
 
1 

Juha-Matti Inkilä  
OFDM CHANNEL ESTIMATION WITH  MACHINE LEARNING                            Faculty of Information Technology and Communication Sciences  Bachelor's thesis  Examiner: Taneli Riihonen  May 2022  



i 

ABSTRACT 
Juha-Matti Inkilä : OFDM Channel Estimation With Machine Learning Bachelor's thesis  Tampere University Information technology  May 2022   
Orthogonal frequency-division multiplexing (OFDM) is a method of encoding data on multiple subcarrier frequencies and is commonly used in today’s wireless communication systems. One of its many advantages is that it allows for frequency-domain equalization of the signal at the receiver removing the need for complex time-domain equalizers. The channel equalization pro-cess consists of estimating the adverse effects that the channel has on the signal, such as fading and distortion, and minimizing their contribution. Channel estimation in OFDM systems is usually implemented as a pilot-aided estimation, where known data is sent through the channel periodi-cally. Zero-forcing (ZF) and minimum mean square error (MMSE) estimators are traditional low-complexity algorithms used in pilot-aided schemes. As of late, machine learning approaches have been a growing topic of interest in OFDM performance and link quality research.  This thesis examines the possibility of using a deep neural network in determining and esti-mating the true transmitted data after propagating through a noisy channel. These estimates are used to reduce bit-error rate (BER) and to achieve better signal quality. The performance of the machine learning estimator is compared against traditional ZF and MMSE estimators in terms of BER as a function of signal-to-noise ratio (SNR). The machine learning (ML) estimator is taught using data produced by a MATLAB simulation of an OFDM transmitter and receiver. The estimator receives 16-QAM modulated symbol’s in-phase and quadrature coefficients, and a least-squares spline-interpolated estimate of the chan-

nel’s frequency response. It then performs the channel equalization implicitly, outputting a Gray-encoded prediction of the true transmitted symbol. The results of this study show that the ML estimator can at least match the performance of conventional zero-forcing and MMSE estimators, producing a BER/SNR -graph similar to them.    Keywords: OFDM, Machine Learning, Channel estimation, Channel equalization       The originality of this thesis has been checked using the Turnitin OriginalityCheck service.  



ii 

TIIVISTELMÄ 
Juha-Matti Inkilä : OFDM-kanavan estimointi koneoppimismenetelmän avulla  Kandidaatin tutkielma  Tampereen yliopisto Tietotekniikka  Toukokuu 2022   
Ortogonaalinen taajuusjakoinen multipleksointi (OFDM) on tiedonsiirtomenetelmä, joka perus-tuu tiedon koodaamiseen usealle alikantotaajuudelle, ja se on hyvin yleisesti käytetty tekniikka nykyisissä langattomissa tiedonsiirtojärjestelmissä. Yksi sen monista eduista on, että se mahdol-listaa signaalin korjauksen taajuustasolla vastaanottimessa, vähentäen tarvetta monimutkaisille aikatason ekvivalisaattoreille. Kanavan ekvivalisointiprosessilla tarkoitetaan kanavan signaaliin aiheuttamien vääristymien ja häipymien arviointia, sekä niiden vaikutusten minimointia. Kanavan estimointi OFDM-järjestelmissä toteutetaan yleensä pilottiavusteisena arviointina, jossa tunnettua dataa lähetetään sovituin välein. Nollapakotus (ZF) ja minimikeskimääräisen neliövirheen (MMSE) arviointialgoritmit ovat perinteisiä matalan kynnyksen menetelmiä pilottiavusteisissa jär-jestelmissä. Viime aikoina koneoppimisen hyödyntäminen OFDM-suorituskyvyn ja viestikanavien laadun parantamisessa on ollut kasvava kiinnostuksen aihe kommunikaatiojärjestelmien tutki-muksen alalla. Tämä työ tutkii syväoppivan neuroverkon hyödyntämistä kanavan estimointiin ja todellisen lä-hetetyn datan päättelyyn. Päättelyn avulla pyritään vähentämään kanavassa tapahtuvaa bittivir-hesuhdetta (BER) ja saavuttamaan parempi signaalin laatu. Syväoppivan järjestelmän suoritus-kykyä verrataan tavanomaisempiin nollapakotus ja MMSE-estimaattoreihin BER / signaalikohi-nasuhde (SNR) -käyrien avulla. Koneoppiva estimaattori opetettiin MATLAB OFDM -simulaatiosta saadulla datalla. Koneop-piva järjestelmä saa tiedon vastaanotetun 16-QAM moduloidun symbolin in-phase ja quadrature -komponenteista sekä interpoloidun raakatiedon kanavan taajuusvasteen arviosta kyseiselle symbolille. Tämän jälkeen järjestelmä tekee kanavan ekvivalisoinnin implisiittisesti ja tuottaa Gray-enkoodatun arvion todellisesta lähetetystä symbolista. Tutkimuksen tuloksien perusteella koneoppiva järjestelmä kykenee vähintään vastaamaan ZF- ja MMSE-estimaattorien suoritusky-kyä, tuottaen vastaavanlaisen BER/SNR-käyrän.  Avainsanat: OFDM, koneoppiminen, kanavan estimointi, kanavan ekvivalisointi   Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck –ohjelmalla.  



iii 

CONTENTS  
1. INTRODUCTION .................................................................................................. 1 

2. BACKGROUND .................................................................................................... 3 

2.1 Orthogonal frequency-division multiplexing (OFDM) ............................ 3 

2.2 Multipath propagation and frequency-selective channels ..................... 4 

2.3 Channel estimation .............................................................................. 5 

2.3.1 Zero-forcing estimator ................................................................... 6 

2.3.2 Minimum mean square error estimator .......................................... 6 

3. METHODOLOGY .................................................................................................. 7 

3.1 MATLAB OFDM simulator .................................................................... 7 

3.2 Feedforward neural network ................................................................. 9 

3.3 OFDM ML equalizer ........................................................................... 11 

4. EXPERIMENTS .................................................................................................. 13 

5. CONCLUSIONS .................................................................................................. 16 

6. REFERENCES ................................................................................................... 17 

 
                    



iv 

LIST OF FIGURES 
2.1 OFDM subcarrier structure…………………………………………………….….3 
2.2 Time-frequency grid of OFDM symbols………………………………………….4 
2.3 Cyclic prefix principle………………………………………………………………5 
3.1 OFDM simulator flowchart……………………...…………………………………7 
3.2 Comb-type pilot scheme…………………………………………………………..8 
3.3 Feedforward neural network structure…………………………………………...9 
3.4 Perceptron structure……………………………………………………………….9 
3.5 Example of training test data………………………..…………………………..11 
3.6 Training accuracy and loss function values for ML models………………….11 
4.1 BER/SNR chart for 8 pilots SNR [1, 30]………………………………………..13 
4.2 BER/SNR chart for 16 pilots SNR [1, 30]………………………………………14 
4.3 Channel equalization coefficient estimation………..………………………….15 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



v 

LIST OF TABLES 
 3.1 Training loss and training accuracies for the ML models………………………12 
 4.1 OFDM simulator variables………………………………..………………………13 
 



vi 

LIST OF ABBREVIATIONS 
AWGN Additive white Gaussian noise  BER Bit-error rate  CFR Channel frequency response  ICI Inter-carrier interference  ISI Inter-signal interference  LS Least squares  LOS Line of sight  MMSE Minimum mean square error  ML  Machine learning  OFDM   Orthogonal frequency-division multiplexing  QAM Quadrature amplitude modulation  ReLU Rectified linear unit  RX Receiver  SNR Signal-to-noise ratio  TX Transmitter  WLAN Wireless local area network  ZF Zero-forcing 



1 

1. INTRODUCTION 
Many of today’s wireless communications systems including 802.11a/g/n WLAN, LTE 
networks and terrestrial digital TV DVB-T/H systems use the orthogonal frequency-divi-
sion multiplexing (OFDM) scheme for data encoding and transmission. A multi-user ac-
cess variation of OFDM called OFDMA is also used extensively in modern 4G cellular 
networks. Like any real communications signal propagating through a channel, an OFDM 
signal also experiences distortion and fading effects caused by irregularities in the envi-
ronment. Such irregularities might be for example obstacles blocking the signals direct 
path, therefore breaking the line-of-sight (LOS) between the signal transmitter (TX) and 
the receiver (RX). The result is multipath propagation, a phenomenon where the signal 
finds many alternative pathways between the TX and the RX. Different components of 
the signal arrive at separate times and sum up at the receiver to create errors in the data 
transmission. To counteract these effects, channel equalization is needed. Its purpose 
is to nullify, or at least minimize, the adverse effects of the channel and ideally make the 
channel frequency response flat across all frequencies. 
In recent years, plenty of research has been done on the utilization of machine learning 
methods for OFDM transmissions [1] [2]. These approaches show great promise for the 
future in terms of improving communications reliability and link quality for OFDM sys-
tems. For example, the joint project between Tampere University and Nokia Bell Labs - 
DeepRX, a convolutional deep learning receiver, has shown to outperform traditional 
approaches for receivers and their ability to perform channel estimation in certain set-
tings [3]. 
The goal of this thesis is to study the possibility of using a machine learning (ML) based 
channel estimator at the receiver. The ML estimator’s performance will be compared 
against traditional estimation algorithms, namely zero-forcing (ZF) and minimum mean 
square error (MMSE), in terms of bit-error rate (BER) as a function of signal-to-noise 
ratio (SNR). The training data for the ML estimator will be generated using a MATLAB 
based OFDM simulator. The performance tests will also be performed on the MATLAB 
simulation. 
The test results show that the ML estimator’s performance matches the conventional 
estimators’ performance in cases with 8 and 16 pilot subcarriers. All three of the estima-
tors stay very close to one another, and no clear winner can be picked in any of the 



2 

scenarios. The ML estimator seems to be most restricted by its very limited input fea-
tures, as it only bases its prediction on the least squares channel estimate. More raw 
data could allow it to make more novel predictions.  
Chapter 2 discusses the relevant background topics, such as basics of OFDM systems 
and channel estimation techniques. Chapter 3 details the architecture of the deep learn-
ing model used for the ML channel estimator. The MATLAB simulation and the details of 
the OFDM scheme used are detailed in Chapter 4 along with the experiment results. 
Chapter 5 concludes with the observations and discusses potential future work and im-
provements for the model. 



3 

2. BACKGROUND 
Certain key aspects, such as the basics of wireless OFDM data transmission and chan-
nel estimation/equalization, are discussed in this chapter. 

2.1 Orthogonal frequency-division multiplexing (OFDM) 
OFDM has many benefits over single-carrier schemes, with the main attraction being its 
robustness against frequency-selective fading and narrowband interference [4, p. 11]. 
Other notable advantages are high spectral efficiency, ease of dealing with delay spread 
and other multipath effects and the possibility of using single-frequency networks in 
broadcasting applications [4, p. 14]. 
The main idea of OFDM is to use multiple equally spaced subcarrier frequencies to carry 
the data. Each subcarrier is assigned a modulated data symbol. The frequency differ-
ence between each carrier frequency is called the subcarrier spacing.  
The orthogonality between subcarriers means that two OFDM subcarriers do not cause 
any interference to each other after demodulation. This is the case even if the spectrum 
of neighboring subcarriers clearly overlap, as can be seen from figure 2.1. The lack of 
interference between the OFDM subcarriers is not simply because of the subcarrier 
spectrum separation. Rather, it is due to the specific frequency-domain structure of each 
subcarrier in addition to the specific choice of a subcarrier spacing ∆𝑓 equal to the per-
subcarrier symbol rate 1

𝑇𝑢
. [5, p. 35] 

Figure 2.1. An example of OFDM subcarrier spacing in frequency domain. The subcar-
rier peaks correspond to nulls of adjacent subcarriers, resulting in zero inter-carrier-in-
terference (ICI). Adapted from [5, p. 30]. 



4 

Any distortion of the frequency-domain structure of the OFDM subcarriers, for example 
due to a frequency-selective channel, may lead to a loss of the orthogonality and to inter-
carrier-interference (ICI). To prevent this and to make an OFDM signal robust against 
frequency selectivity, cyclic-prefix insertion is typically used. [5, p. 32] Cyclic prefix inser-
tion principle is discussed in more detail in 2.2 Multipath propagation and frequency-
selective channels. One OFDM symbol can consist of N amount of subcarrier frequen-
cies. Once an OFDM symbol has been constructed from the subcarriers, they can be 
sent consecutively in a block-like fashion to form a data stream, as figure 2.2 demon-
strates.  

 
Figure 2.2 A time-frequency grid resembling multiple OFDM-symbols in the time-domain 
axis, and their subcarriers in the frequency axis. One column of subcarriers forms one 
OFDM-symbol. Adapted from [5, p. 32]. 
 
For example, a typical WLAN-transmission might use anywhere from 52 to 64 subcarri-
ers in one OFDM symbol. Modern 4G-LTE mobile communications systems may use up 
to 2048 different subcarriers to ensure high performance, but also for the use of multi-
user schemes, where different subcarriers are assigned to different users.  
 

2.2 Multipath propagation and frequency-selective channels 
When a signal propagates through a medium in the real world, it faces all sorts of obsta-
cles on its path. These cause the signal to reflect off and bend around said obstacles, 
scattering around their environment randomly. Some of these scattered signals find al-



5 

ternative paths to the receiver, and multiple versions of the sent signal arrive at the re-
ceiver with varying delays. These signals then sum up at the receiver, on the premise of 
the superposition principle, causing interference and degradation of signal quality. This 
phenomenon is called multipath propagation interference. [6, p. 7] Multipath propagation 
interference is best combated using the cyclic prefix insertion in OFDM systems. A por-
tion, defined by the cyclic prefix size, of subcarrier content at the end of one OFDM 
symbol is copied over at the beginning of the symbol sequence in the transmitter. This 
content is then discarded at the receiver. This way, if the cyclic prefix in the time-domain 
persists for longer than the channel delay spread, the effects of multipath interference 
are negated, and zero inter-signal-interference (ISI) is achieved. Figure 2.3 shows this 
idea visually. 𝜏𝑚𝑎𝑥 is the maximum multipath delay spread of the channel, which the 
cyclic prefix should be able to cover.  
 

 
Figure 2.3 Multiple OFDM-symbols overlapping due to multipath propagation. Adapted 
from [7, p. 70]. 
When the cyclic prefix lasts longer than the channel delay spread, it ensures that the 
received signal holds all the channel multipath effects, and a channel estimate is at least 
theoretically able to restore the signal to its original shape [7, p. 70]. In essence, the 
cyclic prefix tries to prevent two consecutive OFDM symbols from overlapping in the 
time-domain and thus causing distortion of the signal [8, p. 39].  

2.3 Channel estimation 
Usually, cyclic prefix insertion alone does not completely remove the adverse effects a 
channel might have on the signal. If a channel is frequency-selective, it will distort an 
OFDM signal by attenuating the amplitude and offsetting the phase of each subcarrier 
frequency varyingly. These effects can cause errors in the data transmission. The way 
to mitigate this is to estimate the channel response and equalize the received carrier 
contents accordingly. Thus, the goal of channel estimation and equalization is to restore 



6 

the original shape of the signal to some extent [5, p. 49]. A popular scheme to estimate 
the channel state information in OFDM systems is to use pilot symbols. In pilot-aided 
schemes known data is sent either periodically or on fixed frequencies, and the estima-
tion is based on the difference between the sent and recovered data. [8, p. 107] Several 
traditional estimation algorithms exist, while this study concerns itself with two of the 
most basic and prominent ones – zero-forcing and minimum mean square error estima-
tors. 

2.3.1 Zero-forcing estimator  
For a frequency-selective channel a ZF estimator will give the frequency-domain equal-
izer coefficients as follows 

𝐶(𝑓) =
1

𝐻(𝑓)
 ,     (2.1) 

where 𝐶(𝑓) is the equalizer coefficient and 𝐻(𝑓) is the channel frequency response for 
frequency 𝑓. In essence, a zero-forcing equalizer multiplies the channel response with 
its reciprocal, yielding a flat frequency response and linear phase. A ZF equalizer is sim-
ple to implement, and it is particularly useful in cases where ISI is significant compared 
to noise.  

2.3.2 Minimum mean square error estimator  
MMSE estimators work the same as ZF in high SNR scenarios. However, they generally 
produce better results in low SNR scenarios, since they use additional channel infor-
mation in their estimation – mainly the channel noise variance. The frequency-domain 
equalizer coefficients for the MMSE are given by  

𝐶(𝑓) =  
(𝐻(𝑓))∗

|(𝐻(𝑓))|2+𝜎2
 ,     (2.2) 

where (𝐻(𝑓))∗ is the conjugate of the channel frequency response for frequency 𝑓 and 
𝜎2 is the channel noise variance [8, p. 109]. Sometimes the noise variance is not known 
directly and will also need to be estimated through other means. 



7 

3. METHODOLOGY 
The experiments were performed on a MATLAB implementation of an OFDM transmitter-
channel-receiver model. The ZF and MMSE estimators are coded natively in the 
MATLAB language, while the machine learning estimator is written in Python using Ten-
sorFlow libraries. The machine learning estimator is trained using data generated by the 
simulator. When performing channel equalization, the MATLAB code calls a Python 
script which interfaces with the ML estimator. The implementations of both the MATLAB 
code and ML estimator are discussed in more detail in this chapter. 

3.1 MATLAB OFDM simulator 
A flowchart of the simulator is presented in figure 3.1, which includes all the main pro-
cesses involved in sending and receiving one OFDM-symbol.  

 
Figure 3.1 A flowchart presentation of the MATLAB simulator sending and receiving one 
OFDM-symbol. 
When transmitting an OFDM symbol, the simulator first generates k * N_Data random-
ized bits, where k is the binary logarithm of the M-QAM modulation order and N_Data is 
the amount of data subcarriers used. The bits are then modulated into quadrature am-
plitude modulated (QAM) symbols using the Gray-coding scheme. Next, these data sym-
bols are assigned to data subcarriers, and pilot symbols to pilot subcarriers in a comb-
type manner as illustrated in figure 3.2. An inverse fast Fourier transform is then per-
formed to move from frequency-domain to time-domain. Finally, a cyclic prefix of length 
n * 𝑇𝑠𝑦𝑚 is inserted at the beginning of the OFDM time-domain symbol. 



8 

 
Figure 3.2 An illustration of a comb-type pilot insertion. 
 
The signal experiences a channel, which is simulated by convolving the time-domain 
signal with a multipath channel filter with four taps and adding additive white Gaussian 
noise (AWGN). The channel coefficients are randomized for each OFDM symbol.  
The receiver discards the cyclic prefix and performs fast Fourier transform to move back 
into the frequency domain. A least squares channel frequency response estimation is 
performed at the pilot frequencies. This estimation is then spline-interpolated across the 
whole channel and the received symbols are equalized using the ZF (2.1) and MMSE 
(2.2) techniques. The simulator also calls a Python script, which interfaces with the neu-
ral network. The neural network performs the channel estimation, equalization and de-
modulation of the symbols implicitly. The operation of the neural network is presented in 
more detail in sections 3.2 and 3.3. The symbols are demodulated, converted back into 
bits and the amount of bit errors is calculated for each equalization technique: no equal-
ization, ZF, MMSE, ML and full channel knowledge. 
The simulation can be run for a range of SNRs while sending multiple OFDM symbols 
each time to plot a BER/SNR chart. The chart can be used to compare the performance 
of each equalization technique. 
 



9 

3.2 Feedforward neural network 
A feedforward neural network is the simplest kind of a deep learning network. Its struc-
ture typically consists of an input layer, hidden layer(s) and an output layer [9]. The basic 
structure is visualized in figure 3.3.  
 

 
Figure 3.3 An illustration of a feedforward neural network. 
 
Each layer consists of multiple perceptrons, which are the building blocks of the network. 
A perceptron is a logical unit, whose operation resembles that of a mammalian neuron 
[10]. Each perceptron consists of input synapses, a summation function and an activation 
function. The structure of a perceptron is illustrated in figure 3.4. 
 
 
 
 
 
 
Figure 3.4 An illustration of a perceptron with four input weights. 



10 

In a feedforward network, a perceptron receives its input from preceding perceptrons. 
These inputs are then multiplied with a corresponding weight wk and summed together 
using the summation function. An additional adjustable bias term b is added to the sum. 
The sum is then fed into an activation function, which determines the output of the per-
ceptron. The activation function brings non-linearity to the perceptron’s output, as it could 
otherwise only be used to produce linearly separable functions. One common non-linear 
activation function is the rectified linear unit (ReLU) characterized by 

𝑓(𝑥) =  max(0, 𝑥) = {
 0, 𝑥 < 0
𝑥, 𝑥 ≥ 0

 .   (3.1) 
When a feedforward network is used for multiclass classification, its output layer will have 
perceptrons equal to the number of classes. The network will classify its input based on 
which output perceptron will have the highest activation value. Usually in these cases 
the final output activation function used is softmax, characterized by 

𝑓(𝑧𝑖) =  
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗

𝑗
 ,     (3.2) 

where zi is the output of perceptron i and j is the number of perceptrons in the layer. 
Softmax essentially normalizes the outputs of the perceptrons in the interval [0, 1] and 
ensures the components will add up to 1. Thus, the layer’s output can be treated as a 
probability distribution, where the highest output corresponds to the most likely class. 
In supervised learning the network learns by calculating the error of its outputs compared 
to the ground-truth labels and adjusts its weights and biases through gradient descent. 
The calculation of the error is determined by the network’s loss function. The network 
will try to minimize its loss function, and therefore approximate a function, which best fits 
the training data. 
One commonly used loss function in classifying problems is the cross-entropy loss func-
tion defined as 

𝐿 =  − ∑ 𝑦𝑖 ∗ 𝑙𝑜𝑔𝑦�̂�
𝐶
𝑖  ,           (3.3) 

 
where 𝑦𝑖 is the true ground-truth label for the class i,  𝑦�̂� is the predicted label for class i, 
and C is the total amount of classes. Categorical cross-entropy requires the output labels 
to be one-hot encoded, where each cell in a vector of length C corresponds to one class 
label. Sparse categorical cross-entropy is a variation of categorical cross-entropy, where 
the labels need not to be one-hot encoded. Sparse categorical cross-entropy fits use 
cases where each of the classes are mutually exclusive. 



11 

 

3.3 OFDM ML equalizer 
The proposed ML equalizer is a feedforward neural network consisting of one hidden 
layer that is 64 wide and an output layer of size 16. The hidden layer has ReLU as its 
activation function and softmax in the output layer. The model uses the Adam optimizer 
for learning, with the learning rate set to 0.001, and sparse categorical cross-entropy as 
it’s loss function. 
The training data was generated using the OFDM simulator. The network’s inputs are 
the received QAM quadrature and in-phase components, and the interpolated least 
squares channel estimate. The network is trained to classify the sent symbol’s gray-
coded decimal presentation based on the input data. Thus, the network performs the 
channel estimation, equalization and symbol demodulation implicitly, yielding the sent 
data directly – apart from the decimal to bits conversion. The network’s inputs and out-

puts are visualized in figure 3.5. 
 

 
Figure 3.5 An example of the test data used in training for the evaluation of the ML 
equalizer. 
 
The training data was split into an 8:2 ratio of training data and validation data, and the 
model was trained for 20 epochs with a batch size of 64. An epoch means that all the 
training data is used once for training. Multiple epochs mean multiple runs with the train-
ing data. 



12 

Models for both 8- and 16 pilots in an OFDM symbol were created. Figure 3.6 shows the 
training accuracies, and the loss function values for both models. The training and test 
data accuracies for both models are also shown in table 3.1. 

 
Figure 3.6 Training model accuracy for 8-pilot model (left) and for 16-pilot model (right). 
The accuracy and loss depicted is for the training data. 
 
Table 3.1 Training and test data accuracies for 8-pilot and 16-pilot ML equalizer models. 
Accuracy means how many sent symbols the model classifies correctly. 
Model Training accuracy (SNR 25-30) Test accuracy (SNR 1-30) 
8-pilots                 ~73.10%            ~58.35% 
16-pilots                 ~98.85 %            ~77.80 % 

 
The 8-pilot model was trained with 2682 samples of OFDM symbols in the SNR range of 
25 to 30. The 16-pilot model was trained with 15630 sample OFDM symbols also in the 
SNR range of 25 to 30. Both models were tested with a test data of 270 OFDM symbols 
in SNR range 1 to 30. 



13 

4. EXPERIMENTS 
The experiments were performed on the OFDM simulator by incrementing the SNR in 
the range [1, 30] and sending 105 bits, or approximately 446 OFDM symbols, per each 
increment. After each successfully sent OFDM symbol, the amount of bit errors was cal-
culated for each equalization technique, and the total amount was tracked. A BER/SNR 
chart was then generated from the data. From the chart, it is possible to compare the 
performance of each estimator/equalizer in terms of how many bits they get right for each 
SNR. Two experiments were conducted, where the amount of pilot subcarriers was first 
set to 8 and then 16. The M-QAM modulation order was set to 16 for all experiments and 
the total amount of subcarriers to 64. The simulator also assumed that the cyclic prefix 
was able to cover the channel delay spread completely. The OFDM scheme variables 
are presented in table 4.1. 
Table 4.1 Mutual variables used in the simulator OFDM scheme for both experiments. 

FFT size Total Subcarriers QAM order CP length Channel taps 
64 64 16 8 4 

The results show that with 8 pilot subcarriers the ML equalizer can match the perfor-
mance of the traditional methods. The performance of each method is very close to one 
another, and they all settle around the 10-1 BER range in high SNR. The overall results 
for 8 pilot subcarriers are depicted in figure 4.1. 

 



14 

Figure 4.1 BER/SNR chart for 8 pilot subcarriers for each OFDM symbol in SNR range 
[1,30]. 
The ML equalizer performance oscillates over and under the ZF and MMSE perfor-
mance, sometimes performing better and sometimes worse. The varying in performance 
can be explained as random fluctuation, and no real competitive difference can be de-
rived from this dataset.  
In the case of 16 pilot subcarriers, the ML equalizer performs quite similarly as the tradi-
tional methods and achieves a similar BER for the same SNR. The overall results for 16 
subpilot carriers are depicted in figure 4.2. 

Figure 4.2 BER/SNR chart for 16 pilot subcarriers for each OFDM symbol in SNR range 
[1,30]. 
 
The 16-pilot model however, unlike the 8-pilot model, never actually produces better re-
sults than the traditional methods ZF and MMSE. This can be explained with the problem 
of overfitting, where the machine learning model learns the training set very accurately 
but does not generalize well into real world test data [11]. From table 3.1 it can be noted 
that the 16-pilot model gets an almost perfect accuracy (98.85%) on the training set, 
while the test accuracy remains under 80% (77.80%), indicating overfitting. In addition, 
since the only input data the model uses for its estimation is the LS interpolated channel 
estimate, and the LS gives an almost perfect channel estimate with 16 pilots in high SNR, 



15 

could it contribute to the overfitting problem. The models were trained with high SNR 
samples, and in the 16-pilot model this seems to lead to overconfidence of the model. 
An example of the estimation of channel equalization coefficients given by ZF and MMSE 
estimators for 16 pilots can be seen in figure 4.3. 

Figure 4.3 An estimation of channel frequency response equalization coefficients for one 
OFDM symbol with 16 pilot subcarriers and 30 SNR. Only the data subcarrier indices are 
considered. 
In high SNR and with 16 pilots the traditional estimators get very close to the ideal equal-
ization coefficients, which might lead to the ML model fine-tuning its layer weights too 
explicitly during training. The use of validation data during training does not seem to 
prevent this from happening. 



16 

5. CONCLUSIONS 
The goal of this thesis was to experiment and examine the possibility of using machine 
learning in OFDM channel estimation and equalization. The model suitable for the sce-
nario and type of data set up by the OFDM simulator ended up being a simple feedfor-
ward classifier neural network. The main restriction the simulator sets for choosing and 
building a model for the machine learning approach, is the fact that the channel is com-
pletely randomized for each OFDM symbol. Thus, it is not possible to gain any channel 
information from consecutive OFDM symbols. A scenario the OFDM simulator most 
closely depicts is a WLAN data transmission with some multipath elements, with only 
one OFDM symbol sent at a time. All the code and data used for this thesis are available 
at GitHub1. 
The ML equalizer clearly performs better than no equalization at all and is somewhat 
competitive with the ZF and MMSE methods, producing a similar BER/SNR curve. Its 
greatest challenge comes from the fact that it relies too heavily on the LS channel esti-
mation, since it is the only additional feature the estimator uses as its input. Perhaps a 
more interesting approach would have been, if the estimator was given only the received 
OFDM symbol, sent pilots and the pilot indices. In this case, the classifier would have 
had to come up with a novel way of performing the channel estimation on its own, while 
not relying on any form of preprocessing of the data. In its current form, it is reasonable 
to postulate that it in fact learned the ZF estimator and behaves in an analogous way. 
Any gains it might have over the traditional methods come from the fact that it yields the 
sent symbols directly, effectively performing some form of decision demodulation in the 
process. The ML equalizer can also be estimated to have a low time complexity due to 
the small size of the network. 
Overall, the idea of using a classifier for solving this type of a problem seems to work 
well. The model could be improved upon by using 1-D convolutional layers for higher 
feature extraction resolution, or remodeling it into a recurrent neural network, to make 
use of the temporal sequences an OFDM signal transmission might have. 
 
 
 

1https://github.com/JooHis/OFDM-simulator-with-ML-equalizer  



17 

6. REFERENCES 
[1] Shahzad, H., Noshaba, T., Rizwan, A. N., Ateeq, U. R., Mohammed, K. A. K. Perfor-
mance Evaluation of Machine Learning-Based Channel Equalization Techniques: New 
Trends and Challenges, 2022. Journal of Sensors, vol. 2022. Available: 
https://doi.org/10.1155/2022/2053086. (visited on 05/02/2022). 
[2] Ye, H., Li, Y. G., Juang, F. B-H. Power of Deep Learning for Channel Estimation and 
Signal Detection in OFDM Systems, 2017. IEEE. Available: 
https://arxiv.org/pdf/1708.08514.pdf. (visited on 05/02/2022). 
[3] Honkala, M., Korpi, D., Huttunen, J. M.J. DeepRX: Fully Convolutional Deep Learning 
Receiver, 2021. Available: https://ieeexplore.ieee.org/document/9345504. (visited on 
03/20/2022). 
[4] Prasad, R. OFDM for Wireless Communications Systems, 2004. The Artech House 
Universal Personal Communications Series. ISBN: 978-0-89006-571-6. 
[5] Dahlman, E., Parkvall, S., Skold, J. 4G LTELTE-Advanced for Mobile Broadband, 
2014. Second Edition. ISBN: 978-0-12419-997-2. 
[6] Beard, C., Stallings, W. Wireless Communication Networks and Systems, 2016. Pear-
son Higher Education, Inc. 
[7] Rouphael, T, J. RF and digital signal processing for software-defined radio a multi-
standard multi-mode approach, 2009. ISBN: 978-0-7506-8210-7.  
[8] Pun, M., Morelli, M., Kuo, C. C. J. Multi-Carrier Techniques For Broadband Wireless 
Communications A Signal Processing Perspective, 2007. Vol 3. ISBN: 978-1-86094-946-
3. 
[9] Scikit-learn. Multi-layer perceptron documentation. Available: https://scikit-
learn.org/stable/modules/neural_networks_supervised.html. (visited on 05/02/2022) 
[10] Kattan, A., Abdulla, R., Geem, Z. W. Artifcial neural network training and software 
implementation techniques, 2011. Hauppauge: Nova Science Publishers, Inc. 
[11] Scikit-learn. Underfitting vs. Overfitting documentation. Available: https://scikit-
learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html. (vis-
ited on 05/02/2022) 
 

https://doi.org/10.1155/2022/2053086
https://arxiv.org/pdf/1708.08514.pdf
https://ieeexplore.ieee.org/document/9345504
https://scikit-learn.org/stable/modules/neural_networks_supervised.html
https://scikit-learn.org/stable/modules/neural_networks_supervised.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html

