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ABSTRACT

Atiqa Ashfaq: Prediction of oxygen uptake (VO2) using neural networks
Master of Science Thesis
Tampere University
Master’s Degree Education in Computing Sciences
April 2022

This thesis focuses on using neural network models for the prediction of oxygen uptake (VO2).
The predictions are made using regression techniques. The dataset contains independent predic-
tor variables such as heart rate (HR), energy expenditure (EE), height, body mass, gender and
age. VO2 is the output dependent variable. The goal is to evaluate and compare the performance
of neural networks to other machine learning techniques such as support vector machines and
multiple linear regression.

Few neural network models have been tested previously in the literature for maximal oxygen
uptake (VO2max) prediction. During the last decade, most approaches have focused on support
vector machines and linear regression equations. In this thesis, data collected at the University
of Jyväskylä is used to create a dataset for the prediction of VO2. A detailed statistical analysis
has been performed to see the relationship between speed, VO2 and energy expenditure. Using
8 different combinations of predictor variables, neural network’s performance and the effect of
predictor variables on the performance is measured. Data pre-processing is performed. R2 value
and root mean square error value is used for measuring the performance of the machine learning
models. Same data set is used for all models to ensure accurate results.

The results of this thesis show that speed, VO2 and energy expenditure have a direct relation-
ship. Males show higher energy produced as compared to females. The neural network model
outperformed support vector machine and multiple linear regression by resulting in accurate pre-
dictions, high R2 value and low root mean square value. The highest accuracy is achieved with the
model containing all predictor variables. The inclusion of HR as a predictor variable is important
due to its effect on the performance of the model.

Further advancements in neural networks can allow more accurate VO2 predictions, the model
can also be used in a wearable device for real-time VO2 prediction. The same approach can be
extended to predict VO2max values.

Keywords: Neural Network, Machine Learning,VO2, VO2max, Prediction Model, Regression
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1. INTRODUCTION

Oxygen uptake (VO2) is the oxygen consumed during daily life activities and exercises.

Maximal oxygen uptake (VO2max) is the maximum amount of oxygen that a body can

extract from the air during intense exercise. VO2max is of significant value in measuring

aerobic fitness level. VO2max is often used to assess athletes’ aerobic endurance and

is considered a measure of cardio-respiratory fitness (CRF) in both medical and non-

medical applications [1]. Severe cardiac events such as stroke can occur as a result of

low CRF [2]. In many pieces of research, authors have emphasized the importance of im-

proving or maintaining an optimal level of CRF because a higher fitness level significantly

reduces the risk of heart and lung diseases, therefore improving the quality of life. Thus,

CRF should be monitored regularly. The prediction of VO2 and VO2max is an important

component of health monitoring including CRF and fitness improvement [3].

Figure 1.1. VO2max graph

VO2 is directly measured during the graded exercise test (GXT). The test is performed

using a maximal intensity exercise on a treadmill or cycle ergometer in a laboratory under

strict monitoring. VO2max is measured when no increase in oxygen uptake is noticed

despite an increase in exercise intensity (steady-state peak oxygen uptake shown in Fig-

ure 1.1) [4]. These direct tests are expensive as they require administered protocol and

monitoring. They can also pose severe health risks as the participant reaches its max-
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imal heart rate [5]. However, direct testing using maximal tests gives accurate VO2max

prediction. Due to the disadvantages of the maximal test, other methods such as the

non-exercise test and sub-maximal test have been developed for determining VO2max.

These methods indirectly predict VO2max without requiring the need for maximal exertion

of the participant.

Sub-maximal tests use exercise predictor variables to predict VO2. The test is performed

on a treadmill or a track. The advantages include easy to administer test, less time

consuming and safer as compared to maximal tests. Furthermore, sub-maximal exer-

cise testing allows evaluating participants’ adaptations to exercise and instructs them

to choose a suitable exercise intensity. These tests have proven to be less precise than

maximal tests while being more precise than non-exercise tests [6]. However, the use

of sub-maximal tests with modern machine learning techniques such as neural networks

can result in accurate VO2 predictions.

Non-exercise tests are dependent on honest self-reporting of the participant regarding

exercise. These tests are independent of using expensive laboratory equipment and can

be easily administered to a larger population. Non-exercise tests may be preferred by

researchers over maximal and sub-maximal tests due to their simplicity. Hybrid models

(combination of non-exercise and sub-maximal tests) can give accurate results for VO2

prediction without posing severe health risks. However, the selection of a suitable predic-

tor variable plays a role in accurately determining VO2 [7].

In the literature, many prediction models based on maximal, sub-maximal and hybrid

testing have been developed for VO2max. [6] lists machine learning models for VO2max

prediction from 2010 - 2015. Models between 2016 - 2021 are listed in [8]. Machine

learning approaches, such as artificial neural networks (ANN), have seldom been utilized

as prediction models to predict VO2max with given input characteristics such as age,

gender, and body mass index (BMI) as the majority of published models are built using

regression equations or machine learning techniques such as Support Vector Machines

(SVMs) and Multiple Linear Regression (MLR).

Deep neural network-based artificial intelligence (AI) applications have dominated a va-

riety of industries in the last decade such as face recognition, language processing, and

financial analysis. While the notion of representing a decision function with a network

of artificial neurons was first articulated several decades ago, artificial neural networks

have only recently acquired popularity. ANNs learn from existing data and are analytic

methodologies capable of predicting new observations from other observations. They

are based on the cognitive system’s learning process and the brain’s neurological func-

tions. In the last decade, there has been a spike in interest in ANN. Because ANNs may

generate nonlinear input-output mappings, they have shown significant advantages over

more standard regression techniques. Traditional strategies, which rely on linear or ba-
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sic nonlinear models, are incapable of capturing complicated connections within obtained

data, i.e., they are vulnerable to the underfitting problem. In medical fields, ANN based

prediction models have been extensively employed. However, there is not enough prior

research to assess the ability of ANN for prediction purposes in sports science to estimate

physical fitness data and VO2.

1.1 Objectives of the thesis

The objective of this thesis includes developing an ANN model for predicting VO2 from

the available data. The performance of the ANN model is then compared with the LSTM

based neural network.

An extensive literature review is included regarding previous studies involving neural net-

works for VO2max prediction. Dataset is created for training, validation and test set. The

effect of different combinations of predictor variables on model performance and VO2 pre-

diction is evaluated. Evaluation metrics such as R2 and RMSE are used to measure the

accuracy of the models.

Furthermore, the outcomes of the neural network based model are compared with differ-

ent machine learning models proposed in the literature specifically, multiple linear regres-

sion (MLR) and support vector machine (SVM). This research aims to address three main

hypothesis.

Hypothesis 1: An increase in running speed results in an increase in VO2 which in-

creases energy expenditure.

A detailed statistical analysis is performed to observe the increase in energy expenditure

as the running speed and VO2 increase. Statistical analysis includes the use of graphs,

mean and standard deviation.

Hypothesis 2: Neural network outperforms other machine learning techniques, as indi-

cated by higher R2 and lower RMSE values.

Machine learning techniques used to predict VO2max in the last decade are identified and

an extensive literature review is carried out. The results are compared to investigate how

neural networks performed as compared to other machine learning models (SVM, MLR).

Hypothesis 3: Increasing the number of independent predictor variables results in an

increase in prediction accuracy.

The effect of predictor variables on prediction accuracy is investigated by using 8 different

combinations of predictor variables.
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1.2 Organisation of the thesis

The following is how this thesis is organized: Chapter 2 covers the important concep-

tual background of VO2, a literature review on the VO2max, and machine learning. The

methods for data gathering and processing are described in Chapter 3. It is followed

by Chapter 4, which offers the results, discussion and analysis of the models that have

been developed. Following that, Chapter 5 discusses limitations and future suggestions.

Finally, the conclusion is presented in Chapter 6.
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2. MACHINE LEARNING FOR VO2 PREDICTION

Supervised learning is the use of known data to do predictions on fresh data. The re-

quirement of the input/output configurations contained in the known data differentiates

supervised learning from unsupervised learning. The primary goal of the supervised ap-

proach is to learn how to predict an output variable y from n input variables x1, x2, ..., xn.

For both regression and classification, supervised machine learning algorithms are ap-

plied. Classification is the process of determining which category an item belongs to. The

goal of regression is to predict a property associated with an object. The main difference

between classification and regression problems is that in regression, the output variable

y is continuous, whereas, in classification, it is discrete. The regression task in this thesis

is to predict the VO2 value.

2.1 Oxygen Uptake (VO2) & Maximal Oxygen Uptake (VO2max)

The term "oxygen consumption" is the amount of oxygen that can be extracted from the

air. Many physically demanding jobs use VO2 values to determine an individual’s ability

to execute work tasks successfully. In this thesis, relative VO2 values are used as a de-

pendent variable [9]. VO2 is the difference between oxygen inhaled and oxygen exhaled

in a specified time. Absolute VO2, measured in L min1, refers to the quantity of oxygen

consumed by a body, independent of size, gender, or age, whereas relative VO2 refers to

the absolute VO2 value modified to a reference (mL kg−1 min1). Relative VO2 is depen-

dent on several factors such as age, gender, environmental conditions, and fitness level

[10].

VO2max is the largest volume of oxygen utilized by a person while exercising at maximal

capacity, and it is generally measured as a relative rate in millilitres of oxygen per kilogram

of body mass per minute (mL kg−1 min1) [7, 11]. It refers to the maximal rate of oxygen

consumption during exercise. VO2max essentially assigns a monetary value to this rate

of energy expenditure. The larger the VO2max, the greater the oxygen consumption at all

levels of exertion. This means that the muscles get more oxygen to transform nutrients

into fuel which is used by muscles to perform. The capacity to supply oxygen to active

muscles, as well as the effectiveness with which muscles utilize the oxygen, is measured

by VO2max [12].
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2.2 Neural Networks

The brain is capable of performing complex perceptual activities such as face recognition

and speech as well as control operations (e.g. body movements and body functions).

The brain has the advantage of having a highly parallel computing structure for informa-

tion processing. The human brain has massive neural networks capable of executing

cognitive, and control tasks at which humans excel. Brain neurons receive messages

(electric impulses sent by chemical processes) from other neurons, process them, and

transfer them to their connections [13]. A simple diagram of a human neuron is presented

in figure 2.1 A.

Neural networks have been constructed as expansions of mathematical models of the

human nervous system. Artificial neurons, often known as neurons or nodes, are the

fundamental processing units of neural networks inspired by human neurons. Synaptic

effects are depicted in a simple mathematical model of the neuron by connection weights

that alter the effect of associated input signals. Neurons’ non-linear behavior is repre-

sented by a transfer function [14]. The neuron impulse is then calculated as the weighted

sum of the input signals after they have been converted by the transfer function. The

learning ability of an artificial neuron is acquired by adjusting the weights in accordance

with the learning method of choice. A simple diagram of an artificial neuron is presented

in figure 2.1 B.

Figure 2.1. Model of human neuron cell (A) and artificial neuron (B) [13]

2.2.1 Artificial Neural Networks

Artificial Neural Network (ANN) approaches, especially deep ANNs, which are gener-

ally referred to as Deep Learning, are largely responsible for recent key achievements

in Artificial Intelligence. ANNs are optimization algorithms modelled after biological brain

networks [15]. A neural network contains computer processing elements known as neu-

rons, with the architecture of the network created by the links (directed edges) between

neurons. Layers are commonly used to arrange neurons, and a network is normally made

up of several layers that are separated into three categories: input, hidden, and output
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layers. The input layer consists of neurons that take task input data in the form of scalars,

vectors, tensors, or a mix of these. The input data for an object identification task can be

an image, but the input data for time series prediction could be time-series data of recent

historical values. As a result, the number of input neurons or the size of the input layer is

comparable to the magnitude of the input signal. In a neural network, there could be no

hidden layers, a single hidden layer, or multiple hidden layers. A hidden layer neuron gets

the output of one or more other neurons as inputs, which are then adjusted in a nonlinear

way to form its output. The output layer neurons are responsible for producing the neural

network’s correct outcome, which can be any expected quantity such as the likelihood of

things appearing in the input image or the projected value of VO2 [16].

In a neural network, each neuron symbolizes a mathematical formula that is typically

described by weights. A neural network works hierarchically, processing data from the

input layer to the output layer through hidden layers. Because of its architecture, when

the configurations of a neural network are properly adjusted for a certain job, the neural

network is able to obtain data representations of greater degrees of abstraction. The

act of modifying the characteristics of a neural network to accomplish a given problem

using a collection of sample data is known as training or optimization. As a consequence,

the training set refers to the data used to improve neural networks. Training a neural

network necessitates the use of a cost function, also known as a loss function. This

function measures how well a network performs against a set of observations. Training is

sometimes presented as a cost-benefit analysis, with lower cost/benefit values equating

to higher performance. The cross-entropy function is commonly used as a loss function in

classification tasks, although the root mean squared error is commonly used in regression

assignments. The most often used methods for training neural networks are stochastic

gradient descent approaches because the majority of neural networks represent highly

nonlinear functions. When minimising the loss function, these approaches are based on

gradient information to adjust the parameters’ values on a frequent basis, as the name

implies [17]. The most common optimizers are stochastic gradient descent (SGD) with

momentum and ADAM.

Dedicated neural network architectures have been designed to handle a variety of input

data formats, including vectors, images (2D/3D tensor), and time series. For common

input data encoded as a vector, the traditional Multilayer Perceptron (MLP), which is con-

structed by entirely connected layers, is widely utilized. "Fully connected" means that

every neuron in a completely connected layer is coupled to every other neuron in the

preceding layer.
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Figure 2.2. Simple mathematical model of a neuron [18]

Convolutional Neural Network

Convolutional neural networks (CNN) are used for pictures, videos, or any general input

material with considerable spatial information. A CNN is composed of convolution layers,

each of which has a number of convolution neurons/filters that slide over multiple dimen-

sions of the input tensor [18]. This layer combines convolution with a learnable kernel,

allowing the network to learn patterns e.g. edges, corners, arcs in pictures. Other layers,

such as pooling and dense layers, may be present in a convolutional neural network.

Before transmitting input to the next layer through an activation function, a normal neu-

ral network conducts a linear combination of the previous layer’s output and the current

layer’s vectors. Convolution (also known as correlation in signal processing) is performed

between the output of the previous layer and the kernel (a small matrix) of the current

layer in a CNN, which then delivers input to the next layer through an activation function.

They differ from ANNs’ typical (dense) layers such that they were created to collect and

process image data.

Recurrent Neural Network

In time-series data processing, recurrent neural networks (RNNs) are a popular choice

for interpreting input data that contains essential temporal information. These neural net-

works were created with the sequential type of information in input data in consideration.

Feedback links are present in recurrent networks. RNNs are neural networks that feed

their output back into their inputs recursively and are commonly employed for sequence

data such as text, audio, video, and so on [19].

Interestingly, recurrent neural networks have been adjusted to take into account prior

input data and also new entered data when performing a task. RNNs do this by storing

the context of the data being fed into the network in an "internal state," which is then used
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to predict the outputs for the following inputs. The most prevalent type of recurrent layers

is LSTM (Long Short Term Memory): their cells include tiny, in-scale ANNs that decide

how much previous data should flow through the network.

Artificial Neural Network

In the modelling of complicated real-world scenarios, ANNs are critical in comprehending

the dynamic response of time series data. Artificial neural networks (ANNs), like biolog-

ical nervous systems, are a type of artificial intelligence that can learn on its own. They

are inspired by real neurons and have a comparable architecture to the nervous system.

ANNs are data processing and knowledge representation structures made up of densely

linked adaptive simple processing components that can execute massively parallel com-

puting [16]. The capacity to adapt is the most important feature of an ANN.

High parallelism, resilience, the capacity to manage complicated data, failure tolerance,

the ability to accept inaccurate input, and generalisation are some of the other advantages

of ANNs. There are three parts to an ANN: node properties, network structure, and

learning rules.

Design of Artificial Neural Network

An ANN’s architecture is made up of numerous layers and may be built in a variety of

ways. Layers, which are linear arrays, are used to arrange the nodes of the ANN. The

first layer of an ANN is the input layer, and the final layer is the output layer, with one

or more hidden layers in between. Signal flow from input to output units is strictly in the

feed-forward direction in feed-forward networks. Because there are no feedback linkages,

data processing can take place across several layers. [20].

In other applications, changes in the activation levels of the output neurons are substantial

enough that the dynamical behaviour is the network’s output. Depending on the qualities

and requirements of the application, there are alternative neural network topologies. A

neural network must be constructed in such a way that applying a collection of inputs

results in the intended set of outputs. Figure 2.3 shows a simple diagram of an artificial

neural network with input, hidden and output layers.

Choosing the number of ANN layers, the number of nodes in each layer, and the node

links are all part of the architectural design process. There is no such thing as a universal

model design that solves all problems. Instead, the design of the neural network must

be adapted to the unique challenge at hand, and it is common to go through numerous

iterations and changes before finding the best architecture for the task.

An ANN’s basic simple processing unit is referred to as a node. A node gets many inputs

from the ANN’s other nodes, which are coupled with various weights, and computes their
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Input
layer

Hidden
layer

Output
layer

Input 1

Input 2

Input 3

Input 4

Input 5

Ouput

Figure 2.3. Simple diagram of an artificial neural network

weighted total [18].

A mathematical formula that aids in determining the output is known as an activation

function. Each node in a network is given an activation function. In its most basic form, it

decides whether or not a node should be functional; for example, a value of zero means

the node will not be active, but a value of one means the node will be enabled. In the con-

struction of ANNs, the sigmoid function is the most widely employed activation function.

Figure 2.4 shows a sigmoid activation function. The sigmoid function returns a number

between 0 and 1.

−6 −4 −2 0 2 4 6

0.5

1

σ(x)

Figure 2.4. Sigmoid Activation function

The hyperbolic tangent function is another popular activation function shown in Figure
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2.5. The hyperbolic tangent function can also yield negative values, with a range of -1 to

1.

−6 −4 −2 2 4 6

0.5

1

−0.5

−1

tanh(x)

Figure 2.5. Hyperbolic Tangent Activation function

The activation function is determined by keeping in consideration the task, training data,

and other parameters. Two more activation functions are the exponential linear unit (ELU)

and the rectified linear unit function (RELU).

−6 −4 −2 2 4 6

2

4

6
max(0,x)

Figure 2.6. RELU function

Because of non-linear activation functions such as rectified linear unit (RELU, Figure 2.6),

hyperbolic tangent, and exponential linear unit (ELU, Figure 2.7), ANN-based prediction

model may incorporate not just linear but also non-linear characteristics of the target

system. This is the most significant benefit of the ANN-based prediction which allows

the ANN model to be utilized as a strong instrument, radically altering the availability of

research and practice in many disciplines.
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Figure 2.7. ELU

Generalisation

Although a neural network may be trained with an existing dataset, its true usefulness is

achieved when it can perform efficiently for fresh data sets. The ability of ANNs to general-

ize is well known. In order for the ANN to generalize, it must be well-suited to the dataset,

as underfitting or overfitting may result in inefficient performance. Overfitting of the data

sets reduces the model’s generalization ability, resulting in unreliable performance when

applied to fresh unanticipated data [17].

Overfitting occurs when an ANN learns too much about the training dataset, accumulating

complexities and noise to the point that it can no longer properly recreate the original

patterns. It would then have a detrimental impact on the ANN’s performance with the

new data. The model acknowledges and learns noise and unexpected fluctuations in the

training set as ideas, even though they have nothing to do with the incoming data sets,

which explains the poor performance. Underfitting is a learning process in which an ANN

is not able to obtain enough information from the training dataset. As a result, given more

data samples, the underfitted ANN will be less efficient [17]. Figure 2.8 shows an example

of underfitting, good fit, and overfitting.

Figure 2.8. Generalisation [21]
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The weights of an ANN are modified to train it, which is done using an optimization ap-

proach to determine the ideal weights. Stochastic gradient descent (SGD) is a very suc-

cessful optimization approach. The gradient descent technique iteratively takes the neg-

ative gradient to continue in the descending direction and eventually reach the desired

minimum. The gradient shows how a variation in weight impacts the total reduction. Crit-

ical considerations include learning rate and weight initialization. The gradient descent

learning rate controls how much the weights change from iteration to iteration [22]. The

gradient descent method will take an exceptionally long time to attain convergence if the

learning rate is too low. The method, on the other hand, fails to converge if the learning

rate is too high.

With a lower learning rate, the gradient descent approach may converge to the minimum.

However, there is a small risk that gradient descent will find a local minimum instead of a

global minimum. This can be overcome by running SGD several times. When the learning

rate is too high, the approach diverges. The learning rate can be modified throughout the

training process to improve learning [23]. However, the best learning rate for a model on a

particular dataset cannot be determined analytically. Therefore, finding a suitable or best

learning rate is done using trial and error. The phrase "learning rate decay" describes

how the pace of learning decreases with time. The most straightforward technique to

implement learning rate decay is to progressively lower the learning rate value from a

large initial value to a small one [24].

"Adam," a stochastic gradient-based optimizer, was created as a substitute approach

for SGD. Adam is a stochastic objective function first-order gradient-based optimization

method based on adaptive lower-order moment predictions. Adam is well-suited to sce-

narios involving huge datasets because of its efficiency and robustness, as well as the

fact that it does not require a lot of processing RAM. It may also be used to solve problems

with gradients that are too noisy or sparse.

To prevent overfitting the training data, a dropout regularization is employed for network

optimization. Dropout is a regularization method for fully connected network layers. It is

accomplished by learning network weights, which provide a tradeoff between prior layer

outcomes and hidden layer outcomes obtained by using dropout with a likelihood value

p, commonly known as the dropout rate [25]. This implies that the dropout operates

by eliminating hidden layer inputs on a probabilistic basis, making network nodes more

robust to inputs in general.

To avoid further overfitting, an early stopping approach is employed to discontinue training

before it becomes excessive. It can take a long time to train an ANN with a large number

of epochs, and after a certain number of epochs, the training will no longer enhance

performance but instead will increase the loss.

The early stopping strategy monitors, after each epoch, the validation loss and terminates
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training if the loss begins to rise. However, because the ANN’s performance may first

decline before improving owing to noise in the training data, the initial signal that the loss

is rising is not always the best moment to halt training. To remedy this, the early halting

strategy now includes a patience option [26]. This is the number of epochs to wait before

ending if the model’s performance does not improve.

2.3 Literature Review

Based on a single-stage sub-maximal treadmill running test, Akay et al., (2010) [27] built

a reliable ANN-based prediction model for VO2max of healthy adults. A maximal graded

exercise test (GXT) was performed on participants (81 men and 45 women), age ranging

from 17 to 40 years. The ANN prediction model was built using gender, age, body mass,

stable heart rate, and running pace. The measurement findings of standard error of esti-

mate (SEE) and correlation coefficient (R) are more accurate when compared to previous

prediction models constructed using the Multiple Linear Regression (MLR) model. SEE

and R values were reported to be 1.8 and 0.95, respectively. Good performance is indi-

cated by a high R and a low SEE rating.

Jensen et al., (2021) [28] employed a maximum rowing ergometer test for VO2max predic-

tion model. In this regard, 34 male club rowers (18–30 years) provided data on maximal

power output (MPO) in an individual 72-minute incremental (INCR) test and mean power

in a 2k (W2k) rowing ergometer test, and the rowers’ maximum VO2 values were then

estimated using a regression equation. The provided data was utilized to train the model

using a linear regressor, and the following extremely simple prediction models were cre-

ated using MPO and W2k:

V O2max = 11.49 ∗MPO + 810 (2.1)

V O2max = 10.96 ∗W2k + 1168 (2.2)

These models have relative errors of 3.1% and 3.6%, R value of 0.95 and 0.94 and SEE

values of 0.136 and 0.157 for both equations respectively.

The goal of Park et al., (2021) [29] was to create an ANN model to estimate VO2max in

healthy persons using a multistage 10m shuttle run test (SRT). This study included 118

healthy people (59 men and 59 women) (38.3 ± 11.8 years, men 37.8 ± 12.1 years, and

women 38.8 ± 11.6 years). Age, gender, blood pressure (systolic and diastolic), waist and

hip circumferences, body composition (height and weight) and, waist-to-hip ratio (WHR)

were all predicting variables. Case 3 produced the best prediction outcomes with an R2

= 0.8206, adjusted R2 = 0.7010 and RMSE = 3.1301 using waist and hip circumference,

age, height, weight, gender, BMI, WHR, blood pressure (systolic and diastolic), number
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of round trips and final speed in 10 m SRT. Case 1 produced the worst results with R2 =

0.7765, adjusted R2 = 0.7206 and RMSE = using age,height, weight, gender, BMI, num-

ber of round trips and final speed in 10 m SRT. Case 2: using age, height, weight, gender,

BMI, WHR, waist and hip circumference, number of round trips and final speed in 10 m

SRT resulted in R2 = 0.7909, modified R2 = 0.7072, RMSE = 3.3798 [29]. The prediction

accuracy of Case 2 is lower than Case 3’s but higher than Case 1. However, according

to the prediction results, all cases performed admirably. The model’s performance was

efficient in this brief article, which created an ANN-based prediction model for healthy

people’s VO2max.

Beltrame et al., (2016) used an ANN model to predict VO2max [30]. 10 healthy young

adults (5 males, height 178.4 ± 11.2 cm, 29.8 ± 7.6 years old, body mass 75 ± 11.3

kg; 5 females, height 165.2 ± 7.5 cm, 22.8 ± 0.7 years old, body mass 62.1 ± 5.8 kg)

provided pulse rate and treadmill data. The data collected was utilized to train an artificial

neural network (ANN) to estimate VO2max based on the speed and grade of the treadmill,

gender, heart rate, exercise time and BMI. Because of its minimal bias and good linear

correlation, the ANN had an R-value of 0.97, suggesting that the predictions were correct.

Based on data from nine individuals, the authors developed a separate model with seven

predictor variables: BMI, gender, exercise duration, recovery time, grade and speed of

the treadmill, and HRmax. Cross-validation was performed using a 10-fold leave one out

technique. With 11 hidden neurons and one output neuron, the model has an R-value of

0.98. Because of its simplicity, the suggested model would operate for a wide variety of

people regardless of parameters such as height and weight, but more study is needed to

validate this hypothesis and enhance forecast accuracy.

Borror et al., (2019) [16] used ANN to predict answers using a sub-maximal test. 12

healthy adult adults (age 21.1 ± 2.5 years, height 179.3 ± 8.9 cm, body mass index 82.1

± 11.7 kg) cycled for 50 minutes at different intensities while having on heart rate moni-

tors. Among the variables used to test, train and validate the ANN were heart rate, power

output, the time derivative of heart rate, body mass and cadence. The model’s accuracy

was evaluated using a 12-fold hold-out cross-validation procedure. SEE and R-values

were used to measure the model’s accuracy. The model produced an R-value of 0.91 ±
0.04 and a SEE of 3.34 ± 1.07. A wide variety of exercise intensities and durations were

investigated, resulting in the development of more robust models employing ANN. The

approach was shown to be less reliant on rigid procedures. The projected and goal data

showed reduced variation, suggesting that ANN might greatly improve energy expendi-

ture estimations. As a result, this straightforward method has the potential to improve the

practicability of tracking VO2. The study’s limitations were small sample size and a narrow

range of subject ages. More research needs to be conducted to put the proposed ANN

to the test on a larger dataset with individuals of various ages and levels of fitness. Other

exercises, such as walking, might be accommodated by the approach.
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Zignoli et al., (2020) [31] employed a recurrent neural network (RNN) to develop VO2max

prediction models utilizing cardiovascular parameters from seven male volunteers (body

mass 76 ± 6.6 kg) during cycling using easily obtained inputs (intensity Levels, peak

power output, weight, respiratory frequency and HR). An RNN model with three hidden

layers of 32 neurons each, one hidden layer of 10 neurons, and one output neuron cor-

rectly predicted VO2max. The authors also demonstrated that a bigger dataset may be

utilized to construct an accurate model without the need for sophisticated methods to

create the training and testing datasets. The models had R-values of up to 0.94.

Haneen Alzamer et al., (2021) [32] focused on some recent advancements in VO2 predic-

tion using machine learning in studies published between 2005 and 2020. The research

includes an in-depth look into the underlying ideas of oxygen uptake measurements and

ML application in sports sciences. As previously stated, several effective prediction mod-

els for VO2max have been developed. Complex processes and health hazards connected

with direct prediction methods are no longer impediments since models are commonly

built utilizing data obtained through non-exercise, exercise, or hybrid methods. The paper

revealed that selecting between different machine learning algorithms required finding

the right combination of high R and low SEE. Because of the small sample size, more

research on sophisticated machine learning techniques for VO2max prediction is needed.

Brabandere et al., (2018) [33] developed a new model for estimating VO2max based on

accelerometer and heart rate data collected during submaximal running. They studied

data from 31 recreational runners (16 women and 15 men) aged 19 to 26 who completed

a treadmill maximum incremental test. During the test, the patients’ heart rates and accel-

eration were continually recorded at three different sites (the upper back, the lower back,

and the tibia). A wide variety of variables were collected during the warm-up and the first

three phases of the test, and the most important ones were picked using a data-driven

strategy. The researchers observed that combining accelerometer and HR data gener-

ated the best model, with a mean absolute error of 2.33 ml.kg − 1.min− 1 and a mean

absolute percentage error of 4.92 %. The model takes into account gender, the inverse

of the average heart rate, body mass and the variation of total acceleration during the

warm-up section of the treadmill test [34]. The approach is a useful tool for recreational

runners of the same age group who want to estimate their VO2max from moderate inten-

sity treadmill running. It recommends using two body-worn sensors: a monitoring system

and an accelerometer placed on the tibia. The results showed that VO2max is predictable

using a mix of descriptive data, heart rate variables, and accelerometer features derived

from moderate intensity running data. The model is constrained by two factors. First,

given the study’s participants were recreational runners aged 19 to 26, the model is un-

likely to contribute to elite runners or those outside this age range. Developing models to

predict VO2max from elite athletes as well as people of all ages might be a fascinating

future direction. The treadmill running activities are also incorporated into the model. The
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authors suggested that it would be interesting to look into forecasting VO2max depending

on outside running in the future [34].

Bradshaw et al., (2005) [35] developed a regression equation for estimating VO2max us-

ing N-EX data. To determine VO2max, all 100 individuals (ages 18-65) underwent a max-

imal graded exercise test (GXT). An N-EX prediction equation was created using multiple

linear regression. In their investigation, they employed cross-validation. Using standard-

ized beta-weights, they discovered that the PFA variable best predicted VO2max, followed

by age, BMI, gender, and PA-R. They created an N-EX regression model that produced

satisfactory results and was a simple method for calculating VO2max in adult women and

men. The SEE and R values in their analysis were 3.63 and 0.91, respectively.

VO2max prediction models were created using support vector regression (SVR) and mul-

tilayer feed-forward neural networks (MFFNN) in Akay et al., (2009) [36]. The VO2max

values of 100 subjects were measured using a maximal graded exercise test (50 men

and 50 females). Two prediction models were developed using gender, BMI, age, PFA

to walk, run or jog particular distances, and PA-R. 10-fold cross-validation was used on

the dataset. The predictions of the SVR and MFFNN models were compared. Their best

SEE and R were reported to be 3.23 and 0.91, respectively [37].

In Ashfaq et al., 2022 [8], a detailed review of recent advances in past five years (2016

- 2021) for VO2max prediction is available. The article explains, in detail, the most used

machine learning approaches (SVM, MLR) for VO2max prediction. A comparison of all

the machine learning approaches used in the past five years has been done, and it is

seen that neural network based models have shown the highest performance in terms

of SEE/RMSE and R values. The use of diverse data set and difference in sample size

in different models made it difficult to assess the accuracy of the comparison. Hence, it

was suggested to have the same dataset and sample size for all models in future. In this

thesis, same dataset and sample size has been used for all models.
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3. METHODS

3.1 Data Collection and Understanding

The data used in this thesis was collected using the data logger that has been developed

and tested during the previous Academy-funded project OpenKin (2015-2019). The data

logger integrates accelerometers, gyroscopes, and a GPS receiver, and can accurately

measure and store most of the important kinematic parameters. It has been extensively

tested at the University of Jyväskylä for walking and running tests. The design of the data

logger and some field test results are described in [38]. The data used in this thesis is

recorded simultaneously on the data logger and measurement system available at the

University of Jyväskylä and Tampere University: Oxygon mobile oxygen uptake measure-

ment system. This system provides gold standard data for training and evaluating the

machine learning algorithms. The experimental part was performed at the University of

Jyväskylä.

The dataset includes some independent (input) parameters and one dependent (output)

parameter (VO2). Different neural network models are built to predict VO2 utilizing different

input parameters of datasets, as will be explained in the following sections. The dataset

utilized in this thesis involves 18 healthy participants ranging in age from 22 to 34 years

(9 females and 9 men). The description of the dataset is given in Section 3.2.

During the exercise testing, all individuals were given a questionnaire and an informed

consent statement to complete. All individuals were provided information on the exercise

test before testing. The subjects walked and ran at a range of speeds same for all subjects

(shown in 4.1). The highest VO2 value at each speed was obtained from each subject’s

VO2 values. The subjects walked/ran at each speed for 3 minutes. The VO2 values

used are the average over the last 1 minute, which ideally represents steady state oxygen

consumption.

Oxygon mobile measurement system

The processed files in the Openkin folder contains height, body mass, age, gender. Res-

piratory gas data from the resting collection sitting at the edge of the field and the field

measurements at different walking and running speeds are available.
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Programming Environment

Python (ver.3.6) was used to create and build the neural network. The neural network was

officially designed and tested using Keras, an open-source framework. Users may define

and train neural networks with Keras, which is based on TensorFlow 2.0. Sequential

neural networks, RNNs, and CNNs are all supported by Keras. Google designed and

published TensorFlow, a python library for rapid numerical computing. It is a foundation

library that may be used to directly create deep learning models or to make the process

easier by using wrapper libraries developed on top of TensorFlow.

3.2 Data Analysis and Pre-processing

Data analysis was done using the data available in the OpenKin folder from Oxygon mo-

bile measurement system. Questionnaire data (height, body mass, age and gender) was

analysed using statistical analysis tools. A separate analysis was done for both males and

females. The standard deviation and mean of each variable were taken for better under-

standing. Table 3.3 shows questionnaire data from 20 participants (males and females),

including height, body mass, age and gender. Each participant has a unique identification

number. Letter "M" is used for Males and "F" is used for females in the gender column.

Total Participants: 20 Mean Std. Deviation

Age (yrs) 22 - 34 27.8 3.651

Height (cm) 162.6 - 191.0 176.24 7.67

Body mass (kg) 54.0 - 98.6 74.21 12.945

Table 3.1. Standard Deviation and mean of data variables for all participants

Male Female

Count 10 10

Age (yrs) 27 - 34 22 - 30

Height (cm) 164.8 - 191.0 162.6 - 177.4

Body mass (kg) 73.9 - 98.6 54 - 78.3

Table 3.2. Data (Range) from participants (male and female)

This information about the participants is listed in Table 3.1 and Table 3.2. Figure 3.1

shows box plots for age, body mass and height of the participants for better visualisation.

Null values were eliminated and data from 18 participants were used for VO2 prediction

models. Table 3.4 shows the predictor variables (Height, body mass, age, gender, EE,

HR, VO2) for 18 participants used for prediction models.
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Identification Height (cm) Body Mass
(kg)

Age (yrs) Gender

OK001M 188 78.4 32 M

OK002F 175 59 22 F

OK003F 170 58.1 23 F

OK004F 168.5 54 30 F

OK005M 191 98.6 30 M

OK006F 178 63 26 F

OK007M 176.7 82 27 M

OK008F 177.4 66.3 29 F

OK009F 162.6 57.3 25 F

OK010F 167.7 63.7 25 F

OK011M 178 89.2 27 M

OK012F 174 67.5 22 F

OK013M 179.8 73.9 29 M

OK014M 179 79 29 M

OK015F 168.8 78.3 23 F

OK016F 175.1 72.4 29 F

OK017M 182 77 34 M

OK018M 180.6 95.4 30 M

OK019M 187.5 85.5 34 M

OK020M 164.8 85.6 30 M

Table 3.3. Data from 20 participants

(a) Age (b) body mass

(c) Height

Figure 3.1. Box plot for height, body mass and age
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Identification Height
(cm)

Body
mass
(kg)

Age
(yrs)

Gender EE HR VO2

OK001M 188 78.4 32 M 17.580 163.5 44.848

OK002F 175 59 22 F 14.239 189.4 48.269

OK003F 170 58.1 23 F 12.081 162.7 41.588

OK004F 168.5 54 30 F 12.164 182.3 45.053

OK005M 191 98.6 30 M 19.572 198.537 39.7

OK006F 178 63 26 F 13.342 154.3 42.355

OK007M 176.7 82 27 M 16.079 199.8 39.219

OK008F 177.4 66.3 29 F 14.250 151.2 42.986

OK009F 162.6 57.3 25 F 11.789 173.354 41.148

OK011M 178 89.2 27 M 19.162 186.564 42.965

OK012F 174 67.5 22 F 12.912 168.461 38.260

OK013M 179.8 73.9 29 M 15.811 156.571 42.789

OK014M 179 79 29 M 16.503 190.9 41.779

OK015F 168.8 78.3 23 F 13.015 175.843 33.245

OK016F 175.1 72.4 29 F 17.754 188.662 45.292

OK017M 182 77 34 M 16.912 188.845 43.927

OK019M 187.5 85.5 34 M 18.147 152.759 42.448

OK020M 164.8 85.6 30 M 16.344 198.4 38.187

Table 3.4. Predictor variables for 18 participants including exercise and questionnaire
data

3.2.1 Evaluation metrics

Model assessment measures are frequently used to assess the model’s performance.

Machine learning algorithms’ efficiency may be tested using evaluation metrics, which are

relevant performance indicators. The metrics evaluate the model’s performance for unob-

served data, or how effectively it predicts values. For regression tasks, the R2 value, mean

square error (MSE), mean absolute error (MAE), and root mean square error (RMSE) are

the most commonly used terms.

R2 Value

The R2 value is an important metric for determining the performance of a machine learning-

based regression algorithm. It is sometimes referred to as the coefficient of determination

and is represented R2. It works by determining the amount of variance in the predictions

based on the dataset. Simply put, it is the difference between the dataset’s samples

and the model’s predictions. If the R2 value is one, the model is perfect; otherwise, the

model will perform poorly on an unknown dataset. This also implies that the closest the r
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squared value is to 1, the better trained the model is. Equation 3.1 shows the formula for

R2 value where Yi is the actual value, Ŷ i is the predicted value and Ȳ i is the mean of all

values.

R2 = 1−
∑︁

(Yi − Ŷ i)
2∑︁

(Yi − Ȳ i)2
(3.1)

Mean Absolute Error

Absolute error in machine learning refers to the magnitude of the difference between

observation’s prediction and its true value. MAE computes the mean of absolute errors

given a collection of predictions and observations to calculate the total amount of the

errors. Equation 3.2 shows the formula for MAE where N is the number of samples, Yi is

the actual value and Ŷ i is the predicted value.

MAE =

∑︁N
i=1 abs(Yi − Ŷ i)

N
(3.2)

Mean Squared Error

The associations between variables in regression problems are represented by an equa-

tion that calculates the distance between predictions and the actual data point. The MSE

is a measure of how well the regression curve fits the data as well as how accurate the

predictions are. MSE denotes the mean deviation from the actual data. Equation 3.3

shows the formula for MSE where N is the number of samples, Yi is the actual value and

Ŷ i is the predicted value.

MSE =
1

N

N∑︂
i=1

(Yi − Ŷ i)
2 (3.3)

Root Mean Squared Error

The Root Mean Square Error (RMSE) is a popular statistic for measuring predictive per-

formance. Using the Euclidean distance, it estimates how far the predictions depart from

the actual values. it is measured by calculating the residual (the difference between pre-

diction and actual value) for each point, the norm of the residual for each data point, the

mean of the residuals, and the square root of that mean to produce the RMSE. Because

it uses and takes an actual measurement at each projected data point, the RMSE is fre-

quently utilized in supervised learning applications. Equation 3.4 shows the formula for

MAE where N is the number of samples, Yi is the actual value and Ŷ i is the predicted
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value.

RMSE =

√︄∑︁N
i=1 ∥Yi − Ŷ i∥2

N
(3.4)

Even minor flaws that might lead to an overestimation of the model’s inaccuracy are dis-

couraged by RMSE. The RMSE is the preferred assessment metric in this study since it is

differentiable and so may be improved. The RMSE is an acceptable statistic when large

errors are undesirable due to its sensitivity to outliers. The RMSE is always positive, and

the lower the value, the more accurate the model is. The RMSE value reveals when the

model is underperforming since the error is squared, and the RMSE value grows when

predictions are inaccurate. RMSE does not indicate if the projected values are too high or

too low as an assessment metric. To better comprehend the direction of the inaccuracy,

predictions must be shown alongside actual results.
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4. RESULTS AND DISCUSSION

4.1 Relationship between speed, VO2 and energy expenditure

The accurate measurement of energy expenditure (EE) is critical in the study of human

behaviour. Although the rate of oxygen consumption (VO2) indicates EE during aerobic

metabolism, it is not always practical. An increase in VO2 is related to higher 24-h EE

[39]. During exercise, both oxygen intake and energy expenditure (EE) of working mus-

cles rise. Thus, oxygen use is inextricably tied to energy expenditure [40]. Both oxygen

consumption and energy expenditure may be measured directly using expensive labo-

ratory procedures, but both variables can also be correctly calculated using analysis of

data such as heart rate level and respiration rate. Cross-sectional research has shown

that people with high fitness (as evaluated by VO2max) are more physically engaged in

their everyday lives than people with poor fitness [41]. There is a well-known linear link

between oxygen consumption (VO2) and running speed. The oxygen cost of running in-

creases as the pace of the runner increases. However, an endurance athlete runs at a

lower proportion of his or her VO2max at equivalent submaximal speeds than an untrained

individual, yet maintaining a similar VO2.

As part of the first research question, the relationship between speed, VO2 and energy

expenditure was defined using statistical analysis. It was found that an increase in running

speed accounts for an increase in VO2 which increases energy expenditure.

4.1.1 Statistical Analysis Results

Statistical analysis was done using the data available in the OpenKin folder. VO2 was

analysed for all participants collectively, and gender-wise for identifying the variation in

VO2 among males and females.

The relationship among speed, VO2 and energy expenditure was identified in two steps.

First, the average VO2 in relation to speed was determined. Data was collected for each

participant for six speeds. Mean was taken to calculate the average VO2 for different

speeds. Mean allows to incorporate data from each participant and is the best measure

of central tendency. The average VO2 against each speed for both males and females is

shown in Table 4.1. The table shows the increase in velocity resulting in an increase in
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VO2. This is because the rate of oxygen consumption increases as the speed increases.

Velocity Average VO2 (ml kg−1min−1)

1.0 10.942

1.3 13.712

1.5 16.140

2.2 30.927

2.5 34.224

2.8 37.498

3.1 40.211

3.3 41.892

Table 4.1. Average VO2 over velocity for participants

Table 4.2 show average VO2 for males and females respectively. The average VO2 for

both male and female (aged 22 - 34) showed no major difference in values. Several

factors can account for variation in VO2 including metabolism, fitness, body mass etc.

Velocity Average VO2 (ml
kg−1min−1) (Female)

Average VO2 (ml
kg−1min−1) (males)

1.0 11.002 10.864

1.3 13.573 13.851

1.5 15.893 16.360

2.2 30.618 31.274

2.5 33.543 34.905

2.8 37.704 37.292

3.1 40.348 40.073

3.3 42.022 41.762

Table 4.2. Average VO2 over velocity for female and male participants

For better visualisation, the graph was plotted as shown in figure 4.1 for both genders.

No visible difference was found in VO2 except at velocity V = 2.5, The gender male shows

high VO2 as compared to females. This can be due to the high metabolism and physical

fitness of males as compared to females.

The next step involved determining energy expenditure for participants. Energy expendi-

ture (EE) is calculated as

EE = (V O2 ∗ 0.001) ∗ bodymass(kg) (4.1)
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Figure 4.1. Average VO2 over velocity for male and female participants

where EE is in (kcal min−1) and VO2 is in (ml kg−1min−1). VO2 is multiplied by 0.001

to calculate absolute VO2 expressed in L.min−1.

EE is calculated for each participant for each speed. An average of the EE for each speed

for the participants is taken. The results are displayed in Table 4.3. It can be seen that

EE increases as speed increase thus showing a linear relationship.

Velocity Average EE (kcal min−1)

1.0 3.213

1.3 4.567

1.5 5.058

2.2 9.666

2.5 11.389

2.8 10.999

3.1 11.801

3.3 13.883

Table 4.3. Average EE over velocity for participants

Table 4.4 show average EE for males and females. Figure 4.2 shows EE against ve-

locity for both genders. It can be seen that energy expenditure increases as velocity in-

creases (VO2 increases). Males show higher energy produced as compared to females.

Haemoglobin levels are another element that contributes to the variance in VO2 across

genders. A study of top cross-country skiers found that female athletes’ haemoglobin

levels were 10% lower, resulting in lower VO2 values when compared to male racers [42].

4.2 Performance of Neural Network

The development procedure starts with the creation of a sequential model in Keras, which

is then followed by the addition of layers. The input layer is guaranteed to have the right



27

Velocity Average EE (kcal
min−1) (Female)

Average EE (kcal
min−1) (Males)

1.0 3.202 3.224

1.3 3.939 5.195

1.5 3.994 6.121

2.2 8.875 10.458

2.5 9.729 13.050

2.8 9.478 12.521

3.1 10.189 13.413

3.3 12.154 15.611

Table 4.4. Average EE (kcal min−1) over velocity for male and female participants

Figure 4.2. Average EE over velocity for male and female participants

input size based on batch size, time steps, and feature count. Trial and error experi-

mentation is performed to establish the number and types of hidden layers to create a

network large enough to understand the dynamics of the prediction problem. The number

of nodes in completely linked layers is determined by the expected output.

The activation functions are influenced by the type of the problem and the kind of layer.

For single-output regression, the fully connected layer must have a linear activation func-

tion. On higher levels, additional options are offered, and the function is established

through trial and error. After determining the network design, the network is built and

fitted with Keras using the TensorFlow backend. Before the model can be constructed,

several supplementary characteristics must be defined. A loss function is supplied to eval-

uate a set of weights, and an optimizer is built to discover the network’s desired weights.

To evaluate the model’s accuracy, a metric argument is also defined. The fit function is

used to train the model once it has been developed and constructed.
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The training phase consists of a set of iterations called epochs that are fed into the model

as a parameter. Another method is to keep track of the training duration and stop early

if the accuracy of the training outcomes begins to decline. The final training technique

parameter to be selected is the batch size. The batch size refers to the number of train

samples analyzed before updating the model’s weights. Finally, once trained, the network

may be utilized to generate predictions on data that has never been seen before.

MLP and LSTM were the first models created. Following preliminary testing, both the

LSTM model and the MLP model yielded the most promising results, and the models

were further imroved.

4.2.1 Multilayer Perceptron

To anticipate VO2 levels, an artificial intelligence regressor was developed and used. The

most popular type of neural network is the multi-layer perceptron (MLP), which is a feed-

forward network constructed of consecutive layers of neurons with no feedback loops

between neurons. Each neuron in the input layer gets the information from neurons in

the previous layer and generates an activation for the neurons in the layer above it [43].

Finally, the network’s outputs are generated by the final layer. The hidden layers occur

between the input and output layers. The form of the input data determines the number

of neurons in the input layer, whereas the size of the output layer should be proportionate

to the number of output classes. Background information and trials guide the selection

of the appropriate number of hidden layers. A simple MLP with a single hidden layer is

shown in figure 4.3.

x0

x1

Input
layer

h
(1)
1

h
(1)
2

h
(1)
3

h
(1)
4

Hidden
layer 1

ŷ1

Output
layer

Figure 4.3. Simple Multilayer Perceptron with 2 Inputs, 1 hidden layer and 1 output

To predict VO2 values, a simple and robust multilayer perceptron was developed. The

network has six predictor variables, one output variable, and two hidden layers of nodes

32 and 16 with elu activation function and regular kernel initialization. Label Encoder and

normalization with mean 0 and variance 1 were done to preprocess the input data. Sep-

arating a dataset into two subgroups (training set and test set) is the test train split. The

training dataset is used to fit the model. The test dataset is used to test the model. Since,
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there is no optimal split percentage, It is a good practise to choose a split percentage

which gives optimal performance. A test train split of 0.33 (33% of data assigned to test

set) was employed. The Adam optimizer with a learning rate of 0.02 was utilized. The

loss was calculated using the mean squared logarithmic error. Validation data from the

test train split was utilized for cross-validation. Mean squared error and R2 value were

obtained to measure model performance. Figure 4.4 shows the plot of predicted values

vs actual values. The model resulted in an RMSE value of 1.1734 R square score of

0.9311.

Figure 4.4. Predicted Vs Actual Values (ANN)

4.2.2 LSTM based Neural Network

LSTMs are a complex subset of deep learning. Long Short-Term Memory (LSTM) net-

works are recurrent neural networks capable of learning order dependency in sequence

prediction tasks. The Recurrent Neural Network (RNN) is a neural sequence model that

excels at key tasks such as language modelling, audio recognition, and machine transla-

tion.

An LSTM layer consists of memory blocks that are linked recurrently. These blocks can

be compared to differentiable memory chips in a computer system. Each one has one or

more recurrently connected memory cells, along with three multiplicative elements – the

input, output, and forget gates – that offer continuous equivalents to the cells’ write, read,

and reset operations. The most critical LSTM hyperparameters to configure are learning

rate and network size [31].

The neural network is made up of neurons with long and short term memories, making it
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ideal for time series analysis and sequence identification. A total of two long-short term

memory layers of 32 and 16 neurons, respectively, as well as one output layer of one

neuron. Adam was used to train the neural network, which optimizes a mean squared

logarithmic loss with a learning rate of 0.01. The entire dataset was cross-validated in

5000 epochs. The batch size (the number of samples transmitted through the neural

network) was set at ten. In the building of a neural network, there are no definite and

scientifically verified stages to take. However, it is known that the number of layers, num-

ber of epochs, number of neurons, and batch size all have an effect on output accuracy

and processing time [34]. Therefore, trial and error method (involving multiple iterations

of manual adjustment) is used to determine these values until the optimal combination of

accuracy and processing time was discovered.

Figure 4.5 shows the plot of predicted values vs actual values. The model resulted in an

R2 value of 0.9562 and an RMSE value of 0.1142.

Figure 4.5. Predicted Vs Actual Values (LSTM)

4.2.3 Support Vector Machime

Support Vector Machine is based on fundamental concepts from statistical learning the-

ory. The simplicity stems from SVM’s use of a basic linear approach to information in

a high-dimensional feature space which is not linearly connected to input space. The

appeal of the SVM arises from its ease of use as well as its cutting-edge performance

on a wide range of learning issues (classification and regression). SVM employs an im-

plicit projection of the training dataset into a high-dimensional feature space created by a

kernel function (a function that returns the inner product of two feature space data points).
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Because of its high prediction accuracy, SVM is regarded as one of the most promising

regression methods, and it is widely used in a variety of application fields. SVMs were

created to address classification problems, but they have recently been rebuilt to addi-

tionally handle regression problems. SVM creates a hyperplane or group of hyperplanes

in a high- or infinite-dimensional space to do a regression analysis. The efficacy of SVM-

based models is determined by the kernel function, its parameters, and the regularization

parameter C. [44, 45]. The radial basis function kernel, which contains a single optimiza-

tion parameter gamma, is a popular choice. (γ). Table 4.5 shows the parameter chosen

for SVM regressor to predict VO2. The model resulted in an R2 value of 0.8231 and an

RMSE value of 3.1189.

Parameter Range

Kernel Linear

Cost 100

Gamma Auto

Table 4.5. Value ranges of the parameters used in the SVM-based model.

One noteworthy aspect of SVM and comparable kernel-based systems is that, with the

right kernel function, one may essentially work in any dimension space without experienc-

ing high processing costs. Another advantage of SVM and kernel approaches is that they

allow the creation and application of a kernel for a specific problem, which may be applied

straight to data without the requirement for a feature extraction method. This is especially

important when the feature extraction approach eliminates a substantial quantity of data

structure [44].

4.6 shows the results from SVM.

4.2.4 Multiple Linear Regression

Multiple Linear Regression (MLR) is a technique that is nearly universally employed in

sports physiology to study the linear correlations between one or more predictor factors

and a single-target variable. Simple linear regression is another name for regression

analysis using only one predictor variable [44, 46]. MLR is an expansion of ordinary

linear regression in that it may predict a desired target variable using two or more predictor

variables in an equation. Figure 4.7 shows the actual and predicted value of VO2 using

MLR. The model resulted in an R2 value of 0.8499 and an RMSE value of 2.5539.
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Figure 4.6. Predicted Vs Actual Values (SVM)

Figure 4.7. Predicted Vs Actual Values (MLR)

4.3 Effect of Predictor Variable

Several combinations of predictor factors were used to examine the impact of predictor

variables on VO2 prediction. The model’s efficiency was determined by how various pre-

dictor variables influenced prediction accuracy while using the same model for each test.

Eight VO2 prediction models were created in total, with the RMSE and R2 score serving

as the assessment measures.

Table 4.6 shows the combinations of predictor variable used for VO2 prediction and sum-
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marises the results of the effect of the predictor variables on the VO2 prediction.

Model Predictor Variables R2 RMSE

1 Height, body mass, Age, Gender, HR, EE 0.9311 1.7346

2 Height, body mass, Age, Gender, EE 0.8771 2.0928

3 Height, body mass, Age, Gender, HR 0.7382 4.0945

4 Height, body mass, Age, HR, EE 0.9329 1.7034

5 Height, body mass, Gender, HR, EE 0.9291 1.6754

6 Age, Gender, HR, EE 0.9157 1.8325

7 Height, body mass, Age, Gender 0.6782 4.6782

8 Height, body mass, HR 0.7943 3.3702

Table 4.6. VO2 Prediction Models

Figure 4.8 shows the actual vs predicted values of VO2 for Model 1 containing all predictor

variables. Model 1 resulted in an R2 value of 0.9311 and an RMSE value of 1.734.

Figure 4.8. Predicted Vs Actual Values (Model 1)

Figure 4.9 shows the actual vs predicted values of VO2 for Model 2 without HR. Model 2

resulted in an R2 value of 0.87706 and an RMSE value of 2.09277. Model 2 yielded a

smaller R2 value than Model 1, indicating that HR is of significant value in VO2 prediction.

Figure 4.10 shows the actual vs predicted values of VO2 for Model 3 without EE. Model

3 resulted in an R2 value of 0.7382 and an RMSE value of 4.0945. Model 3 yielded a

smaller R2 value than Model 2 and Model 1.

Figure 4.11 shows the actual vs predicted values of VO2 for Model 4 without gender.

Model 4 resulted in an R2 value of 0.9329 and an RMSE value of 1.7034. Model 4

yielded a similar R2 and RMSE value as of model 1.
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Figure 4.9. Predicted Vs Actual Values (Model 2)

Figure 4.10. Predicted Vs Actual Values (Model 3)

Figure 4.12 shows the actual vs predicted values of VO2 for Model 5 without age. Model

5 resulted in an R2 value of 0.9291 and an RMSE value of 1.6754. Model 5 yielded a

similar R2 and RMSE value as of model 1 and model 4.

Model 6 (without height and body mass) resulted in an R2 value of 0.9157 and an RMSE

value of 1.8325. Model 6 yielded a similar R2 and RMSE value as of model 1, model 5

and model 4.

Figure 4.13 shows the actual vs predicted values of VO2 for Model 7 without HR and EE.
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Figure 4.11. Predicted Vs Actual Values (Model 4)

Figure 4.12. Predicted Vs Actual Values (Model 5)

Model 7 resulted in an R2 value of 0.6782 and an RMSE value of 4.6782. Model 7 yielded

a lower R2 and RMSE value as compared to other models.

Figure 4.14 shows the actual vs predicted values of VO2 for Model 8 containing only

height, body mass and HR. Model 8 resulted in an R2 value of 0.7943 and an RMSE

value of 3.3702. Model 8 showed higher RMSE and R2 values as compared to model 7

but lower values as compared to other models.

From the results, it can be concluded that generally, a higher number of predictor variables
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Figure 4.13. Predicted Vs Actual Values (Model 7)

Figure 4.14. Predicted Vs Actual Values (Model 8)

result in a higher R2 value and lower RMSE value. HR is an important predictor variable,

as it constitutes for high R2 value in models 1, 3, 4, 5, 8. Generally, Models without HR as

a predictor variable (Model 7, 2) yielded a lower R2 value as compared to other models.

Physiological variables such as age, height, body mass and gender had little effect as

compared to HR and EE.
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5. LIMITATIONS AND FUTURE RECOMMENDATION

The study’s main limitations include its small sample size (n = 18) and the subject pool’s

limited demographics. As a result, extending the results to other ages and levels of fitness

is difficult. Future research should include a broader and more diverse range of topics.

Researchers might also experiment with adding new predictor variables to the model (for

example, muscle oxygen saturation) or combine a neural network with other methods of

machine learning to predict VO2max.

In this thesis, fewer characteristics have been included in the predictive model’s training

and testing to minimize its complexity. The acquired data went through a processing

phase. Outliers (inaccurate data) and less significant characteristics (those that have no

effect on performance) were deleted from the training dataset during this step. In the

future, the feature selection method can allow for quicker training of the ML algorithm,

simpler interpretation of the prediction model, and, lastly, it can decrease overfitting and

time limitation.

Furthermore, the techniques and methodology employed in this thesis may be easily

extended to other exercise modes, such as cycling, as long as inputs relating to exercise

intensity and cardiopulmonary system response were available.

Accurate VO2max measurement without the requirement for a maximal cardiopulmonary

exercise test would greatly expand VO2max accessibility and perhaps allow it to become

a critical sign.

Further investigation into the ML-guided prediction of VO2 is still required to develop a

more accurate model with greater predictability than those that have already been de-

veloped. In the context of forecasting VO2 values, the pilot research discovered that a

recurrent neural network (LSTM layers) can involve large amounts of data from various

mechanical and physiological variables (such as heart rate and breathing frequency),

along with historical input values, to produce good VO2max forecasts. For this purpose,

the current model can further be developed into a recurrent neural network. The time-

based data available in the OpenKin folder can be fed into the recurrent neural network

for VO2max prediction. However, the factor of generalisation should be kept in mind.

This algorithm has the potential to be implemented in a portable device in the future and

to enable real-time assessment of individual VO2 during training. This can form another
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thesis topic. According to my knowledge, this work has not been done previously and

the integration of a neural network-based model in a wearable device can be a novel

advancement in sports science.
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6. CONCLUSION

VO2max is often recognized as the most reliable predictor of overall health and fitness.

It is a great predictor of the risk of cardiovascular disease. This thesis explored several

approaches related to oxygen uptake (VO2) prediction and the use of machine learning to

predict VO2 during physical activities. Successful prediction models are developed using

ML algorithms to determine VO2 values without the need for the completed procedures

associated with direct approaches. These models are frequently built using data from

exercise, non-exercise, or hybrid models.

From the statistical analysis presented in Section 4.1, it was seen that speed, VO2 and

energy expenditure have a direct relationship hence proving Hypothesis 1. Males gener-

ally, show high energy produced as compared to females. This can be due to a number

of factors such as fitness and haemoglobin levels etc.

Using predictor variables such as HR and physiological data, this research developed

a simple and robust neural network model for VO2 prediction and demonstrated that an

ANN can reliably predict VO2 responses while walking or running at various sub-maximal

intensities. This approach has the potential to be developed in the future to predict VO2

responses using more predictor variables. The ANN model was compared with LSTM

based model. It was seen that an LSTM based model works well for time series data

and can give more accurate performance as compared to a simple neural network. The

ANN-based model is the best VO2 prediction model was compared to SVM and MLR.

Hence, proving Hypothesis 2 true. Different SVM kernel functions were used and, it was

discovered that the RBF kernel function produces more accurate results than the linear

kernel function. The neural network-based models outperformed SVM and MLR based

models in terms of VO2 prediction values.

Eight different combinations of predictor variables were used to observe the effect of

the number of predictor variables on the performance of ANN. It was seen that a higher

number of predictor variables resulted in higher R2 and RMSE value, hence, proving

Hypothesis 3.

According to the findings of this thesis on the prediction of the VO2, Using the ML ap-

proach, it is possible to achieve decent predictability while taking into account a number

of factors. Data pre-processing is required to identify potential characteristics (predictor
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variables). To prevent overfitting, a dropout layer was included. The effect of predictor

variables was also examined, It was seen that a higher number of predictor variables re-

sulted in high RMSE and R2 values. Certain variables such as HR are important for VO2

prediction.
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