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Abstract: The moving least squares (MLS) and moving total least squares (MTLS) are two of the most popular 

methods used for reconstructing measurement data, on account of their good local approximation accuracy. However, 

their reconstruction accuracy and robustness will be greatly reduced when there are outliers in measurement data. This 

article proposes an improved MTLS method (IMTLS), which introduces an improved random sample consensus 

(RANSAC) algorithm and a correction parameter in the support domain, to deal with the outliers and random errors. 

Based on the nodes within the support domain, firstly the improved RANSAC is used to generate a model for 

establishing the group of pre-interpolation and calculating the residual of each node. Subsequently, the abnormal degree 

of the node with the largest residual is evaluated by the correction parameter associated with the node residual and 

random errors. The node with certain abnormal degree will be eliminated and the remaining nodes are used to obtain 

the approximation coefficients. The correction parameter can be used for data reconstruction without insufficient or 

excessive elimination. The results of numerical simulation and measurement experiment show that the reconstruction 

accuracy and robustness of the IMTLS method is superior to the MLS and MTLS method. 
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1. Introduction 

After decades of development, the reconstruction 

algorithms for discrete data have played an essential role 

in many engineering and scientific fields, especially in 

error analysis and data processing. The conventional 

numerical methods, such as finite element method 

(FEM), interpolate or approximate the nodes through 

defining a mesh based on known nodes.1 However, the 

accuracy of reconstruction will be greatly reduced and 

the fitting will even fail when the grid-based method is 

used to deal with large deformation and discontinuity 

problems.2 In addition, the human-labor and time cost of 

generating meshes in complex-shaped domains are not 

satisfactory. While meshless methods use node-based 

approximation without mesh discretization, the 

efficiency and accuracy of data processing are, therefore, 

greatly improved.3 In order to meet the development 

requirement of different fields, a multitude of meshless 

methods have been presented and applied, such as the 

element-free galerkin (EFG),4 diffuse elements method 

(DEM)5 and moving least squares (MLS). 

In 1974, Mclain6 proposed the weighted least squares 

method. On this basis, Lancaster and Salkauskas7 

introduced the moving concept and proposed the MLS 

method in 1981. To this day, the MLS has become an 

important method for constructing shape function. 

Unlike the traditional least square method using 

complete polynomials, the shape function of the MLS is 

composed of a coefficient vector and a basis function 

vector, which can obtain higher continuity under the 

condition with low order basis function.8 The 

introduction of the weight function with compact support 

makes the reconstructed curve or surface accurate and 

smooth, which has contributed to the wide application of 

the MLS in various fields. For example, the MLS is 

applied to solve elasticity problems,9 the compressible 

Navier-Stokes,10 Kuramoto-Sivashinsky11 and Burgers 

equation,12 and estimate mathematical model based on 

discrete points.13 Due to its good performance, the MLS 
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method is often used in combination with other methods 

to construct shape function. In finite element analysis, the 

introduction of the MLS method enhances the shape 

function of the active element.14 In the smoothed particle 

hydrodynamics (SPH), the MLS method was used to 

construct kernel functions to obtain higher consistency.15  

The MLS method obtains the local fitting coefficients 

through the weighted least squares (LS)16 method in the 

support domain17 based on the Gauss Markov error model, 

in which only the dependent variable contains errors.18 

The total least squares (TLS)19 method is an estimation 

method based on the errors-in-variables (EIV) model. 

Unlike the Gauss Markov model, the errors of both 

independent variable and dependent variable are 

considered in the EIV model.20 By replacing the LS 

estimation with the TLS estimation in the support domain, 

the MLS method is transformed into the moving total 

least squares (MTLS).21  

Nevertheless, due to the impact of factors, such as the 

disturbances in the measurement environment, the 

measurement data often contains outliers that seriously 

deviate from the actual value.22,23 The LS and TLS 

respectively used in the support domains of the MLS and 

MTLS method are not robust estimation methods.24,25     

When there are outliers in the domain, larger deviations 

will exist in the fitted values around outliers. Many 

studies have been carried out to reduce the negative 

impact from the outliers, with the proposed robust 

algorithms dividing into two main forms. One is to select 

a subsample from the discrete points to obtain the 

regression coefficient.26,27 If the outlier is in the 

subsample, it will be automatically eliminated. However, 

this method may eliminate some of non-outliers, in which 

case the accuracy of approximation will be significantly 

affected.28 The other type of algorithm is to identify 

outliers first and then weaken the influence of outliers by 

assigning weights to them. In this method, it is difficult to 

determine appropriate weights when multiple outliers 

with different levels exist in the discrete data. 

In order to weaken the impact of outliers on 

reconstruction, we propose an improved MTLS (IMTLS) 

reconstruction method in this article. In the support 

domain, we deal with outliers by introducing an improved 

random sample consensus (RANSAC) and a correction 

parameter, and then the local approximation coefficients 

are obtained based on the TLS estimation. RANSAC is a 

robust model estimation algorithm, especially when 

measurement data contains high proportion of outliers. 

However, it has limitations in data fitting influencing its 

accuracy and stability.29 Therefore, RANSAC algorithm 

needs to be improved to estimate a relatively reliable 

initial model. The correction parameter associated with 

the random error and the node residual is introduced to 

detect and eliminate abnormal node. 

The rest of this article is structured as follows: the 

second section is a brief introduction to the MLS, MTLS 

and RANSAC algorithm, the third section explains the 

principle and procedure of the proposed algorithm in 

detail, and the fourth part verifies the performance of the 

IMTLS method through numerical simulation and 

experimental data. 

2. Introduction to the basic algorithms 

2.1 The MLS method 

Consider that there are n discrete points x=[x1, x2, ∙∙∙, xn] 

and corresponding y=[y1, y2, ∙∙∙, yn] in a bounded area Ω. 

In the MLS method, the trial function f(x) for the fitting 

point x can be written as 

1
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m

T
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j

f x p x a x x x
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where p(x) = [p1(x), p2(x), ∙∙∙, pm(x)]T is a vector of the 

monomial basis function and the number of the basic is m, 

and a(x)=[a1(x), a2(x), ∙∙∙, am(x)]T is the coefficient vector 

to be solved. In this article, for 2D curve and 3D surface 

fitting, we choose p(x)=[1, x]T and p(x)=[1, x, y]T, 

respectively. 

In order to solve the optimal a(x), the construct function 

E(x) is a quadratic function about a(x), i.e.  
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where r is used to control size of the support domain, and 

θ(||x‒xJ||/r) is a non-negative and compactly supported 

weight function to attribute a weight to each node 

according to its position relative to x. The fitting property 

of MLS algorithm will be influenced by the weight 

function. For example, the fitting form will be 

interpolated when θ(0)=∞.30 There are many kinds of 

weight functions with compact support such as 

exponential, Gaussian and cubic spline weight functions. 



 

 

This article chooses exponential weight function, i.e. 
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where α is a coefficient related to the convergence speed.  

According to the principle of least squares, the 

coefficient vector a(x) can be solved by 
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where j=1, 2, ∙∙∙, m, solving equations (4) to obtain 
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Taking equation (5) into equation (1), the function f(x) 

can be presented as 

1( ) ( ) ( ) ( )Tf x x x x−= p A C u                        (6) 

2.2 The MTLS method 

Unlike the MLS using LS estimation to obtain the local 

fitting coefficients, the MTLS method applies the TLS 

estimation for those coefficients, in which the errors of 

both dependent variable and independent variables can be 

considered. In TLS, the solution of linear equation is 

considered, i.e. 

( )B+ = +B E X L e                                   (7) 

where B and L are coefficient matrix and observation 

vector respectively, EB and e are random error matrix of B 

and L respectively, and X is the coefficient vector to be 

solved. According to the principle of total least squares, 

the solution of equation (7) can be transformed into a 

constrained optimization problem, i.e. 

( )arg min T T

B B= +X e e e e                             (8) 

where eB =vec(EB).  

Therefore, X can be solved by Lagrange multiplier 

method. The function is constructed as 
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T T T
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where φ is the vector of Lagrange multiplier. Let the first 

partial derivative of J with respect to e, eB, φ and X equal 

to 0, i.e. 
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derived from equations (10), we can obtain 
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where μ=e
T 

BeB+eTe. 

The equations (11) can be transformed into 
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It can be seen from equation (12) that the problem of 

solving total least squares is transformed into obtaining 

the eigenvalues and eigenvectors of matrix [B L]T [B L]. 

When μ is taken as the smallest eigenvalue of the matrix 

[B L]T [B L], X in the corresponding eigenvector is the 

solution of TLS. For the MTLS method, the construction 

of the fitting function is consistent with the MLS method, 

and the same weight function is used for the MTLS. The 

acquisition of local regression coefficients can be 

expressed as follows 
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If λm+1 ≠ λm, combined with equation (12) and (13), the 

regression coefficient vector a(x) is:  
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In the MLS method, the coefficient matrix B is 

error-free, while only the observation vector L is 

contaminated. Nevertheless, this assumption is usually 

unrealistic in some fields of engineering, because the 

errors, such as sampling errors and instrument errors, are 

always brought into matrix B. Therefore, the MTLS 

method can give a more reasonable approximation than 

the MLS method when both matrix B and the vector L 

contain errors.31  

2.3 The RANSAC algorithm 

The RANSAC algorithm, presented by Fischler and 

Bolles in 1981,32 can robustly estimate the model 

parameters. It has been applied to many fields, especially 

in computer vision,33,34 due to good performance in 

handling the data with a tremendous level of outliers and 

remarkably simple structure. The main idea of the 

RANSAC is to calculate parameters of hypothesized 

model by randomly sampling the subsample from the 

entire dataset,35 and then the model is performed on the 

entire dataset. During this process, a distance threshold 

that is considered empirically36 is set to calculate the inlier 

rate of each model, and sampling is stopped when the 

number of iterations reaches the defined value. The 

parameters corresponding to the highest inlier rate (the 

highest consensus) are selected as the model parameters 

of the total sample. The brief calculation steps of the 

RANSAC algorithm are described as follows:  

Algorithm 1 The RANSAC method 

Input: discrete data set C={xi, yi}
N 

i=1 

Output: model G(x) 

Set Q=0 

for (j=1 to k) do 

Randomly select a minimum subset from C to 

calculate model g(x) and get the residuals 

Count the number of inliers q of the current model 

according to distance threshold 

if (q>Q) then 

G(x)=g(x) and Q=q 

end if 

end for 

In order to get a subsample that is all inliers with 

probability p, the sampling times k can be obtained by the 

following formula,37 i.e. 
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where w is the proportion of outliers in the entire dataset, 

and ζ is number of data nodes needed to calculate model 

parameters. For example, ζ=2 is taken in the linear 

parameter estimation. Then a reliable model is obtained 

through multiple iterations, and the node with the residual 

outside the distance threshold is considered as outlier. 

3. The improved MTLS method 

When there are outliers in the measurement data, the 

robustness and accuracy of both the MLS and MTLS 

method are not satisfactory due to their construction 

principles.38 Therefore, this article proposes an IMTLS 

method to reduce the negative impact of outliers on 

reconstruction. In this method, an improved RANSAC 

and a correction parameter are introduced into the support 

domain of the MTLS method to detect and eliminate 

abnormal nodes, and then the local fitting coefficients 

based on the TLS estimation can be obtained. The 

improved RANSAC algorithm is different from the 

standard RANSAC algorithm in two aspects. Firstly, it 

considers every possible subsample to generate 

hypothesized models, which can enhance the stability of 

data reconstruction. Secondly, the threshold is 

automatically set to a value related to the random error of 

the data, which reduces the negative impact of the original 

method to set a threshold empirically.  

 

Figure 1. The fitting procedure in the support domain of IMTLS 

method. 



 

 

Then, we mainly introduce the principle and procedure 

of the algorithm reconstruction in support domain, as 

shown in Figure 1. Assuming that there are N nodes in 

single support domain, the reconstruction process of the 

MTLS method can mainly be divided into three steps. 

Firstly, an estimation model is obtained by the improved 

RANSAC algorithm. Secondly, the abnormal node is 

eliminated by introducing a correction parameter δ. In this 

step, whether to eliminate the node with the largest 

residual is determined by the size of dmax/δ and l, where 

dmax is the maximum residual and l is automatically set 

according to the random error of the data. Lastly, local 

approximation coefficients are determined by TLS 

estimation. In the support domain, the calculation process 

of the IMTLS method is shown as follows: 

Algorithm 2 The IMTLS method 

Input: discrete data C={xi, yi}
N 

i=1, parameter δ and l 

Output: local regression parameter a 

Set Q=0 

Select different combinations including ζ nodes from C, 

denoted as C1, C2, …, CC
ζ 

N   

for (j=1 to C
ζ 

N) do 

Get model g(x) based on Cj and residuals d={di}
N 

i=1 

Count the number of inliers p of the model according 

to l 

if (q>Q) then 

Q=q and D=d 

end if 

end for 

Get maximum residual dmax=max(D) 

if (dmax/δ≥l) then 

Eliminate the node with dmax 

else 

Reserve the node with dmax 

end if 

Remaining data is processed based on TLS to get a 

After eliminating the abnormal nodes, assume that t 

nodes x̅ = [x̅1, x̅2, ∙∙∙, x̅t] and y̅ = [y̅1, y̅2, ∙∙∙, y̅t] are retained 

in the support domain. The solution of the TLS can also 

be obtained by the singular value decomposition (SVD).39 

As shown in the linear equation (7), perform the SVD on 

the augmented matrix  
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in which U=[U1 U2]t×t and V(m+1)×(m+1) is an orthogonal 

matrix composed of eigenvectors of matrix FFT and 

matrix FTF respectively, and Γ=diag[ξ1, ξ2, ∙∙∙, ξm+1], ξ1 ≥ 

ξ2 ≥∙∙∙ ≥ξm+1 are the singular values of matrix F. Matrix Γ 

and matrix V can be presented as  
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When V22 is non-singular and ξm ≠ ξm+1, the solution of 

TLS is unique, i.e. 

1

12 22
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For the IMTLS method, the matrix F is weighted, i.e. 
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The solution expression of equation (17) is rewritten as 

1

12 22W W W

−= −X V V                                   (19) 

In the support domain of the IMTLS method, abnormal 

nodes are automatically detected and eliminated by the 

improved RANSAC method and the introduced 

correction parameter δ. The outliers are evidently 

included in the abnormal node and can be effectively 

processed. The local fitting coefficients are obtained by 

the TLS estimation. As the movement of fitting point x, 

outliers and random errors are processed in the entire 

domain.  

4. Case verification 

In this section, both numerical and experimental cases 

were considered by the MLS, MTLS and IMTLS method, 

to verify the performance of the proposed method. 

4.1 Case 1 

Take the curve function 

( ) ( )sin 0.3π +0.8sin 0.5πy x x=                 (20) 

as a model to generate uniformly distributed discrete 

points (x0i, y0i). Outliers (0, Δyi) and random errors of 

normal distribution with zero mean are added to (x0i, y0i) 

to get simulation data (x1i, y1i). The reconstruction points 



 

 

(x2i, y2i) are obtained after reconstruction. The sum of 

absolute differences can be presented as 

0 2

1

n

i i

i

s y y
=

= −                                   (21) 

which is considered as the index to evaluate three 

algorithms. 

In this case, the parameter 

2 2

x yl  = +                                     (22) 

Let n=201 and r=[max(x0)-min(x0)]×4/100, where 

min(x0)=0 and max(x0)=5. Under the same random error 

condition (σx=0.001 and σy=0.001), we add four different 

outliers to (x0i, y0i), and the s values obtained by three 

algorithms are shown in Table 1. The fitting curves are 

shown in Figure 2. 

Table 1. The comparison of three methods in Case 1. 

error parameter MLS MTLS IMTLS 

s1 1.974703 1.995617 0.177981 

s2 3.752185 3.852139 0.177980 

s3 3.854453 3.878887 0.179741 

s4 3.906223 4.180141 0.180511 

s̄ 3.371891 3.476696 0.179053 

σs 0.808569 0.864746 0.001107 

 

Figure 2. The curves fitting by three algorithms under different outlier 

conditions.  

The figures and tables of the above cases show that 

outliers can be effectively detected and eliminated by the 

IMTLS method to reduce the incalculable negative 

impact on the reconstruction. Compared with the MLS 

and MTLS method, the error values of the reconstructed 

data processed by the IMTLS method is much smaller.  

To further verify the performance of the IMTLS 

method, we take this case as an example, in which only 

random errors are added in the simulation data. In Table 2, 

we can see that the error values obtained by the IMTLS 

fitting is still minimum among the three reconstruction 

methods, which shows that the IMTLS method also has 

good approximation performance under this situation, and 

Figure 3 shows the bar graph of error values under 

different random errors.  

Table 2. The comparison of processing random errors in Case 1. 

σx σy 
s 

MLS MTLS IMTLS 

0.000001 0.001 0.274568 0.152626 0.151917 

0.00001 0.001 0.274228 0.152063 0.151351 

0.0001 0.001 0.275371 0.153263 0.152555 

0.001 0.001 0.285897 0.176635 0.176257 

0.001 0.0001 0.282678 0.162684 0.161941 

0.001 0.00001 0.281492 0.162066 0.161338 

0.001 0.000001 0.280397 0.162179 0.161444 

 

Figure 3. The s values under different random errors. 

Furthermore, the CPU time of each algorithm is 

calculated by MATLAB based on the datasets with 

different size of n=201+i×200 (i=0, 1, …, 4). Two 

conditions are considered and presented in Table 3 and 

Table 4 (r0=[max(x0)−min(x0)]×4/100, where max(x0)=5 

and min(x0)=0) respectively. One is to fix the number of 

nodes in support domain, and the other one is to fix the 

size of support domain. In the first condition, CPU time of 

IMTLS method changes steadily with the increase of n. 

While in the second condition, the CPU time of IMTLS 

method increases rapidly as n increases because more 

nodes are included in single support domain. These 

results illustrate that the number of nodes in the support 

domain has a significant impact on the CPU time of 

IMTLS method. Therefore, in order to ensure the 

efficiency of IMTLS method in data reconstructing, the 



 

 

size of support domain should be appropriately selected to 

control the number of nodes in support domain. 

Table 3. The CPU times of three methods with a fixed number of 

nodes in support domain. (s) 

n 201 401 601 801 1001 

r r0 (1/2)r0 (1/3)r0 (1/4)r0 (1/5)r0 

MLS 0.0148 0.0375 0.0477 0.0602 0.0813 

MTLS 0.0075 0.0164 0.0250 0.0422 0.0477 

IMTLS 0.1473 0.3148 0.4531 0.5977 0.7516 

Table 4. The CPU times of three methods with a fixed radius of 

support domain. (s) 

n 201 401 601 801 1001 

r r0 r0 r0 r0 r0 

MLS 0.0148 0.0563 0.1227 0.2407 0.4063 

MTLS 0.0075 0.0273 0.0547 0.6000 1.1250 

IMTLS 0.1473 0.9633 2.9602 45.3609 90.3750 

4.2 Case 2 

In this case, the surface data of standard ball was 

processed to verify the performance of the IMTLS 

method. The data is obtained by a commercial white light 

interferometer (WLI) - Taylor Hobson CCI 3000. 

Figure 4 shows the schematic diagram of a WLI system. 

Firstly, a broadband illumination beam passes through an 

interferometric objective via a beam splitter. The beams 

that were reflected by reference mirror and measured 

surface were focused onto a camera. Interference fringes  

 

Figure 4. Schematic diagram of a WLI system. 

will generate when the optical path difference (OPD) 

between the reference and measurement arm is within the 

coherence length, and the visibility of the fringes 

increases as OPD decreases. A series of interferograms 

can be obtained through scanning the objective. Surface 

data can be obtained by tracking all coherence peaks or 

phase retrieval within the field of view of the objective. 

The errors contained in experimental data will have a 

negative impact on obtaining the true profile of the ball 

measured, and the impact can be reduced by using 

appropriate algorithm for reconstruction. Three methods 

are used to reconstruct the experimental data respectively. 

Then, the reconstructed data are used for parameter 

regression based on simulated annealing algorithm40 and 

the regressed radius is used as the evaluation index of 

reconstruction method. The radius of standard ball is 

calibrated as 14.402mm. Since the random error of 

measurement data cannot be calibrated technically, l is 

defined to the standard deviation of residuals fitted by the 

LS estimation in support domain. As shown in Figure 5, 

data selected in different locations are processed by three 

algorithms. As shown in Table 5, the radius corresponding 

to the IMTLS is more proximate to the calibrated value 

among the three algorithms. 

Table 5. The regression radii of three methods in Case 2. (mm) 

radius parameter MLS MTLS IMTLS 

R1 14.340 14.435 14.405 

R2 14.441 14.393 14.408 

R3 14.723 14.632 14.613 

R4 14.615 14.617 14.420 

R̄ 14.530 14.519 14.462 

σR 0.148740 0.106425 0.087648 

For the correction parameter δ introduced by the 

IMTLS method, we set different values to observe the 

change of reconstruction result. As shown in Figure 6(a), 

when there are outliers in the data, the reconstruction 

result of the IMTLS method is obviously better than the 

other two algorithms. And the result will be consistent 

with that of the MTLS method as δ increases, which 

shows that when δ increases to a certain value, the node 

will not be eliminated in the support domain. As shown in 

Figure 6(b), when there are only random errors, the result 

of the IMTLS method is still better among the three 

algorithms. It is clear that δ can be selected in this way for 

the curve and surface reconstruction. 



 

 

 

Figure 5. The processing of experimental data. 

 

Figure 6. Trendlines of three algorithms in case 1: (a) the data of the 

fourth group, (b) the data only containing random errors.  

Furthermore, we set different number of nodes that can 

be eliminated in the support domain, to observe the 

number of points eliminated in each support domain. The 

data of the fourth group in Case 2 is taken as an example.  

As shown in the Figure 7, the l calculated by the 

residuals fitted by the LS estimation is relatively large in 

the support domain with outliers, while in the support 

domain without outliers, the obtained l is relatively small. 

Therefore, compared with the support domain without 

outliers, fewer points are eliminated in the support 

domain with outliers. 

Figure 8 demonstrates the processing result with 

eliminated nodes, some outliers are not effectively 

eliminated, because the number of eliminated nodes is not 

sufficient to eliminate all outliers in some support 

domains. In addition, the processed data are regressed by 

simulated annealing to get the regression radii, as shown 

in Table 6. When the outliers are effectively processed, 

 

Figure 7. Number of points eliminated in each support domain under 

different conditions. 



 

 

the corresponding regression radius is significantly closer 

to the calibrated value. This indicates that the outlier has a 

great negative influence on the parameter regression and 

can be processed effectively by setting an appropriate 

number of elimination nodes. 

Table 6. The regression radii under different conditions. (mm) 

R44 R43 R42 R41 

14.420 14.394 14.464 14.484 

 
Figure 8. The fitting surface under different conditions. 

Through numerical simulation and experimental data 

verification, the IMTLS method shows better 

performance. As seen from Case 1, compared with the 

MLS and MTLS method, the IMTLS method can 

effectively deal with errors, regardless of whether there 

are outliers in the data. In addition, the IMTLS method 

also inherits the good local approximation properties from 

the MTLS method. We further verify the algorithm by 

processing measurement data of a standard ball, and the 

performance of proposed method is evaluated by 

regression radius. As seen from Case 2, the processed 

result by the IMTLS algorithm is more proximate to 

calibrated value.  

5. Conclusion 

The MLS and MTLS method show good performance 

in the fitting of discrete data, such as realizing effective 

approximation for local geometry feature and obtaining 

high-order continuous approximation functions with 

low-order basis functions, etc. However, these two 

reconstruction methods are not robust, because the 

outliers in the measurement data will have extremely 

negative impact on the fitting results. In order to reduce 

this impact, we proposed an improved MTLS method, in 

which an improved RANSAC and a correction parameter 

are introduced into the support domain of the MTLS 

method to process the abnormal nodes, and then the local 

fitting coefficients are obtained by the TLS estimation. In 

this way, the improved MTLS method not only has the 

advantages of the MTLS method but also can effectively 

deal with outliers. Practically, we verified the proposed 

algorithm by dealing with experimental data obtained by 

CCI. The processing results of three cases show that the 

performance of the IMTLS method is significantly better 

than the other two algorithms. 
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