3D lifting model and one 3D model selected for evaluation and comparison
according to the relatively better performances provided by the 3D pose estimation
survey (Zheng et al. 2020). Furthermore, this thesis created an application to gen-
erate real-time animations using estimated 3D skeletal animations in Unreal Engine
4 game engine.

Based on the subjective observation, the generated animations have some obvious
flaws. Firstly, the character animation looks shaking even though the real pose is not
moving, which is because the estimated locations are fluctuated slightly and these
shaky data leads to the shaking animations. Secondly, the estimation for Z-axis or
depth is not accurate enough. For example, when moving horizontally or vertically,
the corresponding animations shows character moves correctly, while when moving
forward and back (along the Z-axis), the animations are distorted, especially the
character’s head is rose and lowered frequently but the head of real pose is erect.
Moreover, the knee joints and elbow joints always turn inward. Actually, from the
evaluation results, the 2D models show the less errors compared to 3D models.

Therefore, in the next step, the improvement of generating real-time animations
may involves solving shaking problem and enhance accuracy for Z-axis of 3D skeletal
locations. Shaking problem may get solved by detecting movement of human. The
inaccurate estimation of depth information is a important problem mentioned by
many research work and the main reason is that the ground truth of Z-axis is
already imprecise because collection of 3D data is more difficult than obtaining 2D
data. Therefore, obtaining accurate 3D data still needs to be studied.
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5 Conclusion
This thesis researches the advanced deep neural networks for human pose estima-
tion and based on the evaluation results provided by the corresponding project pa-
pers, the four optimal neural network architectures(Stacked Hourglass, HRFormer,
LiteHRNet, MobileNetV2) for 2D human pose estimation and MobileHumanPose
for 3D human pose estimation are selected for training and testing in this thesis.
The purpose of this thesis is utilizing predicted 3D landmarks to generate real-time
animations, thus 2D to 3D pose lifting neural network are applied following the pre-
diction from 2D human pose. This thesis first trained four 2D human pose estimation
models on the COCO dataset and trained 2D to 3D pose lifting neural network on
the Human3.6M dataset. Then the combination of 2D human pose model and 3D
pose lifting model can be used to generate 3D coordinates of human keypoints from
a single image. In order to compare the human pose estimation models on a common
evaluation standards, this thesis tested MPJPE score of these models on the same
dataset, Human3.6M. And the qualities of predicted keypoints from different models
are visualized and analyzed. Furthermore, the model complexity, such as FLOPS,
number of model parameters are showed in this thesis. Finally, an application is
built for generating character’s animation in real time based on user’s actions and
the quality of generated animations are analyzed.

The quantitative evaluation of 3D human pose estimation models is based on
the MPJPE score, which denotes the distance between predicted joints and ground-
truth. The MPJPE scores of stacked hourglass + lifting, HRFormer + lifting, Lite-
HRNet + lifting, MobileNetV2 + lifting, MobileHumanPose are 54.58mm, 58.70mm,
58.72mm, 61.24mm and 60.79mm respectively, which illustrates stacked hourglass
model can produce the most accurate predicted keypoints among these models, while
the LiteHRNet has the highest inference speed. However, from the visualization of
inference of self-taken photos, no obvious differences of results from these models
are shown and this situation is same when comparing the animations generated
by these different models in Unreal Engine 4 game engine. For the qualitative
evaluation of animations based on the predicted human pose keypoints, all of these
models produce inaccurate depth value, which is reflected by the animation is worse
when rotating or moving z-axis.
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