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Counterfactual regret minimization based algorithms are used as the state-of-the-art
solutions for various problems within imperfect-information games. Deep learning
has seen a multitude of uses in recent years. Recently deep learning has been
combined with counterfactual regret minimization to increase the generality of the
counterfactual regret minimization algorithms.

This thesis proposes a new way of increasing the generality of the counterfactual re-
gret minimization algorithms even further by increasing the role of neural networks.
In addition, to combat the variance caused by the use of neural networks, a new
way of sampling is introduced to reduce the variance.

These proposed modifications were compared against baseline algorithms. The pro-
posed way of reducing variance improved the performance of counterfactual regret
minimization, while the method for increasing generality was found to be lacking
especially when scaling the baseline model. Possible reasons for this are discussed
and future research ideas are offered.
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1 Introduction

Imperfect-information games is a model for strategic interaction between agents
where only partial information is available. A typical example of such a game is
poker. In contrast, perfect-information games such as chess, have all the infor-
mation available for agents to use to make decisions. The lack of information in
imperfect-information games makes them fundamentally more difficult in terms of
finding equilibrium strategies where no agent can improve by deviating from the
said strategy [1].

Counterfactual Regret Minimization (CFR) is a family of algorithms used for finding
Nash equilibrium strategies for imperfect-information games. CFR has been used to
reach milestones in many benchmark games such as heads-up limit Texas hold ’em
[2] and no-limit Texas hold ’em [3]. Notably, these algorithms have used tabular form
of CFR where the strategy is saved in a table with rows for all the possible situations
the agent can find itself in. This table can become excessive when modeling real-
world games. To compress the model, information abstractions are used to bucket
different situations together. A problem with these abstractions is that they often
require extensive domain knowledge, and the equilibrium within the abstracted game
might not reflect the whole game’s equilibrium accurately [4].

For reinforcement learning in perfect-information games, the need for tabular form
has been eliminated by the use of deep neural networks as function approximators
for the policy. This has been used to reach superhuman performance in Go [5].
The use of deep neural networks has been shown to reduce the need for domain
knowledge greatly [6]. The reinforcement learning algorithms used in conjunction
with deep neural networks are however mainly limited to perfect-information games
as they do not converge to equilibria in imperfect-information games.

Deep neural networks have since been applied to CFR as well in the form of Deep
Counterfactual Regret Minimization (Deep CFR) [4]. Deep CFR used deep neural
networks to eliminate the need for information abstractions with the tabular CFR
by having the networks approximate the regret value table for any state in the
game. However, Deep CFR still requires the actions to be abstracted in the case
of continuous actions. For example, in no-limit Texas hold ’em the player may bet
any size between the minimum raise and the stack size. This range of actions has
to be abstracted by choosing some number of discrete bet sizes within the allowed
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sizes since the Deep CFR can only work with discrete actions.

In this thesis, different ways of handling the action abstraction in the context of Deep
CFR are explored. Also, a way of reducing the variance of regret samples within
Deep CFR is proposed. These different abstraction methods with and without the
variance reduction are compared against each other in some benchmark games. The
baseline for action abstraction is the traditional way of abstracting the continuous
action space into a number of discrete sizes which cover the action space at wanted
accuracy. This thesis proposes a new way of handling continuous actions by having
a neural network predict a continuous distribution of values for each continuous
action. This removes the last need for explicit abstraction within Deep CFR. The
proposed method comes from the assumption that we can jump from discrete space
to continuous by having the size of the abstraction tend to infinity. By assuming that
small changes within the continuous action space lead to small changes in regret, the
neural network can be trained by only sampling a number of discrete sizes within the
whole continuous space. Essentially the neural network is given the job of inferring
the values between the sampled ones to make handling the whole continuous action
space without any abstraction feasible.

A problem within Deep CFR is the variance when sampling regret values. The
proposed algorithm for reducing variance uses Monte Carlo roll-outs to get more
accurate estimates of expected values for actions, thus improving the estimates for
the expected value of whole information sets and regrets of individual actions within
an information set.

This thesis is structured as follows. In Chapter 2 the theoretical background and
related work is discussed. The relevant theory is within neural networks regarding
mixture density networks and game theory about game solutions and counterfactual
regret minimization and its variations. In Chapter 3 the proposed modifications to
counterfactual regret minimization methods are discussed. Chapter 4 describes the
test settings used to test the proposed methods against already established methods
and goes over the results of these experiments. Finally, Chapter 5 concludes this
thesis and discusses possible future work related to the work done in this thesis.
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2 Theory and related work

In this chapter, the related theory and previous work are discussed. First neural
networks and specifically the theory behind mixture density networks are reviewed.
Then game theory and its basic theory are considered in more general and finally,
we move toward the more specific problems and methods relevant to this thesis.

2.1 Neural networks

Neural networks (NN) are function approximators that have been found to perform
well in practice from learning value functions for agents in reinforcement learning
environments [6] to having superhuman performance in image recognition tasks [7].
NNs are inspired by the human brain by having artificial neurons communicate
with each other. Each neuron has inputs and an output. The output of a neuron is
calculated by multiplying the input by a weight, adding a bias to it, and then using
an activation function on it. In practice, artificial neurons are grouped as layers and
as such the output y of a layer can be calculated as

y = ϕ(W · x + b), (2.1)

where ϕ is the activation function, W is a matrix of weights of each neuron for each
input, x is the input of the layer as a vector and b is the bias for the layer. This
function for a single neuron is visualized in Figure 2.1. A full neural network is often
constructed by first having an input layer that takes the input of the whole network.
Then additional layers are stacked on top by passing the output of the previous
layer as an input to the new layer. The topmost layer is called the output layer and
its output is considered the output of the whole network. A network structured this
way is called a feed-forward network and is the network type used in this thesis.
[8][9]

2.1.1 Activation functions

Activation functions are used in-between layers as nonlinearities to enable the net-
work to learn nontrivial functions. A common example of an activation function is
rectified linear unit (ReLU). The output of ReLU is calculated as

y = max(x, 0). (2.2)
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Figure 2.1 Depiction of a single artificial neuron. Starting from the left there is the input
vector visualized as x0, x1, and xn. This input vector is multiplied by the weight vector
w0, w1, ..., wn and then summed with the bias b shown at the top of the figure. Finally,
an activation function is taken from this sum to produce the final output of the artificial
neuron.

Other activation functions used in this thesis are softmax and exponential linear unit
(ELU). Softmax normalizes the inputs to become a discrete probability distribution
with

y(x)i =
exi∑K
j=1 e

xj

, (2.3)

where K is the number of values in the input vector. ELU is a modification to ReLU
in the way that instead of having negative values be truncated to zero the output
will follow an exponential curve for negative values of x. Formally

y =

x ifx > 0

α(ex − 1) ifx ≤ 0,
(2.4)

where α is a hyperparameter for controlling the value to which the output saturates
to for negative inputs. [10][11]

2.1.2 Loss functions

A loss function describes the target metric that the neural network will be optimized
for. The loss function is calculated per sample and then averaged over all samples.
The loss function is used when training the neural network by trying to minimize
the loss value over the training data. An example of a loss function is negative
log-likelihood which is calculated as

L(x, y,θ) = −log(p(y|x;θ)), (2.5)
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where x is the input vector, y is the output label and θ are the network parameters.
This loss function maximizes the probability of y given the input x. [8][12] The
specific loss functions used in this thesis are introduced in Section 3.2.

2.1.3 Training neural networks

To train a neural network the parameters of the network are optimized with respect
to some loss function. This optimization often happens on a dataset that has input-
output pairs defining desired output given an input. Optimizing a neural network
with this kind of dataset is called supervised learning. [8]

Stochastic gradient descent (SGD) is an optimization algorithm used for training
neural networks. SGD uses the gradient of the loss function over the neural network’s
weights to minimize the output of the loss function. SGD is an iterative algorithm.
Each iteration a minibatch of m examples is sampled from the dataset. A gradient
estimate is then calculated as

ĝ ← 1

m
∇θ

∑
i

L(f(x(i);θ),y(i)), (2.6)

where f is the output function of the neural network and y(i) the desired output for
the input vector x(i) from the dataset. Finally, an update is applied to the network
weights using the calculated gradient with

θ ← θ − ϵkĝ, (2.7)

where ϵk is the learning rate at iteration k which is used to regulate the size of the
updates. If the updates are too big the algorithm might diverge but if the updates
are too small it might take unnecessarily long to converge. [13]

2.1.4 Mixture Density Networks

Normally neural networks predict just the maximum likelihood values for the out-
puts. Mixture density networks (MDN) expand on this by predicting an arbitrary
distribution for the output values. The probability density function is represented
as a linear combination of kernel functions in the form

p(t|x) =
m∑
i=1

αi(x)ϕi(t|x), (2.8)
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Figure 2.2 Visualization of an MDN. Input vector x is fed into the NN. The NN outputs
a vector of mixing coefficients α and multiple vectors of parameters for the component dis-
tributions. In this case, the component distributions are normal distributions so the output
consists of means µ and standard deviations σ. Finally, these component distributions
are combined to create the full mixture distribution.

where m is the number of component distributions, αi(x) is the mixing coefficient for
the ith component and ϕi(t|x) is the kernel function for the ith component. In this
thesis, normal distributions are used as the kernel functions. This means that the
network has to predict the mixing coefficients, the normal distribution means, and
the normal distribution standard deviations for each component distribution. Figure
2.2 illustrates the whole pipeline from passing the input to the NN to combining the
component distributions to the mixture distribution. The mixing coefficients must
sum to zero so the softmax function is used in the network on the coefficient vector
to ensure this property. Also, the normal distribution standard deviations must be
positive so the ELU activation with an offset of one is used to achieve this. [14]

2.2 Game theory

Game theory is the study of games. A game describes the ways players can interact
with each other and what the players ought to achieve in the game. In game theory,
the players are assumed to be rational. This means the players are aware of the pos-
sible actions they can take, form expectations of unknowns, have clear preferences,
and make choices after consideration. [15]

Games can be differentiated by being either strategic-form or extensive-form and
being either perfect information or imperfect information. Strategic-form games
model a situation in which the players choose their plan for the game once at the
beginning, and the decision of each player is done simultaneously. In comparison,
in extensive-form games actions are taken sequentially. A simple example of a game
described in both strategic-form and extensive-form is shown in Figure 2.3. In
perfect information games, every move done in the game is fully informed to all the
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Figure 2.3 Visualization in extensive-form and strategic-form of a simple game. Player
1 can choose to either go up or down. Player 2 can choose to go either left or right based on
what player 1 chose. On the left is the tree visualization of this game as an extensive-form
game. The tree starts with player 1’s choice and continues with player 2’s choice. On the
right is the strategic-form visualization as a table. Player 1 can choose their strategy to be
either going up or down. Player 2 can choose their strategy as a combination of what to
do if player 1 went up and what to do if player 2 went down. For example, the left-most
column labeled as ”Left,Right” means player 2 chooses to go left if player 1 chooses up and
otherwise player 2 chooses right. The values at the leaf nodes of the tree and in the cells
in the table state the utility each player receives.

players while in imperfect information games some of the actions may be only known
by part of the players. This study focuses on extensive-form imperfect information
games. It is described later in detail. [1]

2.2.1 Extensive-form imperfect information games

Extensive-form is a way to describe games as a history of sequential actions. An
extensive-form game consists of the following.

• A finite set N of the players.

• A set H describing the possible histories h of the game. A history is described
as a sequence of actions h = (ak)k=1,...,K ∈ H. A history can be called terminal
if it is infinite or if there is no aK+1 such that (ak)k=1,...,K+1 ∈ H. The set
of available actions at a non-terminal history is denoted by A(h) and the set
of terminal histories is denoted by Z. An action maps the history to a child
history h′.

• A player function P which outputs which player is the next to take an action
after a non-terminal history. Denoted as P (h). It is possible that P (h) = c /∈
N which means that chance determines the taken action.
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• A chance function fc which maps a probability for each action at a history if
P (h) = c.

• For all players an information partition Ip of {h ∈ H : P (h) = p} so that
A(h) = A(h′) whenever h and h′ are in the same member of the partition.
The Ip ∈ Ip are called information sets.

• A utility function u which maps each terminal node to a payoff for each player.
If there are exactly two non-chance players and holds that u1(z) + u2(z) = 0

for all z ∈ Z, the game is said to be two-player zero-sum.

In imperfect information games of important note is the fact that a player cannot
know in which history they are. Instead, the player can only know in which infor-
mation set they are taking an action. [1] For example, in poker there are private
cards dealt to each player. A player cannot differentiate between histories where the
opposing player has been dealt different cards but can differentiate between histories
where they have been dealt different cards.

Player p can be said to play strategy σp. The probability of an individual action a

is written as σ(I, a) for information set I or as σ(h, a) for history h. The strategies
of all players in a game can be combined into a tuple of strategies called strategy
profile σ. Using these definitions, reach πσ(h) can be defined as the probability
that history h is reached if each player plays according to the strategy profile σ.
Formally πσ(h) =

∏
h′·a′⊑h σ(h

′, a′). Additionally, πσ(g, h) is used to represent the
probability of reaching history h given history g is already reached. This is formally
defined as πσ(g, h) =

∏
g<h′·a′⊑h σ(h

′, a′). The player reach πσ
p (h) is the product of

the probabilities of the player p choosing all the actions which lead to the history h.
Formally πσ

p (h) =
∏

h′·a′⊑h|P (h′)=p σ(h
′, a′). Player reach is also defined for informa-

tion sets as πσ
p (I) =

∏
I′·a′⊑I|P (I′)=p σ(I

′, a′). External reach πσ
−p(h) is the product

of the probabilities of actions leading to h which are external to player p. This
includes the probability of players other than p choosing the actions which lead to
h and the probability of the chance actions happening which lead to h. Formally,
this is defined as πσ

−p(h) =
∏

h′·a′⊑h|P (h′) ̸=p σ(h
′, a′). External reach is also defined

for information sets as πσ
−p(I) =

∑
h∈I π

σ
−p(h). [16][17]

2.2.2 Game solutions

In a game, the goal for the player is to maximize the utility function. The utility
of a strategy profile σ for player p can be written as up(σ). The problem with an
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individual player maximizing their utility is that the utility depends on the entire
strategy profile. This means that what the other players choose as their strategies,
changes the expected utility for the individual player. If we assume the opponent’s
strategy is not known and that the opponent can play any possible strategy, the
player can approximate Nash equilibrium to find a good strategy. Nash equilibrium
σ∗ is a strategy profile in which any player cannot improve their utility by unilaterally
changing the strategy. In two-player zero-sum games, this means that if one is
playing a Nash equilibrium strategy the other player cannot decrease the utility
gained by one’s strategy. This makes playing a Nash equilibrium strategy optimal
for two-player zero-sum games if one does not have any knowledge of the opponent.
[18] Nash equilibrium is defined formally in Section 2.2.9.

2.2.3 Regret and regret-matching

Regret is a concept used in online learning for extensive games. Regret is accumu-
lated over multiple times of playing an extensive game. Average overall regret [19]
for player p at time T is

RT
p =

1

T
max
σ∗
p∈Σp

T∑
t=1

(up(σ
∗
p, σ

t
−p)− up(σ

t)). (2.9)

Non-negative regret is calculated as

RT
+,p = max(0, RT

p ). (2.10)

Regret-matching uses the average overall regret at time T to create a strategy for
time T + 1. The strategy for each pure strategy s is calculated as

σT+1
p (s) =

RT
+,p(s)∑

s′∈S R
T
+,p(s

′)
. (2.11)

This regret-matching strategy is used in regret minimization algorithms [20].

2.2.4 Counterfactual regret minimization

In counterfactual regret minimization (CFR) the overall regret is decomposed into
terms which can be minimized independently for each information set. These in-
dividual regrets are minimized iteratively. Counterfactual utility used in defining



10

Figure 2.4 Visualization of a hypothetical run of CFR on the game of rock paper scissors.
Rock paper scissors can be formalized as an extensive-form game by having P1 choose their
action in secret and announcing the result after P2 has chosen their action. This way after
P1 has chosen their action P2 will be in an information set of three nodes—one for each
choice P1 has. This is visualized with the dotted line between P2 nodes. On the right, there
are multiple vectors of numbers to represent the cumulative regret and the average strategy
tracked by CFR for each of the information sets. The top vector of three numbers is for
the cumulative regret which is used to calculate the current strategy. The bottom vector is
for the average strategy which will be the final strategy calculated by CFR.

counterfactual regret is defined as

up(σ, I) =

∑
h∈I,h′∈Z πσ

−p(h)π
σ(h, h′)up(h

′)

πσ
−p(I)

. (2.12)

This is used to calculate immediate counterfactual regret over all iterations up to T

as

RT
p,imm(I) =

1

T
max
a∈A(I)

T∑
t=1

πσt

−p(I)(up(σ
t|I→a, I)− up(σ

t, I))), (2.13)

where σt is the current strategy at iteration t, up(σ
t|I→a, I) is the utility of choosing

action a at information set I and otherwise using the current strategy σt. This
can be thought of as the regret for the player in each information set using the
counterfactual utility weighted by counterfactual probability of reaching I if the
player would have tried to do so. [21] The immediate counterfactual regret is tracked
for each information set I and action a as

RT
p (I, a) =

1

T

T∑
t=1

πσt

−p(I)(up(σ
t|I→a, I)− up(σ

t, I))). (2.14)

Non-negative regret can be calculated for this in the same way as for ordinary regret
in Equation 2.10. Regret-matching is then used to generate current strategy for T+1
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as

σT+1
p (I, a) =


RT

+,p(a)∑
a′∈A(I) R

T
+,p(a

′)
if
∑

a′∈A(I) R
T
+,p(a

′) > 0,

1
|A(I)| otherwise.

(2.15)

This makes actions to be selected in proportion to the positive counterfactual regret
for playing that action. If all actions have negative regret the strategy can be chosen
arbitrarily, though normally the strategy is chosen to be uniform over all the actions.
[19]

Average strategy is

σ̄t
p(I, a) =

∑T
t=1 π

σt

p (I)σt(I, a)∑T
t=1 π

σt

p (I)
. (2.16)

This average strategy approximates Nash equilibrium when updated through self-
play using the current strategy based on the counterfactual regret. The self-play
is done iteratively. Each iteration the whole game tree is traversed and the imme-
diate counterfactual regret is updated for all actions in all information sets in the
game tree. These iterations are done until an average strategy of wanted quality is
achieved. The quality of the average strategy is often quantified using exploitability
discussed in Section 2.2.9. A visualization of CFR is shown in Figure 2.4. [19]

Monte Carlo CFR

Monte Carlo CFR (MCCFR) is a version of CFR in which the whole game tree is
not traversed at each iteration. Instead, only parts of the tree are sampled. The
sampling policy used has to ensure that the immediate counterfactual regrets are
unchanged in expectation. Let Q = Q1, ..., Qr be a subset of Z, such that the union
of all Qi spans the whole set Z. These subsets are called blocks. Each iteration, one
of these blocks is sampled and only terminal histories in this one block are considered.
Each block has a probability qj > 0 associated with it. This probability dictates
the chance of sampling this block on a single iteration. Let q(z) =

∑
j:z∈Qj

qj be
the probability of sampling a terminal history z on a single iteration. The sampled
counterfactual value on updating block j is

ṽi(σ, I|j) =
∑

z∈Qj∩ZI

1

q(z)
ui(z)π

σ
−i(z[I])π

σ(z[I], z). (2.17)

This counterfactual value is then used similarly to vanilla CFR to update the regrets
using r̃(I, a) = ṽi(σ

t
(I→a), I)− ṽi(σt, I). Notably, it can be seen that choosing Q = Z,

i.e., one block with all the terminal histories and sampling probability q1 = 1 is equal
to vanilla CFR. [22]
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There are various ways of sampling used with Monte Carlo CFR. One is outcome-
sampling MCCFR. Outcome-sampling MCCFR chooses the blocks so that each
block has just one terminal history. The distribution for sampling blocks is de-
fined using a sampling profile σ′, so that q(z) = πσ′ . Each iteration, this sampling
profile is used to first traverse the terminal history forward to calculate for each
player i the probability of reaching each prefix of the history for that player πσ

i (h)

and then backward to calculate each player’s probability of reaching to the end of the
sampled terminal history πσ

i (h, z). When doing the backward traversal the regret
values are updated with

r̃(I, a) =

wI · (1− σ(a|z[I])) if z[I]a ⊑ z,

−wI · σ(a|z[I]) otherwise,
(2.18)

where
wI =

ui(z)π
σ
−i(h)π

σ
i (z[I]a, z)

πσ′(z)
. (2.19)

Another way of sampling used is external-sampling MCCFR. In external-sampling
MCCFR the player’s own actions are not sampled but the ones external to the player
are. This way we have a block Qτ ∈ Q for each pure strategy at the opponent and
chance nodes. The block probabilities are defined by the chance function fc and the
opponent’s strategy σ−i as

qτ =
∏
I∈Ic

fc(τ(I)|I)
∏

I∈INi

σ−i(τ(I)|I). (2.20)

All terminal histories z consistent with τ are included in a block Qτ , as in if an
action taken at a point in history ha is a prefix of the terminal history z so that
h ∈ I for any I ∈ I−i then τ(I) = a. The point in using these block probabilities
is that it results in q(z) = πσ

−i(z). Each iteration a block is sampled implicitly for
each player p ∈ N by traversing the tree in post-order depth-first fashion while
sampling actions at h where P (h) ̸= p. At each visited information set the sampled
counterfactual regrets are computed as

r̃(I, a) = (1− σ(a|I))
∑

z∈Q∩ZI

ui(z)π
σ
i (z[I]a, z) (2.21)

and the computed values are updated to the total regrets. [23]
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CFR+

CFR+ is a modification to CFR which instead of using regret-matching uses regret-
matching+ to improve convergence and enables better compression of the tabular
data stored when executing the CFR algorithm. Regret-matching+ uses cumulative
counterfactual regret+ instead of regular cumulative counterfactual regret. Using
the definition of counterfactual utility up(σ, I) from Equation 2.12 cumulative coun-
terfactual regret+ can be defined as

R+,T
i (I, a) =

max{up(σ
T
I→a, I)− up(σ

T , I), 0} ifT = 1,

max{R+,T−1
i + up(σ

T
I→a, I)− up(σ

T , I), 0} otherwise,
(2.22)

where T is the current CFR iteration, σT is the strategy at the current iteration
and σT

I→a, I) is strategy taking only the action a. Regret-matching+ is calculated
in similar fashion to regular regret-matching in Equation 2.15 by just replacing
the non-negative regrets with the cumulative counterfactual regret+. This form of
cumulative regret resets the regret to zero whenever it becomes negative. [24] In
regular CFR the regret can grow to be negative indefinitely. In CFR+ having all
these regrets set to zero reduces the entropy and allows for more efficient compression
of the data. Also, a benefit of not having largely negative regrets is that if an action
starts to get positive regret it will start seeing use faster when it does not have to
first negate the negative regret accumulated so far. CFR+ also has a guarantee
that the current strategy profile will converge or almost converge to an approximate
Nash equilibrium on itself and the use of average strategy is not necessary. This can
be used to save memory during run time at the cost of time to converge. [2]

2.2.5 Abstractions

Games which are desired to be studied using CFR can be really large because of
the exponential growth that happens when the game is extended by a single node.
Because of this studied games are often abstracted to fit in smaller spaces. Two
ways of abstracting a game are information and action abstractions. Information
abstractions are about merging multiple information sets into one. Action abstrac-
tions restrict the number of actions the player can make in each information set.
[25] Abstractions often require extensive domain knowledge or can be made with
domain agnostic abstraction finding algorithms. Extensive domain knowledge can
be hard to come by and the domain agnostic abstraction finding algorithms can
miss relevant aspects of the game in question and thus not be able to compress
the game enough or produce abstractions that make the solution perform worse in
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the full game. [4] Abstractions can also have abstraction pathologies which cause
abstractions with strictly more information available to the player in any abstracted
information set to perform worse in the full game than the one with strictly less
information [25]. Thus not having to deal with abstractions can make it easier to
apply CFR algorithms to a variety of games.

2.2.6 Reservoir sampling

The basic idea in reservoir sampling is to have a sample of size S ≥ n from which
a random sample of size n is to be generated. The limitations are that we can only
go through the original sample of size S once and that the size S is not known
beforehand. This means we cannot just draw random records from the middle and
instead we will have to process the records in a sequence. For an algorithm to be
considered a reservoir algorithm it has to maintain the reservoir as a true random
sample of the original sample after processing each new record from the original
sample.

Initially, the n first records are put to the reservoir. After that when processing each
new record the algorithm has to choose whether to replace a record in the reservoir
with the new record or not. With the reservoir algorithm used in this thesis when
considering the (t + 1)st record when t ≥ n, it has a n/t + 1 chance of replacing a
random record in the reservoir. [26]

2.2.7 Deep CFR

A problem in traditional CFR algorithms is the need to store the regret and av-
erage strategy values for each information set explicitly. This problem is normally
relieved by the use of abstractions. These abstractions can be hard to come by
as often domain knowledge of the game is required. There also exists abstraction
finding algorithms but these are often too general for specific games and hence miss
important nuances in the game. In deep CFR this problem is tackled by using neural
networks to approximate the values while learning the abstraction implicitly within
the neural network model.

On each iteration in deep CFR, there are K partial traversals of the game tree
done for each player p. The player p is called the traversing player. The way the
traversals are done is determined by external-sampling MCCFR. The strategy σt(I)

played at each information set is determined using regret-matching on the output
of a neural network V : I → R|A| defined by parameters θ

(t−1)
p . The input to the
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neural network is the information set I and the output is V (I, a|θt−1). The goal is
to have V (I, a|θ(t−1)) approximately be proportional to the total regret R(t−1)(I, a)

that traditional CFR would have computed.

At a terminal node, the value of the node is passed up. At chance and opponent
nodes the value is passed up unchanged. At the traversing player’s nodes, the
value is passed up as the weighted average of all the actions weighted by the action
probabilities of each action. Formally this value is defined as

ṽi(σ
t, I) =

∑
a∈I

ui(a|I)σt(I, a). (2.23)

The immediate regret for each action can be then calculated as

r̃(I, a) = ṽi(σ
t
(I→a), I)− ṽi(σ

t, I). (2.24)

These immediate regrets are stored as samples in memory Mv,p using reservoir sam-
pling.

When these traversals are done for a player, a value network is trained to get the
parameters θ

(t)
p . The network is trained by minimizing MSE between the network’s

prediction V (I, a|θ(t− 1)) and the samples of immediate regrets in the memory.

In addition to the value network, a separate network Π : I → R|A| is used for ap-
proximating the average strategy over all iterations. This policy network’s strategy
is the one that converges to a Nash equilibrium. To train this network policy sam-
ples are stored whenever an information set belonging to a player other than the
traversing one is visited. The policy sample is the vector of probabilities over all the
actions in the information set given by the value network on that iteration. These
samples are stored in policy memory MΠ with a weight t.

The training of this policy network is not necessary as to get the average strategy
all the value networks can be stored and used at inference time by first sampling a
value network and then computing the strategy using the sampled network. This
eliminates the approximation error brought by the use of an extra network. In this
thesis, the policy networks are not trained and during inference time the networks
are sampled. This is because of the lack of extra approximation error and the lower
memory usage by not having to store the policy samples. [4]
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2.2.8 Linear CFR

Linear CFR is a modification to vanilla CFR where each iteration t is weighted by
t [27]. This is used in deep CFR for faster convergence. With deep CFR when
training the models the overall batch is weighted by 2/T to not have the weighted
error grow infinitely. [4]

2.2.9 Exploitability

Exploitability of a strategy in a two player game is the amount the strategy loses
against its worst case opponent as opposed to what a Nash equilibrium loses against
its worst-case opponent. This worst case opponent is called best response and player
p’s best response to σ−p is marked as BR(σ−p). Formally, holds up(BR(σ−p), σ−p) =

maxσ′
p
up(σ

′
p, σ−p). In a Nash equilibrium σ∗ every player is playing a best response

to each other. Using the best response the exploitability e of player p can be written
as

e(σp) = up(σ
∗
p, BR(σ∗

p))− up(σp, BR(σp)). (2.25)

Exploitability is tracked as the total exploitability which is the sum of exploitabilities
of all players

Σp∈P e(σp). (2.26)

This is the value reported when talking about exploitabilities of different algorithms
later on in this thesis.

While exploitability in a game tree with only discrete actions is possible to calculate
given the tree is not too large, the same is not trivial when the game includes
continuous actions. With continuous actions, one would have to sample an infinite
number of actions in a single decision point involving a continuous action, which
is not possible. Normally this is avoided by calculating the exploitability within
the action abstraction used in the evaluated model. However, due to the proposed
system in this thesis being abstractionless this is not possible. Because of this, the
proposed system is only evaluated in relation to other models. [23]
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3 Proposed system

The deep CFR algorithm removes the need for information abstractions as the neu-
ral network learns the abstraction implicitly instead. The proposed system in this
thesis builds on the deep CFR algorithm and removes the need for action abstraction
as well by the use of mixture density networks for continuous actions. This modified
system is called continuous deep CFR. In continuous deep CFR nodes with contin-
uous actions are split into two nodes. First is the initial node which will have all the
discrete action options. For example, if we have a node in a poker game where the
action options are fold, call and raise with raise being a continuous action, the initial
node will have the action options fold, call and raise. Then the second node will
follow the raise action. In this second node, the player has the option of choosing
any available raise size. Splitting the node this way does not change the game in
itself and allows isolation of choosing the value for continuous action independent
of the rest of the tree which simplifies the model. For the initial node normal deep
CFR is used, but for the second node, deep CFR is modified to fit continuous action
space.

In addition to continuous deep CFR, a way of reducing variance in regret samples
within deep CFR is proposed. It uses Monte Carlo roll-outs to get multiple samples
of an action’s value. Each time an action is chosen when traversing the tree some
number of roll-outs are played and the values received from each roll-out are averaged
to get a more accurate value for each action. These propositions are discussed in
more detail in this chapter.

3.1 Continuous actions within CFR

Normally when using CFR-based algorithms for games with continuous actions, an
action abstraction is used. This way, instead of having an action for which one can
choose a value from a continuous interval, one will have a list of discrete actions each
of which represents a single choice within the continuous interval. These have been
shown to be potentially problematic by causing abstraction pathologies [25]. To
combat this, a way of computing CFR over continuous actions without abstraction
is proposed.

The base idea behind continuous deep CFR in this thesis is to think of having
an action abstraction with n choices for the action value. Then have n → ∞ and
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Figure 3.1 Visualization of how a single node is traversed with continuous actions.
On the left is an example of the traversing player choosing all actions and sampling two
different sizes for the raise action. On the right, the non-traversing player chooses only
the raise action and a single size for the raise size. The dashed lines and nodes mark that
the action or node was not chosen.

Figure 3.2 Figure depicting cumulative non-negative regret for a continuous action with
different levels of abstraction. The leftmost one shows six bars; one for each abstracted value
within the actions value interval, the middle one shows a more fine-grained abstraction
with 11 values within the interval. The rightmost one shows how the non-negative regret
would look like if there were infinite values in the abstraction, or no abstraction was used.

perform CFR for this theoretical abstraction. To perform CFR over this abstraction
the nodes with continuous actions are split into multiple nodes such that for each
continuous action a new node is created. In the original node, the player has to
choose only over which type of action it has to perform. An example of this split can
be seen in Figure 3.1 where the ”Current node” has the actions ”Fold”, ”Call” and
”Raise” with ”Raise” being a continuous action. Then the continuous action ”Raise”
leads to a node where the player has to choose a single value within a continuous
interval of values. Splitting the nodes this way avoids having to have probability
distributions over a mix of discrete and continuous choices which simplifies the
algorithm significantly.
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While for the ”Current node”’s actions we can use regular CFR-based algorithms,
for the node after the ”Raise” action a modification is needed. In CFR the regrets
for all actions have to be tracked and then a current strategy has to be possible to be
calculated from the regrets using regret-matching. With continuous action space,
we can think of tracking the regrets as a function that will give the cumulative
regret over the action space for any value. If we only keep track of non-negative
regrets like in CFR+ we can have the function be non-negative as well. Then if we
normalize the integral of this non-negative function to be one, we can use it as a
continuous probability density function. If we compare this to the idea of having
an action abstraction where the number of actions n → ∞, we can see these two
are analogous in terms of tracking the regrets and then performing regret matching
to get the current strategy. To illustrate this, Figure 3.2 shows how a continuous
action can be abstracted with increasing granularity. With finite choices within the
abstraction, the regret matching is calculated by normalizing the sum of all the
action choices to be one. This produces a discrete probability distribution over the
action choices within the abstraction. With the abstraction with infinite choices i.e.
no abstraction at all, the cumulative regret can be seen as a continuous function
which—when normalized to have an integral of one over the action interval—will
define a continuous probability distribution via a probability density function.

To collect cumulative regret within regular CFR, each iteration T an expected value
for each action in each information set is calculated. Based on these values and the
strategy used at iteration T , an expected value for each information set is calculated.
By comparing the expected values of individual actions within an information set
to the expected value of the whole information set, a regret value for each action is
calculated. These regret values are added to the cumulative regret over all iterations
until iteration T . When moving to an abstraction with infinite choices, it becomes
impossible to calculate an expected value and consequently a regret value for each
individual action choice. If we assume that a small change in the action choice
brings only a small change in the expected value we can sample only a small set of
action choices within the whole interval and then estimate expected values for the
other action choices based on the samples. Also, we can estimate the expected value
of the whole information set based on these samples. This way we can calculate
estimates for the regret values using the estimated expected values over the whole
action interval and the approximate expected value of the information set. The
implementation of this will be discussed later in Section 3.2.

In regular CFR, traversals over the whole game tree are performed to execute the
regret calculations. In continuous deep CFR, the traversals will be done over the
modified game tree where the continuous actions are split into their own information
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Figure 3.3 Visualization of systems tried out for predicting the continuous probability
distributions for actions. The system on the left includes the network predicting a regret
weight which is used to multiply the density function so the regret can be predicted directly.
The system on the right is simplified by removing that regret weight because the network
is trained to predict the density function directly instead of explicitly approximating the
cumulative regret.

sets as described before. Also, the whole tree will not be traversed each time but
a form of MCCFR will be used. For nodes that do not contain continuous actions,
external sampling will be used. Figure 3.1 visualizes this for player nodes with
dashed and non-dashed lines for non traversed and traversed actions respectively.
In chance or nature nodes one of the actions is sampled each traversal based on the
chance function fc. For the continuous action nodes, the external sampling cannot
be directly used as it requires the traversing player to choose all the actions at
each node. Hence based on the previously discussed ideas of only sampling a few
action choices and deducing the rest of the values based on the sampled values, the
traversing player will just sample a number of action choices for each continuous
action. The non-traversing player will be the same and sample just one action
choice within the interval of the continuous action. All the sampled action choices
are sampled based on the current strategy profile. This way, for the traversing
player the expected values received for each action choice can just be averaged with
arithmetic mean without any weighting to receive an estimate of the expected value
of the whole node.



21

3.2 Neural network for predicting probability distributions
for continuous actions

To implement continuous deep CFR, a way of predicting continuous functions over
the action space is needed. These functions also need to be such that those can
be normalized to have an integral of one over the action space and the normalized
function has to be able to be sampled as a continuous probability distribution. For
this job, two different systems based on MDNs were tried out. The first one was
used initially during research but was found to be inferior to the other one and
was discarded before the final experiments of this thesis. The first model adheres
more strictly to the idea of first predicting the regrets over information sets and
then subsequently getting the current strategy as a byproduct of the regrets. The
second one tries to keep the prediction of the regrets as a more of an implicit idea
behind how the current strategy is constructed and predicts the current strategy
directly. Previously we discussed how only some samples of the whole action space
were evaluated directly and the values for other parts of the space were extrapolated.
In both systems, the neural network is let to do the estimation implicitly.

Figure 3.3 shows the structure of the neural network used in the first system. A core
of MDN is used and the density value of the MDN is multiplied with a positive value
predicted by the neural network to get the final predicted cumulative regret value.
When the current strategy is to be predicted, the underlying MDN can directly be
used. The full loss function to train this network is

L(x, y,θ) =
2t

T
(f(x;θ)− y)2, (3.1)

where x is the input vector, y is the sampled regret during traversal, θ is the neural
network parameters, t is the iteration the regret sample was created, T is the current
iteration and f(x;θ) is the predicted cumulative regret by the neural network. This
network can only predict non-negative regret values. This comes from the idea that
when generating the current strategy, the negative values will not be used anyways,
and that it is easier to implement the probability distribution generically when there
are no negative numbers. When training this network all negative values of regret
are set to zero. This idea was from CFR+ where negative regrets are set to zero.
Having to completely ignore the negative values with this system was problematic
and hence it was discarded.

The structure of the second version of the system which was used in the final ex-
periments is depicted in Figure 3.3. This system removes the final layer of scaling
the density function with a positive value and instead is a bare MDN. The regret
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values are not actually needed anywhere but when training the neural network, and
hence the ability for the network to predict them could be removed. By removing
the need to predict the regret values, the loss function could also be fit to take into
account the negative regret values. The full loss function used for this system is

L(x−, xactionchoice, y,θ) = −
2t

T
p(xactionchoice|x−;θ), (3.2)

where x− is the input vector without the action value, xactionvalue is the action choice
and p(xactionvalue|x−;θ) is the probability of a certain action choice given the rest
of the input vector and the network parameters. This loss function, in essence, is
a negative log-likelihood function with weighting by the amount of regret in the
sample. This loss function will make actions with positive regret more likely and
actions with negative regret less likely. The function learned by this neural network is
hypothesized to be analogous with doing regret matching on the regret-like function
trained with mean squares error in regular deep CFR for discrete actions.

The probability functions of the neural networks described provide a probability
function over all real numbers. Because to guarantee that a Nash equilibrium exists
for a game the action space has to be non-infinite or compact [1], we limit ourselves
to games where the action space is compact i.e. all the continuous actions limit
the values to closed and bounded intervals. This means the probability distribution
provided by the neural network has to be modified to have it span the same interval
as the action space. Consider the sampling strategy for an information set with a
continuous action a with values ranging [amin, amax]. First, the MDN is sampled
for a value over all real numbers. This value is then truncated within the interval
[amin, amax] by just setting values larger than amax to amax and values smaller than
amin to amin. This way the network will predict a distribution p(t|x−) with the dis-
tribution truncated within the interval such that p(t = amin|x−) = p(t < amin|x−)

and p(t = amax|x−) = p(t > amax|x−).

3.3 Combining the whole system together

In previous sections, the modifications to CFR required by continuous deep CFR
were talked about in a general way and a way for implementing the function ap-
proximation by the use of MDNs was presented. In the following paragraphs, the
implementation of continuous deep CFR will be presented concretely. Continuous
deep CFR works very similarly to deep CFR with just slightly altering the game
tree by splitting the continuous actions into their own nodes and then using the
MDN proposed in Section 3.2 for handling the new nodes.
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Algorithm 1 Continuous Deep Counterfactual Regret Minimization
function C(O)NTDEEPCFR

Initialize each players strategy to be uniform over all actions.
Initialize reservoir-sampled memories for regrets MV,1 and MV,2.
for CFR iteration t = 1 to T do

for each player p do
for traversal k = 1 to K do

TRAVERSE(∅, p, θ1, θ2,MV,p, t)
end for
Train θp

end for
end for

end function

In practice when handling a node during traversal the split is done very dynamically.
First, the strategy for the node with the discrete actions is calculated using regret-
matching on the output of the value network V : I → R|A| from regular deep CFR.
Then if the current player in the node is the traversing player, for all the continuous
action child nodes, a number of samples of the action choice are drawn using the
MDN. Next, the actions in the node with the discrete actions are iterated over, and
for non-continuous actions, the value of the action is calculated in a similar fashion
to deep CFR. When a continuous action is iterated over the value of the action is
calculated as the average of choosing the n samples previously drawn. In addition
to estimating the value of the action this way, regret values for these samples are
calculated. Finally, the value of the node is calculated as a weighted average of all
the actions and the regret values for the discrete actions are calculated. The regrets
for the actions in the discrete node and the samples in the continuous node are saved
into memory and the value of the full node is returned. If the current player is not
the traversing player, only one of the actions in the discrete node is chosen based on
the probabilities given by the current strategy from regret-matching on the output
of the value network. If the sampled action happens to lead to the continuous node
only one sample within the action space is drawn. Also, the regret values will not
be calculated nor saved into the memory.

Besides for the way the nodes are handled, the algorithm is very similar to deep
CFR. Each iteration there are k traversals. The players take turns in being the
traversing player. After all traversals for a player are done, a new value network
and an MDN are trained for the traversing player. The full algorithm is detailed in
Algorithm 1.
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Algorithm 2 CFR Traversal with continuous deep CFR sampling
function T(R)AVERSE(h, p, θ1, θ2,MV , t)

if h is terminal then
return the payoff to player p

else if h is a chance node then
a ∼ σ(h)
return TRAVERSE(h · a, p, θ1, θ2,MV , t)

else
Compute network outputs V (I(h), a|θ3−p) and
get the strategy for discrete actions using regret-matching
if P (h) = p then

Sample the MDN n times to get ca = {c1, c2, ..., cn} for
each continuous action
a← A(h)

else
Sample the MDN once to get ca = {c1} for each continuous action
Sample an action from A(h) according to V (I(h), a|θ3−p) and
set it to a

end if
for a ∈ a do

if a is continuous then
initialize va(i)
for ci in ca do

va(i)← TRAV ERSE(h · ci, p, θ1, θ2,MV , t)
end for
v(a)← mean(va(i))
for ci in ca do

r̃c(I, a)← va(i)− v(a)
end for

else
v(a)← TRAV ERSE(h · a, p, θ1, θ2,MV , t)

end if
end for
if P (h) = p then

for a ∈ A(h) do
r̃(I, a)← v(a)−

∑
a′∈A(h) σ(I, a

′) · v(a′)
end for
Insert the information set and it’s regrets to memory MV

return
∑

a∈A(h) σ(I, a) · v(a)
else

return
∑

a∈A v(a)
end if

end if
end function



25

Figure 3.4 Visualization of Monte Carlo roll-outs. All the graphs are rooted after the
action for which the expected value is to be estimated. The left-most graph depicts the
normal traversal when using external sampling. At the nodes where the traversing player
takes an action, all the actions are sampled. At the other nodes, only one of the actions is
sampled. The other two graphs show the additional roll-outs used for variance reduction.
These roll-outs always sample just one of the actions because these are just for estimating
the value of the action and no part of the CFR algorithm is run within these traversals.

3.4 Monte Carlo roll-outs

Monte Carlo CFR suffers from variance and because of that for example requires
special methods to make it viable when using CFR+ with it [28]. In this thesis, a
way of reducing the variance of MCCFR when used within deep CFR is proposed.
It uses Monte Carlo roll-outs starting from an action taken to better the estimated
expected value for said action. Figure 3.4 illustrates how the roll-outs work.

When traversing a game tree at an information set using deep CFR with external
sampling, the value of an action is estimated with a single traversal to the end of
the game. While this traversal samples all the actions at the traversing player’s
nodes, only a single action is sampled at the other nodes. This causes the traversal
to not touch all the nodes due to chance. In turn, the value estimates given by
this sampling scheme will depend on which nodes happen to be traversed. By doing
more traversals rooted after the action we can cover more of the tree and thus get a
better estimate of the expected value. CFR is not run within these additional roll-
outs and thus the additional roll-outs do not need to use the sampling scheme used
with CFR. Because of this, these additional roll-outs can just sample one action at
each node to have them run faster. When sampling an action during these additional
roll-outs, for player nodes the player’s current strategy is used, and for chance nodes,
the chance function is used. Using this sampling, the expected value received from
the roll-outs stays the same as with the traversal done with the external sampling.
Once all the roll-outs are done, the sampled expected values can be averaged to get
a lower variance estimate of the expected value for the action. This estimate can
then be used for calculating the other values needed in CFR.

The proposed method is somewhat similar to Neural Network Counterfactual Regret
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Minimization (NNCFR) [29] where Monte Carlo roll-outs are used to estimate the
value of actions. The difference is that in NNCFR the estimations are used during
the calculation of the strategy used at this iteration while in this thesis the proposed
way is to just use the roll-outs to lower the variance of the samples recorded in the
regret memory while keeping the strategy evaluation the same as original deep CFR.
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4 Experiments and results

In this chapter, the experimental setup and the results from the experiments are
presented. First, the games used to evaluate different algorithms are described in
detail. Then the proposed systems are presented and the details of the systems are
laid out. The baseline models, which the proposed systems are compared against,
are presented. Finally, the results from the experiments are presented and discussed
in detail.

4.1 Games

Two different games were used in the experiments. The first one is preflop no-limit
hold’em which has a smaller game tree as all players’ actions are limited to one
round of betting. The second one is flop no-limit hold’ em, which is expanded from
the first game with an additional betting round. These two games were chosen to
have games with a smaller and a bigger game tree to see how the proposed systems
scale when the size of the game increases. There have been previous studies that
have tried their proposed algorithms only in really small toy games and it has later
been found out that the algorithms do not scale well to larger benchmark games [4].

Preflop no-limit hold ’em is a two-player zero-sum game. The rules of the game are
the following.

• The game is played with a standard 52-card poker deck.

• At the start of the hand, both players have a stack of 100 chips. One of the
players is the small blind who must place 1 chip in the pot, and the other
player is the big blind who must place 2 chips in the pot.

• Both players are dealt two cards from the deck in private so that the other
player may not see those cards.

• The small blind will start the action by choosing to fold, call or raise. After
the small blind has taken an action the players will take turns in taking one
of the actions until the game or betting has ended.

• Folding will result in the folding player losing whatever they put in the pot
and the other player getting all the chips in the pot and ending the game.
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• Calling means putting the same amount of chips as the other player has put in
the pot and raising means putting more chips in the pot than what the other
player has put in the pot.

• If a player calls and both players have acted, the betting will end.

• When a player raises, the raise must be at least for what was the difference
between the last two raises or one big blind i.e. two chips, depending on which
is bigger.

• The blinds act as the first two raises so if for example the small blind raises
to six chips the big blind has to raise by at least four which is the difference
between the previous raises six and two.

• Finally, the winner of the game is the player who can construct the best
five-card poker hand when combining their two private cards and the five
community cards. The winner will win the whole pot. If both players have
equally strong hands, the pot is split evenly.

• After a game is played the players will change roles and the small blind will
become the big blind and vice versa. Also, the chip stacks are reset to 100
chips.

Flop no-limit hold ’em is a slightly modified version of preflop no-limit hold’em.
After the betting round, instead of dealing five community cards, only three cards
are dealt. After the community cards are dealt there is an additional betting round
starting with the big blind player. After the second betting round is done there are
no additional cards dealt and the winner is determined by the best five-card poker
hand.

4.2 Network architecture

All the neural networks in this thesis share the backbone used. A visualization of
this backbone is shown in Figure 4.1. The output of this backbone is then fed to a
head which is different between different networks. For neural networks used with
regular deep CFR or for discrete actions, the head will be just a fully connected
layer with the length of the output vector matching the number of actions used.
For the network used to predict probability distributions for continuous actions,
the output will be fed to a fully connected layer that outputs parameters for the
MDN. The MDN is parameterized by the distribution parameters and the weights for
individual distributions. The component distributions used are normal distributions
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Figure 4.1 Visualization of the backbone neural network architecture used for all different
systems. The input consists of the cards dealt to players and the bet history. Embeddings
are used for the cards. The network uses mainly fully connected layers with some of those
having skip connections. The number under each module marks the length of the output
vector for the module.

Figure 4.2 A graph visualizing the calculation of representation for a single card category.
A single card is represented as three numbers telling the rank, suit and the number of the
card. An embedding is made out of each of these numbers and then the embeddings are
summed over the cards in a category to get the final embedding for a single category.

parameterized by their mean and standard deviation. This means that for each
component distribution there are three parameters. In the experiments, the number
of component distributions used is ten.

The information set is represented by the cards dealt and the betting actions hap-
pened so far. The betting history is given as two vectors. The first vector consists
of zeros and ones marking whether the action at a point in history happened. The
second vector tells the size of the bet as a fraction of the pot. If a player calls the
size of the bet is set to zero. The maximum number of bets used is six. If a player
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is considering their sixth action and a raise is possible, the raise will be forced to be
all-in. The cards dealt are split into their categories based on the type of the cards.
The private cards are in their category and the community cards are in their own.
An embedding is made for each category. The embedding is made by summing card
embeddings. The card embedding is made for each card by creating an embedding
for the rank, the suit and the number of the card and summing these individual
embeddings together. A graph for how this presentation is calculated for a single
category is shown in Figure 4.2.

4.3 Model training

The neural network training was done using Adam optimizer. Adam optimizer is a
modification to standard stochastic gradient descent which modifies the size of the
updates based on previous updates. This has been shown to improve convergence
speed in practice. [30] The learning rate used for Adam was 1e − 4 and the beta
parameters were β1 = 0.9 and β2 = 0.999. The batch size used for network training
was 5, 000 and each network was trained for 3, 000 iterations. During training time
the dataset was shuffled each time it was gone through in training.

The deep CFR algorithm was run for around 100 iterations for each model. The
maximum memory size for reservoir sampling was 40, 000, 000 samples. Each itera-
tion there were 4, 000 traversals done for both players. For the models using Monte
Carlo roll-outs, 2 additional roll-outs were done at each player action in addition to
the regular traversal. When sampling continuous actions with the proposed modifi-
cations to deep CFR, there were three samples taken for each continuous action.

4.4 Baseline models

Two baseline models using regular deep CFR are used. These models differ only
in the granularity of the abstraction used for the game tree. The abstraction was
only used for the raise actions within the game tree and the abstraction was defined
in relation to the pot size and the remaining stack size of the players. The main
baseline model used an abstraction where the raise size was limited to a half pot,
a full pot and an all-in size. When considering a raise action the pot size was
calculated as what it would be if the raising player just called. For example, if the
player had previously raised to 10, and the other player raised to 20, then the next
raise would be calculated based on the pot being 40. This would make a half pot
raise be a raise to 40. The all-in size means that the player raises all the chips
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remaining in the stack. The model with the smaller abstraction had just the option
of using the full pot size raise. The main baseline model is used for comparison in
both games against all proposed systems and the smaller baseline model is used only
in the preflop no-limit hold’em against the combination of all proposed methods.

In addition to these details, the baseline models use deep CFR with the same training
hyperparameters as described in Section 4.3. Also, the network architecture used
for the value network is the one described in Section 4.2 for regular deep CFR.
The strategy network is not used and instead the average strategy is evaluated by
sampling the value networks with linear weighting based on the iteration of the value
network.

4.5 Results

The performance of continuous deep CFR with and without Monte Carlo roll-outs
was compared against the baseline models by having the models play a million
game match against each other. Continuous deep CFR with Monte Carlo roll-
outs and deep CFR with Monte Carlo roll-outs are referred to as continuous deep
CFR MCRO and deep CFR MCRO respectively. The performance was measured
in milli big blinds per game (mbb/g) which is a standard measure of win rate in
poker. Positive numbers correspond to the measured model to be better and negative
numbers mean that the baseline model is better. The performance was measured
at different points of training the proposed models so the performance is plotted
over iterations of training. Also, the strategies of different models are looked at in
a case-study fashion. In addition to the models described previously in this chapter
strategy produced by CFR using [31] is shown and compared to the ones produced
of variants of deep CFR.

In Figure 4.3 the performance of models in preflop no-limit hold’em. Both base-
lines with small and large action abstractions were used in this game. The small
action abstraction was only compared to the combination of continuous action mod-
ifications and Monte Carlo roll-outs. The large action abstraction was compared to
models with the Monte Carl roll-outs and with and without the continuous action
modifications. Deep CFR with the continuous action modifications manages to
beat the small abstraction but does not manage to learn a strategy good enough
for facing the large abstraction. This is quite likely caused by the model with the
small abstraction having trouble extrapolating responses against the single size in
its abstraction. The large abstraction has multiple sizes and can thus interpolate
responses in-between ones in its abstraction instead of extrapolating with only a sin-
gle sample. Deep CFR with the Monte Carlo roll-outs added seems to just perform
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Figure 4.3 Performance of continuous deep CFR MCRO and deep CFR MCRO plotted as
a function of iterations. Performance is measured as win rate in milli big blinds per game.
The performance is compared against deep CFR with large and small action abstractions.
The blue line corresponds to continuous deep CFR MCRO against deep CFR with the
small abstraction, the orange line corresponds to continuous deep CFR MCRO against
deep CFR with the large abstraction and the grey line corresponds to deep CFR MCRO
with large abstraction against deep CFR with large abstraction. A negative win rate means
the baseline model is performing better while positive values mean that the measured model
is performing better.

Figure 4.4 Performance of continuous deep CFR MCRO and deep CFR MCRO against
deep CFR plotted in milli big blinds per game as a function of iterations. The blue color
corresponds to continuous deep CFR MCRO and the orange color corresponds to deep
CFR MCRO.
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strictly better than the regular deep CFR. Note that the version with Monte Carlo
roll-outs was only trained for 89 iterations because of memory issues in the training
system so it did not quite have the time needed to completely converge.

In Figure 4.4 are performance graphs of the models in flop no-limit hold’em. Deep
CFR with the continuous action modification and Monte Carlo roll-outs and regular
deep CFR MCRO were compared to regular DCFR without any enhancements.
Both regular deep CFR models used the bigger action abstraction. Can be seen
that continuous deep CFR does not manage to reach the level of deep CFR with
just the large action abstraction for continuous actions. Adding Monte Carlo roll-
outs, however, does seem to make the deep CFR algorithm converge to a better
strategy.

The addition of Monte Carlo roll-outs possibly improved the performance of the
model when trained for the same number of iterations. The continuous action mod-
ification was good enough to beat deep CFR with the small abstraction at least in the
smaller game but giving deep CFR an action abstraction comparable in branching
to the modified deep CFR the regular deep CFR managed to out scale the modified
version. Reasons and future research ideas related to this performance difference
are discussed in Chapter 5.

Figures 4.5, 4.6 and 4.7 visualize strategy produced by continuous deep CFR
MCRO, deep CFR MCRO and CFR. Can be seen that there are similarities but the
deep CFR-based algorithms mix the actions more than the regular CFR. This can
probably be explained by the use of neural networks adding noise to the training
process. Also, the expected values of raising or calling the hands which are pure
raises are relatively close in the strategy produced by regular CFR. This causes the
noise coming from using neural networks to make the differences in strategies look
much bigger than it actually most likely is in terms of expected value.

When looking at the strategy produced with the continuous action modifications,
it can be seen that the minimum size is very often used in comparison to the other
models for both of the visualized nodes. Especially in the second node, the all-in size
is used very often by the other models but for some reason, continuous deep CFR
doesn’t find the all-in size. This difference seems to be the biggest difference between
what the strategy would be expected to be and what the proposed model produces.
Possible reasons for this and future research ideas on fixing this are discussed in
Chapter 5. Of interesting note is the fact that the deep CFR systemically does not
learn to fold any hands in the second node. This could be related to the relatively
small amount of traversals used per iteration in this thesis.
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Figure 4.5 Visualization of strategy produced by continuous deep CFR MCRO for two
nodes in preflop no-limit hold’em. The strategy over the discrete choices is visualized for
each individual starting hand type. The starting hands are grouped by the ranks of the two
cards and by whether the cards share their suits or not. This a standard way grouping poker
hands when there are no community cards dealt because the strategies of hands grouped this
way are identical. The nodes visualized are the first player node and the node that follows
when the small blind raises pot in this node. The colors green, blue and red correspond to
the raise, call and fold actions respectively. For each hand type there is a square which is
colored with these colors in proportion to the strategy used of that hand type. In addition
to visualization of the discrete choice strategy, a weighted average over all hands of the
cumulative density function for the raise action is shown. The cumulative density function
is plotted as a function of the raise size in relation to pot size.
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Figure 4.6 Visualization of strategy produced by deep CFR MCRO. The nodes visualized
are the same as in Figure 4.5 and the format is similar but with more action types. The
colors yellow, pink, green, blue and red correspond to actions raising all-in, raising half
pot, raising full pot, calling and folding respectively.

Figure 4.7 Visualization of strategy produced by regular CFR in the software PioSOLVER
for the same nodes as in Figure 4.5 with similar format of visualization. The colors dark
brown, light brown, green and blue correspond to actions raising all-in, raising full pot,
calling and folding.
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5 Conclusion and future work

Counterfactual Regret Minimization based algorithms have been used to achieve su-
perhuman performance in many benchmark games. Deep learning has been applied
to CFR in deep CFR to achieve more generality. This allows easier application of
these algorithms to different problems where domain knowledge is not as available.
The proposed Monte Carlo roll-outs were used to enhance the deep CFR method
while not fundamentally changing it. The continuous action modifications were
used to fundamentally change deep CFR, to reduce the required domain knowledge,
when applying the algorithm to new problems.

The proposed continuous action modifications did not surpass the performance of
regular deep CFR. Researching the reasons for this would be a good continuing
point for future research. It is possible that some of the assumptions in the pro-
posed changes are not fundamentally sound. Some of the changes could be such
that they would break the convergence bounds proven to be there for regular deep
CFR. The proposed changes were motivated by the idea of having a system that
seemed logically analogous to regular deep CFR while changing the action space
from discrete to continuous. If some of these changes were proven to not be analo-
gous under closer scrutiny or to be otherwise mathematically unsound, some other
way of achieving the same changes could be thought of and tried out. Another rea-
son for the failure of the proposed modifications could be that the implementation
had problems. The experiments were done with limited resources. For example,
the number of traversals per iteration was quite small, and the number of iterations
was also smaller than what was used in the research originally done for deep CFR.
The implementation could have been more optimized or the hardware could have
been faster to allow using a greater number of traversals and iterations. A concrete
example of optimizing the algorithm would be implementing vector-form CFR. This
would reduce the generality of the algorithm but would allow for reduced variance,
possibly enabling the model to converge to a better strategy.

When inspecting the strategy learned by continuous deep CFR and comparing it to
the other models, the action choices used for the continuous actions were very differ-
ent. Studying the reasons for this difference could be an idea for future research as
well. The model was not learning to use the whole action space like the models with
abstractions did. This could be due to the mentioned limitations from hardware.
Also, the parameters used for the neural network could cause this. Perhaps the



37

network would need to be trained to overfit the predicted distributions more closely
to the data produced by the traversals. Other options would include the theoretical
soundness of the algorithm. The traversal and sampling of the continuous actions
could be unsound. A more likely problem in the algorithm could be the way the
neural network is trained. The loss function could need modification to ensure the
required convergence bound for CFR.
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