
Mohammad Imranur Rahman

ANALYSIS OF MICROSERVICE COUPLING
MEASURES

Faculty of Information Technology and Communication Sciences
Master of Science Thesis

April 2022

i

ABSTRACT

Mohammad Imranur Rahman: Analysis of Microservice Coupling Measures
Master of Science Thesis
Tampere University

April 2022

Microservices architectures are composed of a collection of modular, fault-tolerant services.
In recent years, the software engineering community has published research on viable, recurring,
and effective architectural patterns in microservices-based architectures, as they are critical to the
maintenance and scaling of microservice-based systems. As well as, ensuring low coupling and
strong cohesion among the microservices that comprise the cloud-native application is a crucial
property.Services that are loosely connected and highly coherent allow development teams to
work in parallel, eliminating communication overhead between teams.

In the first section of this thesis, we attempted to generate a dataset by starting with a selected
list of microservice-based projects. The collection is made up of 20 open-source applications that
all use certain microservice architecture patterns. Furthermore, the dataset includes information
about the aforementioned projects’ interservice calls and dependencies.

In the second section, we suggested methods for computing and visualizing the coupling be-
tween microservices by expanding and adapting the notions underlying standard of structural
coupling calculation. We validate these measures using a case study of 17 projects selected
from the aforementioned dataset, and we propose an automated method for measuring them.
The findings of this study emphasize how these metrics give practitioners with quantitative and
visual views of service architecture, that can be used to design advanced measures to monitor
the development of services.

Keywords: SOA, Microservice, Architectural pattern, Service coupling

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

PREFACE

First, I would like to thank my supervisor, Davide Taibi for giving me the opportunity to
work on this interesting topic and offering excellent assistance throughout the work. This
thesis is the final outcome of about three years of working and studying simultaneously.
Again thanks goes to my professor Davide Taibi for his tremendous patience I found in
supervising me.

I’d also want to thank my friends and family for their assistance in relieving my tension dur-
ing the writing process as well as continuously motivating me. My wife Fatima deserves
special recognition for her unwavering moral support.

Tampere, 4th April 2022

Mohammad Imranur Rahman

iii

CONTENTS

1 Introduction . 1

1.1 Thesis outline . 3

2 Background . 4

2.1 Service oriented architecture . 4

2.2 Microservices . 6

2.3 Containerization . 11
2.3.1 Docker . 13
2.3.2 Docker compose . 14

2.4 Microservices architectural patterns . 15
2.4.1 API-Gateway pattern . 16
2.4.2 Circuit breaker pattern . 18
2.4.3 Service discovery pattern . 19

2.5 Microservices anti patterns . 22

3 Context . 27

3.1 Goal and Research Questions . 27

3.2 Project selection . 28

4 Implementation and dataset . 30

4.1 SLOCCount . 30

4.2 GraphML . 32

4.3 MicroDepGraph . 34

4.4 Dataset generation using MicroDepGraph 35

5 Microservices metrics . 37

5.1 Proposed matrices . 40
5.1.1 Structural coupling . 40
5.1.2 Microservice coupling measures . 41

6 Results . 43

7 Discussion . 46

7.1 Threats to Validity . 47

8 Conclusion . 48

References . 50

iv

LIST OF FIGURES

2.1 Simple Service Oriented Architecture. [8] 5
2.2 Architecture of a Microservices system . 6
2.3 Advantages of Microservices system [14] 7
2.4 Microservices orchestration [17] . 8
2.5 Microservices choreography [17] . 9
2.6 Microservices technologies timeline [18] . 10
2.7 Monolith microservices architectural design [19] 11
2.8 Container based deployment architecture [21] 12
2.9 A sample Dockerfile . 13
2.10 An example of docker compose file [22] . 14
2.11 API gateway pattern . 17
2.12 Circuit breaker pattern state machine . 19
2.13 Client side discovery pattern . 20
2.14 Server side discovery pattern . 21
2.15 Cyclic dependencies . 22
2.16 Shared libraries . 23
2.17 Shared libraries . 24
2.18 Shared database . 25
2.19 Shared database refactored . 26

4.1 Dependency graph . 32

5.1 Structural Coupling: graph representation 40

6.1 An example of Microservices-based System 43

v

LIST OF TABLES

3.1 Selected microservices projects . 29

4.1 Generated dataset of the projects . 35

5.1 The Metrics Proposed in the Literature . 39

6.1 Example of metrics for the system in Figure 6.1 43
6.2 SIY, LWF, GWF and SC for the system in Figure 6.1 44
6.3 Generated dataset of the projects . 44
6.4 Results of the Coupling Metrics Applied to the 17 projects. 45
6.5 Results of the LWF and GWF of the 17 projects. 45

vi

LIST OF PROGRAMS AND ALGORITHMS

4.1 GraphML file . 33

vii

LIST OF SYMBOLS AND ABBREVIATIONS

API Application Program Interface

DRY Don’t Repeat Yourself

ESB Enterprise Service Bus

HTTP HyperText Transfer Protocol

IP Internet Protocol

KLOC 1,000 Lines of Code

LOC Lines of Code

LXCs LinuX Containers

MSA Microservices architecture

OO Object oriented

OS Operating system

PaaS Platform-as-a-service

REST Representational State Transfer

SOA Service oriented architecture

URL Uniform Resource Locator

VM Virtual machine

1

1 INTRODUCTION

Like any other discipline Software Architecture is evolving to meet the growing need
of shift towards modular, loose coupling and robustness. Service-oriented architec-
ture(SOA) is one of those architectural styles which emerged to support developing of
distributed systems where the components or modules are defined as services. SOA has
been in use in industry from early 90’s. But the problem associated with the development
of large scale enterprise applications were first introduced approximately in 1960’s[1].

These problems arises mostly by the usage of monolith architecture of the systems,
where all the components of the system such as business logic, data access layers and
user interfaces are combined in a single and self contained program. In monolith architec-
ture the components are tightly coupled with each other so that failure of one component
of the system affects the whole system and keep the system down until the component is
fixed.

The drawbacks of monolith architecture has been tried to be solved in SOA. But as the
application grows the complexity to maintain the application gets cumbersome in SOA.
In the SOA paradigm, to consume services from different consumers there is a need for
Enterprise Service Bus (ESB) to integrate different services or systems. ESB also holds
some part of business logic which makes ESB’s hard to maintain and more coupled.
Thus there was a clear need for better architecture which can overcome the drawbacks
of SOA/ESB paradigm and conventional monolithic architecture.

With the popularity of cloud applications and cloud computing new architectural styles
have emerged. One of those architectural styles is "Microservices". The term microser-
vices was first coined by Martin Fowler [2] in 2011 at the workshop of software architects.
The microservice architectural style is not only thought by Martin Fowler, there are also
other practitioners who previously thought somehow similar ideas to microservices for in-
stance Werner Vogels from Amazon described this approach as “encapsulating the data
with the business logic that operates on the data,with the only access through a published
service interface” [3].

According to Fowler, the microservice architectural style is an approach to developing a
single application as a suite of small services, each running in its own process and com-
municating with lightweight mechanisms, often an HTTP resource API. These services
are built around business capabilities and independently deployable by fully automated
deployment machinery. There is a bare minimum of centralized management of these

2

services, which may be written in different programming languages and use different
data storage technologies [2]. As mentioned microservices have independent services
these services are easy to maintain and test. These systems can be highly fault tol-
erant and scalable as these are deployed separately and having their own technology
stack. Because of the aforementioned benefits microservices architecture is getting pop-
ular nowadays.

In a recent survey done by O’Reilly on 1502 participants of whom most of them were
of technical background ranging from big enterprises to small companies. In the survey
most of the respondents said they are mostly successful with microservices [4]. In the
survey the respondents highlighted the benefits they got by using microservices architec-
tural style. The largest portion for the response regarding benefits of using microservices,
45% respondents named “feature flexibility,” followed just under 45% respondents men-
tioned “responding quickly to changing technology and business requirements” as main
benefits.

While the survey talks about the benefits of using microservices it also sheds light on pain
points of using or migrating towards microservices architecture from a monolith system.
The most faced impediment mentioned by the respondents was the mindset of the people
in the organization. As each components of microsevices organized around the business
capabilities of an organization so its very important to have the right mindset towards
MSA. Another most responded migration issue towards microservices is decoupling the
services in granular components from monolith systems. This issue is also found by an
empirical investigation done by Davide et al. One of the most common issues towards
adoption of MSA is the complexity to decouple services from the monolithic system [5].

Designing and implementing microservices can be complex and daunting. After putting
each services in place and setting up the communication between the services its not
done yet. Maintaining this new system based on MSA can be daunting when require-
ments and business grows. To help developers maintaining and understanding their MSA
systems, in the context of this thesis we focused on understanding different matrices be-
tween services in MSA.

3

1.1 Thesis outline

The rest of this paper is organized as follows.

The theoretical backdrop, basic notions behind this study, and all the theory applied and
used in subsequent chapters are covered in Chapter 2.

In contrast, chapter 3 delves deeper into the study’s setting, research topic, and method-
ologies.

The project selection and introduction to the in-house developed tool to produce dataset
and visualization of the microservices projects architecture, as well as other tools needed
to generate the dataset that will be utilized in subsequent study, are covered in Chapter
4.

The metrics we suggested to measure the connection between services in microservices
systems are discussed in Chapter 5. We also offer other matrices from other literatures
in this chapter, with one of them being compared to our suggested metrics.

Documenting the findings is the topic of Chapter 6. The results of several matrices used
to microservices projects are shown in this section.

In Chapter 7, we addressed the outcomes as well as the constraints that were discussed.

Lastly, chapter 8 finishes this master’s thesis by providing a concluding summary of the
work and exploring the potential for future work within the scope of this thesis.

4

2 BACKGROUND

This chapter introduces the main topics related to microservices architectures including
a brief introduction to microservices architectural patterns and anti-patterns. Therefore,
this chapter focuses on topics that are important for understanding the different concepts
of microservices and its matrices.

The first Section 2.1 discusses fundamental of microservices. Then second section 2.2
gives a brief idea about microservices architectural patterns. After that third section 2.3
introduces different microservices anti-pattern.

2.1 Service oriented architecture

Enterprise systems are evolving rapidly from monolithic silos to distributed systems through
service oriented architecture. IT companies need to change their legacy processes to
address evolving company challenges meeting real time without second chances. In
order to run and decouple business processes and underlying structures flexibly, service-
oriented architectures (SOAs) have evolved. The term Service Oriented Architecture was
first coined by Roy Shulte and Yefim Natis in 1996 to define a model of multi-tier archi-
tecture which lets organizations share logic and data across multiple applications [6] [7].
Service-Oriented Architecture (SOA) is a software architectural model that uses services
as key elements for the creation of applications/solutions. It is a model which organizes
a set of capabilities, often spread across the network and likely under the influence of
various domains of ownership. Organized skills can be used to solve business problems.
A business problem is generally characterized as any problem, in any domain of interest,
encountered by an entity or an organization as it relates to its business. Services are
self- describing, platform-agnostic computational elements that support rapid, low-cost
composition of distributed applications [8]. Services accomplishes tasks that can be any-
thing from basic requests to complex business processes. In other words, SOA is using
a loosed coupling design theory where each service is an independent entity with a mini-
mal dependence on other common resources such as databases, legacy applications or
APIs. Achieving this form of interaction involves a means of putting together a collection
of capabilities that may exist at various physical locations and be managed by different
spheres of ownership, and integrating them to meet the needs of the user [9].

A system built on the SOA paradigm must provide visibility of needs and capabilities;
must include a means for consumers and providers to interact; and must produce real

5

Figure 2.1. Simple Service Oriented Architecture. [8]

world effects that address a consumer’s business problem [10].

The simple SOA describes a communication among autonomous agents as a trans-
mission of messages between service requesters (clients) and service providers. Con-
sumers are software agents who query the execution of a service. Providers are software
entities who deliver the service. Services can act concurrently both as consumers and
suppliers. In the basic SOA system Consumers and providers are not the only thing in
the architecture, it also consists of service discovery or service registry. As we can see in
Figure 2.1 the service provider, who operates, executes, and manages access to the ser-
vices; a service client, which can be an application, program, or client who is requesting
and calling a service; and a service registry acts as a broker that gathers every one of the
services together and keeps a registry of services available [8]. The drive for enterprise
automation, inspired by possibilities in terms of cost savings and higher performing, more
efficient implementations, has created the need for integration of different applications.
Integration has been one of the driving forces in the software industry during the late
nineties. Integration has been area of research interest in the field of SOA integration.
There a number of technologies available to realize SOA. Among them, Web services
and the set of related specifications, and also services that are built following the REST
(REspresentation State Transfer) architecture (called RESTful services) are gaining the
momentum for integration at the data level [11]. The communication amongst client and
the service providers may also be built on messaging platforms, such as Apache Kafka,
RabbitMQ, Apache ActiveMQ etc. These solutions provide mainly asynchronous mes-
sage transfers between distributed applications in a point- to-point (sender-receiver) or
publish-subscribe manner. SOA has basically two integration approach which are (1) di-
rect point-to-point and (2) hub-and-spoke [12]. Out of these two patterns hub-and-spoke
is the most used in enterprise integration, and this brokering system is called ESB (En-
terprise Service Bus).

6

2.2 Microservices

Microservices is an architectural style influenced by service-oriented architecture which
has recently began gaining prominence in decomposing monolith systems. Software
architectural patterns have been going through progressive transition towards delivery,
modularization and loose coupling, with both the purpose of increasing code reuse and
reliability [13]. Microservices architecture is getting in demand amongst companies for
their new software systems as well as in enterprise systems where big enterprises also
adopting this architecture quite fast. Microservices are small and decentralized services
deployed independently, for a common and explicitly specified task [2]. Microservices
are comparatively small and independent services that operate together, are designed
on a company requirement, and have a clear and well specified objective. Microservices
facilitate autonomous deployment, encouraging small teams to operate on isolated and
oriented services while choosing the most appropriate technology for their job that can
be implemented and scaled independently [2]. Currently, there has been significant inter-
est in microservices architectures, across academia and industry communities together.
Most definitions of microservices already arisen in recent times as groups seek to es-
tablish a definition. Microservices are a modularization concept. Their aim is to divide
big software components into smaller bits. Therefore these control the company and
development of information applications. Microservices may even be implemented inde-
pendently regardless of one another. Improvements to one microservice should be put
into development regardless of alterations to other microservices. Microservices could
be implemented using various frameworks and technologies. There is no limitation on
the programming language or the framework for each microservice. Microservices hold
their own data storage: a personalized database or an entirely separate schema in a
centralized database. In the figure 2.2 we can see a high level architectural view of a
microservices system.

Figure 2.2. Architecture of a Microservices system

7

Microservices brings a great idea of service modularization. When a monolith system
is built upon different components using various technologies and frameworks unwanted
dependencies can instantly slip in. For instance, someone refers a class or method in
such a context where it is not planned to be included. Doing this establishes a depen-
dency that perhaps the designers of the class or method are not conscious of. Any im-
provements made to the class or feature may trigger unintended problems in some other
component of the system. In a short time, too many dependencies would have arisen
and the situation has deteriorated too much and the system will not further be maintained
and improved. Microservices, in comparison, interact only through specific interfaces,
which are implemented utilizing frameworks such as messaging queues or REST. This
keeps the technological barriers on use of microservices greater, and therefore unnec-
essary dependencies are much less probable to appear. Some of the most important
advantages of microservices are illustrated in figure 2.3 [14].

Figure 2.3. Advantages of Microservices system [14]

Microservices not only provide technical advantage it also benefits organizational struc-
ture as well as communication between different teams. According to an American com-
puter scientist Melvin Edward Conway,

Any organization that designs a system (defined broadly) will produce a de-
sign whose structure is a copy of the organization’s communication structure
[15].

Each services in a microservice system built upon business capabilities where cross-
functional teams are responsible for each of the services. In this way the support, devel-
opment and lifecycle of each services is maintained by each teams.

8

According to Amazon CTO Werner Vogel he described this as

You build, you run it.[3]

In this approach each microservices released and updated independently and on its own
timetable. Nevertheless, to really leverage the potential of autonomous deployment, one
has to employ extremely efficient integration and delivery methods. Microservices archi-
tecture is designed in a way that it can be used with continuous delivery and continuous
integration, enabling every stage of delivery pipeline automated. While combining auto-
mated continuous delivery pipelines and contemporary container tools, it is feasible to
release an updated version of a service to production in a matter of seconds.

The communication between microservices is a stateless independent and self-contained
by nature [16]. To provide seamless communication between microservices there are two
methods to achieve the collaboration orchestration and choreography. Orchestration is
on of the most reliable and consistent technique of managing interactions between differ-
ent services in microservices. In this approach, there is generally one central service that
acts as the “orchestrator” of the actual service interactions. This maintains a request/re-
sponse communication paradigm. Only the central controller is accountable for all com-
munications. Orchestration gives an effective technique for managing the sequence of
events whenever there is synchronous processing. There are some disadvantages of
orchestration such as service dependency is the concerned point in the centralized envi-
ronment, as orchestrator is a single point control and single coordinator if it goes down,
all processing stops and application fails [17]. In figure 2.4 below it depicts an example of
e-commerce application using orchestration method.

Figure 2.4. Microservices orchestration [17]

9

On the other hand another way to handle the communication in microservices is chore-
ography based where the logic of centralised controller is put inside each service in ad-
vance. The services know what to react to and how, beforehand like an autonomous
manner. Services utilize an event stream for asynchronous transmission of events. The
request/response way of orchestration blocks and increases the wait time whereas in
choreography this problem is solved by the asynchronicity of reactive architecture. Util-
ising event stream with this allows messaging across producer and consumers to be
separated.

Figure 2.5. Microservices choreography [17]

As there are lots of advantages of microservices architecture there are also new technical
difficulties need to be tackled while developing an maintaining microservice systems. The
division of a system into microservices leaves the system as its own very complicated.
Which causes problems at the operational level for instance, high latency periods in the
network or the of specific services. There seem to be a lot of aspects to remember also
at network infrastructure level for example, it can be difficult to transfer features among
various microservices. Eventually, there are more modules to be individually distributed
making processes and facilities quite complicated. Such issues need to be dealt with be-
fore implementing microservices. While microservice architectures have become more
common, such tools began expanding to serve a larger, more varied consumer base,
leading to the emergence of even more advanced technologies [18]. In the Figure 2.6
we can see a timeline of 10 waves of technologies, including some of the most popular
tools, which have affected microservice technology growth, deployments. The great bulk
of these tools illustrated in Figure 2.6 emerged through industry. Even though having
industry roots, almost all of these technologies are openly accessible as open source
projects. These waves’ effect has also been represented over how microservice ap-

10

plications have progressed from an architectural standpoint. Nevertheless, since these
libraries got highly complicated, and since integrating them in a different programming
language is not really a straightforward process, developers were frequently constrained
to create new services just utilizing the languages for which these libraries were mostly
readily accessible.

Figure 2.6. Microservices technologies timeline [18]

11

2.3 Containerization

Latest developments in container technologies and the ability to handle difficulties in vir-
tualization have boosted the usage of containers in the cloud platforms for deploying and
maintaining microservices based systems. This might also have paved the way for the
adoption of a microservice architectural paradigm in cloud-hosted software by lowering
infrastructure and maintenance costs [19]. Futhermore, organizing the software to be
deployed in the cloud as a group of microservices enables cloud computing providers to
give greater scalability promises towards more optimal use of cloud resources, and to
proactively and swiftly reorganize software to suit rising client demand. Containerization
is frequently explored as a lightweight virtualization technique to deploy and manage mi-
croservices systems. Using containers in MSA helps to avoid inefficient use of resources
and optimize bundling the subsystems under a separate VM. This is feasible since mi-
croservices are generally lighter than traditional software components since they utilize
lighter software technologies and platforms. Thus this allows to scale services based
on their needs as well as migrating services faster from one vm to another. Figure 2.7
illustrates the comparison of both a traditional monolithic design and a microservice ar-
chitecture.

Figure 2.7. Monolith microservices architectural design [19]

In the first example, users interact with a front-end application, which sends client request

12

to instances of the application hosted inside a container and executes all application tasks
using the data in the database. In second example, the application is partitioned into
several small services, each performing its specific responsibility, distributed in various
containers, replicated per system requirement. Cloud computing relies on virtualization
system, like virtual machines Containers are a pretty similar but much more ultralight vir-
tualization idea; which consumes less resource and time-consuming, therefore they’ve
been recommended as a method for even more practical and robust application packag-
ing and deployment in cloud platform. Containers are tools for delivering software-that
is, they have a platform-as-a-service (PaaS) focus-in a portable way aiming at greater
interoperability while still utilizing OS virtualization principles [20]. In containers, systems
sharing an OS, binaries and libraries as a consequence the deployments of microservices
components will be much lower in size than monolith deployments, making it feasible to
maintain several of containers on a host machine. Since containers are using the host
OS, rebooting a container doesn’t require restarting the host OS. Figure 2.8 depicts the
architectural design of a container based system where the applications shares an oper-
ating system resources.

Figure 2.8. Container based deployment architecture [21]

13

2.3.1 Docker

Lightweight Docker containers are increasingly became a technology to deploy and de-
liver microservice oriented applications, Docker 1 is an open source platform based on
container virtualization technology giving a standardized approach to manage the quicker
deployment of services within small and compact containers. Docker leverages several
strong kernel-level technologies and delivers these at our disposal. The notion of a con-
tainer in virtualization has been present for some years, but through offering a simple
toolbox and a consistent API for controlling various kernel-level technologies, such as
LXCs (LinuX Containers) Docker has provided tool set to make building and interacting
with containers as straightforward as possible. Containers isolate applications from one
another. almost any Docker container is based on an image. The Docker image is essen-
tially a predefined file system that also has a single layer of libraries and binaries which
are needed to ensure application operate, and potentially the codebase as well as some
additional packages. Containers are constructed on layers built from separate images
placed on top of a basic image that may be expanded. An ideal Docker image comprises
of portable application containers.

One of Docker’s great advantage is its ability to locate, download and run container im-
ages that were developed by other developers or open source community rapidly. The
repository where images are maintained is known as registry, and Docker Inc. maintains
a public registry generally known as Central Index. The repositories play an important
part in making it accessible to perhaps large numbers of reusable proprietary and pub-
lic container images. The public Docker Registry includes images of readily available
software, which include databases, content management systems, development environ-
ments, Web servers and so forth.

Figure 2.9. A sample Dockerfile

1Docker
https://docker.com

14

To build a docker image commands are usually executed in Dockerfiles to automate the
build process. Each Dockerfile is a script consisting of multiple commands and param-
eters specified progressively to automatically execute activities on a base image to gen-
erate a new image. Figure 2.9 shows an example of how commands looks like in a
Dockerfile. They’re utilized to manage deployment artifacts and ease the deployment
procedure from beginning to end. Whenever the build command is executed, Docker an-
alyzes the Dockerfile to determine which commands to run and afterwards delivers the
finished image. Each command adds an additional layer to the final image.

2.3.2 Docker compose

As discussed before, docker has become standard to create and develop container based
applications but with this there are other problem arises such as it is required to address
the issue of container management, which included their management, collaboration, and
coordination of their operations, among other things. Docker Compose is a technology
for coordinating several components using Docker.

Figure 2.10. An example of docker compose file [22]

It enables building orchestration configurations using YAML files, which describe the com-
ponents that comprise the application, the accompanying images, and how they will be
connected to one another, and also volumes for data persistence and networks for service

15

connections. One can compose a multi-component application using Docker Compose
which composes a set of components, each of which is an image and a set of options
that specify how the component should behave [22]. A configuration file called docker-
compose.yml is used to specify the components structure and properties. Figure 2.10
illustrates an example of docker compose file, where two components are defined as
web and redis each having own environment configurations. In docker compose we can
define dependencies between services using depends_on, link options to control the or-
der of startup and shutdown of services. Docker Compose always generally begins and
ends containers in the order of dependencies.

2.4 Microservices architectural patterns

A software-intensive system’s architecture is the foundation upon which the system is
constructed to meet the system requirements. In order to influence the requirements,
the architecture is built by making a variety of design decisions. To fulfill a number of
functional and non-functional criteria the key components and linkages of the system to
be developed are represented by architecture patterns. Two types of important design
decisions are the application of architecture patterns and tactics [23]. Initial planning
considerations, such as how to meet functional needs, non-functional requirements, and
physical restrictions, influence the selection of architecture patterns. Two types of impor-
tant design decisions plays an important role which are the application of architecture
patterns and tactics. There are one or more architectural patterns utilize in modern ap-
plications. Patterns solves repeating problems in software systems. A software pattern
outlines a problem and its background, as well as a generalized solution to the issue.
The microservices architectural style is a method of developing single applications as
suites of tiny components, each of which runs in its own processes and communicates
via lightweight methods. All the architectural patterns comprises of three elements which
are [24]:

• Context: Repetitive, common world situations that causes problems.

• Problem: The scenario that develops in the given problem, generalized properly.

• Solution: An effective and efficient architectural solution to the problem, adequately
abstracted.

By providing solutions to frequently recurring problems, an architectural style encourages
separation of concerns and supports design reuse. Architecture styles are collections
of principles and patterns that structure a system. An architectural style is a family of
systems in terms of a pattern of structural organization [25]. An architectural style, more
particularly, establishes the terminology of modules and connections that can be used
in instances of that style, as well as a set of constraints on how they can be combined.
One of the advantages of architectural styles is that they provide a standard language
for discussing architectural issues in a technology agnostic manner. This allows archi-
tects, users, and developers to engage in a discourse focusing on patterns and principles

16

to analyze and develop architectures without the usage of formal languages. Architec-
ture patterns serve an important in the microservices architectural style. As a result,
researchers identify major patterns and their benefits and drawbacks. There are three
typically utilized patterns that arise [26]. In the classification, researchers assign differ-
ent patterns to articles that expressly describe the use of a specific pattern including
those where the adopted patterns can be easily determined from the description. In the
systematic mapping of Architectural Patterns Taibi et al., 2018 architectural patterns are
classified into three categories:

• Orchestration and coordination oriented patterns

• Deployment oriented patterns

• Data storage oriented patterns

In the following sections we will try to describe different architectural patterns.

2.4.1 API-Gateway pattern

An MSA may be required to serve many types of clients and user interfaces, such as
the one accessible in web applications and smartphones. Each client’s requirements
can vary based on its intended use, modular design, and processing capabilities. A
client’s wants may potentially vary over time. For instance, depending on the strength of
its network infrastructure connection, a device may prefer to utilize an API that is more
or less network demanding — for example, the description of a product may include
more and higher-quality materials, such photographs or integrated instructions. The API
Gateway is a service that addresses the problem of having clients of various types. It is a
single point of entry that allows access to a variety of APIs. An API Gateway allows users
to post numerous APIs, each and every one assigned to a separate set of consumers,
and to update the set of published APIs at runtime (since developers may deploy new
services during the lifecycle of the MSA). Because an API Gateway serves as an access
point for the MSA, it is reasonable for it to have features such as service discovery, load
balancing, monitoring, and security.

Its location inside the framework itself is perfect for implementing the proxy circuit breaker
pattern, which involves outfitting the API Gateway with circuit breakers for clients and/or
services. The mechanism in which these extra functionalities are performed is deter-
mined by the underlying technology. With such a single point of entry in and out of the
system, it is simple and manageable to enforce runtime governance such as common se-
curity requirements, common design decisions , and real-time regulations such as mon-
itoring, reporting, measuring, and throttling. It enables for everything from the flexible
addition and removal of microservice components in order to react to the load/demand of
microservices. There may have been times when various service users demand certain
data and/or have it in a specific format. Figure 2.11 represents a simple example of api
gateway pattern where there are two services and two clients from different platforms
connected through the api gateway. The API Gateway is indeed the appropriate place to

17

Figure 2.11. API gateway pattern

meet these conversion considerations, which may be performed there at gateway level
by offering application-specific APIs for the same business functionality. As the degree
of diversity tends to increase, a one-size-fits-all strategy would make it more difficult to
enhance functionality. The gateway also assists with data acquisition for analytics and
monitoring, load balancing, caching, and static response handling.

According to the case study data [27], the API gateway design pattern is the best architec-
ture for an evenly balanced scenario. It also allows us to be more flexible when managing
requests from numerous channels. It simplifies the logic for synchronous messaging
amongst evenly balanced services and solutions highly scalable artifacts. Segregation
of responsibilities, combined with load distribution across numerous service instances,
results in the ideal black boxed service experience in a polyglot environment. Polyglot
2 programming benefits from services written in many programming languages and de-
ployed across multiple stacks. Among many other architectures, the API gateway design
is commonly utilized as a point-of-contact layer. Clients applications are tied to internal
microservices if the API Gateway approach is not used. Client must understand how the
system’s various parts are divided into microservices. When evolving and reforming in-
ternal microservices, those actions have an impact on maintenance since they produce
breaking changes to the client apps due to the client apps’ explicit connection to the inner
microservices. Clients must be updated on a regular basis, making the solution more
difficult to evolve. There are too many round trips if a single page/screen in the client app
may necessitate several requests to many providers. This method may result in many
network round trips between the client and the server, which adds substantial latency.
Aggregation handled at an intermediate level may increase performance and user satis-
faction.

2Polygot https://en.wikipedia.org/wiki/Polyglot(computing)

18

2.4.2 Circuit breaker pattern

Even the most dependable services will eventually exhaust their capacities and fail if
there are too many incoming requests. Failure in an MSA is unavoidable and should
be approached with concern rather than dismissed. What complicates matters is that
in an MSA, a malfunctioning service is likely to be dependent on other services. What
happens if our deteriorating service becomes unusable. If we do not properly plan for
this event, we risk rendering all other services that rely on it inoperable. This is known
as a cascading failure. However, there may be instances where defects occur as a result
of unplanned circumstances, which may necessitate a significantly longer repair time.
The degree of these failures might range from a partial loss of connectivity to the total
breakdown of a service. In some cases, it may be unnecessary for a system to repeatedly
attempt a request that is unlikely to achieve success; in the meantime, the program should
recognize that even the operation has failed and manage the failure appropriately.

A circuit breaker serves as a proxy for operations that may fail. The proxy must keep
track of the amount of consecutive failures and then utilize the information to determine
whether it should enable the action to continue or to throw an exception right away.

The circuit breaker pattern is designed to prevent a single component’s failure from cas-
cading beyond its boundaries and bringing the entire system down with it. When a ser-
vice becomes unresponsive, its invokers should cease waiting for it, assume the worst,
and begin coping with the possibility that the malfunctioning service will be unavailable.
Thus, circuit breakers contribute to the stability and resilience of both clients and ser-
vices: clients save resources by not attempting to access unresponsive services, while
overloaded services can recover by completing part of the tasks they are currently pro-
cessing. A circuit breaker operates by encapsulating calls to a certain service and mon-
itoring their failure rates. The concept is that if the destination service gets too slow or
responds too frequently with errors, the circuit breaker will trip, and subsequent client
invocations will immediately return a fault. meeting The pattern can be implemented as a
finite-state machine [28], as seen in Figure 2.12. The following is a description of various
states.

In Closed state requests are routed to the desired service. Faults caused by the re-
quested action, for example exceptions or latencies, raise the relevant failure and timeout
counts on the circuit breaker. Whether these indicators surpass a predetermined thresh-
old, or if another predefined criterion is met (e.g., a specific fault was raised), the breaker
is tripped and the circuit is opened. On the other hand in Half open state only a restricted
amount of requests can be processed by the service. If the destination service responds
successfully, the circuit breaker is reset towards the closed state, and also the failure and
timeout counts are reset. If any of the requests fail while the circuit breaker is in the half-
open state, it returns to the open state. Open state In requests will not be routed towards
the intended service. Rather, a failure message is instantly returned to the client as a
response. To resolve the failure, numerous fallback methods can be invoked. The circuit

19

Figure 2.12. Circuit breaker pattern state machine
[28]

breaker can switch from open to half-open mode by frequently pinging the service to see
whether it becomes responsive afterwards, or after a predetermined duration of time. The
Circuit Breaker design ensures system stability when recovering from a breakdown and
reduces the impact on performance. It can assist to keep the system’s responsiveness
up by rapidly denying a request for an action that is likely to fail, rather than waiting for
the operation to time out or never respond. If the circuit breaker generates an incident
every time it transitions state, this data may be applied to measure the condition of the
system segment covered by the circuit breaker or to notify an administrator when a circuit
breaker trips to the Open state.

2.4.3 Service discovery pattern

Service Discovery enables how microservices may communicate with one another. In
principle, this is a quite straightforward and simple task. For example, a configuration file
with the IP addresses and corresponding port number of the microservice can be dis-
tributed to all clients. These information can be distributed using standard configuration
management systems. Such method, however, is insufficient. Microservices can appear
and disappear. This occurs not just as a result of infrastructure outages, but also as a
result of new deployments or the growth of the environment through the addition of more
servers. Service Discovery must be fluid. A static configuration is insufficient. Because
to Service Discovery, the calling microservices are no longer as tightly tied to the called
microservice. In theory, configuration techniques may be used to accomplish Service
Discovery. Finally, just the data is available that its service is reachable at whatever place
is expected to be transmitted. Configuration methods, on the other hand, are the incorrect
instruments for the job. Stability and reliability is more necessary for Service Discovery
than it is for a configuration server. Under the worst scenario, a breakdown of Service

20

Discovery might make the connectivity amongst microservices unachievable. As a result,
the trade-off between consistency and availability differs from that of configuration sys-
tems. As a result, configuration systems should then be utilized for Service Discovery
only when they provide enough availability. This may have implications for the required
architecture of the Service Discovery system. Service discovery pattern can be achieved
in two different ways, one is the client side discovery pattern and another one is the server
side discovery pattern.

The client is aware that services do not have fixed placements in the client-side discov-
ery pattern described in Figure 2.13. As a result, it searches the service registry for
the location of all the services that it requires. Following that, the client contacts the
desired services directly. This architectural design is straightforward, but it necessitates
that clients be developed to adhere to this philosophy. Client implementation gets more
difficult as a result of having to implement the discovery mechanism. This logic must be
repeated for each programming language or framework used in client implementation.

Figure 2.13. Client side discovery pattern
[28]

21

Figure 2.14 depicts an alternate server-side discovery structure in which the discovery
functionality is delegated to a specialized router service. The client communicates solely
with the router in charge of the services, which is fixed in place. When a request is re-
ceived, the router contacts the service registry to determine the requested service and
then transmits the client request to the latter. This technique, unlike client-side discov-
ery, does not require clients to be aware of the fluid deployment of microservices. The
developer must, however, build an extra service that will use resources.

Figure 2.14. Server side discovery pattern
[28]

A Service Discovery system should be used in every microservice based design. It serves
as the foundation for the management of a significant number of microservices as well
as other capabilities such as load balancing. It is possible to get by without service
discovery pattern if there are only a few microservices. Service Discovery, on the other
hand, is required for huge systems. Because the amount of microservices grows over
time, Service Discovery should be built into the design approach from the beginning.
Furthermore, almost every system employs at least host lookups, which is already a
simple Service Discovery.

22

2.5 Microservices anti patterns

An "antipattern" is comparable to a pattern, however it is a straightforward but incorrect
solution to a problem. Michael Akroyd initially mentioned antipatterns in a talk at the Ob-
ject World West conference in 1996. An anti pattern is a pattern that describes how to
get from a problem to a terrible solution. Identifying harmful habits is just as important
as identifying excellent ones. Microservices recently demonstrated to be an effective ar-
chitectural paradigm for migrating and modernizing monolithic applications. They allow
the developers to decompose monolithic applications into small and independent ser-
vices. Each service is developed by a team; represents a single business capability; and,
can be delivered and updated autonomously without impacting other services and their
releases.

However, the highly dynamic nature of microservice based systems as well as the con-
tinuous integration and continuous delivery of microservices can lead to design and
implementation decisions,which might be applied often and introduce poorly designed
solutions, called antipatterns. Different researchers have categorized or grouped mi-
croservices based on different perspective such as based on the development cycle of
a microservice based system, divided the microservices antipattern into four categories
[29]. Design: Antipatterns in the specification of a microservice-based system’s archi-
tectural design. Implementation: Antipatterns in the implementation of microservices.
Antipatterns relating to the packaging and deployment of microservice-based systems
Monitoring: Antipatterns in monitoring microservice based systems, their behavior, and
their modifications. To avoid managing dependencies and the "distributed monolith" is-
sue, microservices should be self-contained functional units that interact via lightweight
means. Microservices are cyclically dependent on one another, as seen in Figure 2.15.

Figure 2.15. Cyclic dependencies
[29]

23

Explicit interactions among microservices, continuous contacts amongst microservices,
or the existence of HTTP requests in callbacks are all examples of cyclic dependencies.
Microservices are no longer self-contained units. The deployment of a microservice is
contingent on the deployment of its dependent microservices. When one of the cyclic-
dependent microservices fails, the others fail as well. A microservice that serves multiple
purposes known as mega service. A mega microservice is one that has a large number of
lines of code, modules, or resources and also a large fan-in. In addition to the complexity
of the microservices infrastructure, having a gigantic microservice causes maintenance
challenges, poor performance, and difficult testing. We need to break down the mam-
moth microservice into relatively small, single-purpose microservices. Decomposing a
large microservice into smaller pieces makes deployment and testing easier while also
isolating business features into well-defined microservices. Developers may focus and or-
ganize their efforts by using a single coherent microservice that provides a set of relevant
business features. It also prohibits systems from evolving in new directions, microser-
vices from being reused in different situations or systems, and developers from building
loosely linked, autonomous teams.

Microservices also shouldn’t directly share runtime libraries and code. 2.16 shows how
microservices share libraries or files. This antipattern can be detected by the existence
of executable files or runtime libraries shared by several microservices and introduced at
build or packaging time.

Figure 2.16. Shared libraries
[29]

24

This antipattern connects microservices and dissolves the border between them. Change,
evolution, testing, and deployment are also hampered. Even if the DRY principle is
violated, runtime assets should not be shared. As indicated in 2.17, shared libraries
should have their own microservices. With precise constraints, microservices become
self-contained and isolated. Sharing libraries among microservices is beneficial for en-
suring consistency and providing a single destination for library updates. When redesign-
ing the Shared Libraries antipattern, furthermore, the libraries must be replicated into
the relevant microservices, which makes upgrading and maintaining the libraries and mi-
croservices more difficult. One way to refactor is to create a microservice that covers one
or more shared libraries.

Figure 2.17. Shared libraries
[29]

Microservices can communicate with one another using IP addresses and port num-
bers. IP addresses, ports, and endpoints for microservices are defined explicitly/directly
in the source code. The inclusion of IP addresses or fully qualified domain names in
source code, configuration files, or environment variables indicates a hardcoded end-
point antipattern. Whenever a system has a lot of microservices, keeping track of all the
endpoints and URLs gets increasingly complex. Using a load balancer to run several
instances of a microservice becomes unfeasible. Altering a microservice’s IP address or
port number necessitates modifying and redeploying additional microservices. Hardcod-
ing IP addresses and port numbers is avoided using service discovery. It keeps track of
microservice endpoints and makes communication between them easier.

For service discovery, there are two approaches: (1) client-side service discovery and
(2) server-side service discovery. Microservice endpoints can change dynamically with-
out affecting other microservices thanks to service discovery. It also makes it easier to
deploy microservices on dynamic IP-addressed containers and virtual machines. For
all microservice endpoints, it also provides a single, centralized registry. Hardcoding
endpoints is a simple way to expedite development, deployment, and testing in a tightly
regulated, slow-changing environment. It does, however, make evolution and scalability
more challenging. Client-side service discovery, in particular, necessitates building dis-

25

covery logic within each microservice. Server-side discovery necessitates the addition of
a microservice to manage, install, and maintain endpoints, which might slow down the
system. A network call is added in both refactoring cases.

Each of these little services in a microservice system may need to persist and access
data. Furthermore, in addition to get the most out of the microservices architecture, soft-
ware architects must manage data storage in a manner that allows each microservice to
store and access its own data without interfering with other microservices. In this antipat-
tern multiple microservices can access a same database as illustrated in 2.18. One or
more of the following symptoms describe this antipattern: (1) many microservices share
configuration files and deployment environments; (2) database tables are prefixed; or
(3) databases have a large number of schemas. Microservices grow increasingly inter-
twined, making maintenance more difficult. Data must also be modified to fit into a single
data repository. Microservices are also no longer deployable individually since they share
the same database.

Figure 2.18. Shared database
[29]

In terms of how data is accessed utilised, it should always be divided. For each type
of data, we must select the right data store and utilize a single database for each mi-
croservice. Figure 2.17 illustrates the refactoring solution. The following are some of the
benefits of refactoring to the database per service pattern: (1) separation of concerns, as
each microservice owns its data; (2) complete management of each microservice by a
separate team; and (3) storage technology flexibility.

26

A persistence service shared by several microservices simplifies deployment and im-
proves speed while assuring data consistency across the microservices. Having one
database per microservice necessitates the management of several database systems,
the implementation of queries throughout many microservices, and the maintenance of
database integrity.

Figure 2.19. Shared database refactored
[29]

27

3 CONTEXT

We organized our study based on the parameters established by [30]. Diverse research
procedures are used for different goals, and one approach does not fit everyone. Out
of different methodologies our work is Exploratory based research methodology where
figuring out what’s aiming on, looking for fresh insights, and coming up with new research
concepts and theories. An empirical research either collect quantitative or qualitative
data. Quantitative data consists of figures and classes, whereas qualitative data consists
of sentences, descriptions, drawings, and diagrams, among other things. Statistics are
used to examine quantitative data, whereas classification and sorting are used to study
qualitative data. Case studies are frequently based on qualitative data since it allows for
a fuller and more detailed explanation. However, combining qualitative and quantitative
data typically leads to a deeper understanding of the phenomena being examined [31].

3.1 Goal and Research Questions

The software engineering community has recently published research on the prospective,
recurring, and successful architectural patterns [26] [5] and anti-patterns [13,17,18] in
microservices-based architectures.

Indeed, such systems’ organizational structure should be expressed in so-called mi-
croservice architectural patterns that best suit the demands of projects and development
teams. However, there are few public repositories that share open source project mi-
croservices patterns and practices, which might be useful for educational reasons and
future study.

According to the goal question metric approach measurement must be defined in a top-
down fashion and it must be focused, based on goals and models [32]. The main goal
of this work is to determine architectural patterns in microservices and looking into ap-
proaches to assess the evolving coupling between services to assist practitioners in un-
derstanding how decoupled their services are in the microservices project. The following
goals can be developed to help answer the primary research topic.

• Formulate a curated dataset of microservices based systems

• Analyze the projects to determine architectural patterns

• Measure coupling matrices of microservices

28

3.2 Project selection

We selected projects from GitHub, searching projects implemented with a microservice-
based architecture, developed in Java and using docker.

The search process was performed applying the following search string:

"micro-service" OR microservice OR "micro-service"

filename:Dockerfile language:Java

Results of this query reported 18,639 repository results mentioning these keywords.

We manually analyzed the first 1000 repositories, selecting projects implemented with a
microservice-architectural style and excluding libraries, tools to support the development
including frameworks, databases, and others.

The microservices projects comprising this study were chosen by a process known as
"criterion sampling" [33]. The following were the criteria used to choose projects:

• Having microservices architecture

• Developed in Java

• Docker is used for containerization

• Code is available in Github

• Open source

In this work, we selected the top 20 repositories that fulfill our requirements listed in table
3.1.

In the table 3.1 we listed the name of project used in github repository, the github url to
the repository, and lastly the type of the project.

Then, to report the project list, we made a github page 1 and posted multiple inquiries on
several forums 2. Moreover, we monitored replies to similar questions on other practition-
ers forums3 4 5 6. We also looked at responses to similar inquiries on other practitioners’
forums to see if they knew of any other relevant Open Source projects that used a mi-
croservice architectural approach. The practitioners’ forums responded with 19 recom-
mendations to add 6 projects to the list. In addition, four people submitted a pull request
to the repository, requesting that new projects be included.

1https://github.com/clowee/MicroserviceDataset
2Stack Overflow -1 https://stackoverflow.com/questions/48802787/open-source-projects-that-migrated-

to-microservices
3Stack Overflow -2 https://stackoverflow.com/questions/37711051/example-open-source-microservices-

applications
4Stack Overflow -3 https://www.quora.com/Are-there-any-examples-of-open-source-projects-which-

follow-a-microservice-architecture-DevOps-model
5Quora -1 https://www.quora.com/Are-there-any-open-source-projects-on-GitHub-for-me-to-learn-

building-large-scale-microservices-architecture-and-production-deployment
6Quora -2 https://www.quora.com/Can-you-provide-an-example-of-a-system-designed-with-a-

microservice-architecture-Preferably-open-source-so-that-I-can-see-the-details

29

Table 3.1. Selected microservices projects

Project Name Project Repository Project Type

Consul demo http://bit.ly/2KsGzx6 Demo

CQRS microservice application http://bit.ly/2YtbtiF Demo

E-Commerce App http://bit.ly/2yLqTPW Demo

EnterprisePlanner http://bit.ly/2ZPK7je Demo

eShopOnContainers http://bit.ly/2YGSkJB Demo

FTGO - Restaurant Management http://bit.ly/2M7f8fm Demo

Lakeside Mutual Insurance Company http://bit.ly/33iJSiU Demo

Lelylan - Open Source Internet of Things http://bit.ly/2TdDfd3 Industrial

Microservice Architecture for blog post http://bit.ly/2OKY29v Demo

Microservices book http://bit.ly/2TeSbI2 Demo

Open-loyalty http://bit.ly/2ZApXtA Industrial

Pitstop - Garage Management System http://bit.ly/2Td7NLY Demo

Robot Shop http://bit.ly/2ZFbHQm Demo

Share bike (Chinese) http://bit.ly/2YMJgmb Demo

Spinnaker http://bit.ly/2YQA2S7 Industrial

Spring Cloud Microservice Example http://bit.ly/2GS2ywt Demo

Spring PetClinic http://bit.ly/2YMVbAC Demo

Spring-cloud-netflix-example http://bit.ly/2YOUJxJ Demo

Tap-And-Eat (Spring Cloud) http://bit.ly/2yIjXmC Demo

Vehicle tracking http://bit.ly/31i5aLM Demo

30

4 IMPLEMENTATION AND DATASET

In order to analyze and visualize the selected projects we have use 4 tools. Of these
tools 3 are open source projects and 1 have been developed in house solely to analyze
the dependencies between services in microservices projects.

4.1 SLOCCount

The term "microservices" implies that the size of the service is important; microservices
are, after all, meant to be tiny. Counting the lines of code is one approach to determine
the size of a microservice (LOC). However, there are some drawbacks to this approach:
it is dependent on the programming language employed.

Microservices are clearly not designed to predetermine the technological stack, and some
languages require more code to describe the same functionality as others. As a result,
using this statistic to define microservices isn’t particularly useful. Finally, microservices
are a type of architecture. However, rather than sticking to technical measures like LOC,
architectures should match the circumstances in the domain. Attempts to estimate size
based on code lines should also be looked up carefully.

SLOCCount (pronounced "sloc-count") is a collection of tools for calculating the number
of physical source lines of code (SLOC) in big software systems.As a result, SLOCCount
is a "software measurement tool" or "software metrics tool." SLOCCount was created by
David A. Wheeler with the intention of counting SLOC in a GNU/Linux distribution, but it
may now be used to count SLOC in any software system [34].

Physical SLOC, often known as "non-blank, non-comment lines," are counted by SLOC-
Count. A physical source line of code (SLOC) is a line that ends in a newline or end-of-file
marker and contains at least one non-whitespace non-comment character, according to
the definition. Comment separators are treated as comment characters. Only data lines
with whitespace are not included. SLOCCount can count the number of lines of code in
a variety of programming languages and categorize them by type. The basic operation
of SLOCCount is pretty straightforward. Simply type "sloccount" in a terminal window,
followed by a list of source code folders to count. If you simply give it a single directory,
SLOCCount will try to be clever and split the source code into subdirectories for reporting
reasons.

31

Running SLOCCount is quite straightforward from commandline/terminal, for instance if
we want to measure SLOCCount of Apache 1.3.12 here is the command:

sloccount /usr/src/redhat/BUILD/apache_1.3.12

The output we’ll see shows status reports while it analyzes things, and then it prints out:

SLOC Directory SLOC-by-Language (Sorted)

24728 src_modules ansic=24728

19067 src_main ansic=19067

8011 src_lib ansic=8011

5501 src_os ansic=5340,sh=106,cpp=55

3886 src_support ansic=2046,perl=1712,sh=128

3823 src_top_dir sh=3812,ansic=11

3788 src_include ansic=3788

3469 src_regex ansic=3407,sh=62

2783 src_ap ansic=2783

1378 src_helpers sh=1345,perl=23,ansic=10

1304 top_dir sh=1304

104 htdocs perl=104

31 cgi-bin sh=24,perl=7

0 icons (none)

0 conf (none)

0 logs (none)

ansic: 69191 (88.85%)

sh: 6781 (8.71%)

perl: 1846 (2.37%)

cpp: 55 (0.07%)

Total Physical Source Lines of Code (SLOC) = 77873

Estimated Development Effort in Person-Years (Person-Months) = 19.36 (232.36)

(Basic COCOMO model, Person-Months = 2.4 * (KSLOC**1.05))

Estimated Schedule in Years (Months) = 1.65 (19.82)

(Basic COCOMO model, Months = 2.5 * (person-months**0.38))

Estimated Average Number of Developers (Effort/Schedule) = 11.72

Total Estimated Cost to Develop = $ 2615760

(average salary = $56286/year, overhead = 2.4).

32

4.2 GraphML

GraphML is a file format for graphs that is both comprehensive and user-friendly. It com-
prises of a core language for describing a graph’s structural features and a flexible ex-
tension mechanism for adding application-specific data. Some of its key feature includes
support of different types of graphs:

• directed, undirected, and mixed graphs,

• hypergraphs,

• hierarchical graphs,

• graphical representations

GraphML can be utilized with other XML-based formats because of its XML syntax. On
the one hand, it has its own extension method for attaching GraphML elements to <data>
labels with sophisticated information. A graphml element with a number of subelements,
such as graph, node, and edge, make up a GraphML document. In this study we gener-
ated graphml file for each of the projects we analyzed. The goal of this step is to further
analyze the graph data as well as visualizing the microservice dependencies in graph.

Figure 4.1. Dependency graph

33

Figure 4.1 shows the visualization of dependency graph for the microservice project Tap-
And-Eat from collected projects table 3.1. In this project we have 5 services where 4.2
shows contents of graphml file for dependencies of Tap-And-Eat project.

1 <?xml version="1.0" encoding="UTF -8"?>
2 <graphml xmlns="http: // graphml.graphdrawing.org/xmlns" xmlns:xsi="http://

www.w3.org /2001/ XMLSchema -instance" xsi:schemaLocation="http:// graphml.
graphdrawing.org/xmlns http: // graphml.graphdrawing.org/xmlns /1.1/
graphml.xsd">

3 <key id="edgelabel" for="edge" attr.name="edgelabel" attr.type="string"
/>

4 <graph id="G" edgedefault="directed">
5 <node id="stores" />
6 <node id="configserver" />
7 <node id="accounts" />
8 <node id="customers" />
9 <node id="prices" />

10 <edge id="stores ->configserver" source="stores" target="
configserver" label="depends">

11 <data key="edgelabel">depends </data>
12 </edge>
13 <edge id="accounts ->configserver" source="accounts" target="

configserver" label="depends">
14 <data key="edgelabel">depends </data>
15 </edge>
16 <edge id="customers ->configserver" source="customers" target="

configserver" label="depends">
17 <data key="edgelabel">depends </data>
18 </edge>
19 <edge id="prices ->configserver" source="prices" target="

configserver" label="depends">
20 <data key="edgelabel">depends </data>
21 </edge>
22 </graph >
23 </graphml >

Listing 4.1. GraphML file

34

4.3 MicroDepGraph

MicroDepGraph is a tool we created in-house for detecting dependencies and plotting
microservice dependency graphs.

It analyzes the docker files for service dependencies defined in docker-compose and java
source code for internal API calls, starting with the source code of the various microser-
vices. The program is entirely written in Java.

We opted to look at docker-compose files because in microservices projects, the ser-
vices’ dependencies are defined as configuration in the docker-compose file. The tool
parses the files from the projects because docker-compose is a YML or YAML file.The
services of the microservices project defined in the docker-compose file are first deter-
mined by MicroDepGraph. Then it examines dependencies for each service and maps
the dependencies for the respective services.

Only looking at the docker-compose file reveals all dependencies’ relationships, as there
could be internal API calls, for example, via a REST client. As a result, we had to look
through the java source code for any API calls to other services. As we look at Java
microservices projects, Spring Boot is the most widely used and popular framework for
creating microservices in Java. The API endpoints for services in spring boot are setup
and defined using various annotations in java source code. As a result, when parsing
java source code, we focused on these annotations. The endpoints for each service were
first found by processing the java source code and looking for annotations that defined
the endpoints. We used an open source library called JavaParser 1 to parse Java source
code. After obtaining endpoints for each service, we looked to see if any API calls were
made to these endpoints by other services. Then, if one service calls another’s API, we
map it as a dependency and add it to our final graph. The tool then creates linkages
(dependencies) between the services and draws a directed graph after discovering all of
the mapping.

MicrodepGraph can be executed in any computer having jre8 installed. It takes two pa-
rameters as input: (1) the path of the project in the local disk and (2) the name of the
project. Here is the command to execute MicroDepGraph as:

1 java -jar microservices -dependency -check.jar <path_of_the_project > <
project_name >

Finally, it generates a graph representation formatted as GraphML file, a neo4j database
containing all the relationships and an svg file containing the graph.

Figure 4.1 shows an example of the output provided by MicroDepGraph on the project
”Tap And Eat”.

1JavaParser. https://javaparser.org/

35

4.4 Dataset generation using MicroDepGraph

We started by cloning the repository for each project. Then we ran SLOCcount on each
project separately to get the number of lines of code.

Then, to get the dependencies between the microservices, we used MicroDepGraph. For
each project, MicroDepGraph provided GraphML and an svg file. We utilized the Apache
TinkerPop2 graph computing framework to create the GraphML file.

In the table 4.4 we listed the dataset collected through SLOCCount and MicrodepGraph,
#Ms the number of services in the given microservice system, KLOC 3 thousands lines
of source code, #Commits number of commits in the project, #Dep. number of depen-
dencies.

Table 4.1. Generated dataset of the projects

Project Name #Ms. KLOC #Commits #Dep.

Consul demo 5 2.343 78 4

CQRS microservice application 7 1.632 86 3

E-Commerce App 7 0.967 20 4

EnterprisePlanner 5 4.264 49 2

eShopOnContainers 25 69.874 3246 18

FTGO - Restaurant Management 13 9.366 172 9

Lakeside Mutual Insurance 8 19.363 12 7

Lelylan - Open Source Internet of Things 14 77.63 2059 11

Microservice blog post 9 1.536 90 7

Microservices book 6 2.417 127 5

Open-loyalty 5 16.641 71 2

Pitstop - Garage Management System 13 34.625 198 9

Robot Shop 12 2.523 208 8

Share bike (Chinese) 9 3.02 62 6

Spinnaker 10 33.822 1669 6

Spring Cloud Microservice 10 2.333 35 9

Spring PetClinic 8 2.475 658 7

Spring-cloud-netflix 9 0.419 61 6

Tap-And-Eat (Spring Cloud) 5 1.418 35 4

Vehicle tracking 8 5.462 116 5

2Apache TinkerPop http://tinkerpop.apache.org/
3https://en.wikipedia.org/wiki/Source_lines _of _code

36

The generated graphml file can also be used in alternative graph visualization platforms,
such as Gephi4, to import the GraphML file. We can then use different graph algorithms
in these types of graph visualization tools to further analyze the graph. We additionally
generated an SVG graphic file as an output, which can be used for additional processing.
Afterwards, we saved the findings as graphml files in a Github repository, along with a
list of examined microservice applications. The GraphML output from one of the projects
examined by MicroDepGraph is shown in 4.1 as visualization of 4.2 graphml generated
by MicroDepGraph.

4Gephi https://gephi.org/

37

5 MICROSERVICES METRICS

Microservices should be as decoupled and cohesive as feasible, which is a preferred
characteristic [2]. While minimal coupling is crucial in monolithic systems [35], it is much
more significant in microservices, because loosely connected services (both static and
dynamically) allow developers to make changes to their service without affecting other
services [2]. One of the main design ideas in software engineering is "low coupling,
high cohesion" [35]. This principle asserts that coupling between modules of a software
system should be kept to a minimum while maintaining strong relationships between both
the different components of each subsystem.

The strong coupling between the core components of the software is a major impediment
to efficient maintenance. Most changes in monolithic systems necessitate changes to nu-
merous sections of the system, and the scale and complexity of the alteration is typically
difficult to predict in advance. The goal of such architectural features is to keep main-
tenance as less time consuming and less complex as possible. To put it another way,
updates to the source code should be limited to a single microservice. Microservices
can be developed and deployed independently thanks to the decoupled architecture. A
loosely coupled service only knows as much as it needs to know about the services it
collaborates with [36].

Cohesion is related to decoupling and examines how closely the elements of a given
class are related. The degree to which the functionality of separate modules are cou-
pled to one another is measured by cohesion [37]. Low coupling is frequently associated
with high cohesiveness [38] [39]. The software components have a high level of cohe-
siveness, making system understanding easier [39]. As a result, high cohesiveness aids
in the system’s creation and maintenance. By organizing functionality and components
according to business processes, developers aim for strong cohesion and low coupling
whenever designing microservice-based systems. Changes to a features and functions
should then only affect one microservice [36].

One approach to describe the issue of modularity in traditional and object-oriented (O-O)
software engineering is to use software metrics to find a way of making it measurable and
quantifiable. For this objective, a number of measures have been created, and a generic
framework for desirable qualities of specific types of metrics has been offered [40].

38

Low-level metrics like as control-flow, functions, size, complexity, or semantic program
understandability were employed to quantify software quality in the beginning. Absolute
measurements that can be acquired automatically (or at least semi-automatically) are
still useful for evaluating a software system’s base degree of maintainability. They can
be used as a starting point for judging more general qualities of a system with short
feedback cycles. The most common traits linked to maintainability in the literature are
scale, complexity, coupling, and cohesiveness [41].

In another work Bogner et al. has proposed a maintainability model for service oriented
and microservices architecture where they chose a straightforward hierarchical frame-
work. The top-level quality attribute in the first layer is maintainability. The second layer
is made up of Service Properties, which reflect some maintainability-related feature of a
service or the entire system [42]. In another work Taibi and Systä[43] developed a decom-
position framework based on process mining, as well as a set of metrics to assess the
decomposition’s quality, identifying two size-related measures and a coupling measure
[43].

Bogner et al.,[41] in their work for automatically measuring maintainability of services
pointed out that the major portion of metrics specifically created for monolithic systems
and Service Oriented Architecture (SOA) may be applied to microservices as well . They
do, however, point out that different characteristics of microservices might have a big
influence on the complexity of autonomous metric gathering, implying the necessity for
specific tool support. To propose matrices for microservices based systems in this work,
there are four groups of metrics that can utilized to measure microservices

• Service Size The size of a microservice system is equal to the sum of its underlying
services. A large microservice system is more difficult to maintain than one that is
tiny. Although size as a system feature – and notably its most commonly used metric
Lines of Code (LOC) – is sometimes viewed as questionable, a basic estimate of it is
sometimes important [41]. Nonetheless, size metrics are seldom accurate enough
on their own. Furthermore, defining "acceptable" value ranges for these indicators
is frequently difficult. Size measurements, on the other hand, can be very valuable
in a relative sense, i.e. when comparing the various components of a system.

• Service Complexity In microservice-based systems, the amount and variety of
internal work carried out by a service, as well as the degree of interaction between
its services required to do this. Maintainability suffers as a result of high complexity.
Bogner’s [41] study proposes three metrics that can be applied to microservices
and were initially developed for SOA.

• Service Cohesion The amount to which a service’s operations contributes to only
one task or capability. Maintenance tasks are aided by a high level of cohesion. It’s
a metric for how closely each element of a software module’s functionality is related
[37]. High cohesiveness simplifies thinking and reduces dependencies [39]. There
are no explicit measurements for cloud-native systems or SOA.

39

• Service Coupling The degree to which a service’s interdependencies and inter-
connections with other services are strong. It is easier to maintain a microservice
system made up of loosely connected services with a minimal number of couplings.
According to Bogner et al., [41] Coupling is the most straightforward of the four
design properties discussed. It lacks a semantic component and may be easily
examined using graph theory.

Together with Panichella and Taibi [44] we proposed a list of metrices in 5.1 for each
of the group discussed above. This work expands and complements the proposed
coupling metrics by giving straightforward measurement processes, a tool to help
identify the matrices automatically in microservices, and a method to visualize them.

Table 5.1. The Metrics Proposed in the Literature

Group Metric

- Number of synchronous cycles [45]
- Distribution of synchronous call per microservice [45]
- Number of synchronous dependencies of each microservice [45]

Service Size - Average size of asynchronous messages [45]
- Longest synchronous call trace [45]
- Number of classes per microservice [43]
- Number of classes that need to be duplicated [43][46]
- Weighted Service Interface Count (WSIC [47])*: number of exposed interface of a
service be weighted on the number of parameters.
- Component Balance [48][42]*: number and size uniformity of components (or ser-
vices). Very big or very small components could be candidates for refactoring.
- Number of Operations [49]*: number of exposed interface of a service.

Service Complexity - Total Response for Service [50]*: adaptation of Response for Class (RFC) [51] to the
service level
- Number of Versions concurrently used in a Service*
- Service Support for Transactions*

Service Cohesion - Service Interface Data Cohesion (SIDC) [50]*, the similarity of the parameters data-
types between two services
- Service Interface Usage Cohesion (SIUC) [50]*:
(used operations per client/(clients · operations in a service))

- Total Service Interface Cohesion [50]: average between SIDC and SIUC

Service Coupling - Coupling Between Microservices (CBM) [43]. Extension of the CBO, ratio between
the number of calls to other services and the number of classes of the microservice
- Absolute Importance of the Service (AIS) [52][42]* number of clients that invoke at
least one operation to the service.
- Absolute Dependence of the Service (ADS) [52]* number of other services that a
service depends on
- Absolute Criticality of the Service [52]* defined as: ACS(S) = AIS(S) ADS(S)
- Services Interdependence in the System (SIY) [52][42]*: Number of service pairs

bidirectionally dependent on each other. If such dependencies between microservices
exist, services could be merged.

*Metrics Adopted in SOA, that could be suitable for microservices [41]

40

5.1 Proposed matrices

After analyzing the dataset listed in table 4.4 we found the the answer of first two of our
research questions which are to formulate dataset of microservice based systems and
analyze the architectural pattern which we got from the visualization of graphml file. To
answer the third research question we proposed a structural coupling metric [44]. Our
metrics are meant to improve modularity, with the added benefit of assisting practitioners
in understanding how decoupled their services are and, eventually, reasoning on decou-
pling solutions. More precisely, such measures can assist in swiftly identifying potential
issues with constructions that are likely difficult to comprehend by humans and thus prone
to creating errors. Metrics are important in both circumstances as a way to make quality
related features measurable and quantifiable.

5.1.1 Structural coupling

Coupling is among the qualities that has the largest impact on maintenance since it has a
direct impact on maintainability. In the field of software engineering research, one of the
main design ideas is high cohesion and low coupling [53]. According to these principles,
the coupling between modules in a software system should be as loose as feasible while
maintaining strong relations between the software artifacts that make up the particular
modules. One of the objectives of software designers in particular is to maintain the
coupling in an OO system as low as feasible. Strongly connected microservices are more
prone to be impacted by changes and faults in other services; as a result, these services
have a higher architectural importance and must be detected. Coupling measures assist
in such initiatives, and the majority of them are focused on some form of dependency
analysis, which is based on available source code or design information.

Figure 5.1. Structural Coupling: graph representation

If code/structural dependencies exist between two software modules or artifacts, they
are structurally connected [54]. The bigger the amount of dependencies between these
modules, the tighter the coupling. Any depiction of a software system must provide for
the multiple and multifarious interactions among software components. Myers[55] in his
work has shown how the interactions between software services can be depicted as
collaboration graph where the nodes represents system components and the weighted
edges indicate internal dependencies between the services.

41

In figure 5.1 different properties of graph for structural coupling is depicted. Each node in
a directed network has an in-degree (the number of links pointing to it) and an out-degree
(the number of links pointing away from it) (the number of links emanating from a node).
The total-degree of a node is the sum of its in-degree and out-degree, and it is often
referred to as total-degree to emphasize the network’s directed character.

5.1.2 Microservice coupling measures

A service A is structurally connected with another service B if code/structural dependen-
cies present between artifacts forming them, according to the conceptual framework of
structural coupling (Savic et al., 2017). As a result, the bigger the number of dependen-
cies between these services, the higher the degree of coupling. Low structural coupling
is necessary to allow changes in a single service to be made without affecting other
modules or artifacts in other services.

Because of the significant structural coupling, problems and modifications propagated
throughout modules of various services, resulting in low maintainability and developer
productivity e.g., developers have to coordinate their development work involving differ-
ent services. Savic et al., in his work[54] has proposed the Afferent-Efficient Coupling
Balance (Ck),is the average in-degree to total degree (CBO) ratio for modules with to-
tal degrees greater than or equal to k. Being motivated by the work of Savic et al., we
calculated the structural coupling between a service s1 and a service s2.

StructuralCoupling(s1, s2) = 1 − 1

(degree(s1, s2))
∗ LWF ∗ GWF (5.1)

Dependencies between two services s1 and s2 are weighted using both the Local Weight-
ing Factor (LWF), which considers the degree and in-degree of s1 with s2, and the Global
Weighting Factor (GWF), which considers the maximum degree across all services in the
system, elements to consider while weighing:

LocalWeightFactor(s1, s2) =
1 + outdegree(s1, s2)

1 + degree(s1, s2)

GlobalWeightFactor(s1, s2) =
degree(s1, s2)

max(degree(all_services))
(5.2)

This re-weighted structural coupling assessment assures that the real coupling value
between s1 and s2 is in the [0-1] range, and therefore these values are also influenced
by the generic dependencies distributed to other services.

42

• degree(s1,s2) is the total number of structural relationships between s1 and s2.

• outdegree(s1,s2) is the real number of static dependencies directed from s1 to s2
among the total one.

• in-degree(s1,s2) is the actual number of static dependencies directed from s2 to
s1 among the total one.

• max(degree(all_services)) relates to the maximum number of dependencies (or
degree) among all (possible pairs of) system services.

In order to compare the result of proposed structural coupling we also considered Cou-
pling Between Microservices, CBM metric from the work of Taibi et al., [46]. The coupling
measure CBM was inspired by Chidamber and Kemerer’s well-known Coupling Between
Objects (CBO) metric [39]. CBO counts the number of classes that are associated with a
given class. Classes can be linked through a variety of mechanisms, including as method
calls, field accesses, inheritance, parameters, return types, and exceptions.

CBMMSj =
Numberofexternallinks

Numberofclassesinthemicroservices

The number of call pathways to external services is represented by the formula "Number
Of External Links." External services that are invoked several times, even by distinct
classes of the microservice, are therefore counted just once. Other microservices or
services outside of the system might be considered external services. This metric is an
abstraction of the microservice’s size, and it enables the developer to identify services that
are either too large or too tiny in comparison to other microservices. Larger microservices
should be avoided since they are more difficult to manage in general.

43

6 RESULTS

We selected the 17 projects developed in Java and using Docker from the dataset of 4.4.
Before starting calculation for these 17 projects we will first calculate the matrices for an
example system so that we can present all the calculations step by step.

We will now show how to determine the structural coupling using the system represented
in Figure 6.1. The system used as an example is made up of five microservices that are
linked together directly. Table 6.1 shows an example of metrics provided in the literature
and derived for the example system represented in Figure 6.1.

Figure 6.1. An example of Microservices-based System

We specifically describe the size of each microservice (number of classes), the in-degree
of each microservice (number of incoming service calls), the out-degree (number of out-
going calls), and the degree of each microservice (sum of in-degree and out-degree).
Table 6.2 illustrates how to calculate the Local Weight Factor (LWF), Global Weight Fac-
tor (GWF), and Structural Coupling (SC) for the same system.

Table 6.1. Example of metrics for the system in Figure 6.1

in-degree out-degree degree #classes

A 4 1 5 50
B 0 1 1 10
C 0 1 1 11
D 0 1 1 17
E 0 1 2 30

44

Table 6.2. SIY, LWF, GWF and SC for the system in Figure 6.1

LWF GWF SC
A B C D E A B C D E A B C D E

A 0 0.66 1 1 1 0 2 0 0 0
B 0 0 0.5 0.5 0.5 0 0 1 1 1 0.33 0.5 0.5
C 1 0 0 1 1 0 0 0 0 0 0.5
D 1 0 1 0 1 0 0 0 0 0

As we mentioned earlier we selected 17 projects from 4.4 where we already have infor-
mation on the number of microservices in each system (MS), the size of each system
in lines of code(KLOC), the number of commits and the number of dependencies (Dep).
Table 6 shows the list of projects selected for matrices calculation.

Table 6.3. Generated dataset of the projects

Project Name #Ms. KLOC #Commits #Dep.

CQRS microservice application 7 1.632 86 3

E-Commerce App 7 0.967 20 4

EnterprisePlanner 5 4.264 49 2

eShopOnContainers 25 69.874 3246 18

FTGO - Restaurant Management 13 9.366 172 9

Lakeside Mutual Insurance 8 19.363 12 7

Microservice blog post 9 1.536 90 7

Microservices book 6 2.417 127 5

Open-loyalty 5 16.641 71 2

Pitstop - Garage Management System 13 34.625 198 9

Robot Shop 12 2.523 208 8

Share bike (Chinese) 9 3.02 62 6

Spinnaker 10 33.822 1669 6

Spring Cloud Microservice Example 10 2.333 35 9

Spring PetClinic 8 2.475 658 7

Spring-cloud-netflix-example 9 0.419 61 6

Vehicle tracking 8 5.462 116 5

To compare our metric to other measures presented in the literature, we measured the
number of classes per microservice for each project. Then, using the Structural Coupling
presented in Section 5.1 and the coupling metrics proposed in the literature, we esti-
mated the coupling metrics proposed in the literature. We created a csv file with metrics
such as in-degree, out-degree, degree, classes (number of classes), and LOC (Lines Of
Code). We created a matrix for each metric LWF, GWF, SC and CBM to determine the
dependence between all pairs of microservices.

We create a chart for each analyzed project that shows the SC for each pair of MS. This
graphical depiction might help you figure out which MS in your system have the maxi-
mum coupling. We generate descriptive statistics of SC for each microservice in order
to compare the different measurements. The whole process of computing the matrices,

45

Table 6.4. Results of the Coupling Metrics Applied to the 17 projects.

Project Name Degree SC CBM
Max Avg Med. Stdev Tot Max Avg Med. Stdev Tot Max Avg Med. Stdev

CQRS microservice appl. 1 1 1 0.0 7.25 0.88 0.80 0.75 0.06 2.5 1.0 0.35 1.0 0.23
E-Commerce App 2 1.14 1.0 0.34 8.87 0.88 0.80 0.75 0.06 3.27 1.0 0.46 1.0 0.42
EnterprisePlanner 3 1.00 1.00 0.00 3.50 0.83 0.70 0.67 0.07
eShopOnContainers 8 1.16 1.00 0.46 71.06 0.94 0.91 0.94 0.03
FTGO - Restaurant Man. 2 1.13 1.0 0.33 24.00 0.9 0.86 0.9 0.05 0.39 0.12 0.03 0.04 0.34
Lakeside Mutual Ins. 3 1.67 1.00 1.05 6.67 0.83 0.74 0.67 0.08 1.12 1.00 0.12 0.03 0.39
Microservice Blog post 4 1.10 1.00 0.30 13.75 0.88 0.81 0.75 0.06 3.61 1.00 0.36 0.50 0.25
Microservices book 1 1.83 1.00 1.86 1.00 0.50 0.20 0.00 0.24 2.75 1.00 0.46 0.30 0.41
Open-loyalty 3 1.20 1.00 0.40 2.83 0.83 0.71 0.67 0.07
Pitstop - Garage Manag. 3 1.15 1.00 0.53 14.50 0.83 0.76 0.83 0.08 1.14 0.33 0.09 0.08 0.11
Robot Shop 4 1.50 1.00 0.76 9.38 0.88 0.78 0.75 0.05
Share bike (Chinese) 3 1.10 1.00 0.30 11.33 0.83 0.76 0.83 0.08 2.38 1.00 0.24 0.13 0.43
Spinnaker 7 1.20 1.00 0.60 18.79 0.93 0.89 0.93 0.04
Spring Cloud Micros. 7 1.10 1.00 0.30 23.21 0.93 0.89 0.89 0.04 5.75 1.00 0.57 1.00 0.41
Spring PetClinic 2 1.09 1.00 0.29 7.75 0.75 0.60 0.50 0.12 3.01 1.00 0.27 0.35 0.29
Spring-cloud-netflix 7 1.11 1.00 0.31 23.29 0.93 0.90 0.93 0.04 5.75 1.00 0.64 1.00 0.29
Vehicle tracking 4 1.00 1.00 0.00 13.88 0.88 0.82 0.88 0.06

generating the csv files and also the graphs have been done automatically by MicroDep-
Graph which we customised in a way to generate the matrices. The results of the analysis
are also available in the github repository 1

Table 6.5. Results of the LWF and GWF of the 17 projects.

Project Name LWF GWF
Tot Max Avg Med. Stdev Tot Max Avg Med. Stdev

CQRS microservice application 7.0 1.0 0.78 1.0 0.25 2.25 0.25 0.25 0.25 0.0
E-Commerce App 8.5 1.0 0.77 1.0 0.25 2.75 0.25 0.25 0.25 0.0
EnterprisePlanner 4.5 1.0 0.9 1.0 0.2 1.67 0.33 0.33 0.33 0.0
eShopOnContainers 55.5 1.0 0.71 0.5 0.25 9.75 0.13 0.13 0.13 0.0
FTGO - Restaurant Management 20.0 1.0 0.71 0.5 0.25 5.6 0.2 0.2 0.2 0.0
Lakeside Mutual Insurance 7.0 1.0 0.78 1.0 0.25 3.0 0.33 0.33 0.33 0.0
Microservice Blog post 13.0 1.0 0.76 1.0 0.25 4.25 0.25 0.25 0.25 0.0
Microservices book 4.0 1.0 0.8 1.0 0.24 5.0 1.0 1.0 1.0 0.0
Open-loyalty 3.5 1.0 0.88 1.0 0.22 1.33 0.33 0.33 0.33 0.0
Pitstop - Garage Management 13.5 1.0 0.71 0.5 0.25 6.33 0.33 0.33 0.33 0.0
Robot Shop 10.5 1.0 0.88 1.0 0.22 3.0 0.25 0.25 0.25 0.0
Share bike (Chinese) 11.0 1.0 0.73 0.5 0.25 5.0 0.33 0.33 0.33 0.0
Spinnaker 15.5 1.0 0.74 0.5 0.25 3.0 0.14 0.14 0.14 0.0
Spring Cloud Microservice 19.5 1.0 0.75 0.75 0.25 3.71 0.14 0.14 0.14 0.0
Spring PetClinic 10.5 1.0 0.81 1.0 0.24 6.5 0.5 0.5 0.5 0.0
Spring-cloud-netflix 19.0 1.0 0.73 0.5 0.25 3.71 0.14 0.14 0.14 0.0
Vehicle tracking 12.5 1.0 0.74 0.5 0.25 4.25 0.25 0.25 0.25 0.0

1Result repository
https://github.com/clowee/Structural-Coupling-for-Microservices

46

7 DISCUSSION

We presented a carefully selected dataset for microservices-based systems in this study.
We built a tool (MicroDepGraph) to discover the dependencies of services in microser-
vices projects in order to analyze them. We looked at 20 open source microservice
applications, including both demonstration and production operations. The projects in-
clude anywhere from 5 to 25 services. We looked at docker and internal API calls while
analyzing dependencies. This tool can examine any microservice system that uses the
Docker environment, independent of programming languages or frameworks, thanks to
the Docker analysis.

Table 6.4 shows that the average values of structural coupling metrics computed across
all services in each project tend to differ from CBM and the basic degree measure. This
supports our hypothesis that such a statistic might give a distinct perspective on the ser-
vices composition of microservice-based applications. We give a graph representation of
some of the projects in Table 6 to help with the interpretation of such metrics and to cor-
roborate our hypothesis. In particular, as stated in Section 5.1.1, the service composition
of a project may be represented as a directed graph using the estimated coupling values
among the services.

The results demonstrate that structural coupling may be quite useful for developers who
want to see how their services are broken down. Furthermore, these metrics provide two
distinct, but complementary, perspectives on the services decomposition. These kind of
metrics, we think, may be utilized to guide refactoring operations or re-modularization at
the microservice composition level. Additionally, when evolving/migrating systems to the
cloud, they may be utilized to quickly diagnose any improper development collaboration
techniques.

It’s worth noting that CBM [46] can’t be calculated in six of the 17 projects, while Structural
Coupling can be used in all of them. It’s also worth noting that our approach, when
combined with the visual representation of structural coupling, makes it simple to spot
microservices with a high out-degree and compare the Structural Coupling of each node
graphically.

47

7.1 Threats to Validity

During this work we were aware of some limitations, such as under some circumstances,
both SLOCcount and MicroDepGraph may inaccurately assess the projects. Further-
more, when it came to SLOCcount, we just looked at the Java lines of code. We rec-
ognize that certain projects may contain code written in a different language or that the
tool may produce inaccurate results. Another significant risk is that the dataset will be-
come too generalized. The list of projects was compiled using a variety of criteria (see
Section 3.2). Furthermore, some projects are educational or experimental projects that
cannot possibly reflect the entire open-source ecosystem. Furthermore, because the in-
formation excludes industrial initiatives, we are unable to speculate about closed-source
projects.

Inter-service communication is critical in microservices architecture. There are several
methods to accomplish this communication, but it is important to remember that end-
points are smart and pipes are dumb, as outlined by Martin Fowler in his paper [2]. There
are two basic types of microservice communication: synchronous and asynchronous.
It is necessary to know what form of communication is used in the provided microser-
vice architecture in order to identify the architectural pattern. Despite the fact that it is
presently limited to Docker compose files, the sctructutral coupling representation graph
analysis might be expanded to include REST or synchronous calls between services in a
microservice architecture.

However, from the perspective of the architecture, depending solely on REST or syn-
chronous calls is not a good practice and has bad implications for the architecture’s future
evolution. Only relying on inner RESTful service calls, for example, provides tight cou-
pling between services. When simply utilizing REST requests, there is also the problem
of blocking to consider. When a REST service is invoked, it is blocked while waiting for a
response. Because the thread may be executing other requests, this affects application
performance.

48

8 CONCLUSION

Microservice-based systems are becoming more popular, but to the best of our knowl-
edge, there are no proven metrics and dedicated dataset for evaluating service coupling
and cohesiveness. Some scholars (Bogneret al., 2017a) proposed extending SOA cou-
pling metrics to microservices, however these measures have never been confirmed or
used.

This paper attempts to address this need by sharing a dataset and providing the first cu-
rated list of microservice-based applications. The collection is made up of 20 open-source
applications that all use different microservice architectural patterns. Furthermore, the
dataset contains information regarding inter-service calls and dependencies between the
abovementioned projects. Throughout this work, we established the Structural Coupling,
a measure based on structural interdependence between services, to aid professionals
in precisely identifying coupling between services.

In this research, we established the Structural Coupling, a measure based on struc-
tural interdependence between services, to aid practitioners in precisely identifying cou-
pling between services. We tested the structural coupling measure on 17 Open Source
projects built using the microservice architectural pattern, and we provided a visualiza-
tion to illustrate the metric graphically. The findings reveal that structural coupling clearly
demonstrates the degree of coupling between current services, and that the visualization
offered may be used to quickly identify coupling concerns in (micro)services. Unlike other
microservice coupling measures, structural coupling appears to be always relevant, but
CBM [46] is not always applicable because its denominator might be zero.

In the context of graph representation and evaluating dependencies in microservices ar-
chitecture, checking asynchronous calls might be a useful feature, allowing any microser-
vices architecture to be examined using this tool. There are various characteristics that
can be used to do this. First, the tool should be able to determine which microservices
are event generators. The services can then be mapped according to the producers.
Then it may hunt for event listeners for a certain producer, building a dependency-like
connection.

49

Because multiple technologies are utilized to achieve async communication, such as
RabbitMQ or Kafka, analyzing both implementations in a project might be a difficulty in
the future. However, if a general pattern can be found in both technologies, the problem
can be overcome. Because the MicroDepGraph only analyzes the code statically, the
ability to discover dependencies during runtime would have been a good addition. The
findings of both static and dynamic analysis might be integrated in this way to improve
the correctness of the dependency graph of the microservice architecture pattern.

The packaging of the script to compute the measurements and create the visuals into
an Open Source utility is one of the next steps. Other types of links between services
should be researched as far as the application of structural coupling to diverse systems is
concerned. The creation and validation of metrics to evaluate the system decomposition,
including cohesion measures, will be part of future work. Structural Coupling will also be
used to other cloud-native technologies, such as serverless functions, in the future.

50

REFERENCES

[1] Jr, F. P. B. The mythical man-month: essays on software engineering. Reading
(Mass.): Addison-Wesley, 1975.

[2] Lewis, J. and Fowler, M. MicroServices. www.martinfowler.com/articles/microservices.
html, Accessed: December 2016. Mar. 2014.

[3] O’Hanlon, C. A Conversation with Werner Vogels. Queue 4.4 (May 2006), 14–22.
ISSN: 1542-7730. DOI: 10.1145/1142055.1142065. URL: https://doi.org/10.
1145/1142055.1142065.

[4] Microservices Adoption in 2020. URL: https://www.oreilly.com/radar/microservices-
adoption-in-2020/.

[5] Taibi, D., Lenarduzzi, V. and Pahl, C. Processes, Motivations, and Issues for Migrat-
ing to Microservices Architectures: An Empirical Investigation. IEEE Cloud Com-
puting 4.5 (2017), 22–32. DOI: 10.1109/MCC.2017.4250931. URL: http://tuni.
summon.serialssolutions.com.libproxy.tuni.fi/2.0.0/link/0/eLvHCXMwjV1LaxsxEB6angqlaZKWbB9Gh_

RQiB1pH3r05pqYXEwvzVnoCaZ0beI19OdXo10vTsghp12hYZE0s5oZaeYbgKqc0emTPSEYGSU3jYjeGlazGBgzkbnGq8awBnOV71fy5zI5_

DL5jddjakwIIceihRm-5qt9v3F7PDm7SboJ0apO4EQy0.
[6] W, S. and Natis, Y. ‘Service-Oriented’ Architecture, Part 1, Gartner report SPA-401-

068. Apr. 1996.
[7] W, S. and Natis, Y. ‘Service-Oriented’ Architecture, Part 2, Gartner report SPA-401-

069. Apr. 1996.
[8] Papazoglou, M. P. Service -oriented computing: Concepts, characteristics and di-

rections. Proceedings - 4th International Conference on Web Information Systems
Engineering, WISE 2003 (2003), 3–12. DOI: 10.1109/WISE.2003.1254461.

[9] Laskey, K. B. and Laskey, K. Service oriented architecture. Wiley Interdisciplinary
Reviews: Computational Statistics 1.1 (2009), 101–105. ISSN: 19395108. DOI: 10.
1002/wics.8.

[10] C. Matthew MacKenzie and Ken Laskey and Francis McCabe and Peter F. Brown
and Rebekah Metz. Reference Model for Service Oriented Architecture 1.0, Com-
mittee Specification 1. August (2006), 1–31.

[11] Ramamoorthy, C. V. and Tsai, W. T. Advances in software engineering. Vol. 29. 10.
1996, 47–58. ISBN: 9783540897613. DOI: 10.1109/2.539720.

[12] Bianco, P. Evaluating a Service-Oriented Architecture. September (2007).
[13] Almeida, E. de, Alvaro, A., Lucredio, D., Garcia, V. and Lemos Meira, S. de. RiSE

project: towards a robust framework for software reuse. eng. Proceedings of the
2004 IEEE International Conference on Information Reuse and Integration, 2004.
IRI 2004. IEEE, 2004, 48–53. ISBN: 0780388194.

[14] Wolff, E. Microservices: Flexible Software Architecture. eng. 1st ed. Addison-Wesley
Professional, 2016. ISBN: 9780134602417.

www.martinfowler.com/articles/microservices.html
www.martinfowler.com/articles/microservices.html
https://doi.org/10.1145/1142055.1142065
https://doi.org/10.1145/1142055.1142065
https://doi.org/10.1145/1142055.1142065
https://www.oreilly.com/radar/microservices-adoption-in-2020/
https://www.oreilly.com/radar/microservices-adoption-in-2020/
https://doi.org/10.1109/MCC.2017.4250931
http://tuni.summon.serialssolutions.com.libproxy.tuni.fi/2.0.0/link/0/eLvHCXMwjV1LaxsxEB6angqlaZKWbB9Gh_RQiB1pH3r05pqYXEwvzVnoCaZ0beI19OdXo10vTsghp12hYZE0s5oZaeYbgKqc0emTPSEYGSU3jYjeGlazGBgzkbnGq8awBnOV71fy5zI5_DL5jddjakwIIceihRm-5qt9v3F7PDm7SboJ0apO4EQy0
http://tuni.summon.serialssolutions.com.libproxy.tuni.fi/2.0.0/link/0/eLvHCXMwjV1LaxsxEB6angqlaZKWbB9Gh_RQiB1pH3r05pqYXEwvzVnoCaZ0beI19OdXo10vTsghp12hYZE0s5oZaeYbgKqc0emTPSEYGSU3jYjeGlazGBgzkbnGq8awBnOV71fy5zI5_DL5jddjakwIIceihRm-5qt9v3F7PDm7SboJ0apO4EQy0
http://tuni.summon.serialssolutions.com.libproxy.tuni.fi/2.0.0/link/0/eLvHCXMwjV1LaxsxEB6angqlaZKWbB9Gh_RQiB1pH3r05pqYXEwvzVnoCaZ0beI19OdXo10vTsghp12hYZE0s5oZaeYbgKqc0emTPSEYGSU3jYjeGlazGBgzkbnGq8awBnOV71fy5zI5_DL5jddjakwIIceihRm-5qt9v3F7PDm7SboJ0apO4EQy0
http://tuni.summon.serialssolutions.com.libproxy.tuni.fi/2.0.0/link/0/eLvHCXMwjV1LaxsxEB6angqlaZKWbB9Gh_RQiB1pH3r05pqYXEwvzVnoCaZ0beI19OdXo10vTsghp12hYZE0s5oZaeYbgKqc0emTPSEYGSU3jYjeGlazGBgzkbnGq8awBnOV71fy5zI5_DL5jddjakwIIceihRm-5qt9v3F7PDm7SboJ0apO4EQy0
https://doi.org/10.1109/WISE.2003.1254461
https://doi.org/10.1002/wics.8
https://doi.org/10.1002/wics.8
https://doi.org/10.1109/2.539720

51

[15] Conway’s Law. URL: http://www.melconway.com/research/committees.html.
[16] Yahia, E. B. H., Réveillere, L., Bromberg, Y.-D., Chevalier, R. and Cadot, A. Medley:

An event-driven lightweight platform for service composition. International Confer-
ence on Web Engineering. Springer. 2016, 3–20.

[17] Rudrabhatla, C. K. Comparison of event choreography and orchestration tech-
niques in Microservice Architecture. International Journal of Advanced Computer
Science and Applications 9.8 (2018), 18–22. ISSN: 21565570. DOI: 10 . 14569 /

ijacsa.2018.090804.
[18] Jamshidi, P., Pahl, C., Mendonca, N. C., Lewis, J. and Tilkov, S. Microservices: The

Journey So Far and Challenges Ahead. IEEE Software 35.3 (May 2018), 24–35.
DOI: 10.1109/MS.2018.2141039. URL: https://ieeexplore.ieee.org/document/
8354433.

[19] Esposito, C., Castiglione, A. and Choo, K.-K. R. Challenges in Delivering Software
in the Cloud as Microservices. IEEE Cloud Computing 3.5 (2016), 10–14. DOI:
10.1109/MCC.2016.105.

[20] Ranjan, R. The cloud interoperability challenge. IEEE Cloud Computing 1.2 (2014),
20–24.

[21] Bernstein, D. Containers and cloud: From LXC to docker to kubernetes. IEEE Cloud
Computing 1.3 (2014), 81–84. ISSN: 23256095. DOI: 10.1109/MCC.2014.51.

[22] Ibrahim, M. H., Sayagh, M. and Hassan, A. E. A study of how Docker Compose is
used to compose multi-component systems. Empirical Software Engineering 26.6
(2021), 1–27.

[23] Harrison, N. B. and Avgeriou, P. How do architecture patterns and tactics interact?
A model and annotation. Journal of Systems and Software 83.10 (2010), 1735–
1758.

[24] Bass, L., Clements, P. and Kazman, R. Software architecture in practice. Addison-
Wesley Professional, 2003.

[25] Shaw, M. and Clements, P. A field guide to boxology: Preliminary classification of
architectural styles for software systems. Proceedings Twenty-First Annual Inter-
national Computer Software and Applications Conference (COMPSAC’97). IEEE.
1997, 6–13.

[26] Taibi, D., Lenarduzzi, V. and Pahl, C. Architectural patterns for microservices: A
systematic mapping study. CLOSER 2018 - Proceedings of the 8th International
Conference on Cloud Computing and Services Science 2018-Janua.March (2018),
221–232. DOI: 10.5220/0006798302210232.

[27] Akbulut, A. and Perros, H. G. Performance Analysis of Microservice Design Pat-
terns. IEEE Internet Computing 23.6 (2019), 19–27. DOI: 10.1109/MIC.2019.
2951094.

[28] Montesi, F. and Weber, J. Circuit Breakers, Discovery, and API Gateways in Mi-
croservices. (2016). arXiv: 1609.05830. URL: http://arxiv.org/abs/1609.05830.

[29] Tighilt, R., Abdellatif, M., Moha, N., Mili, H., Boussaidi, G. E., Privat, J. and Guéhéneuc,
Y. G. On the Study of Microservices Antipatterns: A Catalog Proposal. Associa-

http://www.melconway.com/research/committees.html
https://doi.org/10.14569/ijacsa.2018.090804
https://doi.org/10.14569/ijacsa.2018.090804
https://doi.org/10.1109/MS.2018.2141039
https://ieeexplore.ieee.org/document/8354433
https://ieeexplore.ieee.org/document/8354433
https://doi.org/10.1109/MCC.2016.105
https://doi.org/10.1109/MCC.2014.51
https://doi.org/10.5220/0006798302210232
https://doi.org/10.1109/MIC.2019.2951094
https://doi.org/10.1109/MIC.2019.2951094
https://arxiv.org/abs/1609.05830
http://arxiv.org/abs/1609.05830

52

tion for Computing Machinery, July 2020. ISBN: 9781450377690. DOI: 10.1145/
3424771.3424812.

[30] Runeson, P. and Höst, M. Guidelines for conducting and reporting case study re-
search in software engineering. Empirical Software Engineering 14 (2 Apr. 2009),
131–164. ISSN: 13823256. DOI: 10.1007/s10664-008-9102-8.

[31] Seaman, C. B. Qualitative methods in empirical studies of software engineering.
IEEE Transactions on software engineering 25.4 (1999), 557–572.

[32] Caldiera, V. R. B. G. and Rombach, H. D. The goal question metric approach. En-
cyclopedia of software engineering (1994), 528–532.

[33] Patton, M. Q. Qualitative evaluation and research methods. SAGE Publications,
inc, 1990.

[34] SLOCCount User’s Guide. URL: https://dwheeler.com/sloccount/sloccount.
html.

[35] Basili, V., Caldiera, G. and Rombach, H. The Goal Question Metric Approach. En-
cyclopedia of Software Engineering-2 Volume Set. Copyright by John Wiley & Sons,
Inc (1994), 528–532.

[36] Newman, S. Building microservices. " O’Reilly Media, Inc."
[37] Fenton, N. and Bieman, J. Software metrics: a rigorous and practical approach.

CRC press, 2014.
[38] Jabangwe, R., Börstler, J., Šmite, D. and Wohlin, C. Empirical evidence on the

link between object-oriented measures and external quality attributes: a systematic
literature review. Empirical Software Engineering 20.3 (2015), 640–693.

[39] Kramer, S. and Kaindl, H. Coupling and cohesion metrics for knowledge-based
systems using frames and rules. ACM Transactions on Software Engineering and
Methodology (TOSEM) 13.3 (2004), 332–358.

[40] Basili, V. R., Briand, L. C. and Melo, W. L. A validation of object-oriented design met-
rics as quality indicators. IEEE Transactions on software engineering 22.10 (1996),
751–761.

[41] Bogner, J., Wagner, S. and Zimmermann, A. Automatically measuring the main-
tainability of service- and microservice-based systems - a literature review. Vol. Part
F131936. Association for Computing Machinery, Oct. 2017, 107–115. ISBN: 9781450348539.
DOI: 10.1145/3143434.3143443.

[42] Bogner, J., Wagner, S. and Zimmermann, A. Towards a practical maintainability
quality model for serviceand microservice-based systems. Vol. Part F130530. As-
sociation for Computing Machinery, Sept. 2017, 195–198. ISBN: 9781450352178.
DOI: 10.1145/3129790.3129816.

[43] Taibi, D. and Systä, K. From monolithic systems to microservices: A decomposition
framework based on process mining. SciTePress, 2019, 153–164. ISBN: 9789897583650.
DOI: 10.5220/0007755901530164.

[44] Panichella, S., Rahman, M. I. and Taibi, D. Structural Coupling for Microservices.
URL: https://orcid.org/0000-0003-4120-626X.

https://doi.org/10.1145/3424771.3424812
https://doi.org/10.1145/3424771.3424812
https://doi.org/10.1007/s10664-008-9102-8
https://dwheeler.com/sloccount/sloccount.html
https://dwheeler.com/sloccount/sloccount.html
https://doi.org/10.1145/3143434.3143443
https://doi.org/10.1145/3129790.3129816
https://doi.org/10.5220/0007755901530164
https://orcid.org/0000-0003-4120-626X

53

[45] Engel, T., Langermeier, M., Bauer, B. and Hofmann, A. Evaluation of Microservice
Architectures: A Metric and Tool-Based Approach. Information Systems in the Big
Data Era. Ed. by J. Mendling and H. Mouratidis. Cham: Springer International Pub-
lishing, 2018, 74–89. ISBN: 978-3-319-92901-9.

[46] Taibi, D. and Systä, K. A Decomposition and Metric-Based Evaluation Framework
for Microservices. Cloud Computing and Services Science. 2020. ISBN: 978-3-030-
49432-2.

[47] Hirzalla, M., Cleland-Huang, J. and Arsanjani, A. Service-Oriented Computing —
ICSOC 2008 Workshops. A Metrics Suite for Evaluating Flexibility and Complexity
in Service Oriented Architectures. 2009.

[48] Bouwers, E., Correia, J. P., Deursen, A. v. and Visser, J. Quantifying the Analyzabil-
ity of Software Architectures. Int. Conf. on Software Architecture. June 2011. DOI:
10.1109/WICSA.2011.20.

[49] Shim, B., Choue, S., Kim, S. and Park, S. A Design Quality Model for Service-
Oriented Architecture. Asia-Pacific Software Engineering Conference. Dec. 2008.

[50] Perepletchikov, M., Ryan, C., Frampton, K. and Tari, Z. Coupling Metrics for Predict-
ing Maintainability in Service-Oriented Designs. Australian Software Engineering
Conference (ASWEC’07). Apr. 2007.

[51] Chidamber, S. R. and Kemerer, C. F. A Metrics Suite for Object Oriented Design.
IEEE Trans. Softw. Eng. 20.6 (June 1994), 476–493. ISSN: 0098-5589.

[52] Rud, D., Schmietendorf, A. and Dumke, R. R. Product Metrics for Service-Oriented
Infrastructures Product Metrics for Service-Oriented Infrastructures. Int. Works. on
Software Metrics (IWSM). 2006.

[53] Yourdon, E. and Constantine, L. L. Structured Design: Fundamentals of a Disci-
pline of Computer Program and Systems Design. Prentice-Hall, Inc., 1979. ISBN:
0138544719.

[54] Savic, M., Ivanovic, M. and Radovanovic, M. Analysis of high structural class cou-
pling in object-oriented software systems. Computing 99.11 (2017), 1055–1079.
DOI: 10.1007/s00607-017-0549-6.

[55] Myers, C. R. Software systems as complex networks: Structure, function, and evolv-
ability of software collaboration graphs. Physical review E 68.4 (2003), 046116.

https://doi.org/10.1109/WICSA.2011.20
https://doi.org/10.1007/s00607-017-0549-6

	Introduction
	Thesis outline

	Background
	Service oriented architecture
	Microservices
	Containerization
	Docker
	Docker compose

	Microservices architectural patterns
	API-Gateway pattern
	Circuit breaker pattern
	Service discovery pattern

	Microservices anti patterns

	Context
	Goal and Research Questions
	Project selection

	Implementation and dataset
	SLOCCount
	GraphML
	MicroDepGraph
	Dataset generation using MicroDepGraph

	Microservices metrics
	Proposed matrices
	Structural coupling
	Microservice coupling measures

	Results
	Discussion
	Threats to Validity

	Conclusion
	References

