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ABSTRACT 

Lauri Korhonen: Exploring graph databases and possible benefits of utilization in content ser-

vices platforms 

Master of Science Thesis 

Tampere University 

Master's Programme in Information Technology 

April 2022 
 

Interest in graph database technology has been raised by successful implementations of pro-
prietary graph databases such as used by Twitter and Facebook as well as by emergence of 
general purpose graph databases. M-Files is a Content Services Platform (CSP) which mostly 
utilizes relational databases and expressed interest in graph databases. Could M-Files benefit 
from utilizing graph databases? 

The context of CSP is first established via Enterprise Information Management (EIM). EIM 
helps in understanding why enterprises have information management needs and how infor-
mation management software can solve related problems. Then databases used by leading CSP 
providers are presented to give an overview of the database technology used in leading platforms. 
Relational databases are the most used and therefore fundamentals of relational databases and 
graph databases are explained. Graph databases are explained in more detail and are presented 
with suitable use cases to give a good basic understanding of the technology. A comparison of 
these databases is presented to emphasize the strengths of graph databases. The strengths are 
emphasized to show that graph databases do excel with relationship rich data as is claimed. 
However, there are use cases in which a graph database is not a good option and instead a 
relational database should be used. These are also presented and help in understanding whether 
graph databases should be utilized or not when considering between options. Then M-Files is 
introduced along with graph database suitable use cases. Possible benefits of utilizing graph da-
tabases in M-Files are also presented. A proof-of-concept application which populates a Neo4j 
graph database with M-Files data was built. The application logic is presented along with used 
data modeling. Then the Neo4j graph database is compared to a relational database configuration 
used by M-Files. 5 different queries were each executed 10 times in both databases and the 
execution times were compared. The queries produced same results in both databases. The ap-
plication shows that M-Files has some built-in readiness to adopt graph databases. 

Utilizing graph database technology presents opportunities to innovate for M-Files by enabling 
a more personalized experience via deeper understanding of the data associated with M-Files. 
Graph database technology also presents architectural benefits for M-Files by being a viable op-
tion for cloud native architecture. 
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Graafitietokannat ovat keränneet suosiota lähivuosina. Yksinoikeudella tuotettujen graafitieto-
kantojen onnistuneet toteutukset kuten Facebookin ja Twitterin graafitietokannat, ovat herättäneet 
kiinnostusta. Toinen pääsyy kasvaneelle kiinnostukselle on yleiskäyttöisten graafitietokantarat-
kaisujen parantunut saatavuus. M-Files on sisältöpalvelualusta (CSP eli Content Services Plat-
form) joka hyödyntää relaatiotietokantoja. Voisiko M-Files hyötyä graafitietokantateknologiasta? 

 Aluksi selvennetään yritystiedon hallinnan kautta konteksti ja mitä on CSP. Yritystiedon hal-
linta selventää miksi yrityksillä on tiedonhallinnan tarpeita ja kuinka tiedonhallintaohjelmistot rat-
kaisevat tähän liittyviä ongelmia. Sitten esitellään mitä tietokantoja johtavat CSP palveluntarjoajat 
hyödyntävät. Tämä antaa tilannekuvaa siitä, millaista tietokantateknologiaa johtavat palveluntar-
joajat hyödyntävät. Koska relaatiotietokannat ovat yleisimpiä, esitellään ne ja graafitietokannat. 
Graafitietokannat esitellään yksityiskohtaisemmin, mikä antaa hyvän ymmärryksen kyseisen tek-
nologian perusteista. Graafitietokannoille suotuisat käyttötapaukset esitellään. Kyseisiä tietokan-
tateknologioita vertaillaan korostaakseen graafitietokantojen tiettyjä vahvuuksia. Tämä vertailu 
osoittaa, että graafitietokannat ovat tehokkaita suhderikkaan datan kanssa, kuten väitetään. Myös 
käyttötapaukset, jolloin relaatiotietokantojen hyödyntäminen olisi parempi vaihtoehto, esitellään. 
Tämä auttaa ymmärtämään mitä tietokantaratkaisua kannattaa käyttää, kun harkitsee relaatiotie-
tokantojen ja graafitietokantojen välillä. Vertailun jälkeen itse M-Files esitellään. Sitten esitetään 
graafitietokantojen mahdollistamia käyttötapauksia, jotka soveltuvat M-Filesin kontekstiin. M-Files 
toteuttaa jo yhtä näistä käyttötapauksista relaatiotietokantojen avulla. Tähän käyttötapaukseen 
liittyen esitellään tehty kokeellinen sovellus. Kyseinen sovellus tallentaa M-Filesin dataa Neo4j 
graafitietokantaan, ja käytetty tiedonmallinnus esitellään. Kyseistä graafitietokantaa vertaillaan M-
Filesin käyttämään relaatiotietokantaratkaisuun. Viisi erilaista kyselyä luodaan ja jokainen ajetaan 
10 kertaa molemmissa tietokannoissa. Kyselyt tuottavat samat tulokset molemmissa tietokan-
noissa ja niiden suoritusnopeutta vertaillaan. Kyseinen sovellus osoittaa M-Filesin osittaista val-
miutta omaksua graafitietokantojen käyttöä 

Graafitietokannat tarjoavat M-Filesille mahdollisuuden innovoida. Kyseinen teknologia mah-
dollistaa personalisoidumman käyttäjäkokemuksen luomisen. Tämä onnistuu syvemmällä ym-
märryksellä datasta, johon M-Filesilla on pääsy. Natiivin pilviarkkitehtuurin kannalta graafitieto-
kannat ovat myös parempi vaihtoehto kuin relaatiotietokannat. 
 

 
 

Avainsanat: Graafitietokannat, sisältöpalvelualustat, yritystiedonhallinta, sisällönhallinta 
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1. INTRODUCTION 

A digitalized enterprise may rely on multiple Enterprise Application Software. Combina-

tion of used software forms an Enterprise Information System which reflects an enter-

prise's information management needs. (Xu 2011; Niu et al. 2013) With multiple utilized 

software, for different functions of an enterprise, much data and information assets are 

created in the process. Information assets may be scattered in various locations such as 

in multiple databases and/or accessed by various software. Information may be slow to 

access or even inaccessible due to being saved in locations forgotten or unknown. As a 

solution to problematic information management, such as the challenge of integrating 

multiple sources of data from heterogenous software, Enterprise Content Management 

software were created to provide a centralized source of information. (Chaki 2015) 

Recently (last decade), due to the evolution of enterprises' information management 

needs and software, it was deemed that Enterprise Content Management was no longer 

reflecting the needs. After an era of Enterprise Content Management, it was realized that 

successful information management requires also integrating the utilized Enterprise Ap-

plication Software's functionality. Integrations provide more streamlined work experi-

ence. Enterprise Content Management software are morphing into Content Services 

Platforms. Shegda et al. (2016) define Content Services concisely and descriptively: 

"Content Services are a set of services and microservices, embodied either as an inte-

grated product suite or as separate applications that share common APIs and reposito-

ries, to exploit diverse content types and to serve multiple constituencies and numerous 

use cases across an organization." This thesis follows Shega et al.’s definition. 

M-Files Corporation develops a Content Services Platform - M-Files. M-Files mainly uti-

lizes relational databases. Relational databases are the most used databases (DB-En-

gines 2021). Some database engine types offer advantages over relational databases in 

certain scenarios. In the context of Content Services Platform, a look is taken into a Not 

only SQL (NoSQL) database type - graph database, and the advantages it could offer 

for a Content Services Platform such as M-Files over relational databases. This is done 

mostly by a literature review. Graph databases have been around for multiple decades 

but have only recently gained attention. 

The context of information management in enterprises is first established with the help 

of literature. This helps in understanding enterprises need to utilize a Content Services 
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Platform. Then relational databases and graph databases are explored. The fundamen-

tals of the two database types are introduced. Graph databases are explained in more 

detail and suitable use cases are presented, as well as signs of use cases better suitable 

for relational databases. Relational database fundamentals are briefly introduced as a 

reminder, which should help in comprehending the fundamental differences of these two 

technologies. The differences are further emphasized by comparing data modeling, que-

rying and performance by referring to online material and a publication. The performance 

comparison does not yield absolute truth about one engine being more performant than 

the other, but rather emphasizes the factors that impact performance. Graph databases 

can be utilized in a way, that they are not slowed down by the amount of data stored in 

it. This characteristic of graph databases may be found compelling, as the amount of 

data stored in a database can be associated with deteriorating performance which is 

often the case in relational databases. 

The overview and comparison of relational databases and graph databases should con-

vey perception of these technologies' maturation. Relational databases are well estab-

lished, have a standardized query language and can be found used in all types of sys-

tems. Graph databases are more recent technology, though based on graph theory, 

which has a longer history than the relational model. Graph database technology is a 

powerful tool for certain use cases. 

In this thesis the objective was to explore whether graph databases could present ben-

efits for M-Files. To answer this question, the context of Enterprise Information Manage-

ment was explored and a definition for Content Services Platforms was sought. This is 

done to gain understanding of the context and the purpose of M-Files. Understanding 

context is important in realizing what is relevant. The context of Enterprise Information 

Management is explained in the next Chapter. 
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2. ENTERPRISE INFORMATION MANAGEMENT 

Xu (2015) defines Enterprise Information Management as follows: “Enterprise Infor-

mation Management (EIM) is an integrative disciple for structuring, describing and gov-

erning information assets across organizational and technological boundaries to improve 

efficiency, promote transparency and enable business insight." The exact same defini-

tion is in found online in Gartner Glossary of EIM. EIM includes managing structured and 

unstructured enterprise owned information. Information is typically obtained from multiple 

sources. EIM software provides enterprises a way to manage information assets. Soft-

ware that provides information management are called Enterprise Software (ES) or En-

terprise Application Software (EAS). There are numerous kinds of Enterprise Application 

Software that serve their own function in an enterprise. Perhaps the most familiar exam-

ples of EAS to the reader are Enterprise Resource Planning (ERP), Customer Relation-

ship Management (CRM) or Business Intelligence (BI). EIM software focuses on infor-

mation assets and their relevance grows in the ever-growing world of data, especially 

when multiple EAS are utilized. Via Enterprise Information Management, the need for a 

Content Services Platform is explained. 

2.1 Enterprise information systems 

Enterprise Information System (EIS) also known as Enterprise System (ES) is an integral 

toolset for modern digitalized enterprises. EIS provides integration and extension of busi-

ness processes on both intraorganizational and interorganizational levels which contrib-

ute to streamlining business operations. EIS provides productivity increasing solutions 

to the growing needs of information integration in varying industries. EIS's emergence 

during the last two decades has been fueled by development in information technology 

and the need to integrate information in business operations. (Xu 2011; Niu et al. 2013) 

EIS comprises of the Enterprise Application Software that an enterprise utilizes. In other 

words, Enterprise Information System is a combination of the Enterprise Application Soft-

ware an enterprise utilizes. 

EAS such as ERP have mainly been developed to be utilized with physical assets of an 

enterprise since the 90s. Such software provides users quick access to information on 

enterprise's assets. Assets such as storage information, utilization of machines and hu-

man workers, material flow and operational efficiency. These examples are still relevant 
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IT requirements in modern industrial automation. (Niu et al. 2013) However, enterprises 

have begun also realizing the importance of information assets. 

Few common EAS as earlier mentioned are ERP, CRM, and BI. ERP market is growing 

fast and is one of the most profitable areas in the software industry. (Xu 2015) ERP is an 

invaluable tool to handling company assets. CRM is used for managing relationships 

between a company and its current and potential customers. (Gebert et al. 2003) Rela-

tionship handling is critical in serving and gaining new clients. BI's objective is to enable 

businesses to make better decisions faster, convert data into information which is applied 

to create knowledge used for rational approach to management. (Vitt et al. 2008) BI tools 

such as Microsoft's Power BI exist to do such and to help generate visual reports and 

representations of data to help argue over business decisions (Microsoft). 

Each Enterprise Application Software an enterprise utilizes as a part of their Enterprise 

Information System, such as the mentioned, generate information. Each EAS might have 

generated function specific information. Information is typically stored and reachable via 

the EAS that generated the information or stored in a place of choice by the end user. 

Customer relationship information is stored in the CRM application, generated reports 

are stored in the BI application storage and assembly line related information is acces-

sible by the ERP application, or the users may have stored some information in a local 

storage or in a cloud storage. Accessing the information can be cumbersome as each 

EAS might have their own storage, or the location of the data is unknown or forgotten. 

The user must know what type of information is sought, the location, and must also be 

able to navigate through multiple heterogeneous systems. Enterprise Information Man-

agement software seek to solve related issues. 

2.2 Enterprise content management 

A central objective in Enterprise Information Management (EIM) is to define a strategy 

on the management of enterprise's information assets, decision making and execution. 

Information assets are not only limited to the business processes within an enterprise 

but can also relate to collaboration and supply chains. Thus, information assets can be 

both internal and external. There is a need to process different types of information. Var-

ying standards define how certain information must be handled. Information lifecycle, 

sharing, storing etc. may be strictly governed. These are some challenges in information 

management that Enterprise Content Management (ECM) software sought to solve. 

(Chaki 2015) 



5 
 

EIM's roots are in the early 1990s with the rise of structured data. This was enabled by 

the development of relational database management systems. With systems such as 

Oracle, SQL Server and DB2 it had become easy to model, store and transfer structured 

data. Later the concept of managing structured data changed to include unstructured 

data as well. It was realized that about 80 % of all enterprise data is unstructured. This 

resulted in disciplines evolving such as ECM. (Chaki 2015) 

ECM's objective was to help enterprises solve information management issues as infor-

mation volume and complexity grow (Tyrväinen et al. 2006). ECM software provides a 

tool which solves issues related to capturing, processing, accessing, measuring, inte-

grating, and storing of information. It offers control of all information through its lifecycle. 

Transitioning to using ECM could help enterprises enhance productivity, streamline pro-

cesses, track assets, comply with regulations, eliminate redundancy in information stor-

ing and ease accessing information. (Hullavarad et al. 2015) 

ECM can be beneficial businesses of varying sizes. Software which solves information 

management issues is beneficial in many ways. Standardized processes for handling 

information or so-called workflows assure that certain type of information complies to 

requirements which might comply to legal demands. For instance, workflows can help 

an enterprise assure that their business processes comply with quality requirements in 

an audit. Search tools can be enabled with scanning the contents of documents. This 

makes it possible for workers to search for data and information which can increase 

productivity. A central source of information eliminates the need to navigate through mul-

tiple heterogenous systems. These are only few examples of how ECM might have 

helped an enterprise execute information management strategies and enhance produc-

tivity. 

2.3 Content Services Platform, ECM refined 

ECM emerged as a discipline from Enterprise Information Management and evolved 

from handling structured data to also include handling unstructured data. However, ECM 

failed to deliver as such. As of today, ECM is no longer reflecting market dynamics and 

does not meet organizational needs for content in digital business. ECM has had to 

evolve beyond its original scope to meet enterprise business requirements. Gartner fore-

casted that 20 % of major ECM and Enterprise File Synchronization and Sharing (EFSS) 

businesses will morph their existing offerings into Content Services Platforms by 2020. 

(Shegda et al. 2016) 



6 
 

As an afterthought, it may not come as a surprise that ECM applications are now evolving 

into CSPs. It was concluded early on by Tyrväinen et al. (2006) that despite the interest 

in ECM, as it was adopted by software vendors and practitioners, the ECM discipline had 

received only little attention in the information systems research community. As ECM 

received wider adoption by enterprises, its need to evolve was recognized. ECM's need 

to evolve might have originated from the lack of research; failure to understand EIM 

needs when defining ECM. The evolution of Enterprise Information Systems has proba-

bly also affected the need to evolve; EIM needs have also changed. There are external 

forces and internal drivers that have reshaped the ECM market. New Enterprise Appli-

cation Software emerge and thus EIS evolve and so does the requirements for EIM; data 

and volumes grow and so changes the requirements for solutions seeking to successfully 

implement Enterprise Information Management. (Shegda et al. 2016) 

According to a recent survey by Gartner (2015) in which 2000 respondents in organiza-

tions with 100 or more employees, 27 % responded to use at least one application that 

they have obtained for themselves. The application was not approved by their organiza-

tion. The respondents did this in search of good content experience outside of their ECM 

product suite. 20 % respondents used such applications to engage with customers. ECM 

as such had failed to respond to the business needs of managing content; business 

critical content which can be both formal and ad hoc as well as internal and external. 

(Shegda et al. 2016) A centralized ECM solution does not answer to business needs as 

cloud, social, mobile, analytics and digital business have changed ECM. A paradigm shift 

from ECM to Content Services has begun. (Hanns 2016) 

Digital transformation is driving the paradigm shift. Enterprise Information Management 

has to do with more than centralized storing and accessing of business-critical infor-

mation. New Enterprise Application Software are being introduced into the digital work-

place. Content services are replacing ECM solutions as there are requirements for inte-

grating with new EAS Application Programming Interfaces (APIs), platforms and compo-

nents. (Hanns 2016) As Shegda et al. (2016) define Content Services: "Content Services 

are a set of services and microservices, embodied either as an integrated product suite 

or as separate applications that share common APIs and repositories, to exploit diverse 

content types and to serve multiple constituencies and numerous use cases across an 

organization." EIM needs of today's enterprises have redefined ECM to CSP. 

2.4 Enterprise Information System data 

The utilized Enterprise Application Software form the Enterprise Information System. 

Each EAS process's function specific data which can be obtained from various sources. 
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Fundamental characteristic of Content Services Platform is being able to integrate mul-

tiple EAS and streamlining the EIS. EAS have business critical roles in digitalized enter-

prises. Business critical data is obtained from various sources such as sensors, user 

input, interactions, intermediate storages, databases, scanners, other EAS etc. Data-

bases are often used as the intermediate storage of data. After an EAS has received 

data, it is further processed into business-critical information which is also stored in a 

database used by an application. The process of EAS receiving data allows communi-

cating real world phenomena to a system. It is typical of software to utilize database 

technology to store and retrieve data and information. 

The heterogenous nature of EIS imposes varying needs for databases. EAS which pro-

cess structured information has different requirements for a database than an application 

which stores unstructured data. For instance, an EAS which processes measurements 

such as sensor provided data, can utilize relational databases. A sensor measures a 

physical phenomenon and outputs data of strict structure. The structure is rarely changed 

due to the design of embedded systems. However, as applications and requirements 

change, there will be need to modify how information refined from data is stored. It might 

be hard to interpret structure in this information. Contracts, emails, reports, notes, and 

other information generated by human interaction are unstructured information, though 

follow a structure to a certain degree. 

Concluding from most enterprise data being unstructured, storing data is not as simple 

as designing a database based on the structure of data. The problem concerning data 

has to do with of other concerns than simply storing the data of interest. In addition, 

information about processing the data must be stored; this is data governance, an im-

portant aspect of EAS. It is important to store information about the data's lifecycle. When 

storing information, the aspect of retrieving it should also be considered. A key feature 

of a database is the ability to efficiently retrieve and find needed data. When data and 

information become complex and large in volume, special consideration must be applied 

to how the storage is organized. Designing a database for EAS should be done in com-

pliance to the application logic and business needs. Designing a database for CSP must 

support the integration of multiple heterogenous EAS and databases. EIS data is typi-

cally scattered in multiple and possibly redundant databases. For multiple decades, re-

lational databases have been the main solution for EIS data needs. While relational da-

tabases serve the purpose of efficiently storing and retrieving data, graph databases 

have recently gained increasing amounts of attention and are changing the ways of how 

data is handled. In the next Chapter, the leading CSP offering is explored from database 

point of view. 
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3. DATABASES UTILIZED BY LEADING CSP 

PROVIDERS 

Databases are essential in software that have a need to store data. In an application 

specific context, designing and implementing a database is done within the requirements 

imposed by the applications needs. CSP should enable Enterprise Application Software 

integrations and components that support business processes. Not only should these be 

supported by the database but also the ECM requirements are still relevant. Therefore, 

it can be argued that the flexibility of the database is an important requirement. The CSP 

provider cannot know all the application or component requirements beforehand, as 

these tend to change according to the dynamic nature of Enterprise Information Systems. 

Some CSP providers publicly share takes on architectural information which are pre-

sented. This allows a glimpse of the current standing of databases in CSPs. Found ar-

chitectural information about the CSP providers which were classified as the leaders by 

Gartner are presented next. 

3.1 Hyland 

Hyland is rated in the Magic Quadrant as a strong leader, lacking behind only Microsoft 

in ability to execute (Woodbridge et al. 2021). Hyland owns multiple CSPs, which make 

up the Content Services offering. Nuxeo, Alfresco content services, OnBase and Per-

ceptive Content are categorized as Hyland's Content Services Platform (Hyland 2021; 

Gartner). These CSPs use and support multiple different databases.  

Nuxeo is an open-source Enterprise Content Management platform classified also as a 

CSP. Nuxeo has released a whitepaper (2021) Designing a Modern Platform Architec-

ture for Content Services. NoSQL is emphasized as an important part of a modern CSP 

architecture. Their updated documentation states that "Nuxeo applications store most of 

their data in a SQL database. Several databases are supported, but they must be con-

figured to work correctly." (Nuxeo) The same documentation shows that PostgreSQL, 

Oracle, Microsoft SQL Server, MySQL, MariaDB and MongoDB are supported. While in 

the whitepaper NoSQL is emphasized to be an important part of modern CSP architec-

ture, its role remains unclear. Relational databases are used to store most of data, but 

NoSQL databases are utilized as well. 

Alfresco's technical documentation part "Configure databases" (Alfresco) states that sup-

ported databases are Amazon Aurora, MySQL, Oracle, PostgreSQL, and Microsoft SQL 
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Server. The mentioned are also supported in Amazon Relational Database Service in 

the cloud. Additionally, also MariaDB is supported. Deducing from the supported data-

bases by Alfresco, it seems that relational databases are mostly utilized and supported. 

While Oracle does have a graph computing solution, it is unclear if this is supported by 

Alfresco (Oracle).  

OnBase is Hyland's flagship enterprise information platform (Hyland). According to 

KeyMark, which has been Hyland's OnBase's reseller since 1999, OnBase relies on SQL 

Databases. OnBase uses a proprietary database schema in which relationships between 

each table is controlled by software, rather than by an SQL server. The software offers 

indexing, and it is warned not to let the index get outdated or performance will deteriorate 

due to resorting to scanning of full tables. (Keymark) Hyland's Perceptive Content, a 

content and process management product suite, also relies on relational databases (Hy-

land; Manualzz). 

It seems that Hyland, a leader in the Magic Quadrant, mostly utilizes relational databases 

in their CSP offering. This assumption is based on the available technical documentation. 

Nuxeo is the only mentioned CSP in this context which addressed utilizing NoSQL data-

bases. OnBase also supplements their relational database with proprietary software for 

better performance. 

3.2 Microsoft 

Microsoft is the leader in Gartner's Magic Quadrant for Content Services Platforms 

(Woodbridge et al. 2021). There is no need to search technical documentation and base 

assumptions on what database type Microsoft seeks to utilize in their Content Services. 

Microsoft's current CEO Satya Nadella called Microsoft Graph (formerly known as Office 

365 API) the company's "most important bet" (Bisson 2021). Microsoft's CSP whitepaper 

gives the impression, that Microsoft Graph is used for multiple purposes, such as for a 

knowledge graph which provides Sharepoint users recommendations, for automatic 

metadata and for Artificial Intelligence (AI) which applies knowledge mining. Sharepoint 

is the backbone content services layer in Office 365. Graph connectors enable Microsoft 

Search Service, which can be used to discover content for search capabilities from var-

ious data sources. (Microsoft) 

Microsoft utilizes their proprietary graph technology for multiple purposes. Microsoft 

Graph also exposes REST API's and libraries which can be used to access data on 

multiple Microsoft cloud services. (Campos et al.) Microsoft is very interested in graph-

based data. Microsoft purchased LinkedIn and have begun showing LinkedIn data in 
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tools such as Outlook. LinkedIn is based on a huge graph database. In addition, they 

have multiple other graphs; Microsoft Dataverse, Cosmos DB and Security Graph. (Mi-

crosoft) Microsoft Dataverse is formerly known as Common Data Service (Peart & Coul-

ter 2021). 

3.3 Box, OpenText 

Box is a CSP which is also rated as a leader in the CSP Magic Quadrant, lacking behind 

Microsoft and Hyland (Woodbridge et al. 2021). In 2020, Box was named Gartner Peer 

Insights Customers' Choice vendor for CSP and Content Collaboration Tools (Box 2021). 

Box uses Apache HBase, also known as the Hadoop database, which is a distributed, 

scalable big data store, for storing documents. Documents are sent for indexing to 

Apache Solr clusters. Solr is an enterprise search server which is built on Apache Lu-

cene. It is apparent that Box's approach to indexing and storing is focused on heavy 

scalability and centrality. In 2017, Box improved their indexing and were able to index 

almost 50 billion documents in less than two days in 2017. The system was capable of 

consistently conducting over 300 000 document reads per second. (Iqbal 2021; The 

Apache Software Foundation 2022) This level of performance is made possible by big 

data solutions. However, it must be noted the history of Box as an Enterprise File Syn-

chronization and Sharing (EFSS) provider, which differs from ECM. (Basso et al. 2016) 

Concluding by their architectural decisions, it seems that their focus has been on scaling 

and supporting centralization. This probably has to do with creating a good experience 

on collaboration with external stakeholders of an enterprise, a focus area in Content 

Services Platforms, something that traditional ECMs failed to deliver on.  

OpenText is a leader in the magic quadrant and has a proprietary relational database 

OpenText Gupta SQLBase (OpenText). In addition, they offer upgradeability and con-

nectivity to multiple relational databases such as Oracle, Microsoft SQL Server, Microsoft 

Azure SQL DB, and IBM Db2. (OpenText) From the supported database connectivity 

and proprietary database technology, it seems OpenText utilizes relational databases in 

their information management. 

3.4 Summary of databases used in leading CSPs 

The leading CSP providers database technology solutions were briefly investigated. This 

was done by looking up technical documentation and other available information. Com-

panies rarely keep their accurate architecture publicly available. This implies that this 

information is not accurate and does not depict the whole truth. However, it seems like 

majority of these inspected providers utilize relational database technology. 
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Relational databases are standardized and have been in wide use for several decades. 

The history behind their status is opened in the next Chapter. As these databases are 

transactional, optimized for running concurrently quick read- and write -operations, they 

are a good choice for CSPs. Though NoSQL addresses some of the issues of relational 

databases, the leading CSP providers mostly utilize relational databases with a few no-

table exceptions. 

Nuxeo addresses the advantages that NoSQL offer and their whitepaper (Nuxeo 2021) 

states that NoSQL enables great performance benefits and scalability. Still, their docu-

mentation gives the impression that relational databases are still mostly utilized. Box 

utilizes big data solutions, which supports their architecture of centralization. Big data 

solutions are an overkill for CSP vendors who don’t seek to implement a large, central-

ized data storage. Microsoft as the recognized leader by Gartner is focused on develop-

ing their proprietary graph technology solution. 
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4. RELATIONAL DATABASES 

Relational databases are well established in the IT industry. Relational databases follow 

the Relational Model which was developed by Dr. E. F. Codd in his research paper - A 

Relational Model of Data for Large Shared Data Banks. The paper released in 1970 is 

considered groundbreaking considering how widespread relational databases are. Struc-

tured Query Language (SQL) is the de facto standard for interacting with relational data-

bases. It was standardized by the American National Standards Institute (ANSI) in 1986 

and has undergone multiple revisions. (Batra 2018) ISO/IEC 9075 standard: "Information 

technology - Database languages - SQL" describes SQL. Latest revision is ISO/IEC 

9075-15:2019 which adds multi-dimensional arrays. (ISO/IEC 9075-15:2019) This Chap-

ter explores the history of the relational database, the most popular type of database to 

this day and its fundamentals. (DB-Engines 2021). 

4.1 History of relational databases and SQL 

In the late 1940s and 1950s computers were considered as advanced calculating ma-

chines. Soon, businesses realized their importance in automated processing and keep-

ing of records. Early computers used tape storage for storing data. Accessing data was 

therefore restricted to sequential scanning of the records. With advancements in storage 

technology and the invention of magnetic disks and tapes, more sophisticated access 

methods were developed. IBM developed the Indexed Sequential Access Method 

(ISAM) which became prominent in the 1960s and its successor Virtual Storage Access 

Method (VSAM) as file-oriented technologies allowed key-based direct access for their 

mainframe systems. By the 1960s, file-oriented systems were used increasingly by com-

puters. Then popular programming languages like COBOL and PL/I were used for these 

systems. (Batra 2018) As a sidenote about COBOL's widespread; In 2017 Reuters re-

ported that 43 % of banking systems are built on COBOL, 220 billion lines of COBOL 

code are still in use and 95 % of ATM swipes rely on COBOL code (TIOBE Index et al. 

2019). 

New access techniques increased throughput, but they did not address the reality of data 

being split in multiple, independent files with no centralized logical structure. Redundant 

columns increased storage costs and data was typically inconsistent. This problem was 

addressed by logical data models and database systems to some degree. Information 

Management System (IMS) was released by IBM in 1966 for use in the NASA Apollo 

program. IMS was a hierarchical database which assumed that all data relationships 
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could be structured as hierarchies. IMS was a leap in data modeling which implied proper 

thought on structuring data. Another data model which gained popularity in the 1960s 

was the network data model. It allowed representing data as a complex network with 

entities referring to each other. This was a more natural way of modeling data. Data 

which was being generated in business processes. One successful implementation of 

the model was the Integrated Data Store (IDS). It had such an impact that its design 

largely influenced the network model standard CODASYL DBTG. (Batra 2018) "The ac-

ronym DBTG refers to the Data Base Task Group of the Conference on Data Systems 

Languages (CODASYL), the group responsible for standardization of the programming 

language COBOL." (Thakur) 

Hierarchical and network model was driven from the viewpoint of a programmer with 

knowledge on interconnecting the entities being modeled. Queries could only be run as 

envisioned by the programmers. However, Dr. Codd's proposed relational theory based 

on the belief of natural, logical relationships manifesting themselves when the domain of 

the data is understood. System should be ready for flexible querying. This model was 

built on mathematical theory rather than on programming. IBM Research Labs at San 

Jose, where Codd worked in the '70s and '80s gave birth to relational databases. IBM 

came up with the SystemR project which was a prototype relational database manage-

ment system. However, IBM failed to realize the value and it was Relation Software Inc. 

that created the first widespread Relational Database Management System (RDBMS) in 

1979 by borrowing IBM's research on SystemR. Relational Software Inc. is what is known 

today as the Oracle Corporation. (Batra 2018) Oracle's relational database engine is the 

most popular database engine as of today (DB-Engines 2021). 

As mentioned, SQL is the de facto language for interacting with relational databases. 

However, SQL wasn't the dominant query language early on. Codd had proposed two 

languages for querying and manipulation of data - relational algebra and relational cal-

culus. They were mathematical notations rather than query languages. Codd attempted 

to make a real query language, Alpha. Alpha was proposed in Codd's 1971 paper "A 

Data Base Sublanguage Founded on the Relational Calculus". SystemR however used 

a separate query language SEQUEL created by Raymond Boyce and Don Chamberlin 

around 1973. SEQUEL was eventually renamed to SQL. The Ingres project created Al-

pha influenced query language called QUEL but as in the '80s dominant vendors were 

pushing SQL, QUEL failed to gain a place on the industry. By the late '80s, SQL had 

gained a firm position as the de facto database query language which holds to this day. 

(Batra 2018) 
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4.2 Structure 

Relational databases store and provide access to data points that are related to one 

another. Data is represented in structured tables which consist of rows and attributes. 

Each row is identified by a key consisting of one or several attributes. Usually, the key is 

a unique ID column. These unique identifiers are known as keys. Columns hold attributes 

of the data. Typically, each record has values for each attribute, but this is not required. 

Tables can have a varying structure and can represent different data. For instance, a 

customer information table contains records, each which represent a single customer 

and their information. A record could then include a name, address, shipping and billing 

information, phone number and other information as well as the key. A second table can 

store customers' orders. In this second table, a record contains the unique ID of the 

customer and order related information. As these two tables' records have the key in 

common, there exists a relationship between these tables. If the structure of the data-

base needs to be changed, a database upgrade must be done. In the upgrade, the con-

tent of the database must be changed so that the records comply to the changed struc-

ture. During the upgrade, the database is unavailable. 

To query the orders of a certain customer, the unique ID of the customer is used to query 

the order records with the same unique ID from the table containing customers' orders. 

(Oracle) Note that the orders also each have their own unique ID. The unique ID which 

is used to identify a record in a table, is called a primary key. The unique ID which is 

used to identify a relationship to another table, is a foreign key. Figure 1 depicts the 

relationships. 

 

Figure 1. Depiction of related data between two tables. 
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The order information records are "labeled" using foreign keys of the customers stating 

the relationship of these orders. The customer has a primary key ID, and the order rec-

ords refer to that key as the foreign key customerID. In figure 1, in the Customers' orders 

table, can be seen that the order records that belong to a certain customer are identified 

by the same key from the Customer table indicating the relationship. Operations in which 

related information are sought from multiple tables are called joins. There are different 

types of join operations. Looking up information from tables are sped up by indexing, 

which enable looking up records sorted by attributes of interest. A good index allows 

faster lookup of information whereas no indexing or bad indexing will cause a slow join 

or a search of records in which the whole table must be scanned thoroughly. Good in-

dexing is critical in high performing relational databases. 

It is a common misconception that Relational in Relational Databases would refer to the 

relationships in the databases. This is not the case. The relational model means the 

separation of logical data structures and physical storage structures. The physical data 

storage can be managed without affecting access to that data as a logical structure. The 

distinction also applies to database operations. Actions that enable manipulation of data 

and structure are clearly defined. Logical operations allow specifying of the desired con-

tent in application context and physical operations determine how the content should be 

accessed and carries out the operation. For the data to be correctly accessed, refer-

enced, and modified, certain integrity rules apply. A database administrator can apply 

different integrity rules, for example prohibiting duplicate rows reduces the possibility of 

erroneous information existing in the database. (Oracle) 

4.3 ACID properties 

Relational databases are used in organizations of all types and sizes for varying infor-

mation needs. Inventories, ecommerce transactions, huge amounts of mission critical 

customer information, registries, banking software etc. have been built on top of rela-

tional databases. Relational databases can be considered for any information needs in 

which data relates to each other and require secure, rule-based and a consistent way of 

management. Relational databases support data consistency, in which multiple in-

stances of a database should have the same data all the time. An example of this could 

be a customer depositing money at an ATM and then checking balance immediately 

after. Business rules and policies are handled with strict policies regarding permanent 

changes to the database. If an inventory database tracks that certain three parts are 

used together, it will not allow pulling only a single part from the database. The two other 
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parts must also be pulled along with the third part before the database makes any com-

mitment. This multifaceted commitment capability is called atomicity, which is the key to 

ensuring database being accurate. Atomicity ensures compliancy with the regulations, 

rules, and policies that a business should comply to. (Oracle) Atomicity is one of the four 

fundamental properties of relational databases, known as ACID. ACID is short for Ato-

micity, Consistency, Isolation, and Durability. 

Consistency constrains defined on the data should be preserved by a transaction. When 

the changes are committed, all defined integrity constrains must be satisfied. Breaking 

the defined integrity constrains are allowed during the operations, but both the state from 

which data is and the state to which the transaction ends should satisfy the integrity 

constrains. The application should be programmed in such a way which ensures the 

consistency preservation. (Vossen 2009) 

Transactions should be isolated from other transactions. Each transaction should be-

have as if there were no other transactions. Each transaction will deal with consistent 

data. If two transactions were to operate on the same data unit, the latter transaction 

would only see the committed data of the first transaction and never the effects of an 

incomplete transaction. Isolation is a decisive property which ensures success in pro-

gramming concurrent operations. Transactions should behave as if they were sequential 

when executed concurrently. (Vossen 2009) 

Data servers which are updated via transactions, and which notify changes being suc-

cessful after a commit, are guaranteed to withstand failures. A relational database is 

durable so that it can survive hardware or subsequent software failures. (Vossen 2009) 

This is typically achieved by upkeeping a log file of transactions and with redundant data 

or backups. Depending on the logic of upkeeping the log, rollbacks may have to be exe-

cuted in-order for the database to be able to return to a consistent state. Only consistent 

states are snapshot in compliance to atomicity and consistency. However, it is possible 

to implement snapshotting uncommitted transactions. When the database is returned to 

a running state, transactions are continued. Redundant data storages ensure durability 

when the physical memory containing the data is damaged. 

Building a relational database and an application accessing it in compliance to ACID 

properties ensures runtime integrity of data. ACID properties can also be too restrictive 

for businesses. For long running operations in case of multiple transaction on the same 

data, it might be too slow. In these cases, alternative or additional guarantees need to 

be employed. (Vossen 2009) There are varying policies in relational databases which 

dictate what data transactions see, when tables or records can be accessed, and which 
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determine what kind of a system is built. Systems such as batch processing, real-time, 

data warehouse and timesharing systems exist, but specific details are omitted. (Bern-

stein & Newcomer 2009) 

4.4 Summary of relational databases 

Relational databases have a relatively long history in the context of information technol-

ogy dating back several decades. During this time, the technology has had time to ma-

ture. Multiple generations of programmers, software architects, database administrators 

and other stakeholders have been solving related problems with relational databases. 

There is extensive amount of knowledge available varying from books to scientific arti-

cles, forum posts, conferences etc. Knowledge that can be obtained to help avoid known 

pitfalls, accelerate implementation and to help build quality products. Not only due to the 

amount of knowledge available, are relational databases a viable option for building ap-

plication data and information management solutions, but because they still hold up well 

technologically. Great amount of software relies on relational databases. 

Building an application and implementing a highly performing well-modeled relational 

database requires good understanding of the technology. There are several factors 

which have an impact on the performance of the system and on the development lifecy-

cle. Some aspects of relational databases not considered in this brief overview are opti-

mization of queries, procedures, data modeling and normalization, etc. There are many 

factors to consider. The objective was to highlight key features and characteristics of 

relational databases. 
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5. GRAPH DATABASES 

Graph database is a type of NoSQL databases. Graph databases are based on graph 

data models. Graph data models originate from "Graph Theory" which in mathematics is 

the study of graphs. The theory can be applied to solving problems in varying disciples 

such as architecture, social relationships, machine learning, medicine, geography, etc. 

and in this case, databases in information systems. In this Chapter, focus is on a certain 

type of a graph database model, labeled property graphs. There are multiple types of 

graph models in which real-world entities and their relationships are represented using 

a collection of conceptual tools. (Angles & Gutierrez 2008) 

5.1 History of graph databases 

Graph Theory, in which graph databases are based on, originates back to the 1700s. 

Swiss mathematician Leonhard Euler wrote an article about the city of Konigsberg. The 

Pregolya River passed through the city and seven bridges were situated across the river 

as depicted in figure 2. 

 

Figure 2. The seven bridges in Konigsberg (Bogdan Giuşcă 2005). 

 

The citizens of Konigsberg realized that how hard they tried; they could not stroll a route 

in which they crossed each bridge exactly once. What Euler wrote on the Konigsberg 

Bridge Problem, is considered the beginning of the graph theory field. Graph theory itself 

was only found useful in solving puzzles and in analyzing games etc. and it was not until 

the mid-1800s people began to realize the usefulness of it in modeling things that were 

in the interest of society. (Kumar & Pattnaik 2018) To this day, new use cases in which 
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graph theory can be applied to are being researched or implemented, such as the usage 

of graph database models in biology, fraud and anomaly detection with machine learn-

ing, knowledge mining, and analysis of wireless cyber-physical systems (Songqing et al. 

2020; Prusti et al. 2021; Magomedov et al. 2018; Lei et al. 2020; Kashef 2021). 

Graph database models began to gain attraction in the 80s and early 90s alongside ob-

ject-oriented models. The first half of the 90s was most active on the topic. With the 

emergence of other database models, in particular Extensible Markup Language (XML), 

semi-structured, spatial, and geographical, the interest gradually died out. XML caught 

the attention of those working on hypertext. People shifted from working on graph data-

bases to applications such as spatial data, Web, and documents. For most applications, 

the tree-like structure was enough. (Angles & Gutierrez 2008) 

General purpose graph databases are a reality today. Consumers can experience the 

benefits of connected data and application programmers have the option to graph data-

bases without the need to build their own graph infrastructure. (Robinson et al. 2015). 

Graph databases are also trending now. Calculated by number of mentions of the system 

on websites, general interest by Google Trends, frequency of technical discussions 

about the system on well-known IT-related sites Stack Overflow and DBA Stack Ex-

change, job offers, mentions in professional network profiles and relevance in social net-

works, graph databases are the most popular as seen in figure 3. (DB-Engines 2021) 

 

Figure 3. Normalized DBMS popularity changes per category, starting with January 2013 

(DB-Engines 2021). 

 

By the time of this writing, Neo4j is by far the most popular graph Database Management 

System (DBMS) according to popularity ranking. Neo4j is almost 50 % more popular than 
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the second most popular graph DBMS Microsoft Azure Cosmos DB which is a multi-

model DBMS. (DB-Engines 2021) Neo4j is utilized by 75 % of the Fortune 100, all the 

North America's top 20 banks, eight of the top ten insurance companies and many other 

big companies (Neo4j Inc.). The technology seems to have been proven useful and is 

adopted by big and impactful enterprises. However, it is unclear how they utilize graph 

databases. This increased focus and success to adapt graph databases is mainly driven 

by the success of companies who have centered their business around their own propri-

etary graph technologies; Facebook, Google, and Twitter; and by the introduction of gen-

eral purpose graph database technologies (Robinson et al. 2015). The graph technology 

landscape is blooming as can be seen in figure 4 on the next page. There are multiple 

graph databases and tools for varying purposes based on graph technology. 
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Figure 4. Graph technology landscape in 2019 (Szendi-Varga). (Original figure has been modified with larger category texts)
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Worth noting is that there are multiple graph query languages available as there is no 

standard language. Choosing a specific graph DBMS also affects the query language 

choice. Neo4j and Microsoft Azure Cosmos Graph Database offer graph database tech-

nology categorized as labeled property graphs. What labeled property graphs are and 

what do they offer, is explored in the next Subchapter. As figure 4 contains some hard 

to read text, the full list of participants is made available in spreadsheet format by Szendi-

Varga: https://github.com/graphaware/graph-technology-landscape/blob/master/Graph-

TechnologyLandscape.csv. 

5.2 Labeled property graphs 

A graph is a collection of vertices and edges. In many references, vertices go by nodes 

and edges by relationships. These names are interchangeable. (Robinson et al. 2015) 

One advantage of graphs is being simple to illustrate as seen in figure 5. Diagrams of 

graphs usually consist of circles and lines representing nodes and edges as shown. (Per-

ryman & Bechberger 2020) 

 

Figure 5. A simple graph illustrated with circles as nodes and lines as edges. 

 

Graphs are useful in understanding a wide diversity of real-world datasets. Graphs are 

natural for representing many of the world's phenomena and once graphs are under-

stood, they can be seen everywhere. (Robinson et al. 2015) Gartner identifies five types 
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of graphs to be understood in the business world which should provide "sustainable com-

petitive advantage": social, intent, consumption, interest, and mobile graphs (Valdes 

2021).  

Let's look at a social graph which can be used to represent Twitter's data. Figure 6 is an 

example of a labeled property graph. Each node is labeled as "User" which indicates role 

in the network. User nodes are connected by directed edges with a label indicating the 

relationship. 

 

  

Figure 6. A small social graph consisting of three nodes and five directed edges.  

 

In figure 6 are three nodes, each of them has a name property. Labeled directed edges 

indicate who follows whom. William follows Anya and vice versa, same with Jessica and 

Anya, however Jessica follows William, but William doesn’t follow Jessica. Twitter's real 

graph would be magnitudes larger, with many more properties, but the basic principles 

precisely apply. From this graph, it would be possible to query for example from William's 

point of view, who are the users who follow the same people as he does, whom he is not 

following. In this case the answer would be Jessica. In a large social graph, queries such 

as this could be used to create suggestions who to follow based on users with common 

interests. 
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Commonality can be used to create recommendation engines using graph databases.  

Graph would consist of users or user profiles who are interested in categorized products. 

Users and products would be nodes. Products then have category as a property or an 

edge to a category node. Users could have interest edges towards a product based on 

viewing items. Then users would be recommended products based on what kind of prod-

ucts and categories other users with similar interests have bought or viewed. Categories 

can be used as boundaries, as there might be shared interest among products in a cat-

egory. However, users might not share other common category interests. Same principle 

could be applied to media streaming services or vacation booking services. Recommend 

movies to horror movie fans that other horror fans have liked. Liking a movie could be an 

edge constructed upon liking a movie. Recommend resorts based on what other users 

have viewed who have common resorts of interest. Apply boundaries of price, booking 

date, activities available etc. to make the recommendations more relevant. 

Besides recommendation engines and social networks, there are multiple other use 

cases such as fraud or anomaly detection, knowledge graphs, network/asset monitoring, 

identity and access management, machine learning, protein-cell regulation, banking, etc. 

For each of these solutions, specific queries can be applied to the graph to obtain valu-

able information. Queries are often interchangeably called traversals in graph databases. 

To detect weird patterns or behavior and possible fraudulent activity in a banking graph, 

where company accounts are depicted as nodes and wire transfers are depict by edges, 

follow the money. Transitive relationships can be traversed to detect patterns such as 

large sums of money being circulated back to a single company via varying paths by 

companies who don't seem to have other things in common. 

Labeled property graphs are a good general purpose graph data model. Various of prob-

lems can be solved using labeled property graphs and research is being conducted to 

find more use cases in different disciplines. The model is the most popular and has 

proven commercial success. 

5.3 Graph database management system 

Graph DBMS or graph database is an online database management system with Create, 

Read, Update, and Delete (CRUD) methods which are used to expose a graph data 

model. Generally, graph databases are built for use with transactional systems which 

allow executing concurrently several transactions. Graph databases are normally opti-

mized for transactional performance with transactional integrity and availability in mind. 

When examining graph database technologies, two properties should be considered: 

The underlying storage and the processing engine. (Robinson et al. 2015) 
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Some graph databases use optimized native graph storage designed for storing and 

managing graphs, whereas some serialize the graph data into a relational database, or 

other general purpose data store (Robinson et al. 2015). Relationships are classified as 

first-class citizens in the graph data model, but serialization might slow exploring the 

relationships. Relationships are considered as important as the data points themselves. 

In an optimized graph database traversing edges is a constant time operation enabled 

by using pointers in memory. 

Closely related to the underlying storage, the processing engine is the other important 

property to examine. Some definitions require graph databases to use index-free adja-

cency. (Robinson et al. 2015) Index-free adjacency means that each node is directly 

linked to its neighbor node. In a database engine utilizing index-free adjacency each 

node acts as an index of other nearby nodes. This is much cheaper than using global 

indexes. It makes traversals performant in which a starting point (or starting points) can 

be limited effectively, avoiding the need to perform massive traversals. Then relation-

ships that satisfy conditions are traversed; physical pointers are directly dereferenced. 

In RDBMS there would be need to join tables for each relationship. (Pokorný 2015) In 

slightly broader terms, any database that behaves like a graph database from the user's 

perspective, qualifies as a graph database (Robinson et al. 2015). 

It is important to acknowledge the underlying storage as a graph database which does 

not utilize index-free adjacency may not provide the desired processing power which is 

associated with graph databases. It must be emphasized that a graph database which 

does not utilize index-free adjacency has nothing to do with being good or bad as there 

are trade-offs in both cases. Using physical pointers and dereferencing offers good per-

formance in limited traversals with the trade-off of making huge traversals costly. 

A graph compute engine enables global graph computational algorithms to be run. This 

is typically run against a large dataset due to the nature of graph databases. These en-

gines are designed to do many things such as identifying clusters in the data and answer 

questions such as how many common friends each friends have, who are the involved 

parties in each project, who is the most common actor whom with other actors have 

worked with etc. Due to the emphasis on global queries, graph compute engines are 

normally optimized for scanning and processing large amounts of information in batches. 

On the other hand, some graph compute engines concern themselves strictly on working 

with data from external sources and return the results for storage elsewhere. (Robinson 

et al. 2015) It is important to note that a graph compute engine is different from a graph 

database. A graph compute engine is optimized for running global queries and algo-

rithms, while a graph database may be optimized for sub-graph traversals. 
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When considering a graph DBMS for good performance, it is important to consider how 

the graph DBMS is implemented. Serializing data to a relational database has some 

tradeoffs, as does the implementation of a processing engine. Index-free adjacency 

should provide fast traversals with the trade-off of making huge traversals costly. 

5.4 Graph database aspects to consider 

Even though just about anything can be modeled as a graph, it does not justify migration 

to graph databases in existing projects or choosing graph databases in a new project. 

Our pragmatic world of budgets, project schedules, standards and commoditized skill-

sets require justifying from effort put into versus value gained point of view. Replacing a 

well-established and well-understood data platform requires other justification than the 

power and ease of data modeling. (Robinson et al. 2015) 

One reason for choosing graph databases can be the acknowledged performance gain 

when handling connected data. An example of great performance on connected data is 

presented in Subchapter 6.2. Join-intensive queries deteriorates performance with the 

growth of datasets in relational databases. In graph databases the queries can be local-

ized to a portion of a graph so with the growth of datasets, queries can remain relatively 

constant. Execution time in a graph is proportional to the size of the part of the graph 

traversed. (Robinson et al. 2015) This emphasizes the importance of acknowledging the 

performance impact that the modeling of the graph has. What are modeled as entities 

and what kinds of relationships are created? The modeling affects how the graph is trav-

ersed. This implies that the modeling should be done in compliance to application logic. 

Unnecessarily large traversals should be avoided being slow and costly. For running 

global queries and algorithms, a graph compute engine would be a better option. 

Graph databases are schema-free, and an easily testable API is often provided which 

can contribute to faster development time. In contrast to relational databases, there is no 

need to deal with database upgrades. This implies that there should be governance over 

how the graph database is utilized. (Robinson et al. 2015) Governance should ensure 

that changes to a database structure are aligned with application logic. In addition to an 

easily testable API, a graph database can enable ease of writing automated tests and 

manual testing as constructing the needed sub-graph may be less restricted due to re-

jecting ACID properties. A graph database can be populated with partial data. This 

doesn't mean that graph databases don't have constrain features. 

Not all commercial graph databases allow querying using a declarative language. This 

implies that these graph databases lack ability to optimize queries. (Pokorný 2015) The 
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two most popular graph DBMSs Neo4j and Microsoft Azure Cosmos DB's (Database) 

graph databases support declarative querying. Cypher is Neo4j's query language which 

is a declarative language (Neo4j Inc.). Cosmos's graph database is queried using Grem-

lin, which can be written in either imperative, declarative or in a hybrid manner, containing 

both imperative and declarative aspects (The Apache Software Foundation). The lan-

guage support should be considered when deciding the used graph DBMS. 

Extracting data from non-graph data sources to a graph database with good modeling 

might not be a simple task (Pokorný 2015). The relationships in the original data source 

can be used to create edges between data points (nodes), if available. However, the 

structure of the relational database might not be optimal for use in the graph database. 

It is worth nothing that relationships are first-class citizens of a graph database, and the 

performance is based on the ease of traversing relationships in relationship rich data. 

Different graph DBMS offer varying features and support. Comparison between viable 

DBMSs would be advisable before committing. The requirements for the database 

should be known before comparison. There is no standard yet for graph databases which 

might imply that DBMSs can offer significantly varying experiences. 

Graph databases can offer performance benefits with highly connected data when pro-

vided with good data modeling. Graph databases are not associated with good for que-

ries that span the whole database. Utilizing graph databases' potential requires require-

ments engineering, data modeling, gathering knowledge of the application domain, in-

vestigation of graph DBMSs features, and data governance plan. The flexibility of graph 

databases should aid when difficulties are encountered. 

5.5 What should be solved with graph databases? 

It is important to understand what kinds of problems should be solved with graph data-

bases. This helps in recognizing problems that might be suitable for solving with graph 

databases. When inspecting graph database material, it is common to encounter broad 

statements of everything being a graph problem. Because something can be modelled 

as a graph, it doesn't mean that it should be. (Perryman & Bechberger 2020) Let's pre-

sent some answers to what kinds of problems graph databases are suitable for solving 

and what not. 

What kinds of entities are searched or selected? When conducting searches that do not 

require rich relationships within data, a relational database is a better option. Questions 

and actions such as: Who are the people working on a project X? Sort files in ascending 
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order by date. List organizations by nationality. These questions and actions can be sat-

isfied with single filtering criterion or an index. While these questions can be answered 

with a graph database, it is not advisable to utilize graph databases in these cases. (Per-

ryman & Bechberger 2020) 

Are the relationships between entities explored? If meaning and topological value to data 

is being added, it is a strong indication of graph databases being the solution. Some 

examples of these could be: What are common subjects that Jim and Pam have been 

working on? How are two companies related? How does Dwight relate to a project Y? 

This information is leveraged by graph databases better than by any other data engines. 

Graph database query languages suit to reason over relationships in data. Though rela-

tional databases can answer types of questions such as friends-of-friends queries, they 

might require complex or difficult queries that consist of complex joins or recursion over 

many tables. (Perryman & Bechberger 2020) 

Is data being aggregated? Relational databases are optimized for complex aggregation 

queries. Such questions could be: How many unfinished projects are there? What are 

the average sales for each day over the past two months? How many transactions are 

being processed each day? These questions can also be answered in a graph database, 

but large traversals are required which might cause higher latency or resource utilization. 

(Perryman & Bechberger 2020) 

Are entity relations used for pattern matching? Pattern matching is a prime example of 

leveraging the power of graph databases. Typical examples of pattern matching are rec-

ommendation engines, fraud detection, or intrusion detection. Some example questions: 

Who has a similar profile as Stacy? What are some transactions that look like transaction 

X? Is user A the same as user B? Pattern matching is so common in graph databases 

that graph query languages have specific, built-in features that handle these sorts of 

queries. (Perryman & Bechberger 2020) 

Is centrality, clustering or influence associated with the problem? A typical graph data-

base use case is utilizing relative influence or importance of entities. Some example 

questions could be: Who is the most influential person whom person A is connected to? 

What phase in a project has the most substantial impact if delayed? What phases tend 

to be also delayed if phase Y is delayed? These are examples of problems in which 

critical pieces of some infrastructure are identified or groups of entities are located. An-

swers to these problems requires looking at the entities, relationships, incident relation-

ships and adjacency. These are types of problems that often have specific built-in query 

language features similarly as pattern matching does. (Perryman & Bechberger 2020) 
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These kinds of questions help in evaluating if a problem is a good fit for solving with a 

graph database. Understanding suitable graph database use cases should ensure rec-

ognizing opportunities to utilize the right tool. Graph database technology is not a silver 

bullet for database needs, though graphs can be used to model almost anything. 

5.6 Graph database suitable use cases in Enterprise Infor-
mation Management 

Known use cases for graph databases which suit the context of Enterprise Information 

Management are presented.  Some of the use cases can also be implemented with re-

lational databases, but it might require more effort. Implementation of given examples 

with graph databases is a good choice. 

5.6.1 Master Data Management 

Master data is critical to business operation. Master data includes user data, customers, 

products, suppliers, departments, geographies, cost-centres, sites, and business units. 

In large organizations, the data can reside in silos. Silos might create overlap and redun-

dancy. Master Data Management (MDM) is the practice of identifying, storing, cleaning, 

and governing this data. Key concerns include change management, incorporating new 

sources of data, supplementing existing data with external sources of data, addressing 

the needs of compliance, reporting, business intelligence, and versioning data. While 

graph databases might not necessarily provide a full MDM solution, they are ideal to be 

applied to modeling, storing, and querying of hierarchies, master data metadata, and 

master data models. (Robinson et al. 2015) 

Master data models include type definitions, constrains, relationships between entities, 

and mappings between the underlying model and source systems. Multiple redundant 

data sources might lead to a requirement of being capable of handling ad hoc, variable, 

and exceptional data structures. Graph databases being schema free allow this capabil-

ity while also allowing rapid development of the master data model aligned with changing 

business needs. (Robinson et al. 2015) 

5.6.2 Knowledge graphs 

Knowledge graphs are a specific type of graphs with contextual understanding empha-

sized. These graphs contain interlinked sets of facts that describe entities, events, and 

their interrelations. To be able to reason about the underlying data, organizing principles 

must be applied. These principles give an additional layer of organizing data. This adds 
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connected context which supports reasoning and knowledge discovery. (Barrasa et al. 

2021) 

Taxonomies can be used for creating hierarchies. Taxonomies allow support for x is a 

kind of y reasoning. A taxonomy is a classification scheme. It organizes categories in a 

broader narrower hierarchy. More specific things such as instances of a category are 

placed toward the bottom of the hierarchy. Categories and other less numerous things 

are placed towards the top of the hierarchy. In addition to taxonomies, ontologies can be 

used to create multilevel relationships. Ontology, in this context, is a classification 

scheme that describes the categories in a domain and the relationships between them. 

They are not restricted to hierarchical structures. Ontologies allow more complex types 

of relationships such as part_of, compatible_with, or depends_on. (Barrasa et al. 2021) 

A knowledge graph's organizing principle should be chosen by the intended use. There 

are standards created for variety of domains which can be utilized and refined further on 

for specific use. A good knowledge graph is flexible, and it should be easy to maintain. 

It is performant and as businesses change, so should the knowledge graph. A good and 

suitable organizing principle allows this. (Barrasa et al. 2021) 

Relationships are used to describe how entities interrelate. However, relationships can 

be used to connect data with metadata, which is a powerful combination. A globally 

linked view of data makes significant use cases possible. Metadata allows for catalogues 

of richly described datasets. (Barrasa et al. 2021) 

5.6.3 Actioning knowledge graph 

Relationships and metadata can be used to make an actioning knowledge graph. Action-

ing knowledge graph allows querying data such as "What customers subscribe to service 

X?" like knowledge graphs but can also provide confidence in answering questions re-

lated to provenance and governance of data. (Barrasa et al. 2021) Provenance and gov-

ernance of data is important when handling sensitive data. 

Popular use cases for actioning knowledge graphs are data lineage, data catalogue, 

impact analysis and root cause analysis, and information search. Data lineage traces all 

steps in data pipelines. This provides trust and high-fidelity provenance information. (Bar-

rasa et al. 2021) High-fidelity provenance establishes higher security by increasing con-

fidentiality and by allowing tracking who've accessed information and when. 

Impact analysis and root cause analysis are two similar use cases. Concrete examples 

of these use cases are risk management, service assurance, ultimate beneficiary own-
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ership, or fraud origination. If a company is faced with an information leak or other fraud-

ulent activity, the actioning knowledge graph could be queried for individuals who have 

accessed the information. The actioning knowledge graph could detect suspicious or 

fraudulent activity or behavioural patterns. Such as material marked as sensitive is 

viewed by a non-stake holder – user who should not have rights to view, modify or down-

load sensitive material should be detected when doing so. CSP should ensure high se-

curity as it is used to access most of an enterprise's information assets, especially if CSP 

should satisfy the needs of collaboration with external stakeholders. 

5.6.4 Machine learning 

Applying graphs in machine learning is not a new idea but only during the past few years 

this has gained more interest. Although many machine learning technologies rely on 

graphs, they neither allow graphs as input nor as output. Fixed vectors or matrices of 

data are accepted as input by most standard machine learning algorithms. (Perryman & 

Bechberger 2020) 

Due to the need of using vectors and matrices for applying standard machine learning 

algorithms, ways of extracting graph data into vectors and matrices must be applied. A 

simple method for using graphs in machine learning is to extract features. There are 

graph analytics algorithms that can be used to extract features of a graph. When these 

graph features are combined to create a vector or a set of vectors for machine learning, 

it is called graph embedding. (Perryman & Bechberger 2020) 

Sparse data is converted into more compact vector representations in graph embedding. 

Generally, there are two forms of embedding: node embedding and graph embedding. 

In node embedding, each node is represented as a single vector or matrix to compare 

items on a node level. In graph embedding, an entire graph or a sub-graph is represented 

in a single vector or matrix. Vectors and matrices are simpler and faster than comparable 

operations on a graph, which makes operating on those desirable. (Perryman & 

Bechberger 2020) Important aspect is deciding what features should be extracted from 

a graph. 

Extracting features from a knowledge graph can be used to create a context aware AI. 

Context awareness improves reasoning. Instead of extracting information from a plain 

graph, a knowledge graph may be used for better reasoning. AI could then reason pre-

dictions and discovery of interesting data via applied ontologies and taxonomies. The 

data that AI creates can then be fed back to the knowledge graph, making the knowledge 
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graph smarter. AI and knowledge graphs are driving breakthroughs and competitive ad-

vantage for organizations, but the combination is where the industry is heading. (Barrasa 

et al. 2021) 

5.6.5 Other mentionable use cases 

A graph database can be used to create a full text search feature. Unstructured data 

such as contracts, instructions, memos, and other documents which contain natural lan-

guage text can be scanned for their content while gathering information such as appear-

ance of words and counts. By using this information based on natural language text, a 

graph can be built in which resides all the words found in the content and the documents 

would be connected to adjacent words. 

In addition to graph database technology providing possibilities for building features into 

a CSP product, it could also provide use in Business Intelligence (BI) for a CSP vendor. 

Analytics data could be used to create a graph. There might be patterns to detect from 

analytics which could provide insight into how the product is utilized. For example, when 

introducing new features to the software, it could be interesting to see how the utilization 

of features changes. How often are some features being used, do customers with whom 

cooperation was terminated have something in common, do customers who face issues 

with the product have something in common etc.? 

Diagnostics could be collected to detect anomalies in the product. For instance, have 

some features slowed down after an update, have more errors occurred when something 

was changed etc.? There might be insight to be undiscovered in BI and analytics, which 

could provide valuable information allowing proactive and reactive actions to take place. 

5.7 Summary of graph databases 

Though graph database technology has been present for multiple decades, they have 

only recently started to gain attention. This is due to big companies such as Google, 

Facebook and Twitter successfully centering their business around their proprietary 

graph database systems and due to introduction of general purpose graph database 

technologies. Graph databases have not had time to mature as is the case with relational 

databases and some NoSQL databases. This has not stopped some of the most influ-

ential business's from successfully utilizing graph databases. 

Labeled property graphs present a good general purpose graph database. It is a natural 

way of modeling data to label entities, give them properties and connect them by named 

relationships. Though it may seem simple to model data, modeling application domains 
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requires careful consideration. Modeling data should comply to the needs of the applica-

tion as this has an impact on the way querying is done and the possibilities of optimiza-

tion. Selection of a graph DBMS has its own impacts also. 

Though graph databases, and especially labeled property graphs, present a good gen-

eral purpose database solution, they are not suitable for all databases needs. This is 

good to acknowledge when choosing between graph databases and other database 

types. Some suitable use cases were presented as well as indications of use cases 

which are not. Same data can be stored in both types of databases, but modeling, stor-

ing, and querying is different. These differences are demonstrated in the next Chapter. 
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6. COMPARISON OF RELATIONAL DATABASES 
AND GRAPH DATABASES 

In this Chapter, relational databases are compared to graph databases. The comparison 

is done to highlight and argue some mentioned key characteristics. Comparisons of mod-

eling, querying and performance are investigated. As the de facto language for relational 

databases, SQL is compared to Cypher. Since there is no standard query language for 

graph databases, Cypher is selected as the query language of Neo4j which is also rec-

ognized as the leading graph data platform by Gartner in Q4 2020 (Yuhann 2020). The 

source of the language comparison is Neo4j's developer documentation. It can be ar-

gued that using a graph DBMS provider's documentation would be a biased. However, 

the examples are simple and for example large recursive SQL-queries are not ad-

dressed, which logic have been mentioned to be significantly easier to handle with graph 

databases (Bechberger 2019). Performance-wise a good comparison of MySQL and 

Neo4j has been conducted by Vicknair et al. (2010) which will be referred to. Though the 

comparison is over a decade old, the results are still relevant. For performance, the re-

sults of a comparison which is referred to, are not generalizable. Recall for graph data-

bases, the performance is affected by multiple factors. Also, for relational databases, 

there are performance differences for different DBMSs. Focus is on understanding how 

the performance is affected and therefore the publication is still relevant. 

6.1 Comparison in modeling and querying 

In this Chapter, data modeling of a relational database and a labeled property graph is 

compared. This comparison should emphasize the fundamental difference in data mod-

eling. The source of the query comparison is also from Neo4j’s documentation. 

6.1.1 Data models 

Microsoft's publicly available sample database Northwind is used as the example. It rep-

resents a retail application's data storage. The database contains customers, products, 

orders, employees, shippers, categories, and their interactions. The following relational 

database queries refer to the model which is represented in figure 7. 
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Figure 7. Relational model of Northwind database (Neo4j Inc.). 

 

The graph model of the Northwind database is presented in figure 8. 

 

Figure 8. Graph model of Northwind database (Neo4j Inc.). 
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The graph model does not contain the node properties which makes it simplified. The 

graph model encapsulates a lot of information. Relationships are depicted with less 

edges in the graph model as there is no need to create tables for representing compli-

cated relationships as is with Order Details -table. The graph model is somewhat ambig-

uous as it is not clear how customers are modeled. 

6.1.2 Simple queries 

Queries are based on the presented data models. This is not a comprehensive compar-

ison as types of queries are missing such as recursive queries. The point is to highlight 

some key differences in how queries are structured. 

Finding all products in SQL is a simple select from the products table: 

 

 SELECT p.* 

 FROM products as p; 

Program 1. Selecting all products in SQL (Neo4j Inc.). 

 

The equivalent in Cypher is a simple match pattern which selects all nodes with the label 

:Product and returns them: 

 

 MATCH (p:Product) 

 RETURN p; 

Program 2. A declarative pattern which matches all products in Cypher (Neo4j Inc.). 

 

Noticeable is how the keyword MATCH is used in Cypher. The essence of Cypher are 

statements that represent patterns. In a node pattern (variable:Label) a variable and one 

or more labels for the node can be used. Attributes can also be provided as a key-value 

structure e.g. (item:Product {name:"Chocolate"}). (Neo4j Inc.) In this example, item is the 

name given to the variable in the query and it represents one or more nodes labelled as 

"Product" and has a name attribute with the value "Chocolate". 

It is more efficient to return only a subset of attributes. Next example query returns a 

subset of attributes, orders by price and returns only the 10 most expensive items: 
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 SELECT p.ProductName, p.UnitPrice 

 FROM products as p 

 ORDER BY p.UnitPrice DESC 

 LIMIT 10; 

Program 3. SQL query of the ten most expensive products' name and price ordered 

descending by price (Neo4j Inc.). 

 

The equivalent of this in Cypher would be: 

 

 MATCH (p:Product) 

 RETURN p.productName, p.unitPrice 

 ORDER BY p.unitPrice DESC 

 LIMIT 10; 

Program 4. Querying ten most expensive products' name and price, ordered descending 

by price in Cypher (Neo4j Inc.). 

 

The syntax is somewhat similar. In both queries the variable used for a product is named 

p and a similar syntax is used to select the attributes, disregarding casing used for at-

tributes. Ordering and limiting are syntax-wise similar. Similar syntax helps understand-

ing Cypher if SQL's syntax is familiar. 

Selecting a single Product named Chocolate in SQL would be done as follows: 

 

 SELECT p.ProductName, p.UnitPrice 

 FROM products as p 

 WHERE p.ProductName = 'Chocolade'; 

Program 5. SQL query of the product Chocolate (Neo4j Inc.). 

 

The equivalent in Cypher would be: 
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 MATCH (p:Product) 

 WHERE p.ProductName = "Chocolade" 

 RETURN p.productName, p.unitPrice; 

Program 6. Cypher query of the product Chocolade (Neo4j Inc.). 

 

A shortcut can be used to rewrite program 6's query by using a key-value structure: 

 

 MATCH (p:Product {productName:"Chocolade"}) 

 RETURN p.productName, p.unitPrice; 

Program 7. Cypher query using a key-value structure to get a product named Chocolade 

(Neo4j Inc.). 

 

Queries that do not utilize relationships can be found to have similar syntax. It must be 

noted that the presented SQL queries could have been written without using variables in 

the queries. This could have made the SQL queries simpler. The variables might have 

been used to create analogy to the Cypher queries. This is also present in the following 

queries. 

6.1.3 Queries utilizing relationships 

The most notable difference can be perceived in how the queries are structured when 

relationships are utilized as can be noticed in the next queries. 

 

 SELECT DISTINCT c.CompanyName 

 FROM customers AS c 

 JOIN orders AS o ON (c.CustomerID = o.CustomerID) 

 JOIN order_details AS od ON (o.OrderID = od.OrderID) 

 JOIN products AS p ON (od.ProductID = p.ProductID) 

 WHERE p.ProductName = 'Chocolade'; 

Program 8. SQL query for customers who bought chocolade (Neo4j Inc.). 
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The equivalent of the query in Cypher is more concise as there is no need to join tables 

and instead a graph pattern is used. 

 

MATCH (p:Product {productName:"Chocolade"})<-[:PRODUCT]-

(:Order)<-[PURCHASED]-(c:Customer) 

RETURN distinct c.companyName; 

Program 9. Cypher query for customers who bought chocolade (Neo4j Inc.). 

 

The query is more concise, but the syntax may seem complex at first. It helps to be aware 

of the ASCII art -like syntax of Cypher; a graph is depicted as ASCII art. A node pattern 

as mentioned earlier is depicted as follows: (variable:Label). The query represented in 

Program 9 additionally uses a key-value structure. For relationships the pattern is: ()-

[someRel:REL_TYPE]->(). The round brackets represent the nodes, and the square 

bracket labels the relationship. (Neo4j Inc.) The direction of the relationship is depicted 

by the direction of the arrow. The query in program 9 also implies that the presented 

graph model is incomplete as it refers to a node labeled as Customer even though it is 

not present in figure 8. 

To know what a customer has bought and paid in total, OUTER JOIN must be used if 

there are customers without orders to be included. 

 

SELECT p.ProductName, sum(od.UnitPrice * od.Quantity ) 

AS Volume 

FROM customers AS c 

LEFT OUTER JOIN orders AS o ON (c.CustomerID = o.CustomerID) 

LEFT OUTER JOIN order_details AS od ON(o.OrderID= od.OrderID) 

 LEFT OUTER JOIN products AS p ON (od.ProductID = p.ProductID) 

 WHERE c.CompanyName = 'Drachenblut Delikatessen' 

 GROUP BY p.ProductName 

 ORDER BY Volume DESC; 

Program 10. SQL query to find out what company Drachenblut Delikatessen has bought 

and paid in total (Neo4j Inc.). 
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In Cypher the match becomes OPTIONAL MATCH, the equivalent of OUTER JOIN as 

shown in program 11. 

 

 MATCH (c:Customer {companyName:"Drachenblut Delikatessen"}) 

OPTIONAL MATCH (p:Product)<-[pu:PRODUCT]-(:Order)<- 

[:PURCHASED]-(c) 

RETURN p.productName, toInteger(sum(pu.unitPrice * 

pu.quantity)) AS volume 

ORDER BY volume DESC; 

Program 11. Cypher query to find out what company Drachenblut Delikatessen has 

bought and paid in total (Neo4j Inc.). 

 

Again, due to the pattern matching in Cypher, the query can be expressed more con-

cisely. Being concise does not make it simpler and it is the ASCII art -like syntax which 

can make the query simpler. Cypher's syntax is aligned with the idea of graphs being 

natural to imagine. 

So far, examples of simple queries, field accessing, ordering, paging, filtering, joining, 

distinct results, outer joins, and aggregation have been explored. To keep the list non-

exhaustive, some examples have been omitted. Last example addresses self-joining. 

This is the case when expressing category-, territory- or organizational hierarchies in 

SQL. When getting into multi-level queries, the number of joins grow considerably. The 

query in program 12 explores three levels of self-joining. 
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 SELECT p.ProductName 

 FROM Product AS p 

 JOIN ProductCategory pc ON (p.CategoryID = pc.CategoryID AND 

  pc.CategoryName = "Dairy Products") 

JOIN ProductCategory pc1 ON (p.CategoryID = pc1.CategoryID 

 JOIN ProductCategory pc2 ON (pc2.ParentID = pc2.CategoryID 

AND pc2.CategoryName = "Dairy Products") 

JOIN ProductCategory pc3 ON (p.CategoryID = pc3.CategoryID 

 JOIN ProductCategory pc4 ON (pc3.ParentID = pc4.CategoryID) 

 JOIN ProductCategory pc5 ON (pc4.ParentID = pc5.CategoryID 

AND pc5.CategoryName = "Dairy Products") 

Program 12. SQL query expressing hierarchy depth of three levels (Neo4j Inc.). 

 

It can be noted from the query in program 12 that the number of opening and closing 

round brackets don't match. The example is taken as is. This SQL query is a bit laborious 

to write compared to the Cypher version, which is again more concise and instead of 

three levels, deals with hierarchies of any depth. 

 

MATCH (p:Product)-[:CATEGORY]->(l:ProductCategory)-[:PARENT*0..]- 

(:ProductCategory {name:"Dairy Products"}) 

RETURN p.name 

Program 13. Cypher query expressing variable length paths (Neo4j Inc.). 

 

Variable levels of hierarchy are represented by variable length paths. A star * is used to 

denote variable levels to which can also be applied optional limits (min..max) (Neo4j 

Inc.). 

The purpose of these examples was to emphasize the difference in modeling, and how 

the querying in Cypher differs from SQL, in an understandable scope. Relational data-

bases are based on well-defined schema and graph database models are unrestrictive 

as themselves. The modeling of the graph database applies to property graphs overall 

and the used modeling is not restricted to Neo4j. A similar graph model could be con-

structed in any labelled property graph. 
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6.2 Example MySQL and Neo4j performance comparison 

This comparison refers to Vicknair et al. (2010) who conducted a comparison of MySQL 

and Neo4j performance from data provenance perspective. Rather than trying to come 

up with generalizable performance differences between relational databases and graph 

databases, the results help understand how performance is affected. The paper was 

selected due to the perspective being aligned with the interests of this thesis. 

6.2.1 Data provenance 

Provenance of data is the lineage of that data. Lineage describes what the data is and 

how it came to be. Provenance of a data item includes details about the processes and 

input data, which together were used to create the item. As mentioned in Subchapter 

2.4, the source of data can vary. Complete provenance includes all the processes and 

versions of the item that came to be to create the item. Provenance can exist at different 

granularities such as from entire databases to tuples within databases, or files. (Vicknair 

et al. 2010) 

It is recommended to model provenance using directed acyclic graphs (DAGs) (Vicknair 

et al. 2010; Khan et al. 2019). A sample DAG is presented in figure 9. 

 

Figure 9. A sample directed acyclic graph (Vicknair et al. 2010). 
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A sample use case of these acyclic graphs could be document versions. A descendent 

would then be a newer version of a document. The root of a cycle would be the initial 

version. A branching point would represent a point in which two different versions based 

on the same version were created. When two branches unite, a descendent is created 

based on the two versions. Other example of a very similar case for DAGs is the open-

source version control system Git, which is a commonly used system for managing 

changes in software development. 

6.2.2 Database construction and performance evaluation 

Acyclic graph models were constructed in a total of 12 MySQL databases and 12 Neo4j 

databases. Each database stored a DAG consisting of some number of nodes and 

edges. Each node was associated with some payload which represented data that might 

be associated with a DAG's data point. The graph was represented in the relational da-

tabase by node tables and edge tables. In the relational database each record in the 

node table contained a payload attribute as well as did each node in the graph database. 

In the relational database, a node record contained a node ID and a payload, and each 

edge record contained a source and a sink. Sources and sinks were foreign keys to node 

ids. (Vicknair et al. 2010) 

Graphs were created with approximately 1000, 5000, 10 000 and 100 000 nodes. These 

number of nodes enable assessing scalability. Types of payload data also varied. Pay-

loads were constructed to contain random integers, random 8KB strings and random 

32KB strings. A table describing the databases is presented in table 1. 
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Table 1. Database descriptions with disk sizes (Vicknair et al. 2010). 

 

 

Inspecting table 1 and the disk sizes of the databases, noticeable is how Neo4j data-

bases consume more space, about 1.25 to 2 times the size of the corresponding rela-

tional databases. Full text indexing was used in both the MySQL and the Neo4j data-

bases. The DAGs structure and payload were randomly generated. The payload data 

consists of a series of words that were randomly selected from a dictionary that contained 

around 112 000 words. Data was randomly generated to each type of the 12 databases, 

so that corresponding Neo4j and MySQL databases were logically identical structure- 

and payload wise. This identical structure ensures correct comparison of the queries. 

(Vicknair et al. 2010) 

The DAGs were created in layers. Two random sized sets of nodes were created repre-

senting the first two layers and random number of edges were created between the two 

layers. Then with similar logic, additional layers were constructed layer by layer until a 

graph of at least target size was created. MySQL Community Server version 5.1.42 and 

Neo4j version 1.0-b11 were used running on a computer with Ubuntu Linux version 9.10 

which had an Intel Core 2 Duo CPU running at 3.00 GHz and 4GB of RAM. (Vicknair et 

al. 2010) 

Queries simulate some types of queries that are used in provenance systems. As an 

example, traversals are needed to determine data objects that have been derived from 

some other objects or earlier revisions of that data object. Think of a linked list in the 

acyclic graph. If a data object is noticed to contain undesired changes, the graph is trav-

ersed to find a parent node containing a suitable basis. Another common operation is to 
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search specific values within payloads, such as in text searches. Thus, queries were 

divided into structural and data queries. The structural queries refer to the structure of 

the DAG and data queries refer to the payloads. Three types of structural queries were 

defined as follows: 

S0: Find all orphan nodes. Orphan nodes have no incoming or outgoing edges. 

S4: Count the number of nodes that are reachable while traversing the graph to a depth 

of 4. 

S128: Count the number of nodes that are reachable while traversing the graph to a 

depth of 128. 

For each query type, the queries were run 10 times on each database while recording 

execution times. The longest and shortest times were excluded, and the average was 

counted from the remaining eight execution times. The results are presented in table 2. 

 

Table 2. Results of the structural queries. Execution times are presented for each type 

of database in milliseconds. (Vicknair et al. 2010) 

 

 

For these structural queries, no joins were needed to conduct in the relational database. 

Only the edge tables were accessed as there is no need to consider the payload. (Vick-

nair et al. 2010) Note, when counting orphan nodes with the integer databases, execution 

times were slower in Neo4j, even though the payload was not accessed. The same was 

detected in the data queries regarding integer databases. This is due to Lucene, the 

indexing engine used by Neo4j; it used to handle all data as strings during the making of 

the referred paper. However, Lucene now supports indexing of numerical data, as well 

as other types of data. Therefore, the comparison of integer data queries has been ex-

cluded as the results are no longer relevant. 
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For the structural queries, Neo4j was clearly faster. Neo4j was sometimes even 10 times 

faster. In the relational database, breadth-first searches were performed and a SELECT 

to the database was done for each node removed from the queue of nodes to traverse. 

(Vicknair et al. 2010) Neo4j being fast compared to the relational database is most prob-

ably due to the implementation of index free adjacency. In Neo4j, each node contains an 

"index" made of physical pointers. Looking up the descendent is a quick operation com-

pared to a relational database in which the descendent is searched from a table. The 

table contains also other relationships, which are not relevant when searching a for a 

specific one. Checking of the orphan nodes in the relational database was done using 

the following query: 

 

 SELECT COUNT(*) 

 FROM node 

 WHERE node.nodeid NOT IN (SELECT source FROM edge) 

 AND node.nodeid NOT IN (SELECT sink FROM edge); 

Program 14. Counting of the orphan nodes in SQL (Vicknair et al. 2010). 

 

When processing orphan nodes, Neo4j seemed not to offer any significant benefits. How-

ever, when conducting traversals utilizing relationships, Neo4j offers significantly better 

results. 

The full-text searches with character payload databases yielded interesting results. Four 

databases containing 8K character payload and four databases containing 32K charac-

ter payload fields were created by selecting random strings from the dictionary earlier 

mentioned. For these databases, full-text searches regarding the payloads were per-

formed. The query for performing full-text searches in MySQL databases is as follows: 

  

 SELECT count(*) 

 FROM pnode 

 WHERE MATCH (payload) AGAINST (SearchString); 

Program 15. SQL statement used for full-text searches (Vicknair et al. 2010). 
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Lucene indexing was used for Neo4j databases. When tests were conducted on fully 

random data with only letters, Neo4j was clearly outperformed by MySQL. Thus, further 

testing was done with data that better resembled real world data, data that also contained 

spaces. With data that better resembled real world data, MySQL was much slower. In-

teresting is that MySQL performed slightly better on a small scale. Scaling upwards 

showed a clear shift in favor of Neo4j. Partial results for these searches are presented in 

table 3. 

 

Table 3. Query time results on character databases, in milliseconds. d = length of the 

search string. (Vicknair et al. 2010) 

 

 

Looking at table 3, it seems that Neo4j's performance was unaffected by scaling which 

was not the case with MySQL. Increasing the number of nodes had a significant effect 

on the query performance in MySQL. For a database used for text search engine pur-

poses, results favor Neo4j. Results seemed interesting and raised a question on how 

Lucene's indexing achieves this. Shortly, Lucene achieves this by breaking down the 

payloads into number of terms. The terms are used to create an index where each term 

is associated with payloads that contain it. Therefore, it can be concluded that the variety 

of the selected strings found in the dictionary affects the performance of the queries in 

Neo4j. This explains how scaling seemed not to affect the performance and how using 

spaces affected the performance as spaces were probably used as separators for found 

terms. (The Apache Software Foundation 2006) This also emphasizes the impact that 

proper data modeling has. 

6.2.3 Overview of the results 

It is acknowledged that the used versions of Neo4j and MySQL are relatively old. Neo4j 

has had years to evolve from the conducted performance comparison to which is re-

ferred. One example of how Lucene and Neo4j has evolved, is the added support of 

numerical value indexing as well as temporal values. Neo4j has since also added 
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schema indexes, which allows for automatic indexing of labelled nodes by their proper-

ties. 

The performance findings are not generalizable for all graph databases nor relational 

databases. For instance, there is a distinct performance difference for SELECT queries 

between MySQL and Microsoft SQL Server (Software Testing Help). Also, relational da-

tabases can be supplemented with external indexing solutions. A good comprehensive 

performance comparison between Neo4j and Oracle is done in by Khan et al. (2019) 

which yielded similar results in favor of Neo4j in handling relationship rich data, even if 

the relational database used physical tuning for maximizing performance. 

Emphasis was on how index free adjacency provides performance gains. This pinpoints 

the importance of acknowledging the underlying storage and processing engine when 

choosing between graph DBMS options. Another important aspect is that how graph 

databases scale. The query performance is not only affected by the modeling of the 

graph and the type of query, but the indexing used. A good example of suitable indexing 

is the Lucene's implementation of strings' indexing for text search purposes. 

Different graph DBMSs offer different types of indexing options, and it is suggested to 

investigate how the indices were designed to be utilized. Otherwise, in the case of Neo4j, 

one might end up with unexpected and unnecessary disk space usage, which has little 

to no impact on the actual performance of the queries (Armbruster 2016). As graph da-

tabases have recently adopted mainstream popularity, it is important to acknowledge the 

relatively short history in utilizing the technology. It is worth investing into researching, 

consulting, and training regarding graph databases to ensure success in adopting graph 

database technologies and to successfully utilize the potential. 
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7. GRAPH DATABASES IN M-FILES 

M-Files is a Finnish software product company which develops a Content Services Plat-

form with the same name, M-Files (Henceforth M-Files will be referred as the product). 

M-Files is a Content Services Platform which is ranked as the visionary in Gartner's 

Magic Quadrant for CSP for the second year in a row (Woodbridge et al. 2021). M-Files 

provides Intelligent Information Management (IIM). The product focuses on what the in-

formation is rather than where it is stored. In contrast to traditional folder structured 

ECMs, in which it might be hard to find the right information when needed, information 

can be found based on what it is. Example of IIM is enhanced business automation com-

bined with visibility and integration across systems and repositories. M-Files can connect 

multiple silos (as CSP should) which streamlines finding the needed content. Integration 

with multiple systems and digital tools, varying from electronic signatures to communi-

cation and collaboration platforms, ensures streamlined workflows. M-Files can also uti-

lize artificial intelligence to categorize and find relevant information. AI creates intelligent 

metadata suggestions which further helps in finding relevant information and reduces 

manual labour associated with tagging information with the right metadata. (M-Files) 

There are use cases presented in graph database literature which indicate the suitability 

of graph databases for M-Files. Suitable use cases and hypothesis of possible benefits 

are introduced. 

7.1 Recommendations based on patterns 

Organizations gain competitive and operational advantage by leveraging social infor-

mation. Discrete information about individuals and their relationships can be combined 

to facilitate collaboration, manage information, and predict behaviour. Social networks 

are a natural fit for graph databases. Insight can be generated into individual behaviour 

by understanding interactions. Interactions provide information about explicit social rela-

tions, but the relations can also be implicit. Implicit relations can be based on similar 

interests or behaviour patterns. (Robinson et al. 2015) 

M-Files is used by customer organizations in varying fields, and they have people using 

the system. As people are in the centre of a functioning organization, social constructs 

in an organization can be identified. Explicit social constructs can be identified from the 

organization layout and from direct interaction. Implicit relations among people could be 

recognized from the way they use the system. An easy example of recognizing explicit 

social constructs would be to gather information regarding workflows (processes which 



50 
 

are complied to when dealing with certain type of information). Patterns could be de-

tected such as people who are usually interested in objects which are moved to a certain 

workflow state. These could be metadata based, such as a legal representative is inter-

ested before an agreement is signed. Patterns could also be implicit; a certain person is 

associated with interacting on certain types of objects when they are moved to a workflow 

state of interest. The interaction might simply be viewing the file instead of modifying it. 

Social relationships can be explored to generate insight into centrality, clustering, and 

influence of the organization's members via a knowledge graph. Computed centrality 

could determine the importance of a user's interaction upon objects completing their 

workflows. Identified clusters allow for creating social constructs which can be used for 

generating insight into behaviour. Influence of a user can be used for evaluating im-

portance and relevancy towards objects or subjects. For example, a person who has 

most interacted with content regarding a certain customer might have most knowledge 

about them. 

What benefit is gained from recognizing social constructs or behavioural data? Insight 

into behaviour can be used for generating effective recommendations. Recommenda-

tions are a prime example of generating end user value. It is valuable to identify people, 

products, or services that individuals or groups would be interested in. Social networks 

and recommendations provide key differentiating capabilities in retail, recruitment, sen-

timent analysis, search, and knowledge management. Working could be streamlined by 

recommending relevant information to users of interest. Instead of using precalculated 

and stale results, applications can surface end user real-time results that reflect recent 

changes to data by storing and querying this data in a graph database. (Robinson et al. 

2015) 

In M-Files, the effective recommendations could also mean suggesting actions for a user 

and recommending content. Such as notifying a user who is usually interested in the 

object when it is moved to a certain workflow state or suggest tagging an assignee. If an 

object has remained in a workflow state for an extended period, compared to the average 

deviation, the object might have been forgotten. With the same logic of how recommen-

dations are made, users could be profiled. Users who often work with certain types of 

objects associated with certain metadata, could be profiled to have knowledge about the 

points of interests. When there is a need to find a person who has the most knowledge 

about a certain customer or certain types of businesses, answers could be provided. 

There are many possibilities opened by insight about the people and the information they 

handle. 
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7.2 Machine Learning 

M-Files uses machine learning for various tasks such as creating smart metadata sug-

gestions, finding similar objects, for calculating a relevancy score etc. The relevancy 

score is used to sort search results. A knowledge graph may support AI in metadata 

suggestions. Knowledge graph in combination with AI may provide new insight into data. 

AI may notice new patterns and trends in the data when ontologies and taxonomies are 

present. These patterns in combination with behavioural data could better enhance end 

user experience with more accurate predictions, insight, and personalization. M-Files is 

already utilizing a knowledge graph, but it is not based on a graph database. Basing the 

knowledge graph on a graph database would allow using graph algorithms. 

For instance, AI could detect time related patterns such as new members of an organi-

zation. New M-Files user accounts would be recommended the type of material that other 

users then have often viewed in a similar position. In this case, the features to extract 

would be related to when the user was created and what position they are in. Then these 

would be compared to recognize implicit relations. Implicit relations would reveal other 

users that have been in a similar position. Via an actioning knowledge graph, it is possi-

ble to find material that the associated users either viewed often or paid careful attention 

to. If the actioning knowledge graph contained information about how long a user viewed 

a document compared to the text size of a document, AI could make approximations 

about the relevance or importance of a document for a user. When AI detects an ontology 

related to the onboarding process, it can be applied onto the knowledge graph. AI would 

store this detected ontology and then create effective recommendations for users that 

this ontology concerns. The ontology combined with the implicit relation can be used to 

reason the recommendation. "Other new users in a similar position have read". This is 

very similar to how online marketplaces recommend products. Another example could 

be a toolbox. If a person begins working on an object which has a certain workflow state 

and often in this similar situation uses a certain document as a reference, this would work 

as an effective recommendation. This certain document could be an instruction or a "le-

gal check list", or document of any type which is often opened with the document of 

interest. 

7.3 Other possible use cases and benefits 

Some known to be good use cases which are relevant for M-Files have been presented. 

The use cases and benefits are general. Recommendations and social relations can be 

advantageous in a social media platform as well as in an online store or in a streaming 

service. There are also few use cases and advantages that are specific for M-Files. 
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Because M-Files utilizes relational databases, there is a risk of breaking database com-

patibility whenever developers make changes to data schema. Database upgrade func-

tions which ensure data compliance must be written whenever changes are made to the 

schema. These upgrade functions must be programmed with care. This risk could be 

mitigated with graph databases as they do not force a database schema. 

While a NoSQL database eliminates labour associated with relational database schema 

changes, more governance over the data is needed. Also, eliminating the need to ac-

commodate database upgrades in the process of updating the software, could make 

updating faster as the database does not need to perform an upgrade. This could in-

crease availability of the service as updates could be done faster and it would drive M-

Files more towards cloud-native architecture. 

This would only be possible if M-Files would shift from using relational databases entirely 

or if relevant data would be stored in the graph database. The former would imply drastic 

changes to the architecture of M-Files, but the latter is also possible. Hybrid solutions 

are possible since CSP's typically integrate multiple datastores. 

M-Files uses access control lists to determine permissions. The lists contain permissions 

that can be attached to objects. A list consists of one or more subjects, and operations 

that are either allowed or denied subject-wise. Subjects can be users, user groups, or 

pseudo-users. Possible operations are to delete, edit or read objects, and to change the 

permissions. Pseudo-users are users from metadata. An example of a pseudo-user def-

inition would be Project.Project manager.M-Files user. (M-Files) 

The definitions of access control can be used to create traversals in a graph database 

which contains the metadata. With the help of traversals, a graph can be constructed or 

modified to comply with permissions. Currently M-Files pre-evaluates read permissions 

for optimization. A graph database could provide real time access control information 

which quickly reflects changes. 

Access control and metadata could benefit from each other in a graph. Traversals can 

be narrowed down by access control. Access control creates a lot of relationships in the 

data. This is an indication that access control could be a potential graph database use 

case for M-Files as this relationship-rich data could exist in the graph as an ontology. 

7.4 Master Data Management 

M-Files provides a solution for Master Data Management. M-Files' Intelligent Metadata 

Layer allows connecting to multiple different repositories to bring the information availa-

ble to M-Files. Data does not need to be migrated from existing repositories as opposed 
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to traditional Enterprise Content Management. Version history tracks data provenance. 

AI can be used to recognize content type and to create suggestions for metadata. This 

is metadata provided by Intelligent Information Management. Metadata contributes to 

finding the right information when needed in M-Files. An example of metadata associated 

with an example presentation material is depicted in figure 10. 

 

Figure 10. Example metadata of a presentation shown in M-Files Desktop user interface. 

 

The metadata in figure 10 is shown in a user interface and is called a metadata card. 

The card shows associated metadata, some of which has been censored. The presen-

tation is classified as a document, it has an ID, and the current metadata is associated 

with version 26. Versioning implies the presence of data governance. Other metadata 
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includes classification as "Presentation Material", language, presentation type, date, me-

dia, keywords, who have contributed, who is the content owner and associated product. 

Access rights are also presented in the bottom left. In the bottom right is the name of the 

workflow that this material complies to. The name of the workflow is "Controlled M-Files 

Content Approval", and the current state is "Draft". This metadata is simple, describable, 

and can be used in searches. The metadata is stored in a relational database. As men-

tioned in Subchapter 5.6.3, metadata and relationships can be used to create an action-

ing knowledge graph. Metadata stored by M-Files is relationship-rich, which is not only 

a strong indication of a suitable use case but could contribute to other use cases also. 

M-Files metadata is explored in more detail in the next Chapter. 



55 
 

8. METADATA APPLICATION AND EFFICIENCY 
EVALUATION 

Metadata is an important part of M-Files’ functionality. Metadata is used for multiple pur-

poses such as to categorize information, sort search results, create relationships etc. 

Metadata in M-Files streamlines the work experience of the end user. Categorization 

helps searching for specific type of information and can be used to sort search results. 

An M-Files user may also search for information which complies to certain conditions 

based on metadata. In this Chapter, the use case of storing metadata in a graph data-

base is explored in more detail. The way M-Files stores metadata in a relational database 

is explained. An application which stores metadata in a labelled property graph database 

is presented. The data modeling of the graph database supports querying for information 

based on metadata constrains. The performance of executing such queries in the graph 

database is compared to an existing solution of M-Files. The application shows that M-

Files has some readiness to use graph databases, as building the application required 

no changes to M-Files architecture. 

8.1 Metadata in the relational database 

In figure 10 was presented a metadata card of a presentation. The metadata stored in a 

relational database, and the file associated, compose a single version of the object. The 

file may be stored in another database. This object version contains metadata which can 

be seen in figure 10. Class, language, media, contributors etc. are called properties and 

their values, such as "Presentation Material", "English" and "Chris" are called property 

values. Depending on the definition of the property, values can be freely created, se-

lected from a list containing created values, or they can be other objects such as users 

in "Additional contributors" property. The names listed are other M-Files users. An M-

Files user is an object type as well. To identify a specific object version for querying the 

right metadata in the relational database, the primary key needs to be constructed.  

The primary key of an object version is a combination of the object type, id, and object 

version. Then, to query the associated property values, each property value record in 

the database associated needs to be identified. The primary key of a property value 

associated with an object version is the combination of the object type, id, version, prop-

erty definition and a sort-index in the case of multiselects. Multiselect means that there 

are multiple selectable values for the property, such as in the case of the contributors.  
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The file (PowerPoint) associated might have multiple versions as well and might be par-

titioned into multiple parts due to limitations of storing binary objects in the database 

(when the file is stored in the same database). Multiple joins might need to be conducted 

to create a complete object. 

Access control dictates who have rights to read, modify, and delete objects and proper-

ties. In addition, access control also dictates who have the rights to change the access 

control. Access control lists (ACLs) contain this information and different object versions 

can have different access control lists. 

The primary keys composing of multiple values, and probability of multiple versions of 

objects with many properties existing indicates large tables or multiple tables must be 

scanned for values. Either a huge table exists, or multiple tables exist depending on the 

configuration of M-Files. These tables also contain null values as columns exist for each 

possible datatype. Only a single attribute with the right datatype contains a value. Joins 

must be made to collect all the property values associated with an object. A graph data-

base would allow connecting the value to the object version and there wouldn't be a need 

to scan tables to find the values. This is of course only true when there is a reference to 

the object. The object must be located first. Then index free adjacency would efficiently 

provide the associated property values without scanning unrelated data. Graph database 

would allow dynamically storing various datatypes and would eliminate the need to store 

redundant null values. 

8.2 M-Files Views 

A common use case in M-Files is configuring Views. "Views are locations in which the 

documents and other objects are listed based on the metadata they contain." (M-Files) 

Users can configure metadata related filters as seen in figure 11. 
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Figure 11. Filtering options for Views in M-Files. 

 

Figure 11 is a compilation of filtering option tabs. Status tab is opened in the top left. In 

this tab, the menu showing object type values is expanded. An object type can be se-

lected so that the View shows only objects of the type. Examples of object types are 

Documents, Employees, Products and Projects. 

Top right of figure 11 shows the Properties tab. Users can select multiple metadata prop-

erties for constraining the objects that are shown in the View. For instance, language 

property has been chosen in the figure. Different operators can be used to determine if 

objects of certain language should be included or excluded. Value is not selected, but by 

opening the Value drop down menu, the possible values for language are shown. Multi-

ple types of properties can be selected. 

Bottom left of figure 11 shows the Files tab. Users can add conditions on whether the 

objects should contain files, constrains on the file name, size, and dates. The bottom 

right shows the Permissions tab. In this tab, constrains can be applied to the View to 

include objects which comply to desired permissions. 

The presented filtering options can be used to create Views. Views can be a powerful 

tool used to streamline finding the right data. Finding right information when needed 

saves time and increases efficiency. For the views to be effective, the objects should 

have accurate metadata attached to them. 
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8.3 Neo4j experiment 

An experiment was conducted with Neo4j. This labelled property graph database was 

selected for proof-of-concept -use as Neo4j sandbox offers a quick local deployment and 

suits the needs of the database for this use case. An application was made which popu-

lated the graph database with the latest object versions metadata. The application logic 

is presented in figure 12. 

 

Figure 12. Experimental graph database application sequence chart. 

 

In centre of figure 12 is NeoAccessor, which is the name of the experimental application. 

NeoAccessor populates a Neo4j database with M-Files objects' metadata. The applica-

tion inherits IObjectIndexer interface from MFiles.Extensibility framework and uses M-

Files API to communicate with the M-Files Server. The application is first started by the 

server. Then the application registers as an indexer. After registration, the application 

begins by querying object types and property definitions, which are cached. Caching 

speeds up the process of creating Cypher queries, which are sent to the Neo4j database. 

Then, users and user groups are queried and sent to the database. Next, the application 
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is ready to receive objects from the M-Files server. In the graph database, each object 

is stored as a node with an ID. All the property values of the object are stored as separate 

nodes and are connected to the object node. Relationships are given labels that indicate 

the property definition. The property value nodes are also connected to property defini-

tion nodes. This ontology of values connected to property definition nodes enables que-

rying values of a property definition and the adjacent objects. Connections between prop-

erty definitions, property values and objects allow for querying objects with metadata 

constrains. 

The application is an M-Files Vault application (also known as an external application) 

written in C#. The application is installed for use in an M-Files Vault. M-Files Vault is a 

single centralized storage location for documents and other objects, which is physically 

located on the server running M-Files Server (M-Files). A local server was setup for these 

experiments, and it is based on a backup of real data. The Vault running on the server 

is a backup of a Vault used internally at M-Files Corporation. The Vault contained around 

650 000 objects. There were over 28 different types of objects which could be classified 

in over 100 different ways. An agreement, invoice or email may all represent a document 

object type but represent different types of classification. 

The Vault application was installed on the Vault using M-Files Admin, which is an appli-

cation used for administrative operations. In the configuration panel created for this ap-

plication, a special purpose button was created, which resets the state of the indexer. 

This is because the application was designed to populate the database with a single run. 

Otherwise, the interface always receives the latest object version of an object which was 

created or modified. After the reset, all the objects' newest versions metadata are sent 

to registered indexers. The application receives the objects which are then used to create 

a graph in Neo4j database. A simple graph model was used to populate the database. 

The model is represented in figure 13. 
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Figure 13. Graph model of the experimental graph database. 

 

The graph model was designed to support searching for objects with metadata con-

strains like M-Files Views are used. Note that the model lacks using permissions as 

search filters. Users and user groups could have also been modelled as objects. How-

ever, certain built-in objects are not received for indexing via the inherited interface. It 

was easier to model users and user groups separately and it creates distinction between 

these object types. 

The model allows for building queries in different ways. For example, if an object type is 

used as a filter, a node representing the object type contains the connections to all the 

objects that satisfy a condition. The direction of the relationship only affects how the 

query is written, not performance. More filters can be applied to the already narrowed 

results, such as property values. Cypher queries were verified to produce valid results 

by comparing the graph database search results to searches made in M-Files using 

Views. Some example queries are presented in next comparison. 
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8.4 Comparison of metadata search performance between 
Neo4j and MSSQL 

NeoAccessor populated a Neo4j database with the Vault's objects and related metadata. 

The graph database then contained 12,184,484 nodes and 30,790,962 relationships. In 

this Subchapter, Cypher query performance in the Neo4j database is compared to query 

execution performance in the MSSQL server used by the Vault. Multiple types of config-

urations can be used with M-Files. This Vault uses MSSQL, and it is compared to the 

populated Neo4j database. 

The Cypher queries were written manually, and the SQL queries were automatically con-

structed by the M-Files Server. Five different M-Files Views were created. By using the 

same constrains, Cypher queries were created which yielded same results. Execution 

on the MSSQL database was logged using Microsoft Tracelog. The amount of time to 

get the results of a View into the listing of the user interface was logged. A listing page 

shows maximum of 500 results by default. All results that comply to the constrains are 

found, but the logged operation length is the amount of time taken to get only the results 

which are shown in the listing. Thus, the Cypher queries are limited to 500 results when 

there were more results. Neo4j's query profiler is used to get an estimate on the cost of 

a query. DbHits are abstract units of storage engine work (Neo4j Inc.). DbHits allows 

comparing the cost of Cypher queries. Although the execution times of queries vary, the 

profiler always gives the same estimate on the cost of a query in DbHits. The computer 

used for running these databases is a HP Z6 G4 workstation equipped with an Intel Xeon 

Silver 4114 CPU running at 2.2GHz with 10 cores and 20 threads. The computer is 

equipped with 32 GB RAM. 

The Event Trace Log files created by Microsoft Tracelog were imported to an MSSQL 

database using an inhouse tool which has been created to help inspecting M-Files re-

lated database operation logs. Cypher queries were run in Neo4j sandbox. Neo4j sand-

box is a desktop application which allows an easy setup of a Neo4j database and exper-

imentation. The interface shows query execution times as seen in the bottom of figure 

14. 
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Figure 14. Snippet from Neo4j sandbox interface. 

 

The bottom of the figure indicates that streaming of 500 records began after 3 millisec-

onds, and it was completed after 174 milliseconds. The top of the snippet shows the 

query partially. The left tab allows for selecting different ways in how the results are 

shown. Table and Code selections display the query performance. Table was more suit-

able for this context due to clear presentation of the results. Code presented the re-

sponse in a JSON string including information irrelevant for this experimentation.  

Total of five different M-Files Views and Cypher queries that produced equivalent results 

were created. Each query was executed 10 times and the execution times were rec-

orded. Each View was opened and recreated 10 times. Recreation was done as other-

wise the results would have been fetched from a cache. The time it took to load the 

results into the listing from the MSSQL database was logged. 

The first View was defined to gather all the accounts in Tampere city. The execution 

times are presented in table 4. 
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Table 4. Execution times in milliseconds for getting the Tampere city accounts. 

 Accounts Tampere 

 MSSQL Neo4j 

 146 890 

 171 839 

 180 756 

 189 844 

 201 789 

 156 789 

 205 856 

 144 918 

 201 793 

 182 888 

AVG 177.5 836.2 

 

The SQL queries are not presented as they are generated by the M-Files server. The 

queries are not understandable without extensive knowledge on the structure of the da-

tabase and the structure is confidential information. The Cypher query is presented in 

Program 16. 

 

MATCH ( pd:PropertyDefinition { Name: 'City' } )-[ :Value ]->( pv:PropertyValue  

{Value: 'Tampere' } )<-[ :City ]-( object:Object )-[ :ObjectType ]->( ot:ObjectType { 

Name: 'Account' } ) WITH object MATCH ( object )-[ :`Name or Title` ]->( name ) 

RETURN object,name LIMIT 500 

 

Program 16. Cypher query for getting Tampere accounts. 

 

The query in Program 16 follows logic in which from the node labelled as PropertyDefi-

nition with the name City, a traversal is made to nodes labelled as PropertyValues which 

have Tampere as their value. From these PropertyValue nodes a traversal is made to 

Object nodes which have a City relationship to these nodes. From these objects are 

selected the nodes which have Account as their object type. The object nodes and nodes 

to which the object nodes have a relationship labelled as "Name or Title" are returned.  

The execution times in table 4 favor MSSQL. Neo4j took almost 5 times more time to 

process. By using the query profiler, the problematic part of the query seemed to be in 

which the objects are selected which have a relationship labelled as City to the Property 
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Value nodes with Tampere as their value. The query profiler estimated this part of the 

query to cost 1667 DbHits. The actual cost of the part was 5,037,013 DbHits. Total cost 

of the query was 5,669,000 DbHits. The problematic part impacted the query perfor-

mance most. For inspection, the object type connection was removed from the query to 

create a query in which the all the objects were fetched with City-relationship to Tampere. 

This resulting query cost total of 668,545 DbHits although the same information is 

fetched as in the problematic part of the original query. More investigation would be re-

quired to understand what might have caused this. The query profiler hints that this might 

have been affected by automatic optimization of Neo4j as the order of traversals in the 

query did not match how the query was written. This was confirmed by rewriting the 

query differently, similar results were produced. 

The second View gets all objects classified as Training material and which are in Finnish 

language. The execution times presented in table 5. 

 

Table 5. Execution times in milliseconds for getting training material which are in Finnish. 

 Finnish training material 

 MSSQL Neo4j 

 336 124 

 350 91 

 392 106 

 352 98 

 440 81 

 370 72 

 470 71 

 329 110 

 424 99 

 337 78 

AVG 380 93 

 

The Cypher query for getting the same results presented in Program 17: 

 

MATCH ( ot:ObjectType { Name: 'Document' })<-[ :ObjectType ]-( o:Object )-[ 

:Class ]->( c:Object { ID:58 }) WITH o MATCH ( name )<-[ :`Name or Title` ]-( o )-

[ :Language ]->( lan:Object { ID:2 }) RETURN o, name LIMIT 500 

 

Program 17. Cypher query to get all the training material which are in Finnish. 
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The Cypher query in Program 17 took 25 % of the time than the equivalent in MSSQL 

when comparing the averages of table 5. Total cost of the query was 562,639 DbHits, 

tenth of the cost of the previous query. A flaw in the NeoAccessor can be noticed when 

inspecting the query. As the IObjectIndexer does not index Classes or other "value lists" 

as was the case with users and user groups, it would be better to query all the classes 

from the M-Files server and send them to the Neo4j database. This would allow to utilize 

classes in queries in a readable format. The classes exist in the Neo4j database because 

all the metadata that the objects have are sent to the database and these classes are 

part of some objects' metadata. Still, the class objects could be used as parts of the 

query, because M-Files Admin lets the administrator to inspect the ID values of value list 

items. This is how it was known that an object to which a language relationship exists 

with the ID 2 represents the Finnish language. 

The third View contained more metadata constrains than the previous two Views. The 

View lists all the objects that are in German, are classified as "Case Studies" and have 

"Use Case" as "Quality Management". The execution times yield interesting results. 

 

Table 6. Execution times in milliseconds for getting Case Studies on Quality Manage-

ment in German. 

 

German, Case 
Studies, Quality 
Management 

 MSSQL Neo4j 

 384 3 

 154 3 

 59 2 

 90 3 

 121 4 

 232 3 

 85 3 

 92 3 

 60 26 

 62 3 

AVG 133.9 5.3 

 

The query returned 8 results. There is notable variance in the execution performance for 

MSSQL. The reason for the variance is unknown. However, even by comparing the best 
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MSSQL query performance of 59 milliseconds to median Neo4j performance of 3 milli-

seconds, Neo4j shows notable advantage. The query is presented in program 18: 

 

MATCH ( ot:ObjectType { Name: 'Document' } )<-[ :ObjectType ]-( o:Object )-[ 

:Class ]->( c:Object {ID: 101} ) WITH o MATCH ( o )-[ :`Use Case` ]->( uc:Object  

{ ID: 5 }) WITH o MATCH (o)-[ :Language ]->( l:Object { ID: 26 } ) RETURN o 

 

Program 18. Cypher query to get all Case studies on Quality Management written in 

German. 

 

In the query, class with ID 101 represents case studies, use case ID 5 represents quality 

management and language ID 26 represents German. The query cost 10,868 DbHits, 

notably lower than the previous query. As it was stated earlier, the performance is af-

fected by the size of the graph covered in the query. It seems that this query resulted in 

a very limited size of the graph traversed. 

The fourth View returned documents classified as instructions and which language was 

English. The execution times are presented in table 7. 

 

Table 7. Execution times in milliseconds for getting instruction documents which were in 

English. 

 

English Instruction 
Documents 

 MSSQL Neo4j 

 396 149 

 399 70 

 290 65 

 358 65 

 319 64 

 363 61 

 371 65 

 351 113 

 361 75 

 349 80 

AVG 355.7 80.7 
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The performance favors Neo4j. Getting the results in Neo4j took on average fifth the time 

it took for MSSQL. The query is presented in program 19: 

 

MATCH ( ot:ObjectType { Name: 'Document' } )<-[ :ObjectType ]-( o:Object )-[ 

:Class ]->( c:Object {ID:27 } ) WITH o MATCH ( o )-[ :Language ]->( uc:Object { 

ID: 2 } ) RETURN o LIMIT 500 

 

Program 19. Cypher query to get instruction documents written in German. 

 

In the query, class ID 27 denotes classification as an instruction and language ID 2 de-

notes English. The total cost of the query was 449,909 DbHits. The query itself is very 

similar to query 2 contextually and by performance. In both, a language and classification 

are defined. 

The fifth View was defined to get Wire transfer invoices in which M-Files Corporation was 

the buyer and the currency was euros. The query performance is presented in table 8: 

 

Table 8. Execution times in milliseconds for getting wire transfer invoices in which M-

Files Corporation was the buyer and the used currency Euros. 

 

Invoices M-Files 
Corporation EUR 
Wire transfer 

 MSSQL Neo4j 

 403 474 

 456 310 

 419 392 

 294 344 

 354 375 

 375 354 

 344 294 

 392 419 

 310 456 

 474 403 

AVG 382.1 382.1 

 

The performance is tied by average. The query is presented in program 20: 
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MATCH ( ot:ObjectType { Name: 'Document' } )<-[ :ObjectType ]-( o:Object )-[ 

:Class ]->( c:Object { ID: 9 } ) WITH o MATCH ( o )-[ :Buyer ]->( uc:Object { ID: 

3285 } ) WITH o MATCH ( o )-[ :Currency ]->( l:Object { ID:1 } ) WITH o MATCH ( 

o )-[ :`Name or Title` ]->( p ) RETURN o,p LIMIT 500 

Program 20. Cypher query to get wire transfer invoices in which M-Files Corporation 

was the buyer and the currency was euros. 

 

Class ID 9 denotes an invoice, buyer ID 3285 denotes M-Files corporation and currency 

ID 1 denotes euros. The cost of the query according to the query profiler is 931,109 

DbHits. 

By dividing all the estimated query costs by the execution times, varying values can be 

calculated for correlation between estimated cost and actual performance. 

 

Table 9. Estimated costs for each query, actual performance and estimated cost divided 

by actual performance. Average performance is also presented to provide easy compar-

ison of averages. 

Query DbHits DbHits/ms 
AVG per-
formance 

(ms) 

AVG per-
formance 
in MSSQL 

(ms) 

1 5,669,000 6779.5 836.2 177.5 

5 931,109 2436.8 382.1 382.1 

2 562,639 6049.9 93 380 

4 449,909 5575.1 80.7 355.7 

3 10,868 2050.6 5.3 133.9 

 

From table 9, it can be concluded that estimated DbHits are a bit inaccurate as the esti-

mation divided by average performance yields varying results. However, this is based on 

a very small sample set. Overall, more estimated DbHits means longer execution. The 

units can be used for coarse comparison of costs. 

8.5 Summary of the experiment 

For the use case of M-Files Views, Neo4j could offer a viable option. The benefit of using 

Neo4j is uncertain as these tests were limited. The objects and the associated metadata 
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can be stored and easily queried in a Neo4j database or any other labelled property 

graph. The performance was mixed but overall favored Neo4j. For some queries, the 

executions were clearly faster in Neo4j than in MSSQL while for some, the difference 

was marginal. By profiling the first query, it was noticed that the Neo4j database opti-

mizes the order of how the graph was traversed, which in this case seemed to deteriorate 

performance. 

Note that the performance was not the priority in the experiment whilst being an important 

factor. To get better information on performance, more queries and other use cases 

should be tested. Also, the causes of surprisingly slow query performance should be 

investigated and how this could be improved. Investigating this could provide valuable 

information which could help in evaluating Neo4j viability. Additionally, it would be worth 

to invest resources in training or material on graph databases to ensure valid results on 

the performance. The way data is modeled and queried affects the outcome when meas-

uring performance. 

The point of the experimentation was to explore graph database viability of storing 

metadata. M-Files provides an API which can be used to build graph database applica-

tions. There is also another, native component with non-public API, which was not uti-

lized in this experiment, which is more performant and could have been used for the 

same purpose but could have only made populating the graph database faster. The com-

parison takes into consideration only a single use case but showed that M-Files has 

some readiness to adopt graph databases. 
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9. DISCUSSION AND CONCLUSIONS 

In this thesis it was explored what graph database technology is and how they fit in the 

context of Content Services Platforms (CSPs). This was done to explore whether there 

would be benefits for M-Files from utilizing the technology. The context of CSP was es-

tablished with literature on Enterprise Information Management (EIM). There is a need 

to integrate information in business operations to which CSPs provide a solution. CSPs 

evolved from the discipline of Enterprise Content Management (ECM), which failed to 

deliver as such. This paradigm shift from ECM to CSP is driven by digital transformation. 

Enterprises adapt new Enterprise Application Software (EAS) as information manage-

ment needs evolve. The development and adaption of these software has been enabled 

by advances in information technology. 

The databases used by CSPs (classified as the leaders by Gartner) was explored by 

varying online material which provide information about the status of databases in the 

context. While these materials do not reveal the whole truth as accurate architectural 

information is not public, they reveal that relational databases are widely used. This is 

not surprising as relational databases are the most used type of databases overall. The 

role of the used databases by each CSP remains unclear as more information on this 

was not searched but it was not the main point of the thesis. However, it did come across 

that Microsoft, the leading CSP, utilizes graph databases and sees it as a significant 

opportunity. Microsoft calls the technology their most important bet. It is also possible, 

that some leading CSPs offer additional features to their customers which utilize other 

databases than the primary storage. Therefore, it cannot be concluded whether these 

presented graph database use cases could make it possible for a CSP to differentiate 

from competition. 

Fundamentals of relational databases and graph databases were explained with the lat-

ter in more detail by referring to literature as emphasis was on understanding graph da-

tabases. The querying of SQL and a graph database query language Cypher (used by 

Neo4j) was compared by utilizing ready online material found from Neo4j website. The 

material was found unbiased as the given examples were simple and emphasized the 

differences in the way of how queries are formed. A bit older (2010) but relevant publi-

cation on comparing a relational database with a Neo4j graph database was referred to 

emphasize the factors that influence the performance of the databases. This is still rele-

vant as graph databases performance is affected by the amount of graph traversed in a 

query rather than by the size of the database as was shown. This is true for a graph 
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database which implements index free adjacency. Index-free adjacency means that each 

node is directly linked to its neighbor node. In a database engine utilizing index-free ad-

jacency, each node acts as an index of other nearby nodes. This is much cheaper than 

using global indexes. This is important to acknowledge as the performance gain associ-

ated with utilizing graph databases is dependent on the underlying implementation, not 

all graph databases implement this. But how does everything done in this thesis come 

together? 

General conclusion from multiple sources is that graph databases are good with relation-

ship rich data. Graph databases can be used to add meaning and topological value to 

data. Pattern matching, centrality, clustering, and influence of entities within data is so 

common in graph databases that graph query languages have specific, built-in features 

that handle these sorts of queries. The subject in which graph databases excel could 

contribute to bringing end user value and personalized experience in EIM in the context 

of CSPs. CSPs are amid EAS and potentially have access to the data needed to populate 

a graph database with leverageable data. This would allow to take advantage of graph 

database use cases. It was stated that metadata and graph databases are a powerful 

combination. End user value and personalized experience would be delivered by utilizing 

metadata and user action data. Detected patterns could provide insight into how the us-

ers utilize information assets and could support their ways of working as well as provide 

answers to problems related to metadata. Examples of end user value and personalized 

experience would be calculating relevancy scores on metadata for each user, which 

could be used to sort information. Patterns could be used to suggest related material 

when working or viewing some information. Documents could be recommended which 

are often used as help or reference when working on some specific type of information. 

Questions such as who has the most experience on a certain customer or topic could be 

answered. The examples were presented in Chapter 7. 

What makes this possibly interesting for M-Files, is that the metadata needed to build 

these kinds of features is already stored by M-Files. The metadata is relationship rich 

which is a strong indication that graph databases might be a good choice as was stated 

in the literature review. The proof-of-concept application presented in Chapter 8 shows 

that M-Files has some readiness to send this metadata to a graph database. It is said 

that some as it cannot be claimed that M-Files has full readiness. Most likely some 

tweaks should be made such as storing detailed user action data. In addition, there are 

also other use cases and benefits for M-Files that are not directly associated with end 

user value and personalized experience. Graph databases do not force a database level 

schema. Therefore, there is no need to run database upgrades whenever changes are 
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made to how the data is stored. This aspect is aligned with an idea of software complying 

to cloud-native architecture, something that may interest M-Files. The availability of the 

service could be increased. In addition, M-Files access control is by nature relationship 

rich. Users, user groups and objects are assigned access rights which creates relation-

ships. Metadata searches and access control could complement each other, as these 

together make it possible to limit the amount of graph traversed in queries. This affects 

the performance of a graph database utilizing index free adjacency. Literature also states 

that breakthroughs in machine learning are made with the combination of graph data-

bases, hinting more future innovations on the technology. 

The presented use cases and possible benefits can come across as bold statements, 

much is promised. However, the literature states that these are common types of prob-

lems that are solved with graph databases. Building these features into a CSP is possible 

(especially for M-Files) and recommended to be done with graph databases. It is not 

claimed whether it is not possible to achieve this with relational databases, but graph 

databases are better in handling relationship rich data and solving related problems, a 

tool for the job. The unanswered question can only be answered by leaders at M-Files 

who make the decisions on prioritization and technology, as they have knowledge and 

understanding of what customers appreciate, whether the value is worth the effort? More 

information and experimentation may be desired to make decisions. There is no need to 

go all-in on graph databases to leverage some of the benefits. Literature suggests on 

beginning to work on a single use case and expanding to other use cases when desired. 

Graph databases are flexible, and they can be extended to other use cases when 

needed. Next step towards exploring the possible opportunities, would be to begin work-

ing on a selected use case. 
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