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ABSTRACT 

Aarno Lindqvist: Developing Logic Synthesis Flow for NVDLA IP 

Master of Science Thesis 

Tampere University 

Master’s Degree Programme in Information Technology 

May 2022 
 

Modern digital devices require high computing performance; thus, markets have a huge 
demand for SoC. The most powerful SoC are implemented on ASIC chips since, it is the most 
cost-efficient technology when production volumes are high. An important step on ASIC design 
process is the logic synthesis. By utilizing dedicated software tool, it transfers RTL code into gate-
level netlist. The logic synthesis process is executed multiple times alongside the RTL code 
development to meet the desired specifications for the chip. 

This thesis project used the NVDLA IP as a use case to execute logic synthesis. NVDLA is an 
open-source deep learning accelerator developed by NVIDIA. The design is able to execute 
CNNs making it efficient. Each component in the NVDLA can be configured independently, which 
make it flexible and cost effective. NVDLA software ecosystem has extensive cover of software 
features. NVDLA is divided into five partitions according to their functionality. Each partition is an 
individual top-level synthesis hierarchy. 

The target of this thesis is to develop a logic synthesis flow for NVDLA in the company design 
environment. This was achieved by exploiting NVDLA design environment, company internal 
memory wrapper, and Synopsys Design Compiler and IC Compiler 2 tools to execute logic 
synthesis for TSMC 7 nm standard cell technology. All the used RTL codes and scripts were 
downloaded from NVDLA GitHub webpage. The memory wrapper was created by the company 
memory wrapper tool. It connects the NVDLA design and the RAM instances. The Design 
Compiler tool was used to generate the initial netlist for NVDLA partitions. The IC Compiler 2 tool 
was used to create individual floorplans for each partition. The generated DEF file was used for 
second pass synthesis to obtain the final logic synthesis results. The results demonstrate that the 
company design environment can be used to run synthesis for open-source IP blocks. Further, 
the developed flow provides a platform to exploit different kind of open-source IP’s on industrial 
development environment since, it can generate synthesis results for 7 nm standard cell 
technology quickly. 
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Diplomityö 

Tampereen yliopisto 

Tietotekniikan diplomi-insinöörin tutkinko-ohjelma 

Toukokuu 2022 
 

Nykyaikaiset digitaaliset laitteet tarvitsevat paljon laskentatehoa, näin ollen markkinoilla on 
suuri tarve järjestelmäpiireille. Kaikista tehokkaimmat järjestelmäpiirit toteutetaan ASIC 
piiriteknologialla, koska se on kaikista kustannustehokkain piiriteknologia vaihtoehto kun tuotanto 
määrät ovat suuria. Tärkeä vaihe ASIC kehitys prosessissa on logiikka synteesi. Hyödyntämällä 
räätälöityjä ohjelmistotyökaluja, se muuttaa RTL koodin porttitason piirikuvaukseksi. Logiikka 
synteesi prosessi toistetaan useasti RTL koodin kehityksen rinnalla, jotta piirille asetetut tekniset 
tavoitteet täyttyisivät mahdollisimman nopeasti. 

Tämä diplomityö suoritti logiikka synteesin NVDLA prosessori lohkolle. NVDLA on avoimeen 
lähdekoodiin perustuva laitteistonkiihdytin, joka on tarkoitettu suorittamaan 
koneoppimisalgoritmeja. Tämä tekee siitä hyvin tehokkaan prosessori lohkon. Jokainen NVDLA:n 
sisäinen osa voidaan konfiguroida itsenäisesti, mikä tekee siitä joustavan ja kustannustehokkaan. 
Sen ohjelmisto ekosysteemi kattaa suuren määrän ohjelmisto-ominaisuuksia. NVDLA on jaettu 
viiteen osaan niiden toiminnallisuuden perusteella. Jokainen osa on itsenäinen ylätason synteesi 
hierarkia. 

Tämän diplomityön tavoitteena oli kehittää logiikka synteesi vuo NVDLA prosessori lohkolle 
kohde yrityksen suunnitteluympäristössä. Tämä saavutettiin hyödyntämällä NVDLA 
suunnitteluympäristöä, yrityksen sisäistä muistikäärettä, ja Synopsyksen Design Compiler ja IC 
Compiler 2 työkaluja. Näiden avulla logiikka synteesi suoritettiin TSMC:n 7 nanometrin standardi 
soluteknologialle. Käytetyt RTL koodit ja skriptit ladattiin NVDLA GitHub verkkosivulta. 
Muistikääre luotiin yrityksen sisäisellä muistikääre työkalulla. Se yhdistää NVDLA lohkon RAM 
muisteihin. Design Compiler työkalua käytettiin ensimmäisen piirikuvauksen muodostamiseen. IC 
Compiler 2 työkalua käytettiin yksilöllisten pohjapiirrosten luomiseen jokaiselle osalle. Luotua 
DEF tiedosta hyödynnettiin toisella synteesi kerralla lopullisten synteesi tulosten saamiseksi. 
Tulokset osoittavat, että yrityksen suunnitteluympäristöä voidaan käyttää synteesi tulosten 
tuottamiseen avoimen lähdekoodin prosessori lohkoille. Näin ollen, kehitettyä vuota voidaan 
hyödyntää alustana erilaisten avoimen lähdekoodin prosessori lohkojen vertailuun teollisessa 
kehitysympäristössä. Sen avulla voidaan luoda synteesi tulokset 7 nanometrin standardi 
soluteknologialle nopeasti. 
 

Avainsanat: Järjestelmäpiiri, ASIC, Logiikka synteesi, NVDLA, STA 
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1. INTRODUCTION 

The target of the thesis project is to develop a logic synthesis flow for NVDLA in the 

company design environment. The flow can be used to review different kind of IP’s 

quickly. The idea is to utilize both publicly available and internal scripts and RTL designs 

as much as possible to develop the flow. This will be achieved by utilizing NVDLA design 

environment, company internal memory wrapper, and Synopsys Design Compiler and 

IC Compiler 2 tools to run logic synthesis for TSMC 7 nm standard cell technology. All 

the needed codes and scripts can be downloaded from NVDLA GitHub webpage. The 

company memory wrapper tool is utilized to generate a memory wrapper which is able 

to connect the NVDLA design with needed RAM instances. The Design Compiler is used 

to generate the initial netlists for NVDLA partitions. To improve the results a floorplan will 

be created for each partition with IC Compiler 2 tool. The generated DEF file is then used 

for second pass synthesis to obtain the final synthesis results. 

The challenge in developing the flow is to integrate all the needed parts together: the 

NVDLA design, the memory wrapper and the memory instances with the synthesis 

scripts. Also, meeting the timing constraints is an issue which requires synthesis setup 

and floorplan explorations. As mentioned earlier the RTL codes of the NVDLA design 

and the reference synthesis scripts were readily available at the GitHub webpage. The 

principle of re-use was exploited. However, the scripts needs to be modified to be able 

to use them in this project. The memory wrapper will be created for this project. Memory 

instances has been acquired by the company from a vendor and will be utilized in this 

project. Each synthesis partitions need a floorplan; they will be created manually in this 

project. By implementing the above tasks, the result is a flow that can be used to evaluate 

different IP blocks for 7 nm standard cell technology. Further by optimizing the developed 

flow the synthesis results of NVDLA can be improved. 

First, the ASIC design flow will be explained to get an idea about the field of the thesis 

project. The basic ASIC design flow is shown in Figure 1. 
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Figure 1. Basic ASIC design flow [21]. 

The focus area of this thesis project is the logic synthesis. It is important part of the ASIC 

design flow and is highlighted with grey background colour in Figure 1. The ASIC design 

process starts from marketing research and architecture specification based on the 

market requirements. Then the RTL code is designed and verified. The logic synthesis 

step transforms the RTL code into netlist which can be then processed to the form of real 

circuit in the physical design. After that the circuit is finalised and send to vendor for 

fabrication in the signoff and tapeout step. When the produced chip comes back from 

vendor, it is tested in silicon validation. After that the chip should be completed product. 

Thesis is organized into 6 main sections 1. Introduction, 2. System on a Chip Design, 3. 

Literature review, 4. NVDLA Implementation flow, 5. Synthesis results, and 6. 

Conclusion. Section 2. contains theoretical background of System on Chip, ASICs, logic 

synthesis flow and related timing, Design compiler synthesis flow, Synthesis in practice 
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with DC, and design optimization with DC. Section 3. contains review of the related 

literature. Section 4. contains discussions about the NVDLA hardware architecture and 

software design, the implementation flow, and detailed system description. Section 5. 

present the synthesis results from power, area, and timing views. It also compares the 

results to literature and analyses the developed synthesis flow. Finally, section 6. 

concludes the thesis and discusses about the future works. 
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2. SYSTEM ON A CHIP DESIGN 

On the highest level this thesis is related to the system on a chip (SoC) design, which is 

implemented by utilizing ASIC technology. Modern SoCs are basically all around us in 

every day devices. Therefore, SoCs are studied first. After that ASIC technology is 

introduced and then the logic synthesis process is discussed in detail. Logic synthesis is 

the actual topic of this thesis project. 

2.1 SoC 

A SoC is set of processors, memories, and interconnections [3]. It is a computer system 

which is designed to implement an application specific functionality for some given 

application domain [3]. Most of the SoC designs are executed on ASIC or FPGA devices. 

The huge demand on markets like consumer electronics, automobiles and 

telecommunication has led to a need for more and more advanced electronic devices. 

At the same time the development of IC technology on the past 40 years has given the 

solution to that demand, thus the empirical law of Moore [2,4]. Historically, the concept 

of a computer has been a single processor combined with a memory on a board [3]. On 

modern IC chips there can be up to 10 billion transistors which allows the integration of 

complete complex systems on a chip [2]. Usually, a SoC contains signal processing 

elements, hardware accelerator, microprocessor or microcontroller cores and memories 

[2]. The function of signal processor or hardware accelerator is to take care of heavy 

computing whereas the microprocessor or controller takes care of the process and some 

low performance computing [2]. The memories store the software codes and data. In 

most of the cases there is also on-chip analogue interface, processing circuits for pre- 

and post-processing and many wireless interfaces [2]. The development of complex 

systems like the SoC might require working time of thousands of man-years [2]. 

Commonly, used design elements of a SoC are shown in Figure 2. 
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Figure 2. Basic design elements of a SoC [1]. 

The difference between general-purpose computer on a board and SoC is the design 

target. When designing a SoC, the specific application is known so all the components 

of the system can be optimized for that purpose. Highlighting the customisation is what 

distinguishes a system architecture from a computer architecture. [3, 25]. 

2.2 ASIC 

ASIC is abbreviation for Application Specific Integrated Circuit. Integrated circuits (IC) 

are electronic circuits that are made of silicon wafer. A silicon wafer can consist of up to 

thousands of dies. One ASIC die can have few billion transistors. As the name implies 

ASICs are integrated circuits that are designed for some specific application. ASICs are 

tailored directly for the customers use case with specific requirements. ASICs are used 

in real-time computing and digital signal processing systems that require high computing 

performance and low power consumption. Here is some market segments and 

applications where ASICs could be used: Tire pressure monitor for automotive industry, 

5G radio for telecommunication industry, Patient monitoring for medical industry, UHD 

TV for display industry, Smart phone for digital consumer industry, Robotics for 

manufacturing industry and Radar processing for military industry. [1,2]. 

The class of PLDs (Programmable Logic Devices) include FPGAs (Field-Programmable 

Gate Arrays) and CLPDs (Complex Programmable Logic Devices). PLD chips contain 

programmable logic elements and wires which connects all the logic elements together. 

Semi-custom ASICs are ICs that contains some finished metal layers and contact and 
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some custom designed metal layers and contact, thus the time-to-market is shorter 

compared to custom ASICs. One example of semi-custom ASIC is a gate array. Custom 

ASICs are the most tailored ICs. In these all the metal layers are specially designed for 

a client’s application. Custom ASIC can be also design by using IP (Intellectual Property) 

cores. The purpose of using IP cores is to reuse commonly used part of IC design that 

are already finished to make the time spend to the design process shorter. [2]. 

IP cores can be represented in three forms soft cores, firm cores, and hard cores. Soft 

cores are synthesisable HDL codes. Soft cores are flexible, but their performance is not 

that predictable because they are not yet fully tested and optimized. Firm cores are 

already optimised for area and performance. Hard cores are finished parts of the chip 

that execute some functionality. They are optimised for performance, size and power 

and they are mapped to some specific technology. Microprocessors like Intel Itanium 

and ARM are examples of IPs also FPGA-based accelerators like decoders and 

encoders are IPs. NVDLA is a soft IP core. [2]. 

In the industry most popular digital IC technologies are FPGAs and cell-based custom 

ASICs. Usually, big custom ASICs are design by using standard cells, macro-cells, and 

IP cores. These can be designed in-house, or they can be purchased from an external 

supplier. Figure 3 visualizes the most relevant digital IC technologies. There are also 

other digital IC technologies that are not presented in Figure 3. 

 

Figure 3. Digital ICs [2]. 

The most common ways to implement NVDLA would be to use FPGA or cell-based 

technologies. This thesis project focuses on standard-cell ASIC’s, for that reason let’s 

study them little bit more. In standard-cell ASIC technology, a circuit is created from a 

set of predefined logic components referred as standard cells. The cells are ready-made 
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components whose functionality and layouts are validated and tested. The benefit of 

standard-cell ASIC technology is significantly simplified development process. It enables 

the work to be done at the gate level in preference to the transistor level. The building 

blocks are normally delivered by the device manufacturer as a library of standard cells. 

Usually, the library contains basic logic gates, such as AND, OR, and NAND gates, 

combinational components, such as 2-to-1 multiplexer and 1-bit full adder, and memory 

elements, such as latch and D flip-flop. Some of these libraries might also include blocks 

with more sophisticated functioning, such as an adder, and random-access memory 

(RAM). [7, 19]. 

2.2.1 Abstraction levels 

When the number of transistors in the chip rises to hundreds of millions, a human or a 

computer cannot deal with the quantity of information directly. The complexity needs to 

be managed; therefore, a system is characterized with abstraction levels. Single 

abstraction level shows only the chosen elements of the system and pays no attention 

to the related details. Hence, the amount of information is reduced to show only the 

decisive information i.e., it scales down the system to a more manageable level. High 

abstraction level contains only vitally important information about the system, while low 

abstraction level contains profound information which was previously ignored. The low 

abstraction level is complex but models the system at the real circuit level. Usually, the 

development process flow from high abstraction level towards the low abstraction level. 

[7]. 

A digital system is divided into 4 abstraction levels: 

1. Transistor level 

2. Gate level 

3. Register transfer level (RTL) 

4. Processor level 

Different representations of the abstraction levels do exists such as division into 6 

abstraction levels [2].The division is made by the size of the elementary building 

components, starting from the smallest, these are the transistors, logic gates, functional 

units, and processors. Another dimension of the system are the views [7]. Next, the 4 

abstraction levels are studied independently. 

The transistor-level abstraction is the lowest. The basic electrical components are utilized 

at this level such as, resistors, inductors, and transistors. The behaviour is modelled with 

differential equations or with voltage diagrams. Input-output characteristics can be 

examined with analog simulation software tools. At this level, a digital circuit behaves as 
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an analog system i.e., the signals are time dependent and has continuous value. The 

final physical layout of components and interconnects are constructed at the transistor 

level. It is the result of the design process. [7]. 

The gate-level abstraction is one level above the transistor level. The basic logic gates 

are utilized at this level for example, AND, OR, and memory components, such as, flip-

flop. Signals are described as logic 1 or logic 0 depending on the set voltage threshold. 

System with only two values can be presented by Boolean algebra equations thus, 

complicated differential equations are not needed anymore. Practically, the abstraction 

changes a continues system to a discrete system. It is good to notice that the signal is 

still continues, it is just interpreted with a pre-set voltage threshold. The timing 

information is also easier to interpret by just using the propagation delay which is the 

time needed to generate a valid output value. At this level the physical view expresses 

the placement and the routing of the logic gates and the wires. Also, the number of gates 

in a system can be counted, it is called as gate count. The gate count tells the area of a 

circuit based on the area of two-input NAND gate. With this method the equivalent gate 

count is independent from the device technology. [7]. The synthesis results for NVDLA 

are presented on this abstraction level. 

The next abstraction level is the register-transfer-level abstraction. At this level logic 

gates form components that are used to create functional units such as, adders, 

registers, and multiplexers. The RT level is more abstract than the lower levels. Signals 

are interpreted with a particular data type for example as an unsigned integer. The 

behaviour of data is described with finite state machines (FSM). An elementary property 

at this level is that the storage elements utilize common clock signal. The clock signal is 

used to synchronize the data input into the storage elements at the rising or falling edge 

of the clock signal. In an appropriate system, all the data signals should stabilize during 

a clock period. Since, the timing can be examined in clock cycles, the variations in 

propagation delays and signal glitches has no effect to the functioning and can be 

disregarded. At this level the physical features are presented as the floorplan. The 

floorplan is useful tool, when defining the clock period because it visualizes the longest 

path. [7]. 

Finally, the highest abstraction level is the processor-level abstraction. The intellectual 

property (IP) blocks such as, processors, memory, and buses are utilized at this level. 

The behaviour is expressed as computation steps and communication processes. The 

signals are formed to a set and specified with different data types. The computation steps 

forms the time measure. Multiple computations can be executed in parallel, and the data 
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is changed between components with communication protocol. At this level, the physical 

layout is expressed as floorplan. Naturally, with larger components than on RT level. [7]. 

2.3 Logic synthesis 

In the ASIC design flow logic synthesis step is the process which converts an RTL code 

into a technology specific gate level netlist [1]. The output can be also referred to as cell-

level netlist [7]. The synthesis step can be executed after the verification of the RTL code 

is done and the design met the coverage goals. Synthesis is performed by the EDA tool 

which inputs are RTL code, design constraints and the standard cell library. The output 

of synthesis is optimized gate level netlist which is created from the basis of inputs. The 

most common logic synthesis tools are Synopsys Design Compiler and Cadence Genus. 

The synthesis tool takes into consideration power, performance, and area as the most 

important factors to create the gate level netlist. The goal of synthesis process is to meet 

specified constraints by considering costs for different implementations. Gate level netlist 

is structural representation of the design presented as standard cells. Gate level 

verification is performed for the netlist to check that the functionality of the design is 

correct after the synthesis. After that pre layout STA (Static timing analysis) is performed 

to check possible timing violations in the design. In this stage STA is executed without 

using the parasitic (RC) effect. The goal is to repair any setup timing violations and to 

enhance the total performance of the design. The hold time violations are usually 

repaired after the CTS (Clock tree synthesis) and routing. Finally, before physical 

implementation the DFT (Design for Testability) is performed for the gate level netlist. 

This is performed by using DFT tool and the goal is to find possible faults in the design. 

To make this stage more convenient the RTL should be made DFT friendly. The benefit 

of this is faster scan chain insertion and it enables the total fault coverage for the design. 

[1]. 

2.3.1 EDA tool limitations 

The design process of digital circuit is not easy by any means. Completing the process 

involves many challenging tasks, requiring lots of data processing by complicated 

algorithms thus, computers are utilized to execute it. Therefore, one could ask whether 

the whole synthesis process can be automated. Then the engineer would only design a 

high-level behavioral model and EDA tools take care of the rest of the process i.e., the 

logic synthesis and placement and routing. However, the EDA tools have fundamental 

limitations that make this impossible on a full scale, this emerge from the theories of 

computational algorithms such as, the graph theory. [7]. 
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The logic synthesis is an intractable problem and there is no polynomial-time algorithm 

to solve it. The logic synthesis process can be seen as a searching problem. The 

resulting circuit has O(2n) solutions thus, the optimal solution is a result of exhaustive 

global search. That is why, in actual synthesis tools, the search space is limited to local 

search and clever tactics and heuristics are utilized to lead the search into desired 

direction. The HDL code sets the starting point for the search hence, a good HDL code 

is essential. Since, the local search might not get an efficient solution from bad starting 

point. [7]. 

Synthesis and also other design steps comprise computationally hard problems. EDA 

tools have this theoretical limitation by nature. Heuristic algorithms can find desired 

solutions but may not suit for all types of inputs. These limitation will also remain in the 

future and therefore a design engineer’s expertise will be needed. [7]. 

2.3.2 Logic synthesis flow 

Logic synthesis is the process where RTL code is realized into RTL descriptions by 

utilizing elementary logic cells from the target technology library. The process is usually 

divided into steps to make it more comprehensible. These are RT-level synthesis, gate-

level synthesis, and cell-level synthesis or technology mapping. As a first step, this list 

could include high-level synthesis where an algorithm is transformed into a system 

architecture containing of systems data path and control path which could be further 

transformed into HDL code. However, it is essentially different compared to other steps 

and it is performed by different software tools, which are not of interest to this thesis. 

Thus, it will not be discussed further in this thesis, although it is an important area of 

research today. [7]. 

The synthesis flow is visualized in Figure 4. The final circuit is formed level by level. It is 

an iterative process where first an RT-level netlist is transformed and optimized to a gate-

level netlist which is finally transformed and optimized to a cell-level netlist. Complex RT-

level components are generally processed with a module generator, these components 

include for example adder and comparator. [7]. 
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Figure 4. Logic synthesis flow [7]. 

2.3.2.1 RT-level synthesis 

In RT-level synthesis a behavioral RTL description is transformed into a circuit build from 

components provided by a generic RT-level library. The generic RT component library 

contains technology independent components. Thus, they are universal to all 

technologies. Generally, the components are categorized into three classes: functional 

units, routing units, and storage units. Functional units will be utilized to produce the 
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logic, relational, and arithmetic operators confronted in RTL code. Routing units are 

different kind of multiplexers utilized to build the routing structure of an RTL description. 

Storage units refers to registers and latches, which are utilized in sequential circuits to 

storage data at intermediate stages of RTL logic. [7]. 

An RT-level netlist is derivated and optimized during RT-level synthesis. This is the 

process where RTL statements are transformed into equivalent structural 

implementations. The usage of optimization techniques may decrease the complexity of 

circuit and improve performance. General optimization techniques include operator 

sharing, common code elimination and constant propagation. The scope of RT-level 

optimization is highly restricted compared to gate- and cell-level synthesis. Thus, it is 

only executed temporarily. At this stage the importance of good design is highlighted 

because it may amend the RT-level structure significantly. Thus, software tools can 

derive better implementation. [7]. 

2.3.2.2 Module generator 

The RT-level synthesis creates a netlist of generic RT-level components from the initial 

RTL descriptions. These components have to be amended into lower abstraction level, 

to process them further towards the final circuit. RT-level components include logical 

operator, multiplexers, adder, subtractor, incrementor, decrementor, comparator, shifter, 

and multiplier. Some of the components are uncomplicated and can be mapped straight 

into gate-level implementation, these are called as random logic component. Typically, 

these embodies less regularity and enables optimization subsequently in gate-level 

synthesis phase. Examples of random logic components are logical operators and 

multiplexers. The other components are referred as regular logic. A module generator is 

used for these more complex components. It is a specialised software which is able to 

derive the components for the gate-level implementation phase. Typically, regular logic 

has some kind of recurring structure and is designed in advance. As shown in the Figure 

4. a module generator has capabilities to generate modules in various abstraction levels: 

Gate-level behavioral description, presynthesized gate-level netlist, presynthesized cell-

level netlist. [7]. 

A gate-level behavioral description presents RTL code in a way where it utilizes only 

simple signal assignment and logical operators. This form allows it to be mapped to a 

gate-level netlist without much effort. At gate-level the description is general and 

technology independent. A single gate-level netlist is created by flattening the description 

and merging it with the random logic. The netlist combination is synthesized as a whole 

in gate-level synthesis. [7]. 
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As stated earlier the regular logic components has the regular and repetitive features 

which allow further explorations of their properties and even manual derivation and 

synthesis of the netlist at the gate- or even cell-level. Thus, the regular logic and the 

random logic are dealt with separately. This approach might result a more efficient 

implementation compared to gate-level synthesis. In this process a presynthesized gate- 

or cell-level netlist is neither flattened nor merged with the random logic. Gate-level 

synthesis and even cell-level synthesis is performed separately for the random logic. 

Once these two separate netlists have been processed, they can be combined. [7]. 

The non-flattened approach has two benefits. Firstly, it may use highly optimized 

modules because they can be designed in advance. Secondly, the modules are 

separated from the other logic modules meaning that the remaining part is smaller 

requiring less effort to process and optimize it. However, the weakness of this approach 

is decreased possibilities for additional optimization due to isolation of the non-flattened 

modules and the random logic. There is no clear rule whether the flattened or the non-

flattened approach is more effective. Users can enable or disable this feature in some of 

the synthesis tools. [7]. 

2.3.2.3 Gate-level synthesis 

The gate-level synthesis process produces elementary gate-level components, for 

example a NOT-, AND-, NAND-, OR-, and NOR gates. The number of the components 

is optimized forming the so-called structural view of a design. The generic technology 

independent components do not possess specific information about the size or the 

propagation delay. These components are the operators of Boolean algebra. Hence, a 

design can be presented as a Boolean function. Gate-level synthesis may be performed 

in two different ways: two-level synthesis and multilevel synthesis. [7]. 

An example of two-level synthesis is the sum-of-products expression. In that the logic is 

formed from AND gates and OR gates. Where AND gates are at the first level and OR 

gates at the second level. Any two-level logic construction may be created with the sum-

of-products expression. Two-level synthesis is thus intended to find an optimal sum-of-

product expression for Boolean function. This is achieved by minimizing the number of 

AND gates and the total number of fan-ins to these AND gates. For a maximum of about 

five input circuits this is done manually by using the Karnaugh map technique. In real 

applications circuits may have hundreds of inputs, as a consequence optimization cannot 

be done manually. Thus, it is an intractable problem. However, good algorithms have 

been developed to create suboptimal but still efficient circuits. Two-level synthesis is 

good at processing and manipulating logic statements. It scales down the amount of 
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information required to represent a function and therefore could be used as a preliminary 

step for multilevel processing. [7]. 

Multilevel synthesis uses multiple gate levels to represent a Boolean function. With 

multiple levels the process is not so strict, and it gains more freedom, resulting more 

efficient and flexible outcome. The design may be explored from area or delay 

optimization perspective or even from an optimal trade-off point for both the area and 

delay. Compared to two-level circuit it lowers the number of gates as well as the number 

of fan-ins. The foundation of contemporary application technology is in small cells with a 

constrained fan-in count. Making it more suitable for multilevel synthesis. [7]. 

Processing and optimizing a multilevel logic requires more effort. Usually, it is performed 

with heuristic methods by following a database of circuit rules. Due to the limited number 

of restrictions multilevel synthesis may generate substantially different results. A very 

small change in original description might lead to an entirely different implementation. 

[7]. 

2.3.2.4 Cell-level synthesis 

Gate-level synthesis process produces and optimized netlist of generic components. 

Cell-level synthesis also known as technology mapping transforms the gate-level netlist 

into technology dependent cell-level netlist. To achieve this the process uses the target 

technology library. The resulting components are usually called as cells. Generally, in 

ASIC technology a semiconductor vendor delivers the technology library and fabricates 

the device. A cell is defined by its function and by a set of physical parameters including, 

for example area, delay, and input and output capacitance load, each cell is also linked 

to the physical layout. Cell-level synthesis can be performed simply by just transforming 

generic components into logic cells without any further explorations. However, the 

generated circuit will not be very efficient. Hence, the functionalities, areas and delays of 

the cells are worth to exploit. The cell-level synthesis is hard process, involving 

intractable problems. Again, heuristic algorithms are applied to find solution. Next, an 

example on a standard-cell library is discussed. [7]. 

A standard-cell technology library includes hundreds of cells, such as combinational, 

sequential and interface cells. Some examples of combinational cells are AND-, OR-, 

NAND-, NOR-, and XOR gates. Also, more complex circuits might be included, like 1-bit 

full adder and 1-bit 2-to-1 multiplexer. Example of standard-cell library is visualized in 

Figure 5. The library in the Figure 5. was invented for a sake of example and does not 

represent any real library. [7]. 
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Figure 5. Modest hypothetical standard-cell library for ASIC technology [7]. 

The columns represent the cell name and the relative area cost of that cell, its logic gate 

symbol, and the NAND-NOT representation of that cell. In NAND-NOT representation 

cells are implemented by utilizing 2-input NAND gates and NOT gates, this simplifies the 

cell-level synthesis process. [7]. 

A technology library contains cells which are optimized and fine-tuned for specific 

technology. This is done by manually designing each cell from the transistor level in 

preference to simple logic gate level. An example of this is the XOR gate, if it would be 

implemented with NAND- and NOT gates the area would be 13, which is over 4 times 

the area of the NAND2 cell. While, with the transistor level implementation the area of 

the XOR gate is only 4, which is 2 times the area of the NAND2 cell. Hence, the standard-

cell library contains various elementary cells. Additionally, a single logic function may 

have several cells implementing different area-delay trade-offs. [7]. 
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To summarize, the cell-level synthesis or the mapping is an iterative process, where the 

initial mapping is a one-to-one gate-to-cell translation, it is not the most optimal solution. 

To make the solution better, NAND-NOT representations are replaced by corresponding 

more optimal logic gates. Finally, to find the most optimal area-delay trade-off different 

kind of transistor level implementations are explored. Thus, cell-level synthesis plays a 

major role in the logic synthesis process, while its complexity is very high. [7]. 

2.3.3 Efficient use of synthesis tool 

Although, synthesis software has some limitations, it is a vigorous and essential tool. It 

automates various design tasks and executes intractable and recurring computations. 

Designers should be aware of the features and constraints of software, to be able to 

adjust it and make compromises when needed. [7]. 

In general, the performance of logic synthesis tool is highly effective for circuit sized 

around 2 000 000 instances, this is achieved by studies of algorithms. Even small design 

includes hundreds of gates, making the use of synthesis tool practical. The synthesis is 

straightforward from logic operators to gate-level components. Because the mapping can 

be done directly at this level, there is no need to be concerned about the sharing and 

optimization of logical operators in an RTL code description. [7]. 

The RT level optimization includes complicated arithmetic and dependent operators and 

routing structure. These demand human handling, to determine the wanted design in an 

RTL description. Recurring small improvements on code can enhance circuit efficiency 

essentially. Thus, designer’s insight and expertise of a circuit has great importance to 

the end result. [7]. 

The “data” flow from circuit inputs to outputs through the system demonstrates routing 

structure, which indirectly specifies the layout of the physical circuit. The data flow is 

described in the RTL code, which forms the initial layout. However, this will be reshaped 

by the placement and routing process to realize the circuit on a two-dimensional silicon 

chip. Hence, the resulting implementation will be smaller and faster if the RTL code 

resembles the structure of the silicon chip. This is due to the fact that synthesis tool 

cannot make significant global changes. The RTL coding technique creates a basis for 

synthesis, affecting the result much more than the optimization done by the synthesis 

tool. [7]. 

2.3.4 Timing considerations 

Even though a digital circuit is fast the respond is not instant. Meaning that the output is 

a function of time. The propagation delay represents the time between an input state 
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change and a valid output value. As a time-domain characteristic for a circuit, it is a major 

design criterion. Also, a hazard is time-domain phenomenon, it is the unwanted state 

change of an output signal. It is a transient event but might result malfunction in a poorly 

designed circuit. Next, subsection will discuss the propagation delay and hazard in more 

detail. [7]. 

A digital circuit requires some time to generate a valid output response to the change of 

an input. In digital system, the time needed to propagate a signal from input port through 

the circuit to output port is called as propagation delay or just delay. Multiple input-output 

delays may exist due to the large number of ports, but propagation delay usually refers 

to the worst-case delay i.e., it indicates how fast a digital system can operate. Hence, it 

symbolizes the performance or the speed of the digital system. For a digital system the 

two most important design metrics are the speed and area i.e., the circuit size. The 

system propagation delay can be computed by first figuring out the delays of individual 

components and by searching all the input-output paths. Then we can add up the delays 

from all the components for each path and with that define the propagation delay. Now 

we can notice that the system delay is based on its components and depends on the 

information they possess. Hence, the most accurate delay estimate will be obtained at 

the cell level. The netlist contains the detailed physical and electrical information of the 

cells. In contrast, the RT level offers least information about the physical and the 

electrical characteristics since at that level the components require further processing. 

[7]. 

In order to characterize the propagation delay, the cell level time-domain behavior is 

studied and analysed at the transistor level, where the modelling is based on transistors, 

resistors, and capacitors functioning. Main reason for the delay is parasitic capacitance, 

coming from two overlapping metal layers. A state change in a transistor makes 

capacitors to charge or discharge which causes the delay. Performing the cell analysis 

at this level is very complex thus it is applied only at a small scale. Consequently, it gives 

basic information for the modelling. A simplified linear model is common approach to 

perform timing analysis at the cell level. [7]. Also, nonlinear delay model, polynomial 

delay model, and current source delay model can be used [20]. The simplified linear 

model is unsophisticated model but with it the cell level complexity can be managed. In 

this model, all parasitic capacitances are summed and represented as one capacitor, 

which in turn allows consideration of only first-order effects. The delay can be 

represented by an equation [7]. 

delay = 𝑑𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 + 𝑟 × 𝐶𝑙𝑜𝑎𝑑 ,             (2) 
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The circuit inside the cell is expressed by the first term, dintrinsic, it models the transistor 

state changing time for example changing from off state to on state. The cell drives 

external circuit, which is expressed by the second term in the equation. The parameter 

Cload relates to the path from output of the current cell to the input of driven cell, it is the 

total capacitive load. It is defined as the sum of parasitic capacitance from interconnected 

wires and the input capacitance from driven cells. The parameter r  models the output 

impedance, which expresses the driving power of the cell. High driving power can be 

achieved with small impedance, since it enables higher current. Thus, the capacitive load 

is charged or discharged in a shorter time. Consequently, with small r value the delay is 

shorter. Accordingly, bigger transistor shortens the delay. [7]. 

The cell-level delay calculation are dependent on the accuracy of few factors such as 

the used parameters and the model. The values of parameters dintrinsic, r, and input 

capacitance are defined by the manufacturer and can be considered reasonably 

accurate. The total input capacitive load can be computed from the netlist, after 

technology mapping has been completed and fan-out of all the cells are available. 

Whereas, the wire capacitance is determined by the real length and location of wires, 

which are not specified at the synthesis process. However, synthesis tools can generate 

a rough estimate based on a statistical model. The wire capacitance can be determined 

accurately once place and route step is performed. At cell-level, wiring has a great effect 

on delay estimation. The linear cell-level model disregards higher-order effects in circuit, 

which might have an impact to the accuracy of the model. Hence, the impact on the 

functioning of the circuit may be significant. However, it is possible to use more advanced 

models. For example, a simple lumped RC model can be replaced with more advanced 

RC circuits to get more accurate estimation. [7]. 

With comparatively large transistors the above-mentioned factors have a minor impact 

on the total delay and can be excluded from the considerations, because of that the 

synthesis process can generate accurate timing data. However, on nanometre 

technology the given factors emerge, which complicates the design process. Accurate 

timing data will be received only after placement and routing. Inherently, the delay of a 

cell cannot be managed precisely. The delay is also impacted by the manufacturing 

process and operating environment. A technology vendor can only provide the boundary 

values, usually this means the maximal propagation delay. [7]. 

When delays of individual cells are known, path delays can be defined. A path delay is 

the sum of cell delays on the path. Usually, a digital system contains a great number of 

different paths, flowing from input to output ports with different delays. The system delay 
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is the longest path, referring to the worst-case scenario. Generally, it is also known as 

the critical path. [7]. 

To find the critical path, the netlist can be handled as a graph. Thereby all the possible 

paths in the netlist can be determined and the longest of them can be found quite easily. 

Hence the critical path is defined by the topology of the system, and it is also referred as 

the topologically critical path. Sometimes this approach may lead to overestimating the 

critical path due to the existence of a false path. It is a path that exist but according to 

defined logic, data cannot pass along it. The topographically critical path can be a false 

path and can be ignored from true system delay calculation. Therefore, both the 

topography and the internal logic operations must be considered, which makes the 

critical path determination difficult task. However, it can be determined with software. 

Hence, synthesis tool is used to execute cell-level timing analysis. Synthesis tool also 

provides a feature to manually rule out possible false paths. [7]. 

The same principles apply also at the RT-level and therefore the propagation delay can 

be already analysed and calculated at this stage. At RT-level the result of the calculation 

rely on the used components. This implies that if an RT-level design includes mostly 

simple logical operators being mainly random logic, these will experience lots of 

transformations and optimization in the logic synthesis phase. Meaning that the initial 

RT-level delay calculations does not necessarily reflect the complete synthesized circuit 

at all. There is also another side, if an RT-level design includes mostly complex operators 

and function blocks, they will have the greatest impact on delay calculations. Since, they 

are designed in advance and optimized, logic synthesis will not change their delay 

features notably. Therefore, this type of circuit could have realistic delay calculation 

already at the RT-level. Consequently, the critical path and thus the performance are 

known. This will facilitate the RTL code design and ultimately will result more efficient 

circuit with the preferred area-delay features. [7]. 

The two most important design specifications are the chip area and the system delay. 

Usually, the final design is trade-off between these two. In practice, a fast circuit requires 

more area, and a small circuit is not the most efficient. One application can be 

implemented with multiple different area-delay characteristics. Multilevel logic synthesis 

is flexible, it is able to add gates in the circuit to decrease delay. This is useful in a 

situation where the circuit area is optimized but the system delay still need to be reduced. 

Intrinsically, the optimal trade-off can only be achieved within a certain range. The area 

cannot become smaller and the performance better endlessly. The impact of RTL 

improvements to synthesis iterations is shown in Figure 6 [7]. 
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Figure 6. Synthesis iterations in an area-delay space [7]. 

The logic synthesis is iterative process. The process introduced in section 2.3.2 finds the 

optimal area for the circuit. Usually, synthesis is performed for separated IP blocks or 

partitions of the whole system. To achieve the performance targets, logic synthesis 

needs timing constraints. A circuit cannot be synthesized exactly to achieve a certain 

propagation delay. However, the maximal accepted threshold value for propagation 

delay is set in the timing constraints. As stated previously, the critical path defines the 

system delay. Therefore, not all paths should be blindly optimized. The synthesis 

processing sequence is iterative. As a first step synthesis usually generates 

implementation with the smallest achievable area. Next, the resulting netlist will be 

analysed to obtain the critical path and the system delay. If the system delay is longer 

than what the constraints allow, synthesis adds gates in the circuit to make the critical 

path faster. The regenerated implementation introduces the new critical path, which is 

assumed to be the second longest path of the initial implementation. The new system 

delay will be explored to identify if it met the timing constraints. The process iterates 

through until the resulting implementation is within desired constraints. [7]. 

The previously described processing sequence is executed at the gate or cell level and 

is too laborious for human but can be utilized on RT level. The schematics show the 

placement of complex RT-level components and the preliminary routing configuration. 

System delay is dominated by the complex components, thus the path through them will 
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indicate the critical path. The analysis is beneficial for architectural explorations and 

ultimately will result a more efficient circuit. The designer’s knowledge about the system 

can induce global optimization. Naturally, this is more effective than local optimization at 

gate- or cell-level, performed by synthesis tool. [7]. 

The propagation delay indicates the needed time for a system to generate a valid output 

state. Oscillations at the output port within the transient period are called as timing 

hazards. In digital systems, multiple paths might lead to a single output port. Since, path’s 

delays can vary, signals might reach the output port at different points of time. 

Consequently, the output port might oscillate before a steady-state is generated. The 

oscillations are one or more unexpected alternations at the output port, they are called 

as glitches. If a circuit is able to generate glitches it has a timing hazard. There are two 

types of timing hazards, the next paragraphs will describe them in more detail and 

explain how to handle them. [7]. 

A static hazard refers to a glitch at output port when assumed to be at a steady-state. 

Furthermore, it includes two types of hazards, static-1 hazard, and static-0 hazard. A 

static-1 hazard happens when Boolean algebra analysis of a circuit shows that output 

should be at a steady-state ‘1’ but circuit generates a ‘0’ glitch. Correspondingly, a static-

0 hazard happens when analysis show that the output should be at a steady-state ‘0’ but 

a ‘1’ glitch is generated. A dynamic hazard refers to a glitch at the time period when a 

circuit is switching state for example from ‘0’ to ‘1’. The source of these two hazards is 

too fast paths i.e., the different propagation delays on each path. [7]. 

2.3.5 Static timing analysis (STA) 

The STA calculates time period when certain signal have to be available [11]. The goal 

is to check that a circuit can operate at the required frequency [11]. Commonly, a 

sequential circuit is utilized in a digital system, it is a circuit containing  memory elements. 

Further, a synchronous sequential circuit has global clock signal which controls all the 

memories in the circuit thus, this method makes the design process simpler. The most 

popular memory element is D-type flip-flop, it has 3 main timing parameters: [7] 

1. clock-to-q delay: The delay on path between the d input and the q output 
occurring after the edge of the clock signal. 

2. setup time: Indicates the time period when the d signal must be stable before the 
edge of the clock signal. 

3. hold time: Indicates the time period when the d signal must be stable after the 
edge of the clock signal. 

The clock-to-q delay is about the same as the delay caused by a combinational element. 

Setup time and hold time are timing constraints specified for a circuit. They define the 
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time period around the clock edge when the d signal must be stable. A change in the d 

signal during the time period is known as setup time violation if it happens before the 

clock edge or hold time violation if it happens after the clock edge. These timing violations 

can create a metastable state for the D flip-flop, where the q output is in an unknown 

state and a circuit does not function correctly. [7]. 

The timing of a combinational circuit is mainly based on the longest path in it i.e., the 

propagation delay. While the timing of a sequential circuit is primarily determined by the 

timing constraints specified by the memory components. Where the most important 

timing parameter is the maximal clock rate, which actually contains the propagation 

delay, the clock-to-q delay, and the setup time constraint. The main objective in 

designing a sequential circuit is to meet the setup and hold time constraints. [7]. 

A sequential circuit containing memory elements and combinational logic has a limit for 

the maximal clock rate (Tc(max)) to avoid setup time violation, it is determined as 

𝑇𝑐(𝑚𝑎𝑥)  =  𝑇𝑐𝑞 +  𝑇𝑐𝑜𝑚𝑏(𝑚𝑎𝑥) +  𝑇𝑠𝑒𝑡𝑢𝑝,            (3) 

Where 𝑇𝑐𝑞 is clock-to-q delay, 𝑇𝑐𝑜𝑚𝑏(𝑚𝑎𝑥) is the maximum propagation delay of the 

combinational logic, and 𝑇𝑠𝑒𝑡𝑢𝑝 is the setup time constraint. The hold time constraint 

(Thold) has some differences to the setup time constraint. To avoid hold time violation, a 

sequential circuit has to satisfy the inequality 

𝑇ℎ𝑜𝑙𝑑  <  𝑇𝑐𝑞 +  𝑇𝑐𝑜𝑚𝑏(𝑚𝑖𝑛),                        (4) 

Where 𝑇𝑐𝑞 is the clock-to-q delay and 𝑇𝑐𝑜𝑚𝑏(𝑚𝑖𝑛) is the minimum propagation delay of the 

combinational logic. [7]. 

2.4 Design Compiler (DC) synthesis flow 

Design compiler has its own logic synthesis flow. Usually, it is used on design exploration 

and design implementation phases. Flowchart of the synthesis flow is presented in 

Figure 7. [9]. 
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Figure 7. A basic synthesis flow. [9]. 

The following paragraphs discuss design compiler synthesis flow in more detail. 

Develop HDL files: Hardware description language (HDL) files are the input for design 

compiler, these can be created by using Verilog or VHDL. In the HDL code preparation 

phase, you have to take to account design data management, design partitioning, and 

HDL coding style. Design files contain the design descriptions. Naming of these files 

must be unique. When preparing design for synthesis, managing design file data is 

important, with appropriate strategy data is not lost. Selected HDL coding strategy is also 

important because HDL coding is the basis for synthesis. A good method to manage the 

design data is to organize it systematically. Effective partitioning of a design can improve 

the synthesis results, decrease compilation time, and simplify the script files and 

constraints. Partitioning have an effect on design block size thus, block size control must 

be done carefully. [9]. 

Design cannot function correctly without constraints; thus, they are very important. They 

are statements that determine the design goals in measurable circuit characteristics. 



24 
 

 

These can be timing, area, power, and capacitance. The logic library is crucial for design, 

it defines the implicit design rule constraints. Explicit optimization constraints such as 

physical constraints can be also defined. They help in optimization. [9]. 

Specify libraries: Next in the synthesis flow comes specify libraries step. In this step logic, 

symbol, and DesignWare libraries are used for design function implementation and for 

showing synthesis outcome graphically. The mapped logic libraries are called target 

libraries which are produced in optimization. Target libraries have the cells in them which 

are used to produce the netlist and definitions for the design’s operating conditions. A 

design is compiled or translated by using the link libraries, even more specifically used 

libraries are the target libraries which are the subset of the link libraries. Link libraries 

contain the delay models information that are used to compute timing values and path 

delays. A pseudo library called ALIB can be used to explore trade-offs between area and 

delay. ALIB is created by characterizing the target library. ALIB contains real gates 

mapped from the Boolean functional circuits in the target library. The symbolic 

representations of the cells are in the symbol library. The DesignWare libraries contain 

reusable circuits which are used as a building elements within the synthesis run to 

optimize the speed and area. The physical libraries have to be specified if DC is used in 

topographical mode. These include the Milkyway reference library, holding physical 

information about the standard cells and macros. [9]. 

Read design: RTL design and gate-level netlist are used as an input for design compiler. 

It utilizes HDL compiler to interpret Verilog and VHDL designs and gate-level netlists. 

Also, netlist in ddc format can be read in the tool. DC can handle multiple designs when 

read into memory, even design modification can be made when in memory. [9]. 

Define design environment: The expected design environment has to be specified to 

enable optimization of the design. This means the operating condition, system interface 

features, and wire load models (if synthesis is not run-in topographical mode). Typical 

operating condition are temperature, voltage, and process fluctuations. System interface 

features comprise input drives, I/O loads, and fanout loads. Consequently, the design 

environment setup have an impact on the synthesis outcome. The design environment 

is specified with commands such as, set_operating_conditions, set_drive, set_load, 

set_driving_cell, set_wire_load_model, and set_fanout_load. [9]. 

Set design constraints: Constraints determine the design objectives in circuit 

characteristics for example, time, area, and capacitance. These are used in design 

optimization during synthesis run. There are two main constraint types design rule 

constraints and optimization constraints. Design rule constraints (DRC) are located in 
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the logic library, a design needs them to operate properly. DRC have a priority over 

optimization constraints. The design rule constraint types involve for example maximum 

transition time, maximum fanout, maximum capacitance, minimum capacitance, cell 

degradation, and connection class. Optimization constraints are defined by the designer. 

DC tries to meet optimization constraints within optimization phase, but cannot break the 

design rules thus, optimization rules have to be set realistically. The optimization 

constraints involve for example input and output delays, minimum and maximum delay, 

maximum area, and power optimization. Constraints are defined on the command line 

or in a file. Both of the constraints are tried to be met however, the design rule constraints 

are given priority. [9]. 

Select compile strategy: The compile strategy has to be set for hierarchical designs. The 

top-down compilation or the bottom-up compilation can be used for different parts of the 

design. The top-down compilation compiles the top-level design and the sub designs in 

conjunction. The bottom-up compilation compiles the sub designs individually from the 

lowest hierarchy level to the highest level i.e., the top-level design. Also, mixed compile 

is possible, it utilizes both of the strategies depending on what is the best option for the 

particular sub design. [9]. 

Synthesize and optimize the design: In synthesis run the optimization maps the design 

to best possible structure according to functional, speed, and area specifications. The 

design synthetization and optimization is incorporated to the compile process which is 

launch with the compile_ultra or the compile command. A technology-specific circuit is 

created in the optimization process. It is executed on three levels architectural 

optimization, logic-level optimization, and gate-level optimization. The architectural 

optimization operate on the HDL expressions performing common subexpression 

sharing, resource sharing, selection of DesignWare components, operator 

reorganization, and identifies arithmetic expressions to run data path synthesis. The 

logic-level optimization operate on the technology independent netlist, it performs two 

procedures structuring and flattening. The gate-level optimization operates on the 

technology independent netlist to create the technology-dependent netlist. It performs 

mapping, delay optimization, design rule fixing, and area optimization. [9]. 

Analyze and resolve design problems: Inherently, the synthesis and optimization results 

need to be analysed and it is done with area, constraint, and timing reports extracted 

form DC. These will help to sort out possible issues and to enhance the final outcome of 

synthesis. Reports can be created during the synthesis run before and after the 

compilation. [9]. 
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Save the design database: DC does not save the design automatically. Therefore, the 

design have to be saved manually into ddc, Verilog, svsim, VHDL, or Milkyway format. 

This can be done for the whole design and for the sub designs whenever needed by 

using the write_file command. [9]. 

2.5 Synthesis in practise with DC 

Synopsys Design Compiler is vigorous synthesis tool. It is used to execute the logic 

synthesis for ASIC designs. Logic synthesis is run with the help of special DC 

commands. This section will discuss about the important commands. [8]. 

When DC is launched it reads the starting file synopsys_dc.setup located in the working 

directory. Two starting files are needed: one in the working directory and another one in 

the root directory, where the DC installation is also located. Also, couple of parameters 

must be setup to make the tool usable:  

1. search_path: Parameter utilized on the synthesis run to search the target 
technology libraries [8]. On this project it is used for the RTL file paths. 

2. target_library: The logic cells are located in the target_library. DC uses this library 
to map the logic cells on the cell-level synthesis. [8]. On this project the 7 nm 
technology file paths are provided with this parameter. 

3. link_library: This parameter is used to link the logic cells in the target technology 
libraries with the libraries containing referenced components and designs [9]. 
This is used for the memory instance file paths. 

After these three parameters are setup, the tool can be used from the command prompt 

[8]. 
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2.5.1 DC commands used during synthesis 

A digital system is designed by using synthesizable HDL, the design is input for DC. 

Table 1 introduces some important DC commands utilized during synthesis run. [8]. 

Table 1. DC commands [8]. 

Line Commands Description 

1 read -format <format_type> <filename> Read the design in DC. 

2 
analyze -format <format_type> <list of file 
names> 

Used to analyse the syntax and 
translation prior the generic 
design is built. 

3 elaborate -format <list of module names> Elaborates the design. 

4 check_design 
Check the issues in the design, 
such as shorts and connections. 

5 
create_clock -name <clock_name> -period 
<clock_period> <clock_pin_name> 

Generates the clock for the 
design. 

6 
set_clock_skew -rise_delay 
<rising_clock_skew> fall_delay 
<falling_clock_skew> <clock_name> 

Set the clock skew for the 
design. 

7 
set_input_delay -clock <clock_name> 
<input_delay> <input_port> 

Define the input port delay. 

8 
set_output_delay -clock <clock_name> 
<output_delay> <output_port> 

Define the output port delay. 

9 compile -map_effort <map_effort_level> 
Compile the design. Map effort 
level can be set to low, medium, 
or high. 

10 write -format <format_type>-output <file_name> Save the synthesis output. 

11 
set_false_path -from [get_ports <port list>] -to 
[get_ports <port list>] 

Define the false path. 

12 
set_multicycle_path -setup <period> -from 
[get_cells] -to [get_cells] 

Enable multicycle paths for 
design setup timing. 

13 
set_multicycle_path -hold <period> -from 
[get_cells] -to [get_cells] 

Enable multicycle paths for 
design hold timing. 

14 set_clock_uncertainty 
Set the estimated network skew 
value. 

15 set_clock_latency 
Set the estimated source and 
network latency values. 

16 set_clock_transition 
Set the estimated clock skew 
value. 

17 set_dont_touch 
Disable optimization of the 
gates that are already mapped. 

Commands related to reading the design in DC include analyse and elaborate which 

pass needed parameters during elaboration. The actual read design command is utilized 

to pass pre-compiled design in DC. The check design command is utilized after reading 

to check potential problems in the design. Previously mentioned commands are part of 
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the basic execution script that DC is running in synthesis run. Hence, this is utilized in 

this project. The create clock command specifies a clock for the design which is also 

used as a reference in timing analysis. The clock is linked to the clock pin in the design. 

If clock pin does not exist, synthesis creates virtual clock for the design. This is set in the 

constraint files that can be downloaded from GitHub webpage. Clock skew needs to be 

handled in synthesis; it is the difference between signal arrivals into different flip-flops. 

Positive clock skew adds margin for the setup timing. Since, the clock signal arrives late 

to the destination flip-flop compared to the source flip-flop. By contrast, negative clock 

skew adds margin for the hold timing. Since, the clock signal arrives late to the source 

flip-flop compared to the destination flip-flop. The clock skew is used to model the 

propagation delay in the clock tree in order to synthesize the design. It is set in the 

constraints file with the command set_clock_transition. Input and output delays are 

determined with command in Table 1 at lines 7 and 8. If needed the delays can be 

determined as minimum or/and maximum delays for both input and output. To do that 

following commands are utilized: [8] 

1. set_input_delay -clock <clock_name>-max <delay> <input_port> 

2. set_input_delay -clock <clock_name>-min <delay> <input_port> 

3. set_output_delay -clock <clock_name>-max <delay> <output_port> 

4. set_output_delay -clock <clock_name>-min <delay> <output_port> 

The synthesis is executed with the compile command. This can be done with different 

levels of effort (low, medium, and high) and is specified with the command in Table 1 at 

line 9. This project uses newer command compile_ultra -no_seq_output_inversion  -

gate_clock -spg -scan. The resulting synthesis output is saved with the write command. 

The output can be saved in different formats such as VHDL or database format (ddc). 

This project saves it in verilog and ddc formats. Possible false paths in the design can 

be specified with the set false path command. Some know false paths are set in the 

provided constraints files. Multicycle paths in the design can be specified with commands 

in Table 1 at lines 12 and 13 to check setup and hold timing. This was used in order to 

improve setup timing. [8]. 

2.6 Design optimization using DC 

SoC design can have multiple functional blocks which is actually good thing for the 

synthesis. Block-level constraints can be specified to satisfy area, speed, and power 

targets. The blocks in the design can have different clock and power domains and the 

functionality can be different. To optimize the design in synthesis, it can be divided into 

partitions according to the functionality. Hence, the block-level constraints need to be 
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specified in the sdc files. If block-level constraints are not met, the RTL code or the 

architecture may need to be changed. [8]. The synthesis tool optimizes the design, but it 

can usually improve the performance only by 10-20 percentage [22]. NVDLA is divided 

into 5 partitions based on the functionality, thus synthesis is driven for these individually. 

Constraints need to be specified also for the chip-level synthesis. The top-level design 

integrates different functional blocks together. The top-level constraints need to be 

specified properly to obtain required speed, area, and power numbers. A key factor is 

synchronization between the blocks. The don’t touch attributes can be set for the verified 

clocks. Top-level constraints or top-level synthesis model are not specified for NVDLA. 

Main optimization and design rule constraints (DRC) are shown in Table 2. [8]. 

 

Table 2. Optimization and design rule constraints [8]. 

Line Commands Type Description 

1 set_max_transition Design rule constraint 
Specifies the maximum transition 
time. 

2 set_max_fanout Design rule constraint Defines the maximum fanout. 

3 set_max_capacitance Design rule constraint Defines the maximum capacitance 

4 set_min_capacitance Design rule constraint Defines the minimum capacitance 

5 set_operating_conditions Optimization constraint Specifies the PVT conditions 

6 set_load Optimization constraint Utilized for load modelling on output 

7 set_clock_uncertainty Optimization constraint Sets estimate for the network skew 

8 set_clock_latency Optimization constraint 
Sets estimate for the source and 
network delays 

9 set_clock_transition Optimization constraint Sets estimate for the input skew 

10 set_max_dynamic_power Optimization constraint 
Defines the maximum dynamic 
power 

11 set_max_leakage_power Power constraint 
Defines the maximum leakage 
power 

12 set_max_total_power Power constraint Defines the maximum total power 

13 set_dont_touch Power constraint 
Prevents the optimization of placed 
gates 

Commands in Table 2 are discussed in following sections. NVDLA environment provides 

design rules constraints for the partitions, these were utilized in this project. 
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2.6.1 Design rule constraints (DRC) 

The most important DRC are fanout, capacitance, and transition. However, usually all of 

these are not specified in the first synthesis iterations. They have greater importance 

within synthesis than optimization constraints. The max fanout command obtains the 

load driving capabilities of a port. The max transition command sets the maximum 

transition time for state change from ‘0’ to ‘1’ or from ‘1’ to ‘0’. DC can set it for a particular 

net or for the whole design, by ignoring the library value. The max capacitance command 

defines the maximum net capacitance. DC utilizes it to handle violation within the 

compilation phase of the synthesis run. The capacitance derive from the cell 

characteristics. [8]. These are not specified for NVDLA in this project. 

2.6.2 Optimization constraints 

The area and speed constraints are utilized within the logic synthesis to optimize the 

design. While the power constraints are taken care of within physical synthesis. The 

speed is crucial for the performance of the design thus, the speed optimization is 

performed first followed by the area optimization. The set don’t use command can be 

used if a cell from the technology library should be ignored. The set don’t touch command 

can be used if some of the functional block are already optimized and does not require 

further processing. The set prefer command can be used when there is a need to map 

the design for a new technology library. The design can be hierarchical or flattened, if 

needed the design can be flattened during synthesis by utilising set flattened command. 

The set structure command can be used to enhance the area or gate count. This can be 

performed by using either Boolean structuring or timing driven structuring. The group 

and ungroup commands can be utilized to create or remove hierarchy in design 

respectively. [8]. In this project the set_clock_transition was used for the clocks. It is 

specified in the constraint files. 
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2.6.3 Design optimization strategies 

To get an idea of synthesis in practise, lets study how an imaginary optimization strategy 

for a large SoC design could proceed: [8] 

1. At first, run synthesis at block-level and generate report of all the violations. 

2. Check the timing and area reports and try to adjust constraint at the block-level. 
Also report violating paths. 

3. If the timing needs to be enhanced, utilize asynchronous path grouping and after 
that the compilation strategies. 

4. If some block already met the timing use the don’t touch command. 

5. If the area need to be reduced, utilize grouping and resource sharing with the set 
max area command. 

6. Generate report of the multicycle paths. This helps the timing analyser to check 
the setup and hold timing. 

7. generate report of the false paths in the block-level design. 

8. If block-level timing and area constraints are met, the top-level design constraints 
can be utilized to begin the optimizations at the top-level. 

9. If individual blocks met the timing but the top-level does not, the following actions 
can be made to fulfil the top-level requirements: 

a. Check timing violations and if they exist adjust the RTL to speed up data 
arrival at the partition boundary. 

b. If partition boundary is in order, utilize register balancing technique to get 
rid of the setup time violations. 

c. If the hold time violations emerge from the timing report, the data arrives 
to block interface too quickly and strategies to balance the path can be 
applied for example additional buffers. 

d. If the timing is not met after these actions, the RTL or architecture can be 
adjusted. Finally, as a last resort the constraints can be relaxed. 

This strategy is targeted for the top-level synthesis; thus, it was not that applicable for 

this thesis project. However, some of the steps between 1 and 7 were executed on the 

project. 

Synthesis has 2 alternative compilation strategies top-down or bottom-up. Both have 

their pros and cons, and the designer can choose preferred approach. The top-down 

compilation works with the whole design i.e., on the top-level. It utilizes the top-level 

design constraints during the compilation. The pros of this approach include complete 

paths, since the optimization is executed for the whole design, results usually the most 

optimal design, does not need many iterations, constraints are simple, and 

straightforward information management. The cons, in turn include requires more and 

longer runtime and needs larger memory. [8]. 

The bottom-up approach starts the compilation at the block-level and proceeds from 

there to the top-level. This requires the usage of the set don’t touch attribute to avoid 
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recompilation of already processed blocks. Also, the input and output timing information 

has to be set for all the block individually. The pros of this approach include relatively 

fast runtime, smaller amount of processing needed for a run, and smaller amount of 

memory needed. The cons, in turn include optimization is executed on block-level i.e., 

not necessarily useful for the full design, needs multiple iterations, and has to manage 

multiple hierarchies. [8]. Specific compilation strategy was not determined in this project 

since, the synthesis was executed for each partition individually. On the other hand, this 

can be seen as bottom-up compilation strategy if the project would have proceeded to 

the top-level synthesis. 

Area optimization techniques can be applied to minimize the total area of the design. 

However, the priority is to optimize the timing and subsequently the area. The area can 

be reduced by adjusting the RTL level. When using DC to minimize area, a few 

recommendations are worth to follow do not create individual combinational logic blocks, 

avoid using glue logic to connect two designs, and define the set_max _area attribute for 

the design during synthesis run. [8]. The set_max_area attribute was utilized in the 

synthesis runs. In this project it was set to 0,0 to get optimal synthesis results. 

The usage of individual combinational logic blocks can lead to poor partitioning which 

will hinder the optimization during synthesis run since, the hierarchy is fixed. DC is unable 

to optimize the port interfaces, meaning that it cannot edit the design hierarchy if the 

blocks are separated. Another example of poor partitioning is the usage of glue logic. 

Glue logic is for example a logic gate between two combinational logic elements. 

Therefore, DC cannot optimize the design as a whole because the glue logic separates 

the elements. This can be avoided by using the group command to assort the logic gate 

to either element. Minimal area can be achieved by utilizing the set_max_area attribute 

during the synthesis. The optimization priorities are DRC, timing, power, and area. With 

the attribute area optimization can be started after the timing is met. Design area can be 

reported with command report_area. [8]. 

The timing has the highest priority compared to other circuit characteristics i.e., power 

and area. Initially the optimization checks DRC violations, followed by the timing 

violations, the power constraints, and eventually the area constraints. DC has some 

timing optimization commands; those are studied next. mapping can be executed with 

different effort levels. One approach is to start initial compilation with the command 

map_effort_medium since, it reduces the compilation time. If timing constraints are not 

met, the map_effort_high command can be utilized, it should enhance the performance. 

If the timing constraints are not met with high mapping effort, the group_path command 

can be utilized to intensify the compilation. When critical paths are identified from the 
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timing report, the compilation time can be increased by giving a weight factor for the 

paths with the group path command. [8]. In this project the compilation was executed 

with high mapping effort. Further, the group_path command was utilized in the project to 

enhance timing on violating NVDLA blocks. 

Important timing analysis parameters include the setup and hold slack, those can be 

extracted from the timing reports. The setup slack is defined as the difference between 

the data required time and the data arrival time and it should be positive. If it is not 

positive, the data path is usually too slow and needs RTL adjustments. The hold slack is 

defined as the difference between the data arrival time and the data required time and 

likewise it should be positive, meaning that there is no transitions during the hold time 

period. If it is not positive, the data path is usually too fast and needs RTL adjustments. 

[8]. The setup and hold slacks are defined in the post-synthesis STA to get an idea how 

to improve the design if needed. The STA analysis for NVDLA synthesis results are 

presented later on the thesis. 

A SoC design can have multiple hierarchies and even though each sub-design met the 

constraints the top-level design might not. The characterize command can be utilized on 

this kind of situation. It enables the boundary conditions for the sub-modules in the top-

level hierarchy environment. With this the compilation and characterization can be 

executed for the submodules independently. [8]. Top-level synthesis was not executed 

in this project. 

Design compiler is able to perform register balancing. Register balancing is highly 

effective method to improve the performance of pipelined circuit architecture. It moves 

combinational logic from one pipelined stage to another pipelined stage, reducing the 

delay on slower register to register path. Hence, the performance is improved because 

it is defined by the slowest register to register path. The functionality of the total path is 

not changed because the combinational logic is just re-placed to different pipeline stage 

on the same path. Register balancing is executed by using the command 

balance_register. [8]. Register balancing was not utilized in this project. 

A pipelined design can have a structure that requires more than one clock cycle to 

execute the functionality. This is known as the multicycle path. Multicycle paths need to 

be reported to execute the setup and the hold checks correctly. Multicycle path is defined 

by using the set_multicycle_path command. [8]. Multicycle paths were set for some of 

the NVDLA blocks in the constraint files in this thesis project. 
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3. LITERATURE REVIEW 

This section presents literature review from related studies. Exactly same kind of studies 

as this thesis are not found. However, the review include other studies which used 

NVDLA and some important studies from hardware accelerator field. 

First, a paper Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for 

Convolutional Neural Networks by Y. H. Chen, J. Emer, & V. Sze is studied. 

Convolutional neural networks (CNNs) are becoming more and more popular in 

contemporary AI systems, because of their excellent precision in many application fields. 

However, CNNs have high computational complexity occurring from convolutional 

computations which are executed in parallel fashion. Thus, the data movement is high in 

the process requiring lots of energy. Minimizing data movement is the key factor to 

improve energy efficiency in CNN’s. Chen et al. presents a new dataflow to achieve that, 

it is called as RowStationary (RS). The presented architecture utilizes local data reuse 

on filter weights and pixel maps, and decreases data movement on computations such 

as partial sum accumulation. The RS dataflow can be applied to many kind of CNN 

configurations, since it lowers data movement by using processing engine (PE) local 

storage, direct inter-PE communication and parallelism. RS dataflow test on the AlexNet 

CNN prove that it is more energy efficient than other dataflows on CNN field. RS dataflow 

is implemented on a real chip confirming the analysis of energy efficiency. [18]. A paper 

presenting the implementation is studied next. 

A paper Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional 

Neural Networks by Y. H. Chen, T. Krishna, J. S. Emer, & V. Sze presents the 

implementation of RS dataflow. The Eyeriss is a hardware accelerator for CNN 

applications. Key benefit of Eyeriss is the improved energy efficiency of the whole 

system. This is achieved by minimizing both on-chip and off-chip data movement which 

is more energy consuming than the actual computing, for example data is reused locally 

and communication to DRAM is reduced. Hence, Eyeriss utilizes the RS dataflow 

architecture with 168 PE’s. Further, techniques such as compression and data gating 

are used to minimize energy consumption. The chip is fabricated to TSMC 65 nm CMOS 

technology, chip size is 16 mm2, it contains 1176k 2-input NAND gates, and operates on 

250 MHz maximum clock rate. For AlexNet the performance is 35 frames/s and 0,0029 

DRAM access at 278 mW. For VGG-16 the performance is 0,7 frames/s and 0,0035 

DRAM access at 236 mW. [24]. 
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A paper Origami: A 803-GOp/s/W Convolutional Network Accelerator by L. Cavigelli & 

L. Benini is studied next. The paper presents new architecture for Convolutional 

networks, discusses about its implements on real ASIC, and performs silicon 

measurements to that ASIC. Origami is designed for object recognition applications. The 

architecture contains 4 primary parts: Image Window SRAM and Image Bank, Filter 

Bank, Sum-of-product units (SoP), and Channel summer units (ChSum). Image window 

SRAM and image bank receives new images and sends those to SoP units. Filter bank 

receives filter weights and sends them to SoP units. When SoP units have received data 

from previous stages, they calculate the inner product of an image patch and a filter 

kernel. These results are then send to ChSum units. ChSum unit calculates total for inner 

products and outputs the processed pixel stream. The architecture has 2 clocks: Image 

window SRAM, Image bank and filter bank are operator with one clock. SoP units and 

ChSum units are operated with another clock which is 2 times faster than the initial clock. 

The Origami is implemented on UMC 65 nm CMOS technology. It uses 250 MHz clock 

for I/O and SRAM and 500 MHZ clock for SoP and ChSum units. Operating voltages are 

0,8 V and 1,2 V respectively. The core area is 3,09 mm2. Total power consumptions are 

237 mW at 0,8 V and 654 mW at 1,2 V. Technology scaled results show that Origami is 

area efficient and has the lowest power consumption compared to other designs. [23]. 

Article CoNNa – Compressed CNN Hardware Accelerator by R. Struharik, B. 

Vukobratovic, A. Erdeljan, & D. Rakanovic is explored next. Article present new CNN 

hardware accelerator architecture; it is called as CoNNA. It is used to accelerate trimmed 

and quantized CNNs. The design is a coarse-grained architecture which can be 

reconfigured dynamically within the processing. The architecture contain following 

elements: Reconfigurable Computing Unit (RCU) which executes all calculations, Input 

Stream Manager (ISM), it delivers compressed data from memories to RCU, and Output 

Stream Manager (OSM), formats, compresses and delivers output data back to the 

memories. The data movement with related systems is handled with four AXI interfaces: 

Input Stream Interface which supplies all input data to RCU, Output Stream Interface 

connects to OSM and supplies output data to the memories, CNN Description Interface 

supplies CNN data in to CoNNA. The above has been implemented as AXI-Full 

interfaces. Lastly, Configuration Interface implemented as AXI-Lite interface controls and 

configures the CoNNA architecture. CoNNA is tested against Eyeriss, NullHop, and 

NVDLA CNN accelerators, when running AlexNet, VGG-16, VGG-19, GoogleNet, and 

ResNet-50 CNNs. To compare the results CoNNA was configured to match MAC unit 

count and operating frequency in the earlier designs. The experiments show that CoNNA 

executes CNNs faster than the reference designs. [16]. 
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Article The Implementation of LeNet-5 with NVDLA on RISC-V SoC by S. Feng, J. Wu, 

S. Zhou & R. Li is explored next. This article studies the performance of NVDLA when it 

is added on RISC-V core and runs LeNet-5 CNN. The implemented SoC contains two 

interesting components the main CPU which is RISC-V core and the hardware 

accelerator which is small NVDLA core. Communication between the components in the 

system is handled with ARM Advanced Peripheral Bus (APB) and AXI4 Bus. The APB 

connects to NVDLA with special adapter. The AXI4 is used to connect NDVLA to external 

DRAM. The system is compared to Intel i5 9300H (2,4 GHz) and K210 (400 MHz) 

processors and the LeNet-5 is ran with INT8 precision. The conclusion of the article is 

that NVDLA (500 MHz) provides proper acceleration for the CPU on the computations 

with low power consumption. [30]. 

A paper Integrating NVIDIA Deep Learning Accelerator (NVDLA) with RISC-V SoC on 

FireSim by F. Farshchi, Q. Huang, & H. Yun analyses NVDLA performance. This 

experiment utilizes FireSim simulator on the Amazon cloud FPGA. On this environment 

NVDLA is integrated with a RISC-V SoC and the system runs YOLOv3 object-detection 

algorithm. The used NVDLA configuration is nv_large which is wrapped to manage the 

communication between NVDLA, and RISC-V. Communication with rest of the system 

is handled through CSB, DBB, and IRQ interfaces. The used platform is a cost-effective 

and flexible solution to carry out the research on large SoC’s. The results show that 

NVDLA has better acceleration performance than GPU and CPU solutions, performance 

can be even enhanced by utilizing larger cache and/or hardware prefetcher, and shared 

memory between CPU and NVDLA causes major disturbance to the process. [28]. 

Article Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on Mobile 

Devices by Y. H. Chen, T. J. Yang, J. S. Emer, & V. Sze is studied next. The article 

present new deep neural network (DNN) architecture for mobile devices. These devices 

require low energy consumption and has recourse limitations. Therefore, compact and 

sparse DNNs are needed. The problems are solved with a new NoC and PE designs. 

The NoC is a hierarchical mesh, which can handle a broad range of bandwidths to keep 

the PEs working and the processing efficient. The PE utilizes the sparse nature of 

weights and activations on multiple DNN layers to enhance performance and reduce 

energy consumption. Eventually, these two are combined in Eyeriss v2 to form the DNN 

hardware accelerator. The design was implemented on 65 nm TSMC LP 1P9M 

technology. Place-and-route step is performed for the design and the reported results 

are from post-layout cycle-accurate gate-level simulation. The logic only gate count in 

Eyeriss v2 is 2695k NAND-2 gates, maximum clock rate is 200 MHz, and number of 

MACs is 384. Compared to original Eyeriss the performance and energy efficiency of 



37 
 

 

Eyeriss v2 are improved by 42,5× and 11,3× respectively, when running AlexNet. When 

running MobileNet performance and energy efficiency are improved by 12,6× and 2,5× 

respectively, compared to original Eyeriss. [31]. 

A paper ENVISION: A 0,26-to-10TOPS/W Subword-Parallel Dynamic-Voltage-

Accuracy-Frequency-Scalable Convolutional Neural Network Processor in 28 nm FDPOI 

by B. Moons, R. Yutterhoeven, W. Dehaene, & M. Verhelst is studied next. This paper 

present the hierarchical recognition processing idea on Envision CNN architecture to be 

able to develop always-on applications. Envision contains 3 power and body-bias 

domains, 16-bit SIMD RISC, 2D- and 1D-SIMD arrays, a scalar unit, 64×2kB single-port 

SRAMs, and Huffman DMA. The design was implemented on 28 nm FDSOI technology, 

core area is 1,87 mm2, with 1V clock rate is 200 MHz, gate count is 1,95M (NAND-2), 

and maximum count of MACs is 1024 (scalable). The average power consumptions 

when running AlexNet and VGG-16 are 44 mW and 26 mW, respectively. The results 

show that Envision is more efficient than the Origami or the Eyeriss designs on 

recognition tasks. [32]. 

A paper A 1,06-to-5,09 TOPS/W Reconfigurable Hybrid-Neural-Network Processor for 

Deep Learning Applications by S. Yin, P. Ouyang, S. Tang, F. Tu, X. Li, L. Liu, & S. Wei 

present hybrid neural network processor. Commonly, deep learning architectures such 

as AlexNet are combinations of Convolutional Neural Network (CNN), Full Connection 

Network (FCN), and Recurrent Neural Network (RNN). The foundation of presented 

processor is on a heterogenous PE array. It can be spatially partitioned, and it can form 

variant bit-width data path. The architecture contains Two PE arrays: general PE and 

super PE, a controller, two on-chip memories, a sharing weight buffer, and an adaptive 

interface. The design is implemented on 65 nm LPCMOS technology, and at 1,2V clock 

rate is 200 MHz. When running AlexNet and LRCN the chip performance reaches 1,27 

TOPS/W for 105 fps and 1,28 TOPS/W for 83, respectively. Compared to other designs 

the presented processor gains better energy efficiency by 5,2×. [33]. 

A paper UNPU: A 50,6 TOPS/W Unified Neep Neural Network Accelerator with 1b -to 

16b Fully-Variable Weight Bit-Precision by J. Lee, C. Kim, S. Kang, D. Shin, S Kim, & H. 

J. Yoo is explored next. This paper introduces a Unified Neural Processing Unit (UNPU), 

it can process convolutional layers, fully-connected layers, and recurrent layers from 1 

to 16 bit -precision. Usually, all of these are not supported. The architecture contains 4 

DNN cores, an aggregation core, a 1 D SIMD core, and RISC controller. Communication 

between these elements is managed with an on-chip network. The UNPU is implemented 

on 65 nm CMOS process node, die area is 16 mm2, it operates up to 1,1 V with maximum 

clock rate of 200 MHz, and with these condition it consumes power 297 mW. UNPU 
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operates with 3,08 TOPS/W, 11,6 TOPS/W, and 50,6 TOPS/W performance on 16-, 4-, 

and 1-bit weights, respectively. The fabricated chip is able execute facial expression 

recognition and dialogue generation tasks. These functionalities have been proven with 

FER2013 and the Twitter dialogue database. [34]. 

To sum up the chapter, it can be stated that a comprehensive set of related studies was 

found from literature. Two type of paper were review. Some of the paper were studied 

because they had similar results to this project, which could be then compared [18, 24, 

23, 31, 32, 33, 34]. Rest of the paper did not have comparable results but those studied 

also NVDLA which made them interesting for this project [16, 30, 28, ]. However, all of 

the papers were studying CNN hardware accelerators but from slightly different points of 

view. 
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4. NVDLA IMPLEMENTATION FLOW 

The implementation flow is discussed next. The goal of this thesis project is to execute 

logic synthesis phase of the ASIC design flow for the NVDLA open-source hardware 

accelerator. NVDLA source codes can be downloaded from the GitHub [14]. The logic 

synthesis was performed with Synopsys Design compiler and the floorplan was created 

with IC Compiler 2. The target technology node is 7 nm. Actual logic synthesis run was 

executed on external LSF computing server. The studied design was NVDLA version 1.0 

[14]. The nvdla1 (nv_full) is a non-configurable “full-precision” version of the NVDLA. It 

is fixed at 2048 8-bit MACs [14]. The NVDLA architecture and software design are 

discussed next. 

4.1 NVDLA 

The NVIDIA Deep Learning Accelerator (NVDLA) is a standardized open architecture 

hardware design to meet the demand for computational inference. The NVDLA design 

is scalable and very configurable. At the same time, it is also flexible and simplifies 

integration. Its execution is mostly based on four mathematical operations which are 

convolutions, activations, pooling, and normalization. Generally, computations in deep 

learning inference are based on these. This is because they have characteristics that 

make them good match for special-purpose hardware implementations. These are highly 

predictable memory access patterns, and they are easy to parallelize. [6]. Furthermore, 

CNN hardware accelerators extend memory, explore parallelism, and reduce data 

movement when implemented on FPGA or ASIC devices [29]. 

NVDLA hardware inference acceleration solution is simple and agile. It is applicable for 

many performance levels and can be used in from cost-sensitive Internet of Things (IoT) 

devices to large high performance IoT devices. In practice NVDLA is a set of IP-core 

models built with an open industry standards. NVDLA is implemented in RTL form as 

Verilog code, it is a synthesis and simulation model. NVDLA also includes the TLM 

SystemC simulation model which is made for software development, system integration, 

and testing. The NVDLA is open-source project and project management is implemented 

as an open, directed community. [6]. Other similar kind of convolutional neural network 

hardware accelerators are CoNNA and MIT Eyeriss CNN accelerator [16, 18]. The 

Eyeriss is also much more flexible design than NVDLA [26]. However, NVDLA dataflow 

performance is better than of NLR (No Local Reuse) strategy [27]. 
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NVDLA architecture is designed to make configuration, integration, and portability easier. 

It uncovers the building blocks of deep learning inference operations acceleration. 

NVDLA hardware includes 5 main components which are: 

1. Convolution Core 

2. Single Data Processor 

3. Planar Data Processor 

4. Channel Data Processor 

5. Dedicated Memory and Data Reshape Engines 

All these blocks are separated and can be configured independently. For example, if a 

system does not need so much convolutional performance the performance of the 

convolutional block can be scaled down or vice versa if it needs additional convolutional 

performance, it can be scaled up. This can be done without editing other blocks in the 

accelerator. CPU or co-processor handles operations scheduling for each block. Blocks 

operate on tight scheduling boundaries independently. This kind of scheduling 

management can be made in two ways on high level these are the “headed” and 

“headless” implementation. In “headed” implementation this is done by adding 

management coprocessor in the design as part the NVDLA sub-system. In “headless” 

implementation this functionality is merged to the main processor by using higher level 

driver implementation. The benefit of this is that NVDLA hardware architecture can be 

used in different size implementations. [6]. 

Interfacing is handled with common practises between the NVDLA hardware and rest of 

the system. In the design a control channel realizes interface for register file and 

interrupt. Two standard AXI bus interfaces enable the interface with memory. The main 

memory interface connects to the broader memory system which includes system 

DRAM, and this memory interface will be common with CPU and I/O peripherals in the 

system. The optional second memory interface enable a connection for higher-

bandwidth memory dedicated to NVDLA or some external subsystem. The benefit of this 

optional heterogeneous memory interface is additional flexibility to scale between 

various host systems. [6]. 

The inferencing flow starts with processor transmitting down the hardware configuration 

of a layer together with an “active” command. In a “headed” implementation this executed 

by a microcontroller and in a “headless” implementation by the main CPU. It is also 

possible to transmit down multiple layers to different engines and activate them at the 

same time if this is not excluded by data dependencies. To ensure smooth execution all, 

the engines have a double-buffer for their configuration registers with this they can get 

the configuration of a second layer and start execution instantly after the active layer has 



41 
 

 

finished. After a hardware engine completes its active job, it transmits an interrupt to the 

processor to inform the completion and the processor can begin the same process again. 

previously described command-execute-interrupt flow iterates until the inference is 

completed for the whole network. Figure 8 shows the two NVDLA system models. On 

the left side is the small “headless” implementation which is intended for more cost-

sensitive devices. On the right side is the large headed implementation which have the 

additional coprocessor and high-bandwidth SRAM for the NVDLA sub-system. The 

intended use of large system are high-performance IoT devices which may execute 

multiple jobs simultaneously. [6]. 

 

Figure 8. Two different NVDLA systems [6]. 

Purpose of the small-NVDLA model is to enable usage of deep learning technologies in 

areas where it has not been feasible before. It is targeted for cost-sensitive Internet of 

Things (IoT) devices with AI and automation systems which operations are well-defined 

and have cost, area, and power as the main drivers. Flexibility in configurable resources 

in the NVDLA is the key factor to achieve saving in cost, area, and power. Neural network 

models in the NVDLA allow pre-compilation and performance adjustment in a way that 

enables size reduction and scales down load complexity in larger models. With these 

adjustments the whole NVDLA implementation is smaller whereupon models use less 
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storage and are quicker for system software to load and process. [6]. Even the small-

NVDLA has high performance and low power when compared to normal processors [31]. 

Typically, these kind of systems execute one task at a time and due to that system 

performance is not a big concern while NVDLA is operating. Usually, processor 

architectural choices and usage of task management systems like FreeRTOS are the 

result for reasonable amount of NVDLA interrupts in the main processor. Resulting that 

extra microcontroller is not needed because the main processor is able to perform all the 

rough scheduling, memory allocation and the more fine-grained management of NVDLA. 

[6]. 

Systems implemented as the small-NVDLA model the system performance is usually not 

a priority which is the reason why it is not using the optional second memory interface. 

In this case not having a high-speed memory path is unlikely to impact to the system 

performance. These system usually use DRAM as the system memory because it 

consumes less power than SRAM. Further the system memory is used as a computation 

cache which makes the system more power-efficient. [6]. 

When the primary objectives are high performance and versatility the large-NVDLA 

model is a preferable choice. High performance IoT systems might execute inference on 

various network topologies due to that flexibility is important for these kind of systems. 

These systems may execute multiple task at the same time, so it is important that they 

don’t use too much processing power on the host. The large-NVDLA hardware has a 

second memory interface made for high-bandwidth SRAM. It is optional and can be used 

if needed. It will be used to interface with coprocessor to help the main processor with 

the interrupt load. [6]. 

If the system is implemented with a high-bandwidth SRAM, it is connected to a fast-

memory bus interface port on NVDLA. When included NVDLA will use this SRAM as a 

cache, further it can be distributed by other high-performance computing components on 

the system. The purpose of this functionality is to decrease communication load to the 

main system memory. [6]. 

General purpose processors like ARM Cortex-M and Cortex-R processor or alternatively 

inhouse microcontroller designs usually fill the requirements for the NVDLA coprocessor. 

Even though coprocessor is in use some tasks are handled by the main processor to 

manage NVDLA properly. The tasks can be divided as follows, the coprocessor is 

responsible of scheduling and fine-grained programming, while the main processor is 

responsible of rough scheduling on the NVDLA hardware, it has also the responsibility 

of IOMMU mapping for memory access in NVDLA, memory allocation of input data, fixed 
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weight arrays on the hardware, and synchronization of other system components and 

tasks executed on NVDLA hardware. [6]. 

4.1.1 Hardware architecture 

The NVDLA architecture has two operation modes. The options that can be programmed 

are independent mode, and fused mode. In independent mode functional blocks are 

configured according to what and when it executes, so every block is working with 

assigned task. This means that blocks in NVDLA are performing operations in memory-

to-memory fashion, the data goes in and out of systems main memory or SRAM memory 

if enabled. Fused mode is quite similar to independent mode. The difference in operation 

is that some of the blocks may be linked together as a pipeline. Benefit from this is 

improved performance because data doesn’t have to go to memory and again back to 

block. Instead of this communication between blocks is handled with small FIFOs. Here 

is an example of this, data can be sent straight from the convolution core to the Single 

Data Point Processor and from there to the Planar Data Processor, and then pass to the 

Cross-channel Data Processor. Figure 9 represents the internal architecture of headless 

NVDLA core. [6]. 
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Figure 9. Headless NVDLA architecture [6]. 

NVDLA connects to the rest of the system with three connections which are 

Configuration Space Bus interface (CSB), Interrupt interface, and Data Backbone 

interface (DBB). The CSB is a synchronous interface, it has low-bandwidth, low-power, 

and 32-bit control bus that is made for a CPU to access configuration registers in the 

NVDLA. Working principle on the CSB interface is that NVDLA function as a slave. 

Interface protocol on CSB implementation is simple which gives flexibility to convert to 

AMBA, OCP or some other system bus. Interrupt interface is for a 1-bit level driven 

interrupt. The interrupt line in NVDLA hardware is used on two cases, when task is 

completed or if an error occurs. The DBB interface is the main connection between 

NVDLA and the main system memory subsystem. It is setup to be a synchronous, high-

speed, and highly configurable data bus. This bus can be configured based on the 

systems requirements, it can have different address sizes, data sizes, and issue different 

sizes of requests. The DBB is a simple interface alike to AXI and can be used with AXI-

compliant-systems. There is also second connection for the DBB interface, it is an 

optional connection which may be used when a second memory path is available. The 

second connection is similar to the primary Data Backbone interface and is designed to 

be used with an on-chip SRAM which can raise up the throughput and bring down access 
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latency. The second interface is not needed to get NVDLA working, by removing it 

systems can save area. [6]. 

Components in the NVDLA architecture are design specifically for deep neural networks 

to assist inference operations on it. NVDLA has 6 key functional blocks which are 

Convolution operations block, Single Data Point Processor, Planar Data Processor, 

Cross-channel Data Processor, Data Reshape Engine, and Bridge DMA. NVDLA 

hardware supports some deep learning frameworks like TensorFlow. [6]. These CNN 

layers are the reason why modern CNNs have high performance [18]. 

Convolution operations are handled in Convolution core and buffer blocks. They work 

with 2 data sets “weights” and “features”. Weights are offline-trained, and they are 

constant between different inference runs. Feature data set is the input data which 

changes depending on the network’s input. The convolutional hardware engine can be 

used with different parameters to operate with different size convolutions and to keep 

high efficiency. It is implemented as a naive convolution engine to optimize and upgrade 

performance. Optimizations include support for sparse weight compression to save 

memory bandwidth. Winograd convolution support enhances computing efficiency for 

different filter sizes. Batch convolution may save some extra memory bandwidth with 

reused weights when multiple inferences are executed in parallel. The NVDLA 

convolution engine has its own internal RAM, it is for storing weights and input features 

and it is called as the “convolution buffer”. The benefit of this is better memory efficiency 

which is obtained by eliminating the need to send a request to the system memory 

controller every time a weight or feature is required. [6]. 

The Single Data Point Processor (SDP) or Activation engine block makes possible the 

usage of linear and non-linear functions onto single data points. In Convolutional Neural 

Networks this is usually used instantly after the convolution operation. For non-linear 

functions the Single Data Point Processor possess a lookup table and for linear functions 

it uses plain bias and scaling. Combined together they can execute basic activation 

functions and other element-wise operations such as ReLU, PReLU, precision scaling, 

batch normalization, bias addition with other sophisticated non-linear functions, like a 

sigmoid and a hyperbolic tangent. [6]. 

The Planar Data Processor (PDP) or Pooling engine block exists in order to run specific 

spatial operations which are commonly used in Convolution Neural Network applications. 

It can be configured during a run to aid various pool group sizes, and to aid three pooling 

functions which are maximum-pooling, minimum-pooling, and average-pooling. [6]. 
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The Cross-channel Data Processor (CPD) or Local resp. norm block works with multi-

plane operations. It is a customized component made to utilize the local response 

normalization function (LRN). It is a normalization function operating especially on 

channel dimensions, unlike to the spatial dimensions. [6]. 

The data reshape engine (RUBIK) runs data format transformations here are a few 

examples splitting or slicing, merging, contraction, and reshape-transpose. The 

inference process on a convolution network usually requires reconfigured or reshaped 

data in memory. This means that different features or spatial areas of a picture may 

detached with “slice” operations and operations like “reshape-transpose” generates a 

larger output data than the input dataset. and general deconvolutional network 

operations like “reshape-transpose” generate output data with larger dimensions the 

input dataset. [6]. 

The Bridge DMA (BDMA) module acts as an engine for copying data to transmit it 

between the system DRAM and the high-speed memory interface, when used. Meaning 

that this module provides connection between the system DRAM and high-speed 

memory interface to accelerate data transfer. [6]. 

NVDLA is highly configurable in order to fit it in different applications. Another 

reconfigurable CNN design is the Compressed CNN hardware accelerator (CoNNA) [16]. 

This flexibility is achieved by extensive set of configurable hardware parameters which 

balance area, power, and performance. Some of these are listed below. [6]. 

1. Data types. (NVDLA is set to support multiple data types in its operational parts. 
Area may be saved by choosing limited subset of these. Available data types are 
binary; int4; int8; int16; int32; fp16; fp32; and fp64.) [6]. 

2. Input image memory formats. (Different image modes may be enabled or 
disabled to save area. Options include planar images, semi-planar images, or in 
general other packed memory formats.) [6]. 

3. Weight compression. (Memory bandwidth may be reduced in NVDLA, this can 
be done by sparsely storing convolution weights. Weight compression can be 
turned off to save area.) [6]. 

4. Winograd convolution. (The Winograd is an optimization algorithm for convolution 
in some of its dimensions. It can be enabled or disabled depending of the NVDLA 
implementation.) [6]. 

5. Batched convolution. (Batching is convolution operation that can save memory 
bandwidth. It can be enabled or disabled depending of the NVDLA 
implementation.) [6]. 

6. Convolution buffer size. (The convolution buffer is constructed from several 
banks. The number of banks can be set from 2 to 32 and the size of these can 
set from 4KiB to 8 KiB. The total amount of convolution buffer memory can be 
defined by multiplying the above parameters together.) [6]. 
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7. MAC array size. (NVDLA contains the multiply-accumulate engine which is 
formed in two dimensions. The width dimension is market as “C”, it can have a 
value from 8 to 64. The depth dimension is market as “K”, it can have a value 
from 4 to 64. The total amount of multiply-accumulates can be defined by 
multiplying the above parameters together.) [6]. 

8. Second memory interface. (NVDLA has optional second memory interface 
designed for high-speed access. It can use only one interface but when needed 
this second interface can be enabled.) [6]. 

9. Non-linear activation functions. (Nonlinear activation functions can be removed 
from the lookup table if there is need to save area. These functions include for 
example sigmoid and tanh.) [6]. 

10. Activation engine size. (Activation outputs per cycle can be set from 1 to 16.) [6]. 

11. Bridge DMA engine. (This module is not needed in all implementations so it can 
be disabled to save area.) [6]. 

12. Data reshape engine. (The data reshape engine is optional and can be disabled 
to save area.) [6]. 

13. Pooling engine presence. (The pooling engine is optional and can be disabled to 
save area.) [6]. 

14. Pooling engine size. (Size of the pooling engine can be set to generate 1 to 4 
outputs per cycle.) [6]. 

15. Local response normalization engine presence. (This functionality can be 
disabled to save area.) [6]. 

16. Local response normalization engine size. (The local response normalization 
engine can be set to generate 1 to 4 outputs per cycle.) [6]. 

17. Memory interface bit width. (Bit width of the memory interface depends of the 
width of the external memory interface. Size of the internal buffers can be set with 
relation to the external memory.) [6]. 

18. Memory read latency tolerance. (The number of cycles between read request 
and read data return is the memory latency time. This can be set to different 
latency times which in turn affects the internal latency buffer size of read DMA 
engines.) [6]. 

4.1.2 Software design 

NVDLA software ecosystem has extensive cover of software features. The related 

software is divided into 2 groups. These are the compilation tools and the runtime 

environment. The compilation tools implement model conversion, and the runtime 

environment is run-time software which enables networks loading and execution on 

NVDLA. Figure 10 visualizes NVDLA system software functioning. It is the general 

dataflow inside of NVDLA system software. [6]. 
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Figure 10. NVDLA system software dataflow [6]. 

Compilation tools contain compiler and parser. Compiler generates a set of optimized 

hardware layers according to the specific NVDLA configuration. By optimizing model size 

of hardware layers network, load and run times are reduced which in turn improves 

performance. Compilation is a multi-step process that may be divided into 2 basic 

components which are parsing and compiling. The parser may be implemented in a 

simple way, its functionality can only be based on reading a pre-trained Caffe model and 

creating an “intermediate representation” of a network which is then passed on to the 

following step of compilation. Inputs for the compiler are the parsed data and the 

hardware configuration of specific NVDLA design from these it creates a network of 

hardware layers. Previous steps are executed offline and can be executed on target 

device for which the NVDLA design is implemented. [6]. 

Knowledge about configuration in particular NVDLA hardware design is helpful. It helps 

the compiler to create suitable layers for the available features. This means that the 

compiler can select most suitable convolution operation mode for the design for example 

Winograd convolution or basic convolution, it can even split convolution operations into 

small pieces depending on the size of the convolution buffer. This step also handles 

model quantization to lower precision and memory region allocation for appropriate 

weights. The same compiler tool will be able to create an operation list for numerous 

distinctive NVDLA configurations. [6]. 

Going further in the dataflow next there the runtime environment. It runs an inference 

model on NVDLA hardware. The runtime environment is divided into two functional 

layers which are user mode driver and kernel mode driver. User mode driver and user-

mode programs are the primary interfaces. As the data goes forward from parsing the 

network will be compiled layer by layer and converted into “NVDLA loadable” which is a 

file format type in NVDLA design, these tasks are performed by the neural network 

compiler. As soon as loadable is available user mode runtime driver loads it and issue 

inference task for kernel mode driver to continue the process. Kernel mode driver 

contains drivers and firmware that schedule layer operations on NVDLA, it is also 

responsible of programming the NVDLA registers to define all the functional units. [6]. 

Let’s take a closer look of previously described drivers. When the runtime execution 

begins, there exist a representation of the network so called “NVDLA loadable” 
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illustration which is stored in memory. From the perspective of a loadable NVDLA design 

is made of functional blocks that are represented in a form of layers in software. All the 

layers have data about their dependencies. Each single layer knows the tensors it will 

use as inputs as well as outputs in memory. It even has the information about the specific 

configuration of single block to run particular operation on it. The link between layers is 

a dependency graph, it is utilized to schedule operations by kernel mode driver. The 

NVDLA loadable is standardized format for all compiler and user mode driver 

implementations. Designs made in accordance with the NVDLA standard should 

comprehend any NVDLA loadable illustration. Inference can be performed with the 

loadable illustration, even if the implementation does not have all the required features. 

[6]. 

In user mode driver “loadable” illustrations are processed through a standard application 

programming interface (API), it also handles input and output tensors binding to memory 

locations and performing inference. The purpose of this layer is to load the network into 

memory and pass it on to the kernel mode driver as defined by the implementation. e.g., 

Linux kernel uses ioctl() to transmit information between the user mode driver and the 

kernel mode driver. This can be done by a simple function call if it is performed on a 

single-process system, where the kernel mode driver operates in the same environment 

with the user mode driver. [6]. 

The primary entry point in kernel mode driver receives an inference task in memory, it 

selects the task to be scheduled from multiple options and then issues it to the core 

engine scheduler. The above referred to functioning of multi-process system. Core 

engine scheduler responsibilities include processing interrupts from NVDLA hardware, 

managing the network by scheduling layers on functional blocks, and updating 

dependencies between layers if for instance next layer needs updates based on the task 

done on a previous layer. The scheduler determines when the subsequent layer is ready 

to be scheduled by using data from the dependency graph. The benefit of this function 

is optimized scheduling of layers. It also prevents performance deviation between 

various implementations of kernel mode driver. Portability layers in the NVDLA are 

shown in Figure 11. [6]. 
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Figure 11. Visualization of portability layers in the NVDLA system [6]. 

The system is configured in a way where the user mode driver pile and the kernel mode 

driver pile exist as defined APIs. They are supposed to be wrapped to a system by 

portability layer. Core implementations should sustain in the portability layer quite easily 

without major changes and facilitate efforts to execute an NVDLA software-pile on many 

platforms if needed. The similar core implementations should compile equally easily on 

Linux as on FreeRTOS when portability layers are properly in place. Correspondingly, 

on designs implemented with a combined microcontroller as “headed” NVDLA 

implementation, the portability layer enables to execute the same low-level software on 

the microcontroller as what would be executed on the main CPU if the design is 

implemented as a “headless” implementation without coprocessor. [6]. This concludes 

the discussions about the NVDLA design. 

4.2 Implementation flow 

To work with the NVDLA the design environment needs to be setup. The final Verilog 

RTL code requires three build to obtain the desired configuration according to a feature 

specification, in this case the nv_full. The RTL is built by executing commands hw/make 

and after that ./tools/bin/tmake -build vmod. [6]. 
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The downloaded NVDLA design also contains a reference synthesis setup [6]. It was 

utilized in this project to execute logic synthesis with Design Compiler in Topographical 

mode. The directory structure for synthesis is visualized in Figure 12. 

 

Figure 12. The directory structure for logic synthesis [6]. 

In the provided scripts the design is partitioned into 5 independent sub-designs to 

execute synthesis. NV_NVDLA-partition_* are a top-level synthesis hierarchies thus the 

design is compiled accordingly. [6]. The provided synthesis partition setup was exploited 

in this project to fasten the implementation process. 

To run synthesis the synthesis configuration needs to be setup. The default_config.sh 

file can be used as a reference. The most important design option variables include: 

1. TOP_NAMES: It is a list of top-level partitions to be synthesized such as, 
NV_NVDLA_partition_a NV_NVDLA_partition_c. [6]. 

2. RTL_SEARCH_PATH: Indicates the directory location of the whole RTL design. 
[6]. 
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3. DEF: Directory path to .def files incorporating the floorplans. These are created 
with the ICC2 tool and named with according to the TOP_NAMES for example 
as NV_NVDLA_partition_p.def. [6]. 

4. CONS: Directory path to .sdc files. Files in SDC format are named according to 
the TOP_NAMES for example as NV_NVDLA_partition_m.sdc. Constraints can 
be specified in .tcl format to guide the synthesis run. [6]. Synthesis runs were 
performed with both default constraints and additional constraints in TCL format 
to relax setup timing. 

5. TARGET_LIB: Directory path to a standard cell library utilized during the mapping 
[6]. 

6. LINK_LIB: Directory path to the libraries utilized when the design is linked. Should 
also contain the target library and RAM compiler timing libraries. [6]. 

7. NDM_LIB: Directory path to the files on new data model format. These are 
libraries containing technology specific information about the logical and physical 
characteristics of the particular technology. NDM mode can be utilized in the 
Design Compiler NXT topographical mode. [9]. 

8. TF_FILE: Directory path to the Milkyway Technology File which is utilized to 
generate the Milkyway models for the physical libraries [6]. 

9. TLUPLUS_FILE: Directory path to the TLUPlus files needed for the RC 
estimations [6]. 

10. TLUPLUS_MAPPING_FILE: Directory path to the Tech2ITF file. It is used to 
connect layer names between the Milkyway Tech file and the interconnect 
technology format file. [6]. 

11. MIN_ROUTING_LAYER: Indicates the bottom routing layer that can be used for 
the signal nets [6]. 

12. MAX_ROUTING_LAYER: Indicates the top routing layer that can be used for the 
signal nets [6]. 

13. HORIZONTAL_LAYERS: Involves a list of layers primarily dedicated for 
horizontal routing [6]. 

14. VERTICAL_LAYERS: Involves a list of layers primarily dedicated for vertical 
routing [6]. 

15. DONT_USE_LIST: Involves a list of common cell expressions that are not 
desired to be mapped to the design [6]. 

16. COMMAND_PREFIX: Variable containing a string. It manages the synthesis runs 
on LSF server. [6]. The used string is "bsub -q b_soc_rh7 -R 
"rusage[mem=16000]"". 

Synthesis constraints include clock constraints and physical constraints. The clock 

constraints are specified in SDC file for each partition, which are set to the CONS 

variable. Additional constraints can be also set in TCL format. On the actual synthesis 

run the provided default constraints were utilized with additional constraints specified for 

this project. Physical constraints are used in physical synthesis run and they are 

specified in DEF file. Physical constraints contain placement information about RAM and 

I/O defined by the designer. These are set to the DEF variable. [6]. 
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On NVDLA environment synthesis is run by using the syn_launch.sh script file. Run 

options include: 

1. -config: Directory path to the configuration file which contains all the required 
variables for libraries utilized during synthesis run. This is the default_config.sh 
file. [6]. 

2. -mode: Set the used synthesis tool. Options include wlm which is used for DC 
non-topographical and non-physical synthesis, dct which is used for DC-
Topographical, dcg which is used for DC-Graphical together with additional -spg 
argument in the compile command, and de which is used for DC Explorer. [6]. 
the dct mode was used in actual synthesis runs on the project. 

3. -build: Creates output directory for a synthesis run as nvdla_syn_<timestamp> 
[6]. 

4. -modules: A list of modules i.e., TOP_NAMES that will be processed in synthesis 
run [6]. 

To run physical synthesis by DC-Topographical the following string was executed 

${NVDLA_ROOT}/syn/dc/scripts/syn_launch.sh -mode dct -config 

/path/to/default_config.sh. Also at least the next variables have to be setup in 

default_config.sh file TARGET_LIB, LINK_LIB, MW_LIB, DC_PATH, TF_FILE, 

TLUPLUS_FILE, TLUPLUS_MAPPING_FILE, MIN_ROUTING_LAYER, and 

MAX_ROUTING_LAYER. Furthermore, HORIZONTAL_LAYERS and 

VERTICAL_LAYERS may be setup if the physical libraries need that information. 

Eventually, the NVDLA synthesis environment creates output file structure which is 

shown in Figure 13. 

 

Figure 13. Output files of a synthesis run [6]. 

The fv directory contains .svf files for each partition to run formal verification with the 

Synopsys Formality tool. The net directory contains for example the mapped netlist. The 
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db directory contains the final and intermediate synthesis design database files for each 

partition. The report directory contains the essential report files of the synthesis run for 

all the partitions. The .final.report files contain the Quality of Report (QoR) information 

which are examined in the results section of this thesis. [6]. This concludes the synthesis 

flow discussions related to NVDLA environment. 

To present comprehensive description of the implementation flow the IC Compiler 2 tool 

is considered on discussions. The executed flow is shown in Figure 14. 

 

Figure 14. The floorplan exploration flow from DC to ICC 2 [9]. 

The initial logic synthesis run requires the constraints, RTL, logic library, and physical 

library as an input. The floorplan is not yet created so it is optional. DC performs the logic 

synthesis process and generates the netlist, floorplan, and constraints. At this stage the 

automatically generated floorplan is not very efficient thus the floorplan is created 

manually with IC Compiler 2. This mean placing the macros and I/O ports and storing 

the placement information in a .def file. Now the floorplan can be included into the 

synthesis run and design compiler can perform the synthesis process again from better 

starting point. Hence, the output netlist is more efficient compared to the initial output. 

The described flow was performed in the thesis project. Next, the System is discussed 

in more detail. 
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4.3 Detailed system description 

The NVDLA system is divided into five partitions each performing dedicated functionality. 

The basic top-level structure and data exchange between partitions is shown in Figure 

15. 

 

Figure 15. NVDLA top-level structure [10, 28]. 

The partitions include: 

1. Partition_o: This partition manages the communication in the system between 
the processing components. The functionality includes CSB master, AXI 
interfaces, bridge DMA, Rubik engine, Cross-channel data processor, Planar 
data processor and Global unit. [14]. 

2. Partition_c: This partition controls some convolution kernel operations. The 
functionality includes Convolution DMA, Convolution buffer and Convolution 
sequence controller. [14]. 

3. Partition_m: This partition executes multiplication and addition calculations. The 
functionality includes Convolution MAC array. [14]. 

4. Partition_a: This partition collects all the partial sums generated in the MAC array 
and evaluates the outcomes prior passing them to the following activations step. 
The functionality includes Convolution accumulator. [14]. 

5. Partition_p: This partition executes some linear and non-linear operations. The 
functionality includes Single data processor. [14]. 

Next sections describes the physical structure of the partitions in detail. 
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4.3.1 Partition_m 

The partition m is part of the convolution core. The post-synthesis layout is visualized in 

Figure 16. 

 

Figure 16. Layout picture of partition m. 

On the layout the I/O’s are placed on the top of the core shown as narrow turquoise 

rectangle in the Figure 16. In this way the rest of the core area is left for standard cells 

which are shown as purple fog. The leaf cell count is 894 106 and there are no macros 

i.e., RAMs in partition m. The design area is 133 097,7002 µm2. Next, the layout of 

partition_o is presented. 

4.3.2 Partition_o 

Partition_o is the controlling part of the design. The post-synthesis layout is visualized in 

Figure 17. 

 

Figure 17. Layout picture of partition o. 

Similar to partition_m the I/O’s are placed on top of the core also on partition_o. The 

difference is that partition_o has 8 macro instances, they are the turquoise boxes at the 

bottom left corner. Usually, in industry the memory macros are placed on a U-shape to 



57 
 

 

give as much uniform space for the standard cells as possible. The placement is started 

from the bottom left corner and the macros are placed together hierarchically; in this case 

the macro count is low, therefore they don’t form the U-shape. However, this way the 

routing between the logic elements is usually better. For the same reason, buffer only 

blockages are set on the gaps between the memories visible in Figure 17. Also, hard 

blockages are placed on top of the memories to make sure that standard-cells are not 

placed on top of the memories during synthesis run. Standard-cells are the purple fog. 

Just by looking at the Figure 17 we can say that partition_o has less cells than 

partition_m. The leaf cell count in partition_o is only 291 905 and the design area is 

68339,4530 µm2. Next, the layout of partition_p is presented. 

4.3.3 Partition_p 

Partition_p is the activation core. The post-synthesis layout is visualized in Figure 18. 

 

Figure 18. Layout picture of partition p. 

The applied placing principles are the same as on partition_m and partition_o. I/O’s are 

on top, memory placement is started from bottom left corner (blockages in between and 

on top), and standard-cells are in between I/O’s and memories. Leaf cell count is 859 129  

and it has 16 macro instances. Design area is 194 218,8532 µm2. Next, the layout of 

partition_a is presented. 
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4.3.4 Partition_a 

Partition_a is the other part of the convolution core. The post-synthesis layout is 

visualized in Figure 19. 

 

Figure 19. Layout picture of partition a. 

The placement on partition_a is implemented with same principles as on the previous 

partitions. Nonetheless, the difference is that on partition_a the U-shape placement of 

the memories is visible in Figure 19. Leaf cell count is 470 830 and it contains 36 macro 

instances. Design area is 190 734,8399 µm2. Finally, the layout of partition_c is 

presented in next section. 
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4.3.5 Partition_c 

Partition_c is the convolution buffer. The post-synthesis layout is visualized in Figure 20. 

 

Figure 20. Layout picture of partition c. 

Previously explained placements principles are applied in partition_c as well. However, 

it is different to other partitions, it is memory dominated with 149 macro instances. From 

Figure 20 we can also see that the purple standard-cell area does not look fogy in 

partition_c, because cells are placed much denser compared to other partitions. Since, 

the memories require more space. Leaf cell count is 931 135. Design area is 

863205,5468 µm2 of which memory macros cover 724 145,7469 µm2. Next, the used 

memory wrapper is discussed. 

4.3.6 Memory wrapper 

The NVDLA core and TSMC RAMs need to be connected with some method to enable 

communication between them. To achieve this a memory wrapper is created with 

company internal tool. The tool is able to generate a memory wrapper for single-port, 

two-port or dual-port 7 nm RAMs [13].  Basic configuration of a memory wrapper is 

visualized in Figure 21. 
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Figure 21. Memory wrapper. 

In general, a memory wrapper system is a set of virtual elements which are 

interconnected through channels. The wrapper integrates the memory interface to the 

communication network. The system is setup so that from the physical point of view 

memory accesses are divided into logical accesses. To integrate the logical and the 

physical interface and to accesses the behaviour, the interface contains two types of 

ports: logical and physical ports. Logical ports enable the logical access to the memory 

and physical ports enables the physical access to the memory. This allow the distinct 

behaviour and interface which increases the flexibility level in the design. Since, the 

memory implementation can be decided later in the design process. [12]. 
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5. SYNTHESIS RESULTS 

This section discusses the post synthesis results. In this analysis results include power, 

area, and timing numbers. The results are presented independently for all the NVDLA 

partition since, they are independent synthesis top-level hierarchies. The top-level 

integration model is missing; thus, no attempt is made to combine the partitions in the 

results. The Global operating voltage was 0,675 V in the synthesis run. First, the power 

results are presented. 

5.1 Power 

This section reports the power results for all the partitions individually. It summarizes the 

internal power, switching power and leakage power numbers of all the functional 

elements in the partition. Power results of partition_a are shown in Table 3. 

Table 3. Power results of partition_a. 

Partition_a 
Power Group 

Internal 
Power mW 

Switching 
Power mW 

Leakage 
Power mW 

Total Power 
mW 

% 

io_pad 0,0000 0,0000 0,0000 0,0000 0,00 % 

memory 4,2592 5,0204 0,0098 9,2894 54,01 % 

black_box 0,0000 0,0000 0,0000 0,0000 0,00 % 

clock_network 0,3631 0,9654 0,0000 1,3285 7,72 % 

register 4,3067 0,9273 0,0008 5,2348 30,44 % 

sequential 0,0000 0,0000 0,0000 0,0000 0,00 % 

combinational 0,1495 1,1939 0,0023 1,3457 7,82 % 

Total 9,0784 8,1070 0,0130 17,1984  

From Table 3 we can see that memory consumes most of the total power in partition_a. 

If we further add registers to this consideration, they consume together over 84 

percentage of the total power. The least power-hungry element is the clock network with 

combinational logic being in the same numbers. As one can expect most of the power is 

consumed in the dynamic power category. In the partition_a the internal power 

consumption and the switching power consumption are almost the same. The leakage 

power consumption is low in partition_a. The total power consumption of this partition is 

about 17,2 mW. Power results of partition_c are shown in Table 4. 
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Table 4. Power results of partition_c. 

Partition_c 
Power Group 

Internal 
Power mW 

Switching 
Power mW 

Leakage 
Power mW 

Total Power 
mW 

% 

io_pad 0,0000 0,0000 0,0000 0,0000 0,00 % 

memory 10,7914 12,4233 0,0558 23,2705 34,93 % 

black_box 0,0000 0,0000 0,0000 0,0000 0,00 % 

clock_network 0,8698 2,0236 0,1587 3,0521 4,58 % 

register 10,1113 1,0236 0,0034 11,1383 16,72 % 

sequential 0,0000 0,0000 0,0000 0,0000 0,00 % 

combinational 3,8412 25,3195 0,0073 29,1680 43,78 % 

Total 25,6137 40,9486 0,0667 66,6290  

From Table 4 we can see that in partition_c the combinational logic consumes most of 

the power almost 44 percentage of the total power. On contrast, the clock_network 

consumes the least amount of power. As in partition_a in partition_c most of the power 

is consumed as dynamic power. In partition_c the switching power is the highest power 

consumer. The leakage power consumption is minimal in partition_c. The total power 

consumption of the partition is about 66,6 mW which is the highest compared to other 

partitions. Power results of partition_m are shown in Table 5. 

Table 5. Power results of partition_m. 

Partition_m 
Power Group 

Internal 
Power mW 

Switching 
Power mW 

Leakage 
Power mW 

Total Power 
mW 

% 

io_pad 0,0000 0,0000 0,0000 0,0000 0,00 % 

memory 0,0000 0,0000 0,0000 0,0000 0,00 % 

black_box 0,0000 0,0000 0,0000 0,0000 0,00 % 

clock_network 0,9224 1,6369 0,0001 2,5594 30,62 % 

register 4,1849 0,3489 0,0010 4,5348 54,25 % 

sequential 0,0000 0,0000 0,0000 0,0000 0,00 % 

combinational 0,3006 0,9559 0,0088 1,2653 15,14 % 

Total 5,4080 2,9417 0,0098 8,3595  

From Table 5 we can see that majority of the power is consumed in registers which is 

about 54 percentage of the total power consumption in partition_m. This partition does 

not have own memories which was the highest power user in previous partitions, but it 

performs MAC calculations thus the registers power usage is high. Combinational logic 

consumes the least amount of power in this partition. Internal operations cover most of 

the power consumption whereas leakage power is minimal also in partition_m. The total 

power consumption of this partition is about 8,4 mW and it is the lowest compared to 

other partitions. Power results of partition_o are shown in Table 6. 
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Table 6. Power results of partition_o. 

Partition_o 
Power Group 

Internal 
Power mW 

Switching 
Power mW 

Leakage 
Power mW 

Total Power 
mW 

% 

io_pad 0,0000 0,0000 0,0000 0,0000 0,00 % 

memory 0,0524 0,0201 0,0008 0,0733 0,63 % 

black_box 0,0000 0,0000 0,0000 0,0000 0,00 % 

clock_network 0,5376 0,6655 0,0000 1,2031 10,28 % 

register 7,4854 0,9434 0,0023 8,4311 72,03 % 

sequential 0,0000 0,0000 0,0000 0,0000 0,00 % 

combinational 0,4878 1,5088 0,0012 1,9978 17,07 % 

Total 8,5632 3,1378 0,0043 11,7053  

The results in Table 6 show that in partition_o registers power consumption is very high, 

those consumes over 72 percentage of the total power. Even though partition_o controls 

the memory, its own memory does not consume much power. As noted previously, also 

in this partition most of the power is consumed in internal cell operations and the leakage 

power consumption is minimal which is a good thing since energy is not wasted. The 

total power consumption of partition_o is about 11,7 mW. Finally, power results of 

partition_p are shown in Table 7. 

Table 7. Power results of partition_p. 

Partition_p 
Power Group 

Internal 
Power mW 

Switching 
Power mW 

Leakage 
Power mW 

Total Power 
mW 

% 

io_pad 0,0000 0,0000 0,0000 0,0000 0,00 % 

memory 6,6264 1,3276 0,0043 7,9583 18,00 % 

black_box 0,0000 0,0000 0,0000 0,0000 0,00 % 

clock_network 0,7985 3,6920 0,0000 4,4905 10,15 % 

register 20,4380 1,1150 0,0024 21,5554 48,74 % 

sequential 0,0000 0,0000 0,0000 0,0000 0,00 % 

combinational 1,3909 8,8235 0,0047 10,2191 23,11 % 

Total 29,2538 14,9581 0,0114 44,2232  

The results in Table 7 show that registers cover about 49 percentage of the power 

consumption. On contrast, clock_network uses the least amount of power, although 

some electric current flow through it constantly. Internal operations consume most of the 

power while leakage power consumption is minimal. This partition has comparatively 

high total power consumption over 44 mW. 

To summarize, we can note that convolution operations in the partition_c requires lots of 

power effecting to the total power consumption of the NVDLA core. Further, the single 

data processor in the activation core implemented in partition_c has the biggest effect 

on the total power consumption. The convolution core is not too power-hungry element 
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in the design. It is implemented in partition_a and partition_m and the summed total 

power consumption is only, just over 25 mW. By just looking the Figure 15 you could 

expect that managing the system requires lots of power but actually as the power 

numbers show partition_o has only 11,7 mW total power consumption, which is actually 

quite obvious since it does not perform heavy computations. The leakage power 

consumption is managed properly in all the partitions i.e., it is low in each partition. Most 

of the power is consumed as of dynamic power where the cell internal power is the higher 

consumer of energy in most of the partition except in the partition_c where the switching 

power has the highest number. The next section discusses the area results of the NVDLA 

partitions. 

5.2 Area 

This section discusses the area related results of each partition. All the area and cell 

count results are shown in following tables. Area results are collected to Table 8. 

Table 8. Area results of all the partitions. 

Area / µm2 Partition_a Partition_c Partition_m Partition_o Partition_p 

Combinational  
Area 

40325,00 88075,21 113601,18 16444,84 83260,54 

Non-combinational 
Area 

27038,85 50984,59 19496,52 44834,09 54212,83 

Buf/Inv Area 4068,36 17733,08 6353,46 1200,95 6046,25 

Total Buffer 
Area 

681,15 10506,35 1659,11 793,44 1650,29 

Total Inverter 
Area 

3387,21 7226,73 4694,35 407,51 4395,96 

Macro/Black Box 
Area 

123370,99 724145,75 0,00 7060,52 56745,48 

Net Area 0,00 0,00 0,00 0,00 0,00 

Net XLength 4808959,50 14996478,00 4519846,00 2566439,50 4771879,00 

Net Ylength 3838447,75 17214730,00 3422268,00 1208921,25 3583880,50 

Cell Area 190734,84 863205,55 133097,70 68339,45 194218,85 

Design Area 190734,84 863205,55 133097,70 68339,45 194218,85 

Net Length 8647407,00 32211208,00 7942114,00 3775360,75 8355759,50 

Partition_a is mid-sized compared to other partitions. The combinational area is 40325 

µm2, non-combinational area is 27038,85 µm2 and macro area is 123370,99 µm2 

together these form the cell area 190734,84 µm2 which is actually the overall design 

area. This area also includes the buffer and inverter area. The total inverter area in 

partition_a is 3387,21 µm2 and the total buffer area is 681,15 µm2 thus the buf/inv area 

is 4068,36 µm2. Partition_c is the largest of the partitions. In partition_c the combinational 

area is 88075,21 µm2, non-combinational area is 50984,59 µm2 and macro area is 
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724145,75 µm2 together these form cell area of 863205,55 µm2. The high area number 

is consequence of RAMs in the partition as we can see from the macro area number. It 

has also the largest area of inverters and buffers, the total inverter area is 7226,73 µm2 

and the total buffer area is 10506,35 µm2 thus the buf/inv area is 17733,08 µm2. 

Partition_m is one of the smaller partitions with cell area of 133097,7 µm2. It does not 

have any RAMs hence the combinational area is the largest (113601,18 µm2) compared 

to other partitions. As a consequence, the non-combinational area is the smallest 

(19496,52 µm2). The major difference to other partition is that partition_m does not have 

any RAMs hence the macro area is 0 µm2. In partition_m the total inverter area is 4694,35 

µm2 and the total buffer area is 1659,11 µm2 thus the buf/inv area is 6353,46 µm2. 

Partition_o is the smallest partition with 68339,45 µm2 cell area. The small size results 

from the combinational area which is only 16444,84 µm2. Non-combinational area is 

44834,09 µm2 and macro area is 7060,52 µm2 which is the smallest compared to 

partitions that have RAMs. Also, total inverter area (407,51 µm2) and total buffer area 

(793,44 µm2) are the smallest in partition_o hence the buf/inv area is the smallest 

1200,95 µm2. Lastly, the mid-sized partition_p has cell area of 194218, 85 µm2. This is 

the outcome of combinational area (83260, 54 µm2), non-combinational area (54212,83 

µm2) which highest compared to other partitions, and macro area (56745, 48 µm2). Total 

inverter area is 4395,96 µm2 and total buffer area is 1650,29 µm2 thus the buf/inv area 

is 6046,25 µm2. Next, the cell count results are discussed. The results are show in Table 

9. 

Table 9. Cell count results of all the partitions. 

Cell Count Partition_a Partition_c Partition_m Partition_o Partition_p 

Hierarchical 
Cell Count 

1067 2759 1865 1348 2552 

Hierarchical 
Port Count 

4268 11036 7460 5392 10208 

Leaf Cell Count 470830 931135 894106 291905 859129 

Buf/Inv Cell Count 68921 204188 104069 16809 98248 

Buf Cell Count 8256 100533 20045 9605 19411 

Inv Cell Count 60665 103655 84024 7204 78837 

CT Buf/Inv Cell 
Count 

0 0 0 0 0 

Combinational 
Cell Count 

381252 768265 829455 144298 688702 

Sequential Cell 
Count 

89578 162870 64651 147607 170427 

Macro Count 36 149 0 8 16 

First, cell count results of partition_a are examined. Combinational cell count is 381252 

and sequential cell count is 89578 together resulting leaf cell count of 470830 cells which 
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is not a big number compared to other partitions. As the area results already indicated 

partition_a has much more inverters (60665) than buffers (8256) resulting buf/inv cell 

count to be 68921 which is also quite small number compared to other partitions. Macro 

count in partition_a is 36, this is visualized in Figure 19. Partition_c is the densest from 

the cell count perspective. It has the highest leaf cell count (931135) resulting from 

combinational cell count of 768265 cells and from sequential cell count of 162870 cells. 

It has also the highest inverter cell count (103655) and buffer cell count (100533) thus 

the buf/inv cell count is the highest 204188 cells. Partition_c has 149 macros making it 

macro dominated from the layout perspective. This is visualized in Figure 20. Partition_m 

has almost as high leaf cell count (894106) as partition_c. This is mainly the outcome of 

combinational cell count (829455) which is the highest compared to other partitions. On 

contrast, the sequential cell count (64651) is the lowest in the design. As noted in the 

area section partition_m does not have any RAMs thus the macro count is 0. This is 

visualized in Figure 16. Partition_o  has the lowest leaf cell count (291905), it also has 

the lowest combinational cell count (144298), and the sequential cell count is 147607. 

Accordingly, the inverter cell count (7204) and the buffer cell count (9605) are the lowest 

compared to other partition thus the buf/inv cell count (16809) is the lowest. The macro 

count of partition_o is 8 which is also shown in Figure 17. Lastly, the cell count numbers 

of partition_p are represented. Partition_p has high leaf cell count (859129) from these 

combinational cells are 688702 and sequential cells are 170427. The sequential cell 

count is the highest in partition_p compared to other partitions. Inverter cell count is 

78837 and buffer cell count is 19411 thus buf/inv cell count is 98248. Partition_p has 16 

macros which are shown in Figure 18. This concludes the area section of the results. 

Next, the timing results are discussed. 
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5.3 Timing 

This section discusses about the timing results, reported after successful synthesis run. 

The setup and hold timing results of all the partitions are shown in this section. After that 

summary of design rule count is presented. Lastly, all the timing path groups of all the 

partitions are examined individually. First from Table 10 we can examine the setup timing 

and the hold timing of all the partitions. 

Table 10. Setup and hold timing results of all the partitions. 

Timing ns Partition a Partition c Partition m Partition o Partition p 

Design  WNS (Setup) 0,0000 0,1462 0,0000 0,0000 0,0000 

TNS 0,0000 1148,8319 0,0000 0,0000 0,0000 

Number of Violating Paths 0 28367 0 0 0 

Design (Hold)  WNS 0,1527 0,1127 0,0000 0,8553 0,1195 

TNS 305,9194 15,8890 0,0000 2071,0925 2,8882 

Number of Violating Paths 5669 1207 0 2647 37 

More specifically Table 10 shows the worst negative slack (WNS), the total negative 

slack (TNS), and the number of violating paths in the design for both setup and hold 

timing. The upper half of Table 10 concerns the setup timing and the bottom half the hold 

timing. As shown the setup part contains only zeros for all the other partitions for WNS, 

TNS, and count of violating paths, the exception is partition_c which will be analysed 

later on upcoming sections. The zeros indicate that the synthesis run was successful i.e., 

the setup time constraints are met, and the design process can now proceed to the place 

and route phase. Even if, the hold timing is not met, except for the partition_m. The slacks 

and the count of violating paths for the hold timing part need to be decreased to zero to 

be sure that the design operates as desired. However, these can be ignored for now thus 

they will change on the place and route phase. If hold time violations still exist after the 

place and route, then those have to be fixed. Types of design rule violations are 

summarized in Table 11. 

Table 11. Design rule violation types of all the partitions. 

Design Rule Violation 
Types 

Partition_a Partition_c Partition_m Partition_o Partition_p 

Total Number of Nets 488940 967816 1009711 295966 907475 

Nets with Violations 21 287 93 2 48 

Max Trans Violations 21 287 92 2 44 

Max Cap Violations 0 0 1 0 9 

In Table 11 we can see total number of nets, number of violations in the nets, and the 

type of violation either transition or capacitance violation. Partition_m has the highest 

number of nets whereas partition_o has the lowest number of nets. All the partitions have 
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some kind of violations. The highest violation count is in partition_c and the lowest in 

partition_o. Violations related to transitions exist in all the partitions. Whereas 

capacitance related violations exist only in partition_m and partition_p. Next, factors 

related to the timing paths and the clocks in the design are discussed. The results include 

for example number of logic levels, critical path characteristics, and violation 

characteristics of all the timing paths in the NVDLA. Timing paths in partition_a are 

shown in Table 12. 

Table 12. Partition_a: timing paths. 

Partition_a, ns 
Timing Path Group: 
clock_gating_default 

Timing Path Group: 
nvdla_core_clk 

Levels of Logic 2 34 

Critical Path Length 0,7574 0,9069 

Critical Path Slack 0,0169 0,0000 

Critical Path Clk Period 0,9000 0,9000 

Total Negative Slack 0,0000 0,0000 

No. of Violating Paths 0 0 

Worst Hold Violation 0,0000 -0,1527 

Total Hold Violation 0,0000 -305,9188 

No. of Hold Violations 0 5669 

From Table 12 we can see that it has 2 timing path groups from which the nvdla_core_clk 

is the actual clock signal of the partition and the clock_gating_default is additional path 

group to help the synthesis meet the timing constraints. Clock_gating_default has 2 logic 

levels, and it is clear of violations. We can also determine the maximum clock rate from 

the critical path length (0,7574 ns), it is f = 1 / T = 1,3203 GHz. The nvdla_core_clk has 

34 logic levels and it has hold violations, but these can be ignored at this point. However, 

to analyse the hold violations a bit we can see that worst hold violation and also the total 

hold violation has a negative number implying that the data path is slow compared to 

clock signal which is 0,9 ns. The critical path is 0,9024 ns also indicating the slow path; 

thus, it needs to be reduced. Timing paths in partition_c are shown in Table 13. 
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Table 13. Partition_c: timing paths. 

Partition_c, ns 

Timing Path 
Group: 
clock_gatin
g_default 

Timing Path 
Group: 
nvdla_core_
clk 

Timing 
Path 
Group: 
from_mem 

Timing 
Path 
Group: 
to_mem 

Timing 
Path 
Group: 
clk_gaters 

Levels of Logic 40 43 6 31 15 

Critical Path Length 0,9894 1,0370 0,9416 0,8012 0,5619 

Critical Path Slack -0,1455 -0,1462 -0,0364 -0,0408 -0,1207 

Critical Path Clk Period 0,9000 0,9000 0,9000 0,9000 0,9000 

Total Negative Slack -38,0323 -995,4911 -56,1600 -56,3569 -2,9106 

No. of Violating Paths 566 20697 4120 2955 43 

Worst Hold Violation 0,0000 0,0000 0,0000 -0,1127 0,0000 

Total Hold Violation 0,0000 0,0000 0,0000 -15,8890 0,0000 

No. of Hold Violations 0 0 0 1207 0 

From Table 13 we can see that partition_c contains 5 timing path groups, which 

are clock_gating_default, nvdla_core_clk, from_mem, to_mem, and clk_gaters. The 

nvdla_core_clk is the main clock timing group and the other 4 path groups are 

segregated to help the synthesis to optimize timing based on priorities. As Table 13 

shows all the timing path groups have setup timing violations but only the to_mem path 

involves hold time violations. Generally, hold time violations are not considered during 

synthesis because those will change in place & route stage and usually those are also 

fixed at that stage. However, setup time violations should be fixed already at synthesis 

stage. Timing path groups in partition_c contains in total 28367 paths under setup 

violations. To understand the reasons behind violations, the layout is visualized in Figure 

20. Partition_c is memory intensive block; it has 149 RAM instances integrated to the 

design through the memory wrappers. The desired configurations for memory layout is 

U-shape (commonly used in industry), to give the standard cells more space as possible. 

However, the memory hierarchies have to be placed together thus the layout is not really 

a U-shape in partition_c. Hence, one of the reasons to the existence of setup violations 

is related to the memory placement. By analysing timing paths from the QoR report we 

can find out that the worst violators are paths travelling to the memory instances on the 

bottom of the layout. This issue could be fixed by exploring different kind of memory 

placements, which can be time consuming process i.e., more iterative thus it is not 

performed on this project. Another reason behind setup violations in the main clock path 

group can be due to incompatible RTL design to the 7 nm technology. Since, the NVDLA 

is initially targeted to 22 nm standard-cell technology. On this project it is implemented 

to 7 nm standard-cell technology, the RTL model does not always fit directly to different 

technology. Also because of this, the memory instances (7nm) are divided into multiple 

instances to match the design memory configurations that was originally present in the 

design (22nm). This may cause the long timing paths which are of course not expected 

in the initial NVDLA model. Looking at the from_mem path group we see that about 70 
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percentage of the time in the clock period in the timing are used up inside the memories. 

Hence, the timing could be improved by utilizing high speed memories from the 

technology library. Remaining path group is about clk_gaters, the worst critical path slack 

is usually analysed after clock tree synthesis stage in the Place and route and iterated 

there to fix those timing paths. At synthesis there isn’t much that one can do to fix these 

clock gaters as clocks are in their ideal stage (not propagating). Timing paths in 

partition_m are reported in Table 14. 

Table 14. Partition_m: timing paths. 

Partition_m, ns 
Timing Path Group: 
clock_gating_default 

Timing Path Group: 
nvdla_core_clk 

Levels of Logic 4 36 

Critical Path Length 0,7943 0,8955 

Critical Path Slack 0,0000 0,0000 

Critical Path Clk Period 0,9000 0,9000 

Total Negative Slack 0,0000 0,0000 

No. of Violating Paths 0 0 

Worst Hold Violation 0,0000 0,0000 

Total Hold Violation 0,0000 0,0000 

No. of Hold Violations 0 0 

Results in Table 14 show that clock_gating_default in partition_m has 4 logic levels. It is 

clear of violations and the critical path is 0,7943 ns from which we can derive the 

maximum clock rate to be 1,2590 GHz. In partition_m the nvdla_core_clk contains 36 

levels of logic and does not have any violations varying from previous partition. The 

critical path is 0,8955 and thus the maximum clock rate is 1,1167 GHz. Timing paths in 

partition_o are reported in Table 15. 

Table 15. Partition_o: timing paths. 

Partition_o, ns 

Timing Path 
Group: clock_ 
gating_ 
default 

Timing Path 
Group: 
u_NV_NVDL
A_cvif 

Timing Path 
Group: 
nvdla_ 
core_clk 

Timing Path 
Group: 
nvdla_falcon_ 
clk 

Levels of Logic 41 29 29 3 

Critical Path Length 0,8456 0,9069 0,7471 0,3499 

Critical Path Slack 0,0000 0,0000 0,0000 1,1332 

Critical Path Clk Period 0,9000 0,9000 0,9000 1,5160 

Total Negative Slack 0,0000 0,0000 0,0000 0,0000 

No. of Violating Paths 0 0 0 0 

Worst Hold Violation 0,0000 -0,8553 -0,8553 -0,6837 

Total Hold Violation 0,0000 -43,2998 -2024,5063 -3,2931 

No. of Hold Violations 0 54 2588 5 

Results in Table 15 show that partition_o has 4 timing path groups. From these the 

nvdla_core_clk and the nvdla_falcon_clk are actual clock signals. The difference to other 
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partitions is the nvdla_falcon_clk which does not exist in other partitions, it is used for 

the system control purposes which are performed in partition_o. The other 2 timing path 

groups are the clock_gating_default_and u_NV_NVDLA_cvif which are additional path 

groups to help the synthesis to meet the timing constraints. The clock_gating_default 

has 41 logic levels, and is clear of violations. the critical path is 0,8456 ns and the 

maximum clock rate is 1,1826 GHz. The u_NV_NVDLA_cvif has 29 logic levels. It has 

hold violations which can be ignored as stated before. The critical path length is 0,9069 

ns exceeding the clock period length which is 0,9 ns. The nvdla_core_clk has 29 logic 

levels, and has some hold violations which are ignored. The critical path is 0,7471 ns 

and the maximum clock rate is 1,3385 GHz. Partition_o contains also the 

nvdla_falcon_clk it has 3 logic levels and some hold violations which are ignored. The 

critical path length is 0,3499 ns and thus the maximum clock rate is 2,8579 GHz. The 

actual clock period in nvdla_falcon_clk is set to 1,5160 ns differing from the 

nvdla_core_clock. Finally, timing paths in partition_p are shown in Table 16. 

Table 16. Partition_p: timing paths. 

Partition_p, ns 
Timing Path Group: 
clock_gating_default 

Timing Path Group: 
nvdla_core_clk 

Levels of Logic 23 24 

Critical Path Length 0,8453 0,8908 

Critical Path Slack 0,0000 0,0000 

Critical Path Clk Period 0,9000 0,9000 

Total Negative Slack 0,0000 0,0000 

No. of Violating Paths 0 0 

Worst Hold Violation 0,0000 -0,1195 

Total Hold Violation 0,0000 -2,8882 

No. of Hold Violations 0 37 

From Table 16 we can note that clock_gating_default has 23 logic levels, and it is clear 

of violations. The critical path is 0,8453 ns and the derived maximum clock rate is 1,1830 

GHz. The nvdla_core_clk has 24 levels of logic and involves hold violations which does 

not require further analysis at this point of the design process. The critical path is 0,8908 

ns and thus the maximum clock rate is 1,1226 GHz. 

To summarize the timing result we can say that the target to have design clear of setup 

violations after synthesis has been achieved for all the other partitions except for the 

partition_c. The layout of partition_c would need more explorations to get it clear of setup 

violations. Also, the hold timing part needs to be improved, all the other partitions have 

hold timing violations except the partition_m. However, on industrial ASIC process the 

hold time violations are usually fixed on the place & route phase, which is executed after 

the logic synthesis. This concludes the timing report part. 
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5.4 Comparison to literature 

NVDLA synthesis results are compared to 5 other SoC designs from the literature. The 

results cannot be compared directly to other studies, since NVDLA is just a hardware 

accelerator, and the reference designs are complete SoC. Also, the results are presented 

only for the NVDLA partitions since the top-level synthesis model is not created on this 

project. However, they provide an idea about the magnitude of the results and may 

provide important information for the further development in future. Summary of the 

synthesis results is presented in Table 17. 

Table 17. Summary of NVDLA partitions. 

 Partition_a Partition_c Partition_m Partition_o Partition_p 

Technology 7 nm 7 nm 7 nm 7 nm 7 nm 

Area 
0,19mm2 
(Cell Area) 

0,86mm2 
(Cell Area) 

0,13mm2 
(Cell Area) 

0,07mm2 
(Cell Area) 

0,19mm2 

(Cell Area) 

On-chip SRAM - - - - - 

Max core frequency 1,32 GHz - 1,26 GHz 1,18 GHz 1,18 GHz 

Bit precision 8b 8b 8b 8b 8b 

Num. of MACs 
2048 Total in 
NVDLA (8b) 

2048 Total in 
NVDLA (8b) 

2048 Total in 
NVDLA (8b) 

2048 Total in 
NVDLA (8b) 

2048 Total in 
NVDLA (8b) 

Power consumption 17 mW 67 mW 8 mW 12 mW 44 mW 

From Table 17. the benefit of the smaller technology can be seen on all the metrics. 

Especially the max core frequency is significantly greater on NVDLA than on other 

designs in Table 18. 

Table 18. Reference designs. 

 Eyeriss [24] ENVISION [32] Thinker [33] UNPU [34] Eyeriss v2 [31] 

Technology 65 nm 28 nm 65 nm 65 nm 65 nm 

Area 
12,25 mm2 

(Core Area) 
1,87 mm2 

(Core Area) 
19,35 mm2 
(Die Area) 

16 mm2 
(Die Area) 

2695k gates 
(NAND-2) 

On-chip 
SRAM (kB) 

181,5 144 348 256 246 

Max 
core frequency 

200 MHz 200 MHz 200 MHz 200 MHz 200 MHz 

Bit precision 16b 4b/8b/16b 8b/16b 1b-16b 8b 

Num. of MACs 168 (16b) 512 (8b) 1024 (8b) 
13824 
(bit-serial) 

384 (8b) 

Power 
consumption 

236 mW 290 mW 447 mW 297 mW 460 mW 

When comparing NVDLA results to the reference designs from Table 18. we can see 

that NVDLA is better on almost all the metrics. However, as noted earlier, the results are 

not directly comparable. 
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5.5 Analysis of the developed synthesis flow 

The presented synthesis results show that the developed flow works, and it can generate 

good synthesis results. The generated results show detailed information about the 

characteristics of the used design which can be used to compare different IP blocks on 

ASIC design process. The integration of all the required elements NVDLA design, source 

scripts and constraints, RAM memory wrapper, and 7 nm standard cell technology files 

was accomplished after multiple synthesis iterations by utilizing the floorplan exploration 

flow from DC to ICC2. This proves that the company design environment can be used to 

run synthesis for open-source IP blocks. The developed flow provides a platform to 

exploit different kind of open-source IP’s on industrial environment since, it can produce 

synthesis results for 7 nm standard cell technology node quickly. This concludes the 

results section. 
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6. CONCLUSIONS 

Contemporary digital devices require high computing performance; thus, markets have 

a huge demand for SoC. However, big digital systems are very complex thus the systems 

are considered from different views. The most powerful SoCs are implemented on ASIC-

chips. Usually, ASICs are designed with standard cells. ASIC is the most cost-efficient 

technology when production volumes are high. An important step on ASIC design 

process is the logic synthesis. By utilizing dedicated software tool, the logic synthesis 

process transfers RTL code into gate-level netlist, which is then used to design the actual 

chip from physical point of view. The process consists of 4 sub processes: RT-level 

synthesis, Module generator, Gate-level synthesis, and Cell-level synthesis. Usually, 

This is executed multiple times for a design at different RTL maturity phases. Since, it 

gives information about the performance of RTL design and can help to meet the 

specifications. Usually, the goal is to design a chip that is able operate on certain 

frequency. This is proven by using static timing analysis. The synthesis tool is run with 

TCL scripts. The scripts guide the tool to use correct optimization algorithms with the 

intended options i.e., switches. In DC this is performed in synthesize, optimize the 

design, analyse, and resolve design problems steps. By setting the optimization 

variables or design rule constraints properly the synthesis tool can improve the 

performance of the design up to 20 percentage. 

The used design was NVDLA, it is an open-source deep learning accelerator developed 

by NVIDIA. It can execute CNNs which make it efficient. The main components in the 

design are Convolution core, single data processor, planar data processor, channel data, 

dedicated memory, and data reshape engines. Each component can be configured 

independently which make it very flexible. The system can be implemented as small- or 

large NVDLA system depending on the target application. This makes the system more 

cost effective. NVDLA software ecosystem has extensive cover of software features. The 

software includes the compilation tools and the runtime environment. NVDLA system 

software dataflow cover DL training, build (parsing, compiling, and optimizing), User-

mode driver, and Kernel-mode driver. 

To run synthesis the synthesis configuration needs to be setup. This includes variables 

such as, TOP_NAMES, RTL_SEARCH_PATH, DEF, CONS, TARGET_LIB, LINK_LIB 

etc., also run options need to be setup with appropriate switches. When all the 

constraints, RTL, logic library, and physical library files are setup the synthesis run can 

be executed. Usually, large system are divided into partitions. This is the case with 
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NVDLA, it has five partitions separated by their functionality. Partition_m is part of the 

convolution core. Partition_o contains the controlling functionalities. Partition_p is the 

activation core. Partition_a contains the other part of the convolution core. Partition_c is 

the convolution buffer. Each partition is an individual top-level synthesis hierarchy. 

Therefore, floorplan was created for each partition. To enable communication between 

NVDLA core and RAM instances a memory wrapper was generated. 

The post synthesis results were extracted from QoR files. The power results show that 

convolution operation require lots of power and most of the power is consumed as of 

dynamic power. The area results show that the macro area has the biggest effect to the 

total area. This can be seen in partition_c which has 149 macro instances forming a 

macro area of 0,72 mm2. From timing perspective, the goal is to have setup timing clean 

of violations at post synthesis phase. This is achieved for all the other partitions except 

for the partition_c. Usually, hold timing violations are not fixed at logic synthesis phase. 

All the other partitions have hold violations except the partition_m. The results are 

compared to other designs from literature: Eyeriss, ENVISION, Thinker, UNPU, and 

Eyeriss v2. The obtained results with 7 nm technology are promising but cannot be 

compared directly with the reference SoC designs. 

The target of the thesis was to develop a logic synthesis flow for NVDLA in the company 

design environment. This was achieved by utilizing NVDLA design environment, 

company internal memory wrapper, and Synopsys Design Compiler and IC Compiler 2 

tools to run logic synthesis for TSMC 7 nm standard cell technology. All the needed 

codes and scripts were downloaded from NVDLA GitHub webpage. The company 

memory wrapper tool was utilized to generate a memory wrapper which is able to 

connect the NVDLA design with needed RAM instances. The Design Compiler was used 

to generate the initial netlists for NVDLA partitions. To improve the results a floorplan 

was created for each partition with IC Compiler 2 tool. The generated DEF file was then 

used for second pass synthesis to obtain the final synthesis results. This proves that the 

company design environment can be used to run synthesis for open-source IP blocks. 

The developed flow provides a platform to exploit different kind of open-source IP’s on 

industrial development environment since, it can produce synthesis results for 7 nm 

standard cell technology node quickly. 

Future work concerning the thesis could include exploring different layouts for partition_c 

to improve the setup timing. After that the ASIC backend design process could be 

continued, to create a finished DLA hard macro. Also, the developed flow could be 

repeated for more advanced technology nodes. Concerning NVDLA, it could be 
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integrated into SoC to study its acceleration capabilities on different application fields. 

This could be targeted to FPGA or ASIC device. 
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