
Manu Harju

TWO STAGE SYSTEM FOR ANOMALOUS

SOUND DETECTION IN INDUSTRIAL

ENVIRONMENTS

Using few-shot learning in anomaly detection

Master of Science Thesis

Faculty of Information Technology and Communication Sciences

Examiners: Annamaria Mesaros

Tuomas Virtanen

April 2022

i

ABSTRACT

Manu Harju: Two stage system for anomalous sound detection in industrial environments
Master of Science Thesis
Tampere University
Signal processing and machine learning
April 2022

Machine breakdowns and maintenance breaks cause costly downtime in factories and power
plants. Recognizing a breaking machine before the actual breakdown can reduce the down-
time and size of the damage. The existing condition monitoring systems are usually based on
measuring the vibrations in the machines. In industrial environments the acoustic properties are
relatively homogeneous during normal operation, and machine failures cause change in those
properties. Therefore a change in acoustic conditions reflects an anomalous event that can be
detected through analysis of audio signals at the scene. However, sometimes normal operation
like talking or door slamming can cause a significant change in the acoustic conditions, and those
should be ignored.

This thesis presents a two-stage acoustic anomaly detection system. The motivation behind
using two stages is to offer the operator a possibility to silence certain anomaly types. This makes
it possible to ignore normal events that are anomalies from acoustic point of view but do not
indicate a need for alarm.

Keywords: anomaly detection, environmental audio, few-shot learning, neural networks

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

TIIVISTELMÄ

Manu Harju: Kaksivaiheinen poikkeavien äänien havaitsemisjärjestelmä teolliseen ympäristöön
Diplomityö
Tampereen yliopisto
Signaalinkäsittely ja koneoppiminen
Huhtikuu 2022

Laitteiston rikkoutumisista johtuvat katkot voimaloiden ja teollisten laitosten toiminnassa ovat
usein kustannuksiltaan kalliita. Laitevioista johtuvien seisokkien pituuksia ja aiheutuvia kustannuk-
sia on mahdollista pienentää tunnistamalla laitteiston huollontarve ennen rikkoutumista. Saatavilla
onkin jo valmiita järjestelmiä koneiden kunnon tarkkailuun, ja suurin osa saatavillaolevista järjes-
telmistä perustuu erilaisten värinöiden mittaamiseen. Teollisessa laitoksessa äänimaiseman omi-
naisuudet säilyvät yleensä suhteellisen vakiona normaalin toiminnan aikana ja muutos koneen
toiminnassa usein ilmenee myös akustisesti, jolloin laiterikko tunnetussa ympäristössä on mah-
dollista havaita myös äänisignaalien analyysin avulla. Toisaalta joskus myös tavallinen toiminta
aiheuttaa merkittäviä muutoksia äänimaisemassa, ja järjestelmän tulisi osata tunnistaa ja jättää
huomiotta tapaukset kuten esimerkiksi ihmisten puheet ja ovien kolahdukset.

Tässä diplomityössä on esitetty kaksivaiheinen järjestelmä äänisignaalien poikkeavuuden ha-
vaitsemiseen. Esitetty kaksivaiheinen menetelmä tarjoaa järjestelmän käyttäjälle mahdollisuuden
hiljentää tietynlaisista äänipoikkeamista aiheutuvat hälytykset, jolloin normaalista toiminnasta ai-
heutuvat poikkeavat äänet voidaan jättää huomiotta.

Avainsanat: poikkeamien havaitseminen, äänianalyysi, neuroverkot

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.

iii

PREFACE

This work was completed while working in the Audio research group of Tampere Univer-

sity. I would like to thank my supervisor Annamaria Mesaros for guidance and patience

throughout the whole process. Furthermore, I want to thank Ville Laukkanen from Ind-

Meas for showing the insights of the power plant industry. Finally, I would like to thank my

friends and family for their support.

Tampere, 27th April 2022

Manu Harju

iv

CONTENTS

1 Introduction . 1

2 Background . 2

2.1 Motivation . 2

2.2 Related work . 5

2.3 Neural networks . 5

2.3.1 General concepts . 5

2.3.2 Activations and output types . 6

2.3.3 Convolutional neural networks 7

2.3.4 Training . 8

2.3.5 Autoencoders . 9

2.3.6 Siamese networks and few-shot learning 10

2.4 Audio analysis . 12

2.5 kNN-classification . 13

3 Methods . 15

3.1 Datasets . 15

3.1.1 Anomaly detection datasets . 15

3.1.2 Synthetic data . 17

3.2 Two stage system . 18

3.2.1 Stage 1: Autoencoder . 19

3.2.2 Stage 2: Convolutional network 20

4 Results and discussion . 21

4.1 Synthetic data results . 21

4.2 DCASE 2020 dataset results . 22

4.2.1 Stage 1: Autoencoder . 22

4.2.2 Stage 2: Convolutional network 22

4.2.3 Two-stage system . 24

4.3 Discussion and future work . 28

5 Conclusions . 30

References . 31

v

LIST OF SYMBOLS AND ABBREVIATIONS

AE Autoencoder

AF Availability Factor

AUC Area under curve

CNN Convolutional neural network

FFT Fast Fourier Transform

FOR Forced outage rate

kfE Energy failure factor

MAE Mean absolute error

MSE Mean square error

ReLU Rectified linear unit

SGD Stochastic gradient descent

VoLL Value of lost load

1

1 INTRODUCTION

Deciding about the maintenance schedule of industrial machines is a problem that every

operating factory and power plant has to solve. Servicing equipment too often causes

unnecessary breaks in production, whereas without proper maintenance machine break-

downs can occur. Machine downtime is costly, and should be minimized.

One way to approach the problem is to monitor the condition of the machines, and try

to schedule preemptive maintenance according to the measurements. A commonly used

method to examine the condition of a machine is to measure vibrations in critical parts.

However, it is also possible to use acoustic monitoring to gain insight into the machine

condition.

The work in this thesis concentrates on detecting anomalous events based on captured

sound. Industrial sites are loud environments and the acoustic properties of the environ-

ment will stay within a known range during normal operation. An anomalous event often

causes a change in the acoustic conditions, which could be then detected by audio pro-

cessing methods. However, some abnormal sounds may be caused by normal operation,

and the system should be able to distinguish true anomalies from those.

This thesis proposes a two-stage system consisting of an anomaly detector and a few-

shot classifier for a practical approach to condition monitoring using acoustic monitoring.

The purpose of the first stage is to detect the abnormal conditions. When such a case

occurs, the second stage is used to classify whether the anomaly should cause an alarm

or not. Using few-shot learning in the second stage allows the operator to teach the

system about the false alarms.

Chapter 2 presents the motivation and theoretical background for the work. Used data

and the implementation are discussed in more detail in Chapter 3. Chapter 4 presents

the results and discussion, and the conclusions are collected in Chapter 5.

2

2 BACKGROUND

2.1 Motivation

The main motivation behind this study lies in preemptive failure detection in real industrial

systems, especially in thermal power stations. Unexpected failures in such systems cause

expensive downtime, that could have been usually avoided with proper maintenance.

However, maintenance breaks also stop the production, and having maintenance breaks

too often causes unnecessary costs. Occasionally a change in the machine condition

causes an audible difference in the sounds it makes. This work attempts to harness

audio analysis to recognize unexpected audio signals in industrial environments.

Costs caused by breakdowns and the reliability of power plants are measured continu-

ously to understand the effects of failures and interruptions, and how the performance of

the plants can be maintained and improved. The value of lost load (VoLL) is the price

estimate of what the customers would be willing to pay to avoid disruptions in their elec-

tricity services [1]. The cost varies between countries, and in Finland it is estimated to be

28 000 e/MWh [2].

Analysing power plant performance and reliability can be done using various metrics,

and availability factor (AF) is one of the standard measures [3]. The availability factor is

defined as

AF =
TA

TP

, (2.1)

where TA and TP denote available and period time, respectively. Power plants that require

less maintenance have higher AF, which makes it a useful measure for comparing different

power generating systems [4].

For a thermal power plant another measure can be derived from the amounts of energy.

The energy failure factor is defined as

kfE =
Ef

Ef + Ed

, (2.2)

where Ef and Ed are the loss in energy production and the actual produced energy,

respectively [5].

3

relative cost

> 10 yrs

3-10 yrs

1-3 yrs

< 1 yr

fre
qu

en
cy

superheater pipe leak
boiler pipe leak
turbine warranty repair
fuel feeder failure
circulating pump engine failure
typo/user error
automation failure
magnetizing equipment
high pressure preheater pipe leak
bad quality fuel

Figure 2.1. Occurrence rates against costs plotted for different failure classes. Adapted
from [6].

Forced outage is the shutdown condition of a power station, transmission line or distri-

bution line when the generating unit is unavailable to produce power due to unexpected

breakdown. Forced outage can be caused by for example equipment failures, disruption

in the power plant fuel supply chain or an operator error to mention a few. Forced outage

rate (FOR) of a power station unit is the probability that the unit will not be available for

service when required. FOR can be calculated as the fraction of the number of hours the

unit is on forced outage and the total number of hours in a year [3]. The forced outage

rate depends on power plant and fuel type. For coal power and nuclear power the given

rates are 4.2 % and 2.1 %, respectively [2].

In thermal power plants decreases in availability are usually caused by failures in the

boiler. The most common types of failures are leaks in evaporator and superheater.

Moreover, the costs of these failures are relatively high [5, 7]. These findings suggest

prioritizing on boiler related problems in practical implementations. Furthermore, Figure

2.1 shows that the problems related to superheater and boiler pipes are also expensive.

Saarinen [8] has collected statistics of failures and interruptions for a sawmill power sta-

tion. The plant is burning some parts of the wood as fuel, and oil as reserve. Table

2.1 lists a summary of the data. The data consists of events during one year, and the

numbers are relatively high as every interruption is counted. There are four boilers in the

sawmill power plants: 25 MW steam boiler, 14 MW hot water boiler, and two spare boilers.

Half of the fuel problems are related to the steam boiler of the power plant. According to

Saarinen [8], the interviews suggest that the most critical parts are fuel processing and

ash transfer.

4

Table 2.1. Failure statistics for Vilppula sawmill power station in 2016.

Failure class count pct

Fuel (combined) 70 44.30 %

Boiler (combined) 33 20.89 %

Ash (combined) 32 20.25 %

Water (combined) 9 5.70 %

Turbine 9 5.70 %

Generator 0 0.00 %

Reserve power generator 1 0.63 %

District heating 3 1.90 %

Reduction 1 0.63 %

Table 2.2. Helen Salmisaari power plant failure cost distributions.

Failure class Plant A Plant B

Fuel handling 47 % 29 %

Mechanical maintenance 17 % 2 %

Electric and automation maintenance 30 % 7 %

Material checks 6 % 14 %

Facility development 0 % 31 %

Power plant chemistry 0 % 16 %

Process chemistry 0 % 0 %

Facility operation 0 % 1 %

Condition monitoring 0 % 0 %

Lubrication maintenance 0 % 0 %

Outside factor 0 % 0 %

Table 2.2 shows the distributions of failure costs for two power plants operated by Helen in

Salmisaari. Total costs for plants A and B were 710 091 e and 10 174 107 e, respectively

[5]. The numbers suggest that in Salmisaari the fuel handling and processing is critical

with respect to the total cost. However, this is in line with the other findings [5].

Many of these failure types are due to mechanical breakdowns in the plant equipment,

and it is likely that the sounds produced by breaking machinery differ from the sounds

during normal operation. For example, failure in a turbine, cavitation in a pump, or ex-

cess mechanical wear in machines can cause noticeable change in acoustic conditions.

Furthermore, this gives motivation towards developing a system for acoustic monitoring.

Finally, normal operation may also cause abnormal sounds, for example door slamming,

tool dropping and people talking to mention a few. These events should be ignored.

The objective of this work is to develop an anomaly detection system that can recognize

5

unusual acoustic conditions, and is able to categorize the detected unusual ones. The

abnormal sounds that are not of concern should be detected by the system as anomalies,

but recognized as non-alarm triggering events.

2.2 Related work

Monitoring systems for industrial environments already exist to some extent as commer-

cial products. For example, AuresSound1 by APL Systems offers audio based condition

monitoring, aiming for customers in energy and process industries. In addition, a Finnish

company NL Acoustics2 already has a product for industrial sound monitoring. Rose-

mount Inc has patented methods related to acoustic monitoring with wireless devices in

industrial environments [9]. Algorithmica Technologies3 provides a neural network based

solution to monitor data from industrial environments, but the solution contains nothing

related to audio.

2.3 Neural networks

2.3.1 General concepts

Neural networks are widely used models in modern machine learning. The target is to

approximate some mapping f between its inputs and outputs. For example, a classifier

is the function y = f(x) that maps the inputs x to the class y. [10]

A feedforward network is a neural network without feedback connections. Usually a feed-

forward network is a composition of several functions, and the functions are called the

layers of the network. For example, if a feedforward network f ∗ consists of three chained

layers, we can write f(x) = f (3)(f (2)(f (1)(x))). This kind of chaining arrangement is

the most commonly used structure in feedforward networks. The length of the chain is

called the depth of the model, and the term deep learning relates to this terminology. A

layer whose outputs are not outputs of the model is called a hidden layer. A layer is usu-

ally a vector valued function, but instead of a single multivariate mapping a layer can be

thought as many similar units representing a vector-to-scalar functions acting in parallel.

These units are thought to resemble real neurons in the sense that they get their inputs

from other units and calculate their own activations, hence the name neural network. In

addition, some choices for the functions f (i) are motivated by neuroscience. However,

neural networks should be thought of a tool for function approximation instead of a model

for brain. [10]

1https://www.apl.fi/
2https://nlacoustics.com/
3http://www.algorithmica-technologies.com/

6

2.3.2 Activations and output types

The output of a single unit is often called activations, and they are computed by applying

some activation function to the weighted sum of the inputs and the bias term. The output

of the jth fully connected layer can be written as

yj = gj(Wjx+ bj), (2.3)

where Wj is the weight matrix, bj is the bias vector, and the activation function gj is

usually acting element-wise on its input vector. [10]

Since the composition of affine transforms stays affine, it is useful in many cases to

choose a nonlinear mapping for the activation. The usual recommendation in modern

neural network architectures is the rectified linear unit (ReLU), defined by

g(zi) = max(zi, 0), (2.4)

where zi is the input of the ith activation. [10].

In some cases it may be reasonable to use different activation functions. In particular, the

activations of the last layer represent the output of the network [10]. In the case of binary

classification a common choice for output is the logistic sigmoid function

σ(zi) =
1

1 + exp(−zi)
. (2.5)

The output of the sigmoid function is between 0 and 1, and the network output can be

interpreted as the probability of the input belonging to the target class. For multi-class

single-label classification the output of the network should represent a probability distri-

bution. This can be done with softmax activation, defined by

softmax(z)i =
exp(zi)∑︁
k exp(zk)

. (2.6)

In other words, the inputs of the softmax are exponentiated and then normalized [11].

This guarantees that the outputs are always positive and their sum is 1. The hyperbolic

tangent is defined by

tanh(zi) =
exp(zi)− exp(−zi)

exp(zi) + exp(−zi)
=

exp(2zi)− 1

exp(2zi) + 1
, (2.7)

and the output values are between -1 and 1. Furthermore, the hyperbolic tangent can be

given in terms of the sigmoid function with tanh(zi) = 2σ(2zi)− 1. Hyperbolic tangent is

an option if the output value has to be bounded and centered at zero, and is often used in

so called recurrent neural networks. In addition, some modifications to ReLU have been

7

used. One of these modifications is Leaky ReLU [12], defined by

g(zi) =

⎧⎨⎩ 0.01zi, zi < 0

zi, zi ≥ 0.
(2.8)

2.3.3 Convolutional neural networks

For a fully connected layer the output of the layer can be computed as in Eq. 2.3 by using

a simple matrix multiplication and vector addition before applying the activation function.

Instead of computing the affine transform Wx + b, in convolutional layers the input is

transformed using an operation called convolution. Convolutional neural network (CNN)

is a neural network that contains at least one convolutional layer. [10]

The convolution is usually denoted with ∗ and in one-dimensional discrete case it can be

written as

s(t) = (x ∗ w)(t) =
∞∑︂

i=−∞

x(i)w(t− i), (2.9)

where the x is usually referred to as the input, and w as the kernel of the convolution. In

applications the input is an array of data, and the kernel is an array of parameters learned

during the training process. Often the arrays are multidimensional and called tensors.

Moreover, in practice the kernel and data is assumed to be nonzero over only a finite set

of points so that the sum in the convolution has a finite number of terms. [10]

The convolution is commutative, meaning that (x ∗ w)(t) = (w ∗ x)(t). Moreover, the

convolution can be taken over several axis at a time. If I is an input image in a two-

dimensional array and K is a two-dimensional kernel, we can write

S(i, j) = (I ∗K)(i, j) =
∑︂
k

∑︂
l

I(k, l)K(i− k, j − l), (2.10)

which is possible to turn around to S(i, j) = (K ∗ I)(i, j) by the commutativity. [10]

Often convolutional layers are followed by a pooling function. Pooling acts on a neigh-

borhood of a point, and replaces the output of a single point by some function of its

neighborhood. Common choices are taking the maximum value or the average. Pooling

helps to make the layer output invariant to small translations in the input. [10]

Figure 2.2 shows a visualization of the data and the changes in dimensionality throughout

a convolutional network.

8

input array convolution, 4 kernels pooling convolution, 10 kernels

Figure 2.2. Illustration of the first layers of a convolutional network.

2.3.4 Training

Training a neural network is a similar task to many other machine learning problems, and

it is done by gradient-based learning. The training requires a cost function, and the layer

weights are updated according to the gradient. However, the mapping from a network’s

inputs to its outputs is constructed by composing the layers, and is usually too complex to

compute the gradients directly. Nevertheless, the information from the cost function can

be fed back to the network with the back-propagation algorithm. [10]

The gradient descent is a simple iterative method to find a local minimum (or maximum)

of a differentiable function. The direction of the fastest decrease of the function F in

a neighborhood of x is given by the negative gradient −∇F (x). The gradient descent

update rule can be then given by

xn+1 = xn − γ∇F (xn), (2.11)

where γ is the learning rate. If γ is sufficiently small, then F (xn+1) ≤ F (xn), and

eventually the algorithm converges. With well-behaving F and ∇F gradient descent

usually performs well, but in case of more complex functions to optimize it may be difficult

to find an extreme point. [10]

In modern neural network training often some version of stochastic gradient descent

(SGD) algorithm is used. The basic idea behind SGD is that computing the gradient

for every input sample is computationally costly, and the gradient is an expectation that

can be approximated by using the average gradient of a smaller sample. The minibatch

used to estimate the gradient is drawn uniformly from the traing data, and usually its size

varies from one to several hundred samples. In addition to deep learning, SGD is useful

in learning large linear models when the amount of data is very large. [10]

The basic SGD can be extended in various ways. One of the most common methods

is Adam, which uses running averages of the gradients and the element-wise squared

gradients to estimate a non-constant learning rate. [13]

9

By definition deep neural networks contain many consecutive layers. In the gradient

based learning the gradient tells how the layer’s parameters should be updated, whereas

the other parameters are assumed to stay constant. However, in practice all the weights

are updated at the same time, and in a deep cascade of layers this may yield unexpected

effects [10]. Batch normalization[14] is a method to reduce the effect of coordinated up-

date of weights, and can be applied to any input or hidden layer of the network. In batch

normalization the input samples of a minibatch are normalized by

h′
i =

hi − µi

σi

, (2.12)

where µi and σi denote the average and standard deviation, respectively. In practice a

small constant is added to the standard deviation to avoid dividing by zero. [10]

2.3.5 Autoencoders

An autoencoder (AE) is a neural network consisting of an encoder and a decoder, and

in between the two is a bottleneck layer. As the name suggests, the number of units

in the bottleneck layer is small compared to the input dimension. The autoencoder is

trained using the same output target as the input data, so that it should reconstruct the

original input. With this construction the bottleneck layer can be interpreted as a lower

dimensional representation of the original input. [15]

The autoencoder is a widely used method for detecting anomalies in the input. For the

data with known properties, such as the data that was used for the training, the output of

an autoencoder will be close to the input. However, if the input contains some properties

unknown to the autoencoder, those will result in large reconstruction error [16]. In other

words, an autoencoder learns to reconstruct its training data relatively well, but fails when

the data has different characteristics. In many cases the autoencoder is an attractive

choice for anomaly detection since the training does not require obtaining data containing

the anomalies expected to be detected.

In audio domain a common choice for the autoencoder input is to take several consecu-

tive frames from the signal spectrogram and only employ dense layers [17, 18, 19]. In this

approach the resulting errors of moving frames have to be combined in some way. A nat-

ural choice is to average over absolute errors or squared errors to obtain mean absolute

error (MAE) or mean squared error (MSE), respectively. These can be computed with

MAE(x̂) =
1

N

N∑︂
k=1

|x̂k − xk|, (2.13)

10

and

MSE(x̂) =
1

N

N∑︂
k=1

(x̂k − xk)
2, (2.14)

where x̂ is the reconstruction and x the original. For a smaller number of consecutive

spectrogram frames the dimensionality of the autoencoder input stays relatively small,

but as the length of the input increases it is more convenient to use convolutional layers

[20]. Furthermore, even raw audio can be used with an autoencoder [21] by using strided

convolutional layers for the input and WaveNet [22] for the reconstruction.

A variational autoencoder (VAE) is a modification of the autoencoder where instead of a

lower dimensional representation the low-dimensional latent distribution parameters are

learned. The output is then reconstructed by decoding a sample from the latent distribu-

tion. Therefore a major difference to an autoencoder is that VAE is a stochastic method,

whereas AE is purely deterministic [23].

2.3.6 Siamese networks and few-shot learning

A siamese neural network is a setup where an artificial neural network is trained using

several input samples at a time. The same network weights are used for computing

feature vectors for all the inputs. These vectors or their distances can then be used for

further computation. [24]

A network trained with a siamese setup can be used for dimensionality reduction. The

network computes a nonlinear transformation from the input to an embedding space with

a predefined number of features. How the inputs are mapped into the embedding space

is determined by the training process. For example, a network can be trained to place

the input samples from the same class closely together, and as far as possible from

samples of different classes. Furthermore, even if there are only a few class examples

available, the vectors in embedding space can be still used for few-shot learning. For

each class example we can compute its feature representation in the embedding space.

A new sample is then classified by computing its representation and using e.g. a nearest

neighbor classifier in the embedding space [25].

One possibility to train a siamese network is to use triplet loss. A block diagram of the

setup can be seen in Figure 2.3. In the training process every input contains an anchor

sample and corresponding positive and negative samples. The positive sample is chosen

from the same class as the anchor, and their embeddings should be placed close to

each other. The negative sample is from a different class, and its representation in the

embedding space should have a margin to the anchor. In the training process the same

network is used to compute embeddings for all the inputs, and the triplet loss is calculated

11

positive
input

anchor
input

negative
input

Convolutional
network

Convolutional
Network

Convolutional
Network

d+ d−

Triplet loss

Figure 2.3. Block diagram of the triplet setup for training a siamese network.

as

L(xa, xp, xn) = [d(f(xa), f(xp))− d(f(xa), f(xn)) + α]+, (2.15)

where f is the mapping of the network, xa, xp, xn are the anchor, positive, and negative

inputs, respectively, and d(·, ·) is a distance function, α is a margin constant that should

separate positive and negative classes, and [x]+ denotes max(x, 0) [25].

Often the output of the embedding network is normalized [25, 26, 27], but also output

regularization has been used [28]. Moreover, the results in [29] suggest using output

normalization. If the embedding vectors are normalized, a simple relation for distance

metrics can be derived. If x and y are vectors in the embedding space, then their ℓ2

distance is simply

d2(x, y) = ∥x− y∥2. (2.16)

The cosine distance is another common metric, which is defined as

dc(x, y) = 1− SC(x, y), (2.17)

where Sc is the cosine similarity from the inner product, defined as

Sc =
⟨x, y⟩
∥x∥∥y∥

. (2.18)

Now if the embedding vectors are normalized, the cosine distance becomes dc(x, y) =

1− ⟨x, y⟩, and furthermore

∥x− y∥22 = ∥x∥2 + ∥y∥2 − 2⟨x, y⟩ = 2− 2⟨x, y⟩ = 2dc(x, y), (2.19)

12

0 1000 2000 3000 4000 5000 6000 7000 8000
frequency (Hz)

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

am
pl

itu
de

Figure 2.4. 16 bin mel filterbank on a linear frequency scale using sample rate 8 kHz.

and therefore d2(x, y) =
√︁
2dc(x, y). Moreover, since the vectors are normalized we

have d2(x, y) ≤ 2 and dc(x, y) ≤ d2(x, y). In other words, the cosine distance is always

smaller in the embedding, and it is proportional to the square of the Euclidean distance.

2.4 Audio analysis

The most straightforward way to represent audio in a digital format is to store the wave-

form. However, for the analysis it can be more beneficial to work with the frequency

content. There are some network implementations using raw audio, for example [30],

but the vast majority of the current research uses some representation of the frequency

content as an input.

A spectrogram is a way to represent the frequency content against time. The spectro-

gram is computed taking FFT of moving fixed length sample windows, and therefore the

resulting 2D array dimensions depend directly on the used parameters. The number of

frequency bins is half of the length of the FFT window, and how much the window is

moved affects directly to the temporal axis resolution. One theoretical difference between

the spectrogram and raw waveform representation is that the spectrogram only contains

the powers of the frequency components, and the information about their phases is lost.

The frequency scale in an FFT spectrogram is linear, whereas the human perception for

pitch is closer to a logarithmic scale [31]. This motivates using of a quasi-logarithmic

conversion such as the mel scale for the frequencies to obtain better representation in

sense of human hearing.

The usual way to convert an FFT spectrogram into a mel-spectrogram is to use a filter-

bank. A mel filterbank consists of a given number of triangular filters placed on the linear

mel scale. Furthermore, the maximum amplitude of every filter can be normalized by its

bandwidth. Figure 2.4 shows a mel filterbank with 16 bins constructed with librosa. Con-

13

0 1.5 3 4.5 6 7.5 9
Time

0

1000

2000

3000

4000

5000

6000

7000

8000

Hz

-80 dB

-70 dB

-60 dB

-50 dB

-40 dB

-30 dB

-20 dB

-10 dB

+0 dB

Figure 2.5. Example spectrogram. The sample rate is 8 kHz and for the spectrogram
FFT length 1024 and hop length 512 is used.

verting one FFT frame into mel energies can be done by multiplying the FFT vector by the

filterbank matrix, and converting the whole spectrogram is a single matrix multiplication.

An example of a spectrogram can be seen in Figure 2.5, and Figure 2.6 shows the mel

spectrogram of the same signal.

There are several different versions of the formula for calculating the mel scale. For

example, by default librosa [32] uses the formula

m = 2595 log10

(︃
1 +

f

700

)︃
. (2.20)

2.5 kNN-classification

The k-nearest neighbors (kNN) is a nonparametric classification algorithm. For the kNN

classification the training phase is simply storing the training data and their correspond-

ing class labels. An input is then classified by measuring the distances to the training

samples, and taking the majority vote for the class of the k closest samples. For k any

positive integer can be chosen, the simplest choice being k = 1 where the input samples

are classified according just by finding the closest training sample. [33]

One downside of kNN is that since the distances are calculated to every known sample,

14

0 1.5 3 4.5 6 7.5 9
Time

0

512

1024

2048

4096

8192

Hz

-80 dB

-70 dB

-60 dB

-50 dB

-40 dB

-30 dB

-20 dB

-10 dB

Figure 2.6. Example mel spectrogram. The sample rate is 8 kHz and for the spectrogram
FFT length 1024 and hop length 512 is used, and the number of mel filters is 128. y-scale
indicates the frequencies of the mel bins.

the computational complexity grows with the amount of training data. One way to over-

come the problem is to reduce the amount of samples by only using the cluster centers.

[33]

15

3 METHODS

3.1 Datasets

In the experiments two different datasets are used, one containing real recordings, and

another one synthetically generated. The real anomaly detection dataset is one of the

benchmark datasets provided within the DCASE challenge [34]. The synthetic dataset

was constructed by mixing various recorded sound events with background recorded in

real industrial site in Finland.

3.1.1 Anomaly detection datasets

The data used in training and testing is the development dataset from DCASE 2020 task

2 [34], and is originally from ToyADMOS (Toy anomaly detection in machine operating

sounds) [17] and MIMII (Malfunctioning industrial machine investigation and inspection)

[18] datasets. ToyADMOS contains audio from machine-like toys, and during the data

collection the toys were damaged on purpose to obtain anomalous sounds [17]. MIMII

contains sounds from four different types of real machines: fans, water pumps, slide rails

and valves. Anomalous sounds contain various types of abnormal conditions for every

class [18].

The data consists of ten-second sound clips from six different machine classes, and ev-

ery machine class contains several different machines. The class ToyConveyor only has

three different machines, whereas the five other classes have four different machines.

The machines are recognized with a machine id tag. Figures 3.1 and 3.2 show the mel

spectrograms of a normal and anomalous ToyConveyor sample, respectively. Both of the

samples are from the device id 01.

The files are single channel and the sample rate is 16 kHz. The training and test sets

consist of 20119 and 10868 files, respectively. The numbers of files in individual classes

can be seen in Table 3.1. In total the sound data takes 9.7 gigabytes on disk. In the

remaining part of this work the dataset is called the DCASE 2020 dataset.

16

0 1.5 3 4.5 6 7.5 9
Time

0

512

1024

2048

4096

8192

Hz

-80 dB

-70 dB

-60 dB

-50 dB

-40 dB

-30 dB

-20 dB

-10 dB

+0 dB

Figure 3.1. Mel spectrogram of a normal ToyConveyor sound example.

0 1.5 3 4.5 6 7.5 9
Time

0

512

1024

2048

4096

8192

Hz

-80 dB

-70 dB

-60 dB

-50 dB

-40 dB

-30 dB

-20 dB

-10 dB

+0 dB

Figure 3.2. Mel spectrogram of an anomalous ToyConveyor sound example.

17

Table 3.1. Numbers of files in individual classes in the DCASE 2020 dataset.

Train Test

Machine Normal Normal Anomaly

Fan 3675 400 1475

Pump 3349 400 456

Slider 2804 400 890

ToyCar 4000 1400 1059

ToyConveyor 3000 2399 1110

Valve 3291 400 479

3.1.2 Synthetic data

During the research work an artificial dataset was constructed for development and test-

ing. Real world data recorded by IndMeas was used as normal sounds and background

noise for anomalous samples. For the anomalies various samples from freesound.org

were collected. These samples included scratches, squeaks, creaks, and breaking of

various things to mention a few. In addition, some artificial anomalies were recorded by

IndMeas1. These samples included some tools, e.g. drill and grinder, and some nearby

construction site sounds. The total number of anomalous samples used was 448. Finally,

some anomalies were created just by pitch shifting the original sound. For a more de-

tailed study, the anomalies were divided into six different classes: five classes based on

recordings by IndMeas, and one class from the FreeSound data.

The background data was recorded continuously, and the data was divided into 15 second

clips in the process. Every recorded background sound was used at most once: either

as a normal sample, as background for an anomalous sample, or discarded. To ensure

that there is no overlapping, 200 samples between the training and test samples were

discarded. In terms of time the amount of discarded samples translates to a 50 minute

gap between the recordings of training and test sets. Finally, the sounds were processed

in lexicographical order, and the test data was generated first. Anomalous samples were

mixed on top of the background samples in such a way that a predetermined SNR level

was obtained. The synthetic anomalous samples were created for three different SNR

levels of -6dB, -10dB, and -20dB.

The constructed training data consists of 3478 samples recorded between 0.00 - 7.30

UTC. The numbers of different anomaly samples can be seen in Table 3.2. The third

class labeled as Outdoor noises contains sounds outside the planned recordings, mostly

originating from a nearby construction site. The samples in the third class include sounds

from trucks, distant talking, clatter and thumping.

1https://www.indmeas.com

18

Table 3.2. Classes of anomalous samples in the synthetic data.

Class Number of files

Drill 132

Drill with hammer 13

Outdoor noises 37

Grinder on idle 118

Grinder 3

FreeSound samples 145

3.2 Two stage system

The framework developed during this work consists of two neural networks. The block

diagram of the system is shown in Fig. 3.3. The purpose of the first stage is to discard

all the incoming normal (non-anomalous) samples, whereas the second stage is used to

classify the anomalous data that passes through the first stage and take the decision of

triggering or not an alarm.

The input for the system is a log-mel spectrogram computed from the inspected audio

sample. The spectrogram is computed using 1024 sample FFT with 512 sample hop

length. For the mel 128 bins are used.

The first stage is responsible for detecting the anomalies, and discarding the input data

from normal conditions. This is implemented by using a standard autoencoder. All input

samples that are tagged as anomalous are then passed on to the second stage.

In the second stage a convolutional network is used to compute a feature vector of the

anomalous input sample in the embedding space, where it is then classified using the

nearest neighbor approach. In addition to just looking at the nearest known sample, the

distance in the embedding space between the input sample and the nearest neighbor is

also taken into account. If the mapping of the input vector is not near any known anomaly

class example, it is considered as a novel sample and classified as an alarm.

The two stages are independent in such a way that the implementations of each one can

be changed freely. The purpose of the first stage is to detect abnormal sounds, and any

anomaly detector available can be used for it. Similarly, the implementation of how the

embedding is computed can be changed in the second stage. Finally, instead of using

just nearest neighbor some other classification method could be used for the alarm-trigger

decision.

19

Spectrogram, |DFT|2

input audio

Mel-filterbank, logarithm

Autoencoder

CNN

alarms not alarms

normal events

power spectrum

log-mel energies

anomalies

Figure 3.3. Block diagram of the proposed system.

3.2.1 Stage 1: Autoencoder

For the autoencoder an architecture similar to the DCASE 2020 baseline was used [34].

The encoder and decoder parts both contain four dense layers of 128 units with ReLU ac-

tivation, and batch normalization layers are used after every dense layer. The bottleneck

layer contains 16 units. The autoencoder input is five consecutive frames of the log-mel

spectrogram, and therefore the total input dimension is 640. As the data is processed

at 16 kHz sampling rate, 1024 samples FFT window length and 512 samples hop length

result in 0.192 second input length.

The anomaly score for the autoencoder is computed using the mean square error (MSE)

of the reconstruction and the input. The five frame input window is advanced one frame

at a time and MSE for every step is calculated. The final anomaly score is the mean of

the reconstruction errors.

Anomaly detection with an autoencoder is done by deciding a threshold value for the

anomaly score. If the computed anomaly score for an input exceeds the predetermined

value, the sample is tagged as an anomaly.

20

3.2.2 Stage 2: Convolutional network

The convolutional part of the embedding network consists of three blocks, each having

a convolutional layer with 5×5 size filters with ReLU activation. In each block batch

normalization and max pooling are used after the convolutional layer. The first block

contains 64 filters, the second 96, and the third 128 filters. The size of the filters was

chosen to be the same as in the acoustic scene classification network in [35]. After the

convolutional blocks the output is flattened and fed into a single dense layer with linear

activations. The dense layer is used for constructing the embedding. Finally the output is

normalized to have an unit Euclidean norm.

The parameters of the system were chosen in such a way that the input size of the convo-

lutional network corresponds roughly to the ten-second length in the DCASE 2020 dataset

files. The input size of the CNN was chosen to be of size 128 × 304. That is, the input

spectrogram should contain 304 frames with 128 log-mel bins. With the 16 kHz sample

rate, 1024 sample FFT and 512 sample hop size this corresponds to 9.76 seconds. With

the selected settings there are approximately 2.1 million trainable parameters.

The CNN is trained using triplet learning with a margin α = 0.3 and Euclidean distance

metric. In the implementation the loss function is constructed inside the model, and the

model output is the triplet loss. Setting the target values as zeros and using mean ab-

solute error as the loss for the training, the actual training loss becomes the mean of the

triplet losses.

Going through every possible triplet is practically impossible, therefore the triplets gener-

ated for training are chosen randomly. The process generates two types of triplets. For

easy triplets the negative sample is chosen from a completely different machine class.

For hard triplets the negative sample is chosen from the same machine class, but differ-

ent machine id. The positive sample is always chosen from the same machine class and

machine id. In the training process every training sample is an anchor sample once in an

epoch. Whether a triplet is easy or hard is randomly chosen, with both possibilities having

equal probability of 50%.

The anomalous input samples that are passed onto the second stage are mapped into

the embedding space using the CNN, and the decision of triggering the alarm is done

using a kNN classifier. In this work k = 1 and the Euclidean distance is used to measure

the distance of two points in the embedding space.

21

4 RESULTS AND DISCUSSION

4.1 Synthetic data results

The first stage autoencoder was trained and tested with the synthetic data. The perfor-

mance was measured using the area under curve metric, and the numbers can be seen

in Table 4.1. As the autoencoder recognizes all the pitch shifts, the results in Table 4.1

only contain numbers for the mixed audio. The results show that a simple autoencoder

performs well with the data. In other words, the handcrafted anomalies are too easy to

recognize or out of the context considering the background soundscape.

For more heterogeneous classes the decline in performance starts earlier, whereas the

smaller classes are easier to distinguish from the background. This is probably because

the classes contain sounds that are highly different from the ones found in the industrial

site soundscape. Moreover, the difficulties to recognize the anomalies in the third class

(outside noises) are probably due to the fact that most of the samples do not have any

particular content except the background noise from the nearby construction site.

The current available selection of abnormal sounds and the additive mixing is simulating

rather abrupt noises, which in turn makes them easy to detect. For mimicking a realistic

more subtle changes to the acoustic conditions would be required. Possible spectral

modifications could be performed on the normal samples depending on the identified

target and possible fault. However, handcrafting a more realistic dataset would require

more realistic data and is out of scope of this work.

Table 4.1. Area under curve results for the baseline autoencoder and synthetic data.

SNR

Class -6 dB -10 dB -20 dB -30 dB

Drill 1.000 1.000 0.258 0.130

Drill with hammer 1.000 1.000 0.918 0.015

Outside noises 0.992 0.475 0.052 0.010

Grinder on idle 1.000 1.000 0.709 0.128

Grinder 1.000 1.000 1.000 0.161

FreeSound 0.967 0.870 0.390 0.227

22

Table 4.2. Autoencoder performance with equal weights for anomalies and normal sam-
ples for the DCASE 2020 data.

Machine True normal True anomaly False normal False anomaly

Fan 57.18 % 63.38 % 36.62 % 42.82 %

Pump 68.63 % 66.57 % 33.43 % 31.37 %

Slider 82.19 % 79.67 % 20.32 % 17.81 %

ToyCar 78.69 % 70.64 % 29.36 % 21.31 %

ToyConveyor 72.47 % 55.42 % 44.58 % 27.53 %

Valve 46.01 % 76.16 % 23.84 % 53.99 %

4.2 DCASE 2020 dataset results

4.2.1 Stage 1: Autoencoder

For the autoencoder testing, 15 % of the test data was used to find an optimal value for

the anomaly threshold value, and the remaining 85 % for the model evaluation. In the

implementation the threshold value is chosen by finding a value that minimizes the sum

of false normals and false anomalies. A sample is considered as a true normal when the

system correctly detects a normal sample. Similarly, a true anomaly is the case when the

system correctly detects an anomalous input. A false normal occurs when the system

indicates that an anomalous sample would be normal, and a false anomaly is the case

when a normal sample is detected to be an anomaly.

Due to the asymmetric role of the first stage, the performance of the autoencoder is

measured using the whole confusion matrix that counts all the above defined true and

false decisions. Normal samples that are classified as anomalous can be still handled

correctly in the second stage, but false normal samples are discarded and result in a

missed alarm. To overcome this problem, different weights for false anomalies and false

normals can be used in the threshold value optimization.

Table 4.2 shows the results for individual classes when equal weights are used in the

threshold optimization. The results using weight 1.5 for false normal are shown in Table

4.3. The resulting numbers are averaged over ten test runs. Figure 4.1 shows the effect

of the false normal weight on the amount of samples passed on to the second stage.

4.2.2 Stage 2: Convolutional network

To separate the effect of the errors from the first stage to propagate through the entire

system, the second stage was tested using only the anomalous test data. This is identical

to the case where the first stage functions perfectly. For the testing of the second stage

network, every class was tested individually, and the different machine ids were divided

23

Table 4.3. Autoencoder performance for DCASE 20202 data using 1.5 times weight for
false normals.

Machine True normal True anomaly False normal False anomaly

Fan 31.68 % 83.40 % 16.60 % 68.32 %

Pump 60.18 % 71.03 % 28.97 % 39.82 %

Slider 80.38 % 81.61 % 18.39 % 19.62 %

ToyCar 63.25 % 83.41 % 16.59 % 36.75 %

ToyConveyor 37.31 % 84.63 % 15.37 % 62.69 %

Valve 35.76 % 88.58 % 11.42 % 64.24 %

1.0 1.5 2.0 2.5
false normal weight

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

true anomaly
false anomaly

Figure 4.1. Fraction of anomalies in the first stage as a function of false normal weight.

into alarm-causing and silenced ones. The silenced classes consist of abnormal sounds

but they are from events that should not cause an alarm, such as slamming doors or

talking people. 15 % of the test data was used to estimate the distance threshold value

used in novel sample detection. If the distance to the closest sample in the kNN is greater

than the estimated threshold distance, the input is considered as a novel sample and it

triggers an alarm regardless of the kNN classification.

The stage is tested in two setups. First the stage is tested with one-shot classification,

where the system has encountered only one example for every class. For the second test

the number of known class representatives is increased to five.

The results when only one known example per class is used are listed in Table 4.4,

whereas the results for five known representatives per class are listed in Table 4.5. The

resulting numbers are averages over ten test runs. For every test run the known class

examples are randomly chosen and the distance threshold is optimized.

Figure 4.2 shows the effect of the number of known class representatives on accuracy

24

Table 4.4. CNN accuracy for one-shot classification

Machine True alarm True not alarm False alarm Missed alarm

Fan 57.61 % 93.13 % 6.88 % 42.39 %

Pump 73.89 % 51.22 % 48.78 % 26.11 %

Slider 98.67 % 50.11 % 49.89 % 1.33 %

ToyCar 45.33 % 71.49 % 28.51 % 54.67 %

ToyConveyor 100.00 % 98.28 % 1.72 % 0.00 %

Valve 95.54 % 93.07 % 6.93 % 4.46 %

Table 4.5. CNN accuracy for five-shot classification

Machine True alarm True not alarm False alarm Missed alarm

Fan 71.97 % 82.75 % 17.25 % 28.03 %

Pump 86.63 % 71.57 % 28.43 % 13.37 %

Slider 99.66 % 76.63 % 23.37 % 0.34 %

ToyCar 71.04 % 61.90 % 38.10 % 28.96 %

ToyConveyor 100.00 % 97.31 % 2.69 % 0.00 %

Valve 100.00 % 90.21 % 9.79 % 0.00 %

for individual classes. The figure shows that increasing the number of known samples

improves the performance with ToyCar, pump and slider. The performance with Toy-

Conveyor is almost perfect, and there is no significant change in performance when the

number of known examples is varied. Adding one more known sample makes the results

for fan better, but after that the increase of known class representatives does not affect

the average accuracy. However, in the case of fan increasing the number of class rep-

resentatives evens out the difference between true alarms and silenced ones, and the

same is observed for slider. Nevertheless, for pump and valve the effect is the opposite

and the difference of the individual class accuracies gets better as the number of known

samples is increased.

The average performance over all classes can be seen in Figure 4.3. The figure indicates

that even a slight increase from one in the number of known examples per class improves

the performance, even with an ideally performing first stage.

4.2.3 Two-stage system

For the complete system testing, 15 % of the data was used for the first stage anomaly

threshold optimization, and another 15 % was used for the second stage distance thresh-

old optimization. The 70 % left was then used for the actual model evaluation.

Table 4.6 shows results for the complete two-stage system when the first stage threshold

25

2 4 6
class examples

0.0

0.2

0.4

0.6

0.8

1.0
ToyCar

true alarms
true not alarms
mean

2 4 6
class examples

0.0

0.2

0.4

0.6

0.8

1.0
ToyConveyor

true alarms
true not alarms
mean

2 4 6
class examples

0.0

0.2

0.4

0.6

0.8

1.0
fan

true alarms
true not alarms
mean

2 4 6
class examples

0.0

0.2

0.4

0.6

0.8

1.0
pump

true alarms
true not alarms
mean

2 4 6
class examples

0.0

0.2

0.4

0.6

0.8

1.0
slider

true alarms
true not alarms
mean

2 4 6
class examples

0.0

0.2

0.4

0.6

0.8

1.0
valve

true alarms
true not alarms
mean

Figure 4.2. Second stage accuracy for the individual classes.

26

1 2 3 4 5 6 7
class examples

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

true alarms
true not alarms
mean

Figure 4.3. Average accuracy of the second stage as a function of the number of exam-
ples per class.

Table 4.6. Performance of the two stage system with a 1-shot second stage and double
weight for false normal in the first stage.

Machine True alarm True not alarm False alarm Missed alarm

Fan 69.56 % 63.57 % 36.43 % 30.44 %

Pump 38.65 % 77.66 % 22.34 % 61.35 %

Slider 51.05 % 83.80 % 16.20 % 48.95 %

ToyCar 52.22 % 80.86 % 19.14 % 47.78 %

ToyConveyor 82.74 % 79.27 % 20.73 % 17.26 %

Valve 91.02 % 73.36 % 26.64 % 8.98 %

is optimized using double weight for false normal and the second stage uses one-shot

classification. Similarly, Table 4.7 lists results for the five-shot case. The resulting num-

bers can be interpreted as frequencies. For example, 80 % true not alarm rate for ToyCar

in Table 4.7 means that 4/5 of cases where the input is normal or silenced is not causing

an alarm. Similarly, almost 50 % missed alarm rate for ToyCar means that in half of the

cases the system is not alarming when it should.

Comparing the results in Tables 4.6 and 4.7 indicate that the machine fan benefits the

most of the increase of the number of the known class examples. However, according

to the autoencoder results it is also the class that contains the largest amount of false

anomalies.

Figure 4.4 shows the accuracy against the number of known class examples for the indi-

vidual classes. The average over all classes is drawn in Figure 4.5.

27

2 4 6
class examples

0.0

0.2

0.4

0.6

0.8

1.0
ToyCar

true alarms
true not alarms
mean

2 4 6
class examples

0.0

0.2

0.4

0.6

0.8

1.0
ToyConveyor

true alarms
true not alarms
mean

2 4 6
class examples

0.0

0.2

0.4

0.6

0.8

1.0
fan

true alarms
true not alarms
mean

2 4 6
class examples

0.0

0.2

0.4

0.6

0.8

1.0
pump

true alarms
true not alarms
mean

2 4 6
class examples

0.0

0.2

0.4

0.6

0.8

1.0
slider

true alarms
true not alarms
mean

2 4 6
class examples

0.0

0.2

0.4

0.6

0.8

1.0
valve

true alarms
true not alarms
mean

Figure 4.4. Two stage system accuracy for the individual classes. Double weight for false
normal is used in the anomaly threshold optimization.

28

Table 4.7. Performance of the two stage system with a 5-shot second stage and double
weight for false normal in the first stage.

Machine True alarm True not alarm False alarm Missed alarm

Fan 75.25 % 72.17 % 27.83 % 24.75 %

Pump 40.21 % 84.10 % 15.90 % 59.79 %

Slider 53.29 % 87.72 % 12.28 % 46.71 %

ToyCar 62.96 % 81.57 % 18.43 % 37.04 %

ToyConveyor 86.31 % 81.00 % 19.00 % 13.69 %

Valve 93.73 % 75.09 % 24.91 % 6.27 %

1 2 3 4 5 6 7
class examples

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

true alarms
true not alarms
mean

Figure 4.5. Average accuracy of the two stage system as a function of the number of class
examples. Double weight for false normal is used in the anomaly threshold optimization.

4.3 Discussion and future work

For the testing, different machines inside every machine class are divided into alarm-

causing and silenced classes, and therefore the implementation simulates cases where

there are two real and two unwanted alarm causes for all the other machines except

ToyConveyor. The ToyConveyor class contains three different machines, of which two are

silenced and one is alarm-causing in the tests. One known example per class means

that the operator has marked an alarm silenced once, whereas five known examples

mean that the alarm source was marked as silenced for five times. The results show

that increasing the number of known class representatives from 1 improves the average

classification results. However, the changes in accuracy vary between machine classes.

These results are obtained in such a way that the system is not learning on the fly. How-

ever, in practical implementations it would be beneficial to collect the data during the

operation, for example every time when an operator silences an alarm. However, col-

29

lecting every new sample is not practically possible, and it should be considered in more

detail when a new input sample should be stored. Replacing the oldest sample with a new

one would give the system ability to adapt to changing conditions. On the other hand, it

may not be reasonable to include a new sample if it is very close to some already known

sample.

A more critical question is how to choose the threshold values for the system when there

are no anomaly examples available. For the first stage it is safer to set lower threshold. If

the reconstruction error is larger than the threshold value, the input sample is passed on

to the second stage, where it can still be marked as a non-alarm triggering event even if

it was incorrectly marked as an anomaly in the first stage. However, for the second stage

it is better to pick a threshold high enough, as the classifier works like an ordinary kNN

when the threshold is infinite.

Changing implementations in the both stages is possible, and one of the next steps would

be to study the effect of using better anomaly detector in the first stage. While changing

the implementation of the CNN in the second stage is also possible, the results in Chapter

4.2.2 show that the second stage already performs relatively well.

30

5 CONCLUSIONS

This thesis proposed an acoustic monitoring system for detecting anomalous events in

industrial environments. The choice of having two separate stages was motivated by the

application interface to the operator, as the system should allow the possibility to mark

unwanted alarms as non-alarm-triggering.

The performance of the stages were studied separately and as a combined system, and

the resulting numbers show that the two-stage approach is feasible. For example, for

the five-shot second stage and five known class representatives the average true alarm

and true non-alarm accuracies were approximately 70 % and 80 %, respectively. In other

words, approximately 3/4 events are classified correctly. However, this performance was

achieved by using relatively simple implementations in the both stages.

The created synthetic dataset turned out to be too easy, and the anomaly datasets from

the DCASE 2020 challenge[34] were used. Creating a useful dataset from the recorded

background sounds would require more realistic sounds for the anomalies. However,

machine breaks are relatively rare, and recording would require more careful planning.

The two stage framework presented in this thesis confirms the feasibility of an acoustic

monitoring system for industrial environments. There is still room for improvement in the

resulting numbers, but the proposed approach allows replacing the implementations in

the both stages for better performing ones. Setting up the system is a bit cumbersome

due to the threshold value choosing, and could be made easier in the future. Finally,

studying more sophisticated classification methods instead of the nearest neighbor is left

for the future research.

31

REFERENCES

[1] Vassilopoulos, P. Models for the Identification of Market Power in Wholesale Elec-

tricity Markets. Tech. rep. Paris Dauphine University, 2003, 46–47.

[2] Forsman, J., Vilén, K., Patronen, J., Revuelta, J. and Ignacio, C. Selvitystyö tarvit-

tavasta tehoreservin määrästä ajanjaksolle 2017–2022. Tech. rep. Pöyry Manage-

ment Consulting Oy, 2016.

[3] IEEE Standard Definitions for Use in Reporting Electric Generating Unit Reliability,

Availability, and Productivity. IEEE Std 762-2006 (Revision of IEEE Std 762-1987)

(2007), 1–75.

[4] Carazas, F. J. G. and Souza, G. F. M. de. Reliability Analysis of Gas Turbine. Ther-

mal Power Plant Performance Analysis. Ed. by G. F. M. de Souza. London: Springer

London, 2012, 189–220.

[5] Alhanko, A. Energiaraportoinnin kehittäminen voima- ja lämpölaitoksille. Master of

Science thesis. Aalto University, 2011.

[6] Kylliäinen, V.-V. and Tiainen-Erkkilä, S. Perussyyanalyysi voimalaitoksessa - Pe-

russyyn etsintä osana ongelmanratkaisua. PSK spring seminar, 2012. URL: http:
//vanha.psk-standardisointi.fi/Alasivut/Tiedotteet/Musiikkitalo_
2012/5-Perussyyanalyysi%20voimalaitoksessa-Fortum.pdf.

[7] Paska, J. Reliability and performance indices of power generating units in Poland.

2004 International Conference on Probabilistic Methods Applied to Power Systems.

2004, 861–866.

[8] Saarinen, J. Voimalaitoksen ennakkohuoltosuunnitelman laatiminen. Bachelor’s The-

sis. Jyväskylä University of Applied Sciences, 2017.

[9] Schnaare, T. H., Robinson, C. M. and Nelson, R. L. Industrial audio noise monitor-

ing system. 10739187. Aug. 2020.

[10] Goodfellow, I., Bengio, Y. and Courville, A. Deep Learning. MIT Press, 2016.

[11] Mesaros, A., Heittola, T., Virtanen, T. and Plumbley, M. D. Sound Event Detection:

A Tutorial. IEEE Signal Processing Magazine 38 (5 2021). DOI: 10.1109/MSP.
2021.3090678.

[12] Maas, A. L., Hannun, A. Y. and Ng, A. Y. Rectifier Nonlinearities Improve Neural

Network Acoustic Models. Proceedings of the 30th International Conference on

Machine Learning. Vol. 28. Atlanta: JMLR.org, 2013.

[13] Kingma, D. P. and Ba, J. L. Adam: A Method for Stochastic Optimization. Interna-

tional Conference on Learning Representations (ICLR). 2015.

http://vanha.psk-standardisointi.fi/Alasivut/Tiedotteet/Musiikkitalo_2012/5-Perussyyanalyysi%20voimalaitoksessa-Fortum.pdf
http://vanha.psk-standardisointi.fi/Alasivut/Tiedotteet/Musiikkitalo_2012/5-Perussyyanalyysi%20voimalaitoksessa-Fortum.pdf
http://vanha.psk-standardisointi.fi/Alasivut/Tiedotteet/Musiikkitalo_2012/5-Perussyyanalyysi%20voimalaitoksessa-Fortum.pdf
https://doi.org/10.1109/MSP.2021.3090678
https://doi.org/10.1109/MSP.2021.3090678

32

[14] Ioffe, S. and Szegedy, C. Batch Normalization: Accelerating Deep Network Training

by Reducing Internal Covariate Shift. Proceedings of the 32nd International Con-

ference on International Conference on Machine Learning. Vol. 37. ICML’15. Lille,

France: JMLR.org, 2015, 448–456.

[15] Hinton, G. E. and Salakhutdinov, R. R. Reducing the dimensionality of data with

neural networks. Science 313.5786 (2006), 504–507.

[16] Sakurada, M. and Yairi, T. Anomaly Detection Using Autoencoders with Nonlinear

Dimensionality Reduction. Proceedings of the MLSDA 2014 2nd Workshop on Ma-

chine Learning for Sensory Data Analysis. MLSDA’14. Gold Coast, Australia QLD,

Australia: Association for Computing Machinery, 2014, 4–11.

[17] Koizumi, Y., Saito, S., Uematsu, H., Harada, N. and Imoto, K. ToyADMOS: A Dataset

of Miniature-machine Operating Sounds for Anomalous Sound Detection. Proceed-

ings of IEEE Workshop on Applications of Signal Processing to Audio and Acous-

tics (WASPAA). Nov. 2019, 308–312.

[18] Purohit, H., Tanabe, R., Ichige, T., Endo, T., Nikaido, Y., Suefusa, K. and Kawaguchi,

Y. MIMII Dataset: Sound Dataset for Malfunctioning Industrial Machine Investigation

and Inspection. Proceedings of the Detection and Classification of Acoustic Scenes

and Events 2019 Workshop (DCASE2019). Nov. 2019, 209–213.

[19] Suefusa, K., Nishida, T., Harsh, P., Tanabe, R., Endo, T. and Kawaguchi, Y. Anoma-

lous Sound Detection Based on Interpolation Deep Neural Network. IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing (ICASSP). 2020,

271–275.

[20] Duman, T. B., Bayram, B. and İnce, G. Acoustic Anomaly Detection Using Con-

volutional Autoencoders in Industrial Processes. 14th International Conference on

Soft Computing Models in Industrial and Environmental Applications (SOCO 2019).

Ed. by F. Martínez Álvarez, A. Troncoso Lora, J. A. Sáez Muñoz, H. Quintián and

E. Corchado. Cham: Springer International Publishing, 2020, 432–442.

[21] Chorowski, J., Weiss, R. J., Bengio, S. and Oord, A. van den. Unsupervised Speech

Representation Learning Using WaveNet Autoencoders. IEEE/ACM Trans. Audio,

Speech and Lang. Proc. 27.12 (Dec. 2019), 2041–2053.

[22] Oord, A. van den, Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A.,

Kalchbrenner, N., Senior, A. and Kavukcuoglu, K. WaveNet: A Generative Model

for Raw Audio. Arxiv. 2016.

[23] Kingma, D. P. and Welling, M. Auto-Encoding Variational Bayes. ICLR. Ed. by Y.

Bengio and Y. LeCun. 2014.

[24] Koch, G., Zemel, R. and Salakhutdinov, R. Siamese Neural Networks for One-shot

Image Recognition. 2015.

[25] Schroff, F., Kalenichenko, D. and Philbin, J. FaceNet: A unified embedding for face

recognition and clustering. CVPR. IEEE Computer Society, 2015, 815–823. ISBN:

978-1-4673-6964-0.

33

[26] Song, H. O., Jegelka, S., Rathod, V. and Murphy, K. Deep Metric Learning via Facil-

ity Location. International Conference on Computer Vision and Pattern Recognition

(CVPR). 2017.

[27] Law, M. T., Urtasun, R. and Zemel, R. S. Deep Spectral Clustering Learning. Pro-

ceedings of the 34th International Conference on Machine Learning. Ed. by D. Pre-

cup and Y. W. Teh. Vol. 70. Proceedings of Machine Learning Research. PMLR,

2017, 1985–1994.

[28] Sohn, K. Improved Deep Metric Learning with Multi-class N-pair Loss Objective.

Advances in Neural Information Processing Systems. Ed. by D. Lee, M. Sugiyama,

U. Luxburg, I. Guyon and R. Garnett. Vol. 29. Curran Associates, Inc., 2016.

[29] Weinberger, K. Q. and Saul, L. K. Distance Metric Learning for Large Margin Near-

est Neighbor Classification. JMLR (2009), 207–244.

[30] Ravanelli, M. and Bengio, Y. Speaker Recognition from Raw Waveform with Sinc-

Net. 2018 IEEE Spoken Language Technology Workshop (SLT). 2018, 1021–1028.

[31] Stevens, S. S., Volkmann, J. and Newman, E. B. A Scale for the Measurement of the

Psychological Magnitude Pitch. The Journal of the Acoustical Society of America

8.3 (1937), 185–190. DOI: 10.1121/1.1915893. eprint: https://doi.org/10.
1121/1.1915893. URL: https://doi.org/10.1121/1.1915893.

[32] McFee, B., Raffel, C., Liang, D., Ellis, D. P., McVicar, M., Battenberg, E. and Nieto,

O. librosa: Audio and music signal analysis in python. Proceedings of the 14th

python in science conference. Vol. 8. 2015.

[33] Duda, R. O., Hart, P. E. and Stork, D. G. Pattern Classification. 2nd ed. Wiley, 2012.

[34] Koizumi, Y., Kawaguchi, Y., Imoto, K., Nakamura, T., Nikaido, Y., Tanabe, R., Puro-

hit, H., Suefusa, K., Endo, T., Yasuda, M. and Harada, N. Description and Discus-

sion on DCASE2020 Challenge Task 2: Unsupervised Anomalous Sound Detection

for Machine Condition Monitoring. June 2020, 1–4.

[35] Valenti, M., Squartini, S., Diment, A., Parascandolo, G. and Virtanen, T. A convolu-

tional neural network approach for acoustic scene classification. 2017 International

Joint Conference on Neural Networks (IJCNN). 2017, 1547–1554.

https://doi.org/10.1121/1.1915893
https://doi.org/10.1121/1.1915893
https://doi.org/10.1121/1.1915893
https://doi.org/10.1121/1.1915893

	Introduction
	Background
	Motivation
	Related work
	Neural networks
	General concepts
	Activations and output types
	Convolutional neural networks
	Training
	Autoencoders
	Siamese networks and few-shot learning

	Audio analysis
	kNN-classification

	Methods
	Datasets
	Anomaly detection datasets
	Synthetic data

	Two stage system
	Stage 1: Autoencoder
	Stage 2: Convolutional network

	Results and discussion
	Synthetic data results
	DCASE 2020 dataset results
	Stage 1: Autoencoder
	Stage 2: Convolutional network
	Two-stage system

	Discussion and future work

	Conclusions
	References

