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A B S T R A C T

The paper describes a sensor fusion method that provides reliable, uninterrupted and bias-free
estimates of the top tension in a mooring line. The method exploits the geometric nonlinearity
of mooring systems installed in shallow to moderate water depths: a change of line length (due
to winching) affects the local dynamic stiffness of the mooring line. Based on measurements of
fairlead displacements and of the dynamic part of the top tension, the line length and true
(unbiased) mean tension can be inferred. The method combines the use of (1) a classical
kinematic observer to derive fairlead motions, (2) the compression of the recent history of
fairlead motions to a few parameters, (3) a bank of neural networks, each network modelling
the response corresponding to a given line length/static tension, and (4) a heuristic approach to
selecting the most promising model among the candidates. One major advantage of the method
is its sparsity, making it computationally efficient so it can be applied both offline, on large sets
of recorded historical data, and online running on lightweight embedded hardware. The paper
presents in detail each component listed above, and the method as a whole is verified on a
realistic case. Given that enough excitation is present, the estimator was found to converge
towards the true value of the tension, and to cope well with transient conditions such as
winching operations, and with the presence of oceanic current.

1. Introduction

1.1. Background

Lifetime extension of ageing floating oil and gas production units (FPU) installed on the Norwegian Continental Shelf has led
to a reassessment of existing mooring systems. Mooring chains have been particularly scrutinized as they have been failing at a
much higher rate than targeted by regulatory bodies [1,2]. In the wake of several joint industry projects and research projects on
this topic, such as Normoor [3], FoCCs [4], TWI [5], Exwave [6], among others, the LIFEMOOR project, which supports the present
research, aims at understanding the interaction of load history, wear, corrosion, and crack initiation/propagation in mooring chains.
It is now established that the fatigue capacity of mooring chains deteriorates when operating at increasing mean tensions [7], a
phenomenon not accounted for in S-N curves used in mooring design. A key result of LIFEMOOR has been that, for FPU such as
semi-submersibles, this mean tension dependency has a significant impact on the actual fatigue damage on mooring, and hence
remaining fatigue capacity and possible life extension [8]. The key reason for that is that such FPUs generally operate at mean
tensions well below those used to establish design S-N curves.
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Fig. 1. Tension group 4.

Based on this finding, the present research aimed at obtaining reliable estimates of the actual load history (mean and dynamic
tension) experienced by a mooring line, to support lifetime extension assessments. Norwegian authorities require all FPU operating
on the Norwegian Continental Shelf to be equipped with sensors that monitor the tension in mooring lines at the fairlead or winch
level, referred to as top tension [9, §12]. These sensors must be calibrated on a yearly basis [9, §15], meaning that the multiplicative
factor between the electrical signal delivered by the sensor [mV] and the tension [kN], must be controlled, and adjusted if necessary.
However, general experience and field reports [1,10,11] concur to the fact that the sensors, albeit well calibrated, often generate
signals that are noisy and biased, i.e. polluted by slowly-varying additive error.

The estimation and removal of such biases is particularly challenging, since winching the mooring line in or out has the same
static effect on the top tension measurement as sensor bias. Furthermore, since the amount of winching is not systematically
documented over the years, the exact mean tension in the line becomes uncertain [1]. As an illustration, Fig. 1 shows low-pass
filtered top-tension measurement for four mooring lines that are part of the same bundle, at the corner of a semi-submersible. Large
differences (350 kN) in measured mean tension may be due to different line length (winching) or to sensor bias. This uncertainty
will in turn affect the fatigue damage assessments: for the tension measurements shown in Fig. 1, the observed difference in mean
load level is about 2% of the minimum breaking load, and yields about 20% difference in the predicted fatigue capacity [7], and
about one order of magnitude difference in the estimated fatigue failure probability [12].

A natural question is then whether top tension can be estimated in other ways than by direct measurement. For mooring
lines based on chains and steel rope, the dynamic tension along the line can be satisfactorily estimated numerically, by using
nonlinear finite element analyses. This assumes that the model of the full-scale system is correctly modelled. Examples of successful
comparisons with full-scale and model scale measurements are given in [13,14], respectively, where motions of the fairlead have
been prescribed, and top tensions compared. In these examples, the exact wave and current kinematics are of secondary importance,1
and the main modelling parameters are the segments’ length, mass distribution, added-mass and drag coefficients. Once these are
selected, the model requires accurate fairlead motion time series. Mooring lines exhibit (1) nonlinear restoring characteristics and
(2) a significant rate dependency due to inertia, hydrodynamic drag and added-mass loads. Therefore both (1) the slowly-varying
(large-amplitude) motions that cause a varying local stiffness, and (2) the wave-frequency (lower-amplitude) motions of the fairlead
should be captured. The latter should be sampled at a frequency well above the wave frequency, so that velocity and accelerations
can be correctly estimated. Such information as a whole is usually not directly available from measurements.

Table 1 shows the available sources of information about the tension in mooring lines on a typical FPU. While none of them
can independently provide reliable, bias-free, estimate of top tension, and hence fatigue damage in mooring lines, they provide
complementary information.

The present paper describes a sensor fusion2 method that provides reliable, uninterrupted and bias-free estimate of the top tension
in a mooring line. One major advantage of the method is its sparsity, making it computationally efficient so it can be applied offline,
on large sets of recorded historical data, and online, running on a lightweight embedded system. The main idea is to exploit the
geometric nonlinearity of mooring systems installed in shallow to moderate water depths: a change of line length (due to winching)
affects the local dynamic stiffness of the mooring line, and hence the dynamic tension. Based on independent measurements of
fairlead displacements and dynamic top tension, the line length and true (unbiased) mean tension can be inferred. As the present

1 Note that this might not be true for other types of slender marine structures, such as large diameter risers for which ambient water particle kinematics is
f importance.

2 Or more correctly information fusion, as first-principle-based numerical models are involved.
2
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Table 1
Direct and indirect sources of information about top tension in a mooring line.

Information source Obtained value Strengths and weaknesses

Tension measurements at fairlead Tension at fairlead (+) Calibration factor checked on a regular basis (−) Bias in
measurement and winching have the same static effect, making
mean tension difficult to track (−) Presence of noise

Nonlinear FEM using prescribed
motions at fairlead

(1) Tension at fairlead
(2) Any other structural response in the line

(+) Proven/validated method to describe dynamic tension in
mooring lines (−) Not suitable to work with noisy fairlead
displacement measurements (−) Not designed to run in real-time
as it relies on Newton–Raphson iterations (−) Requires mooring
line properties (incl. length) to be known

Global positioning system
(GPS)/real-time kinematic
positioning (RTK)

Position of vessel (+) No drift/bias (−) Accuracy and update frequency (1–2 Hz)
not adequate to estimate velocity/acceleration by differentiation
(−) Subject to intermittent signal loss due to e.g variable
atmospheric conditions

Inertial Measurement Unit
(incl. accelerometer, gyrometer,
magnetometer/fluxgate compass)

(1) Attitude (e.g. Euler angles)
(2) Angular velocities (roll, pitch, yaw rates)
(3) Linear accelerations (surge, sway, heave)

(+) High-frequency signals (−) Presence of acceleration due to
gravity in acc. signal (−) Bias due to mounting misalignment,
changing declination, and other phenomena (−) Presence of
noise

work encompasses many fields (structural dynamics, state estimation, signal compression, artificial neural networks), we will discuss
relevant previous work in the main text, when corresponding concepts are introduced.

Section 2 describes the proposed method. Section 3 presents case study that illustrates its capabilities and performance on a
ealistic case. Conclusions and perspectives are outlined in Section 4.

. Method description

.1. Overall description

The dynamic behaviour of mooring lines in shallow to moderate water depths depends on the line configuration. This is often
eferred to as a geometric non-linearity, and means that given a prescribed top-end motion, the dynamic tension at the fairlead

depends on the line length. We recall that the objective of the present work is to infer the actual line length (and hence the unbiased
mean tension) by studying the relationship between top motions and measured dynamic tension.

To this effect, high-frequency uninterrupted fairlead motions are obtained by fusing global and inertial navigation systems that
are commonly embedded on FPUs. Then, for each line, these motions are used to compute the top tension of 𝑁𝑐 line candidates.
The candidates differ by the length of the top segment, i.e. the uncertain quantity to be estimated. The dynamic tension obtained
with each of the 𝑁𝑐 model candidates is then compared to the measured dynamic tension. The models that provide the best match
are used to infer the true tension in the line.

The main components of the method are shown in the block diagram in Fig. 2. They will be briefly described now, while
details will be given in the next subsections. (1) A classical kinematic observer, fed by GPS and inertial measurement unit (IMU)
measurements, is used to estimate fairlead motions. These are then expressed in a suitably-chosen coordinate system for the line.
Then (2) a signal compression method, named here ‘‘tadpole compression’’, summarizes the recent history of fairlead motions by a
sparse set of parameters 𝑝. These parameters feed (3) a bank of 𝑁𝑐 artificial neural networks (ANN), trained using nonlinear finite
element model candidates, predicting top tensions 𝐹𝑖 for 𝑖 ∈ {1,… , 𝑁𝑐} from the tadpole parameter. Note that thanks to the sparsity
of (2), the ANN are extremely sparse too. Finally, (4) a tension estimator combines tension measurements with the predictions,
and outputs an unbiased tension estimate 𝐹 . This estimate can be used in fatigue assessment. Note that both measurements and
predictions are (5) band-pass-filtered to keep only the dynamic tension in the comparison. These components will be described in
detail in the following.

2.2. Coordinate systems

Three reference frames and associated right-handed coordinate systems will be used in the following. The notations are borrowed
from [15, Chapter 2]. The Earth-fixed inertial frame of reference {𝑛}, represented in blue in Fig. 3, has the coordinate system
(𝑛1, 𝑛2, 𝑛3) where 𝑛1 points towards the North, 𝑛2 towards the East, and 𝑛3 downwards. A body-fixed non-inertial frame of reference,
{𝑏}, centered at the FPU center (arbitrarily chosen) and represented in black in Fig. 3, has the coordinate system (𝑏1, 𝑏2, 𝑏3) where
these units vectors define surge, sway and heave respectively. Finally, {𝑓 (𝑖)}, represented in red for one line 𝑖 in Fig. 3, is an
Earth-fixed frame of reference, with a coordinate system which origin 𝐹 (𝑖)

0 lies at the fairlead 𝑖 when the platform is at rest. Its
position expressed in {𝑛} is 𝑝(𝑖)0 ∈ R3. A coordinate system (𝑓 (𝑖)

1 , 𝑓
(𝑖)
2 , 𝑓

(𝑖)
3 ) is associated to {𝐟 (𝐢)} where 𝑓 (𝑖)

1 is horizontal and in the
plane defined by the mooring line at rest, and points away from the anchor. 𝑓 (𝑖)

3 is located in the same plane and points downwards.
𝑓 (𝑖)
2 is obtained by requiring that the coordinate system is right-handed. When the platform is moving, ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗F(i)0 F(i) along 𝑓 (𝑖)

1 𝑓
(𝑖)
2 and 𝑓 (𝑖)

3
respectively describe in-line horizontal, transverse, and in-line vertical motions of the fairlead. A displacement of the fairlead along
positive 𝑓 or negative 𝑓 stretches the mooring line in its plane.
3
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Fig. 2. Overall system architecture, represented as a block diagram (right-hand side). The left-hand side of the figure shows the location of the sensors on the
floating platform.

Fig. 3. Coordinate systems {𝑛}, {𝑏}, and {𝑓 (𝑖)}. The grey contour represents the platform and mooring at rest. Note that for clarity, the platform is not represented
with any roll or pitch angle, here. In general 𝑏3 is not necessarily vertical. 𝐹 (𝑖) denotes the fairlead of the ith mooring line.

2.3. Robust estimation of fairlead motions

The objective is to obtain a robust high-frequency estimation of fairlead motions, by fusing global positioning system (such as
GPS) and strap-down inertial systems (IMU). Main kinematic quantities are defined in Table 2. 𝑅𝑛𝑏(𝛩) is the rotation matrix from
{𝑏} to {𝑛}, where 𝛩 expresses the attitude of the platform in terms of Euler angles (Tait–Bryan angles), see Eq. (1). The matrix
𝑇 𝑛𝑏 (𝛩), whose expression is given in Eq. (2), relates the body-fixed angular velocity vector to the rate of change of Euler angles by
𝛩̇ = 𝑇 𝑛𝑏 (𝛩)𝜔.

𝑅𝑛𝑏 =
⎛

⎜

⎜

⎝

cos𝜓 cos 𝜃 − sin𝜓 cos𝜙 + cos𝜓 sin 𝜃 sin𝜙 sin𝜓 sin𝜙 + cos𝜓 cos𝜙 sin 𝜃
sin𝜓 cos 𝜃 cos𝜓 cos𝜙 + sin𝜙 sin 𝜃 sin𝜓 −cos𝜓 sin𝜙 + sin𝜓 cos𝜙 sin 𝜃
− sin 𝜃 cos 𝜃 sin𝜙 cos 𝜃 cos𝜙

⎞

⎟

⎟

⎠

(1)

𝑇 𝑛𝑏 =
⎛

⎜

⎜

⎝

1 sin𝜙 tan 𝜃 cos𝜙 tan 𝜃
0 cos𝜙 − sin𝜙
0 sin𝜙

cos 𝜃
cos𝜙
cos 𝜃

⎞

⎟

⎟

⎠

(2)

The position 𝑝𝑛 is typically obtained at a low frequency (typically 0.5–2 Hz) and with short-term signal losses, from a global
positioning system, and the attitude 𝛩 is provided by motion reference unit (MRU) which includes a compass/magnetometer at the
4
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Table 2
Notations.
Symbol Description

𝑝𝑛 = (𝑁,𝐸,𝐷)⊤ ∈ R3 North-East-Down position vector of the platform center B, expressed in {𝑛}
𝛩 = (𝜙, 𝜃, 𝜓)⊤ ∈ 𝑆𝑂(3) Attitude (Euler angle)
𝑉 = (𝑢, 𝑣,𝑤)⊤ ∈ R3 Body-fixed linear velocity of platform center expressed in {𝑏} (surge, sway, heave)
𝜔 = (𝑝, 𝑞, 𝑟)⊤ ∈ R3 Body-fixed angular velocity (roll, pitch, yaw)
𝑟𝑎 ∈ R3 Position of accelerometer expressed in {𝑏}
𝑎 = (𝑎1 , 𝑎2 , 𝑎3)⊤ ∈ R3 Body-fixed linear acceleration at accelerometer expressed in {𝑏}
𝑏𝑎𝑐𝑐 ∈ R3 Accelerometer measurement bias expressed in {𝑏}
𝑏𝑔𝑦𝑟𝑜 ∈ R3 Gyrometer measurement bias expressed in {𝑏}
𝑔 = (0, 0, 9.81 m∕s2) Acceleration of gravity expressed in {𝑛}

Table 3
List of mooring lines considered in the present study.
Line Azimuth Horiz. dist. Fairlead b1 Fairlead b2 Line length Pretension Cluster

[𝑜] fairlead-anchor [m] [m] [m] [m] [kN]

1 182.5 1255.4 46.8 −49.1 1347.5 2156 South
5 262.5 1249.9 52.7 42.5 1347.5 1957 West
9 342.5 1248.4 −46.4 49.4 1340.8 2150 North
13 82.5 865.9 −52.7 −42.5 950.8 2184 East

same time instants. The origin and coordinate system of {𝑏} follows the position and orientation of the sensor. The three-components
gyro, which can be located in any position of the (rigid) floater, provides a biased3 measurement of 𝜔. Finally, an accelerometer,
located at a known position 𝑟𝑎𝑐𝑐 ∈ R3 expressed in {𝑏}, provides a three-component measurement of the acceleration that is affected
by the presence of the acceleration of gravity, including a bias due to misalignment. Both accelerometer and gyro provide data
at frequencies well above 10 Hz, typically 100–200 Hz. The objective is to fuse these measurements to obtain a high-frequency
estimation of the position and attitude of the floater.

In the following ⋅̂ denotes estimated quantities. Given the measured acceleration 𝑎𝑚, the estimated acceleration is 𝑎̂ = 𝑎𝑚 +
(𝑅𝑛𝑏)

⊤𝑔𝑛 − 𝑏𝑎𝑐𝑐 , where 𝑔𝑛 = (0, 0, 9.80685)⊤𝑚.𝑠−2. The various biases are estimated in real-time by solving 𝑏̇+ 𝑏∕𝑇 = 𝑘𝜀, where 𝜀 is the
riving error, and 𝑘 and 𝑇 are suitably chosen gains. The gyro bias 𝑏𝑔𝑦𝑟𝑜 is estimated with 𝜖 = (𝑇 𝑛𝑏 )

−1 ∫ 𝑇 𝑛𝑏 (𝛩)𝜔 − 𝛩. The velocity and
ccelerometer bias are estimated from the difference between integrated accelerations, and GPS positions. The estimated position
𝑝̂ and attitude 𝛩̂ is obtained at high frequency by integrating the unbiased velocity. Then, the 𝑖th fairlead displacement 𝑑(𝑖) ∈ R3,
xpressed in {𝑓} is found by:

𝑑(𝑖) =
(

𝑅𝑛
𝑓 (𝑖)

)⊤ (
𝑝̂𝑛 + 𝑅𝑛𝑏(𝛩̂)(

⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝐵𝐹 (𝑖))𝑏 − 𝑝(𝑖)0
)

(3)

here 𝑅𝑛
𝑓 (𝑖)

is the rotation matrix built by setting 𝜙 = 0, 𝜃 = 0, and 𝜓 = 𝜓 (𝑖) − 𝜋 in Eq. (1), where 𝜓 (𝑖) denotes the azimuth of
ine 𝑖, from fairlead to anchor, when the line is at rest (see for example Table 3). In the following, we will assume perfect 𝑑(𝑖). The
nterested reader is referred to [15, Chap. 14] for a details about convergence and estimation errors.

.4. Tadpole compression of recent fairlead motion history

Once displacements of the fairlead are obtained, the objective is to ‘‘summarize’’ these time series 𝑑(𝑖)(𝑡) by a few parameters,
mphasizing the recent information. This summary 𝑝(𝑡) will be used to estimate the mooring line tension.

This follows an approach previously applied to other problems in [17]. Let  be the space of square-integrable functions on
−∞, 0]. Given a bounded positive weight function 𝑤(𝑡) defined for 𝑡 ≤ 0, and two continuous signals 𝑓 and 𝑔 in , we define the
nner product and associated distance

⟨𝑓, 𝑔⟩𝑤 = ∫

0

−∞
𝑓 (𝑡)𝑔(𝑡)𝑤(𝑡)𝑑𝑡 (4)

‖𝑓 − 𝑔‖𝑤 =

√

∫

0

−∞
|𝑓 (𝑡) − 𝑔(𝑡)|2𝑤(𝑡)𝑑𝑡 (5)

For a weight function of the form 𝑤(𝑡) = 𝑒𝑡∕𝑡𝑚 with 𝑡𝑚 > 0, the distance Eq. (5) measures how similar 𝑓 and 𝑔 are in the recent past.
What is meant by recent is quantified by the mean lifetime parameter 𝑡𝑚: for example, differences between 𝑓 and 𝑔 at time instant
𝑡 = − ln 2 ⋅ 𝑡𝑚, will be half as important as such differences occurring at 𝑡 = 0.

The objective is to obtain a good approximation, with an emphasis on its recent past, of a function 𝑓 of the (infinite-dimensional)
vector space . This approximation is chosen as a linear combination ∑𝑛𝑝

𝑖=1 𝑝𝑖𝑇𝑖(𝑡), where the (finite) family of coefficients (𝑝𝑖)𝑖∈{1,…,𝑛𝑝}

3 See for example [16] for a discussion about the sources of gyro bias and their quantification.
5
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provides a ‘‘summary’’ of the signal. One thus seeks a family of functions (𝑇𝑖)𝑖∈{1,…,𝑛𝑝} spanning a finite-dimension subspace ̃ of
, and a family of 𝑛𝑝 parameters 𝑝𝑖 that minimize

𝐽 = ‖𝑓 −
𝑛𝑝
∑

𝑖=1
𝑝𝑖𝑇𝑖(𝑡)‖2 = ‖𝑓‖2𝑤 − 2

∑

𝑖
⟨𝑓, 𝑇𝑖⟩𝑤 + 𝑝2𝑖

∑

𝑖,𝑗
⟨𝑇𝑖, 𝑇𝑗⟩𝑤 (6)

Assuming now that we have such a family (𝑇𝑖) that is orthonormal with respect to the inner product defined in Eq. (4), that forms
basis of ̃, then ∀𝑖, 𝑗 ∈ {1,… , 𝑛𝑝}, ⟨𝑇𝑖, 𝑇𝑗⟩𝑤 = 𝛿𝑖𝑗 (Kronecker delta). In this case, the coefficients 𝑝𝑖 are obtained by projection
𝑖 = ⟨𝑓, 𝑇𝑖⟩𝑤. The distance (using the ‖ ⋅ ‖𝑤 norm) between two functions in  is equal to the euclidean distance between their

respective ‘‘summaries’’ in R𝑛𝑝 .4 Such an orthonormal family (𝑇𝑖) can be obtained by choosing a set of linearly independent functions
𝑇̃𝑖) spanning a relevant subspace of , and performing a Gram–Schmidt 𝑤-orthonormalization using Eq. (4). While the latter step is
traightforward, the choice of the subset spanning ̃ is of crucial importance as our approximation of 𝑓 will necessarily be contained
n this subset.

To make this choice, let the signal 𝑓 be the history of one of the three components of the fairlead displacement. Mooring lines
re subjected to high damping loads, so it is expected that the ‘‘memory’’ of the system (its nonlinear impulse response) is limited
o a few seconds. Typical fairlead motions are also covering periods larger than the second. In the present work, the space spanned
y exponential decay functions is chosen

∀𝑖 ∈ {1,… , 𝑛𝑝}, 𝑇̃𝑖(𝑡) = 𝑒
𝑖−1
𝑛𝑝−1

𝑡
𝑡𝑐 (7)

with characteristic time 𝑡𝑐 = 1 s, which are represented in Fig. 4 for 𝑛𝑝 = 6. The figure also shows the weight function 𝑤(𝑡) with
𝑡𝑚 = 1.3 s, the orthonormal basis (𝑇𝑖), obtained by the Gram–Schmidt method, and the dual basis (𝑇 ∗

𝑖 )𝑖∈{1,…,𝑛𝑝} of (𝑇𝑖).
Using 𝑇 ∗

𝑖 and 𝑇𝑖 as defined above, the compressed representation 𝑝 of a signal 𝑓 is obtained by:

𝑝𝑖 = ∫

0

−∞
𝑓 (𝑡)𝑇 ∗

𝑖 (𝑡)𝑑𝑡 (8)

The approximate signal 𝑓 from 𝑝 is synthesized as

𝑓 =
𝑛𝑝
∑

𝑖=1
𝑝𝑖𝑇𝑖(𝑡) (9)

Fig. 5 shows ten arbitrarily selected fairlead motion signals that have been compressed using Eq. (8) and synthesized using
q. (9). Each component of the displacement, was originally described by 93 samples values (covering 9.2 s at 10 Hz), and is now
ummarized by only 6 parameters. The quality of the approximation is excellent in the near past, and degrades with the past time.
he interested reader is referred to [17] for details regarding the discrete implementation of the method, including incremental
pdate of the 𝑝𝑖 coefficients using the latest displacement value only.

.5. Functional relationship between 𝑝 and 𝐹 - a necessary condition

For at each time instant, for each mooring line, the tadpole coefficients 𝑝(𝑡) ∈ R3𝑛𝑝 provide a summary of the recent fairlead
motions. The objective is to predict, at each time 𝑡, the top tension 𝐹 (𝑡) from 𝑝(𝑡). If the behaviour of the mooring line is quasi-static,
he instantaneous displacement 𝑑(𝑖)(𝑡) is sufficient to predict the tension. In that case, any tadpole compression would have the ability
o predict the top tension. In general, however, the compressed data 𝑝(𝑡) must retain enough information about the recent past to
redict the mooring line top tension. In other words, the decay times 𝑡𝑚 and 𝑡𝑐 , and the basis size 𝑛𝑝 in Eq. (7) must be adequately
hosen. If memory effects were significant, and if decay times were chosen too small, then a given recent motion summary 𝑝(𝑡)
ould result in different top tensions 𝐹 (𝑡), depending on the motion history in the more remote past.

Therefore, to efficiently investigate whether a functional relationship between 𝑝(𝑡) and 𝐹 (𝑡) might be established, an analysis
ased on comparative fractal dimensions is performed [17, Section 6.3]. The fundamental idea is that if 𝐹 (𝑡) can unambiguously
e predicted from 𝑝(𝑡), then the dimension of the manifold {𝑝(𝑡)}𝑡≥0 must remain nearly unchanged when augmenting it with the
orresponding 𝐹 (𝑡) values. What we refer to as the dimension here is the Minkowski–Bouligand dimension (a fractal dimension),
stimated here from the distances between points in the manifolds. To illustrate this, consider two manifolds {𝑥(𝑡)}𝑡≥0 and {𝑦(𝑡)}𝑡≥0 in
3. If {𝑥(𝑡)}𝑡≥0 has a dimension 2 (i.e. forms a surface), a functional relationship between 𝑥 and 𝑦 might be achievable if {𝑥(𝑡), 𝑦(𝑡)}𝑡≥0

emains a surface, and does not form a ‘‘cloud’’ of points (of dimension larger than 2). Note that this condition on the fractal
imension is necessary, but not sufficient: 𝑥 and 𝑦 could be manifolds of dimension 2, each containing random points in a defined
lane.

Hence a necessary condition (on the decay times and basis size) to establish a functional relationship between 𝑝(𝑡) and 𝐹 (𝑡) is
hat the fractal dimensions of the manifolds {𝑝(𝑡)}𝑡≥0 and {𝑝(𝑡), 𝐹 (𝑡)}𝑡≥0 are close to each other. A practical illustration of this check
ith actual data will be presented in Section 3.

4 This property is important to prove convergence and hence the quality of the approximation, see [17] for details.
6
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t

Fig. 4. From top to bottom: (1) weight function, (2) initial functions spanning ̃, (3) orthonormal basis of ̃, (4) dual basis (𝑇 ∗
𝑖 ) of (𝑇𝑖).

Fig. 5. Time series of fairlead displacements 𝑑(𝑖) ∈ R3, decomposed along 𝑓 (𝑖)
1 (left plot), 𝑓 (𝑖)

2 (middle plot) and 𝑓 (𝑖)
3 (right plot). Each plots presents a comparison

etween compressed/synthesized signal 𝑓 (solid line) and true signal 𝑓 (dashed line). The name ‘‘tadpole compression’’ comes from the visual representation of
hese functions.
7
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Fig. 6. Comparison between tensions calculated by RIFLEX (dashed line) and by the ANN fed with tadpole coefficients (full line), for a case not used in training.

2.6. Efficient prediction of top tension based on recent history of fairlead motion

Once it is established that 𝐹 (𝑡) ∈ R can be expressed as a function of 𝑝(𝑡) ∈ R3𝑛𝑝 , the next objective is to attempt to construct
such a function. The universal approximation theorem [18] states that a feed-forward artificial neural network (ANN) with a single
hidden layer can approximate any continuous function. Hence 𝐹 ∶ R3𝑛𝑝 ←←→ R is formulated as such a network with 𝑛ℎ neurons in the
hidden layer, and a hyperbolic tangent activation function 𝜎. In other words, 𝐹 = 𝑊2◦𝜎◦𝑊1 where 𝑊1 and 𝑊2 are affine maps and ◦
denotes component-wise composition. Assuming a fully connected network, 𝑊1 and 𝑊2 are described by full matrices of dimensions
𝑛ℎ × (3𝑛𝑝 + 1) and 1 × (𝑛ℎ + 1), respectively, that is a total number of parameters equal to 𝑛ℎ(3𝑛𝑝 + 2) + 1, which amounts to 201 if
𝑛ℎ = 10.

The identification of these parameters, such that 𝐹 satisfactorily links 𝑝 to 𝐹 is denoted the training phase. Based on 𝑁training

pairs {(𝑝, 𝐹 )𝑖}𝑖≤𝑁training obtained from nonlinear Finite Element simulations (here, RIFLEX [19]), ∑𝑁training
𝑖=1 [𝐹𝑖(𝑝)−𝐹𝑖(𝑝)]2 is minimized

using the Levenberg–Marquardt method. Once the training is carried out, the behaviour of the ANN is tested on a validation set, that
is a set of {(𝑝, 𝐹 )𝑖}𝑖≤𝑁validation different from the training set. Fig. 6 shows an example of time series from the validation set, predicted
independently by the ANN and by RIFLEX.

The idea of using ANN to predict mooring tension is not new [20–22], but in previous works, the input of the ANN consisted in
time samples of the floater motions (with previous predicted tension values added in some cases). Due to the absence of compression,
the dimension of the inputs to the ANN was significantly larger (28 for [21], 60 for [22], 300 for [20]). For the case with the less
inputs, 100 neurons were used in the hidden layers [21], which leads to an ANN with about 40 times more parameters to calibrate
than in the present work. When considering a single neural network such a difference is, in practice, insignificant in terms of
computational time: ANNs runs several orders of magnitude faster than nonlinear FEM. However, sparsity is an advantage here as
we will train and use a bank of ANNs.

Again, the overall objective is to infer the mooring line length (and therefore the unbiased top tension) based on measurements
of motions and of the (biased) top tension. To this end, 𝑁𝑐 separate neural networks are trained with similar 𝑝 data, but with 𝐹
data corresponding to different top segment lengths, typically 𝑁𝑐 = 10−15 variations around the nominal value.5 We will now show
how using this bank of 𝑁𝑐 neural networks allows to estimate the line length and the tension in near real time.

2.7. Top tension estimator based on measurements and bank of ANNs

At each time, the compressed recent history of motions, 𝑝 estimated from Eq. (3) and (8), and the top tension are predicted in
parallel for all 𝑁𝑐 model line candidates 𝐹𝑗 (𝑝(𝑡)), 1 ≤ 𝑗 ≤ 𝑁𝑐 . The top tension 𝐹𝑚(𝑡) is measured at the fairlead. Both 𝐹𝑗 and 𝐹𝑚 are
input to the same band-pass filter, to obtain synchronized, de-noised, dynamic top tension in the mooring lines. These are denoted
𝐹𝑑,𝑗 (𝑡) and 𝐹𝑑,𝑚(𝑡), respectively.

The measured dynamic tension is then compared to the one predicted by each of the 𝑁𝑐 candidates:

𝜀𝑗 (𝑡) =
(

𝐹𝑑,𝑗 (𝑡) − 𝐹𝑑,𝑚(𝑡)
)2 (10)

If there is too little fairlead motion, and thus insignificant dynamic tension, no meaningful comparison can be made between the
predictions and the measurement. We therefore define a threshold 𝐹𝑑,𝑚𝑖𝑛, above which the error Eq. (10) is accumulated to an
indicator 𝛬𝑗 (𝑡) associated with each of the 𝑁𝑐 candidates.

𝛬𝑗 (𝑡) = ∫

𝑡

0
𝐾𝜀𝑗 (𝑡′)𝟏

[

min
𝑗≤𝑁𝑐

𝐹𝑑,𝑗 (𝑡′) − 𝐹𝑑,𝑚𝑖𝑛

]

𝑑𝑡′ (11)

where 𝟏 [...] is the Heaviside function, equal to 1 if its argument is positive, and 0 else, and 𝐾 an integrator gain. It is clear from
this expression that smaller 𝛬𝑗 are related to more promising candidates than larger ones. The 𝑗 indices are then re-ordered to
(𝑗1,… , 𝑗𝑁𝑐 ), such that the most promising candidates come first: 𝑘 < 𝑘′ ⟹ 𝛬𝑗𝑘 (𝑡) ≤ 𝛬𝑗𝑘′ (𝑡).

5 In the present work, once the RIFLEX model of the ‘‘nominal’’ mooring system is set up, such parametric variations can conveniently be run automatically
using the SIMA workbench [23].
8
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Fig. 7. Horizontal projection of mooring system (left) and mooring line composition (right, not to scale).

Once the most promising candidates are identified, the tension estimate could simply be set to 𝐹𝑗1 (𝑝(𝑡)), which includes the
(unbiased) static and dynamic tension. Doing so yields discontinuities in the tension estimate when the best candidate changes,
which might not be desirable for some applications. The heuristic approach selected here is to use a weighted mean of the various
𝐹𝑗𝑘 (𝑝(𝑡)), with exponential weights 𝜆𝑗𝑘 , that strongly penalize bad candidates:

𝜆𝑗𝑘 (𝑡) = 𝑒
𝛼
(

𝛬𝑗1
𝛬𝑗𝑘

−1
)

(12)

The coefficient 𝛼 > 0 steers how much we want to promote the best candidate(s) compared to the following ones. The tension
estimate is then

𝐹 (𝑡) =

(𝑁𝑐
∑

𝑘=1
𝜆𝑗𝑘 (𝑡)

)−1 𝑁𝑐
∑

𝑘=1
𝜆𝑗𝑘 (𝑡)𝐹𝑗𝑘 (𝑝(𝑡)) (13)

In the present work, 𝐹min = 100 kN, 𝛼 = 75 and 𝐾 = 106 kN2. The 𝛬𝑗 (𝑡) are initialized to zero and the tension estimate Eq. (13) is
output only when ∀𝑗 ∈ {1...𝑁𝑐}, 𝛬𝑗 (𝑡) ≥ 𝛬min, i.e. when enough relevant data (enough motions of the fairlead) has been acquired.
𝛬min is set here to 0.1, Note that the present approach has similarities with dynamic hypothesis testing developed in [24] for line
failure detection. This latter method is however currently limited to linear systems, which makes it inadequate for the present
application, where the modelling of the mooring system’s nonlinear behaviour is required.

3. Case study

The tension estimation method presented in Section 2 is now applied to a concrete case involving a semi-submersible platform
installed on the Norwegian Continental Shelf.

3.1. Description of the platform and mooring

A semi-submersible FPU operating in 300 m water depth in the Norwegian Sea is considered. The platform has six columns, two
pontoons with length 102.4 m at a distance of 96 m, a draught of 25 m and a total displacement of 84,848 tonnes. It is permanently
moored by a spread mooring system that consists of 16 lines in clusters of four (Fig. 7). The fairleads are located approximately
68 m from the unit center, 8.8 m below the still water level. The mooring pattern is asymmetric, with shorter lines towards the
east.

The mooring lines considered in the present study are lines number 1, 5, 9 and 13, as numbered in Fig. 7. Their main properties
are given in Table 3. The anchor positions are based on field measurements, and the nominal lengths of the platform chains have
been adjusted to obtain pretensions close to those measured on site for each of the lines. All lines are composed of a catenary
chain–wire–chain configuration, with chain for the upper and lower segments, and steel wire rope in-between (Fig. 7). Mooring
lines 1, 5 and 9 consist of a 120 m installation chain, a 180 m steel wire rope, and 1000 m bottom chain and four connection plates
of 1.5 m each. Mooring lines 13 has a 20 m installation chain, 120 m steel wire rope, 600 m bottom chain and three connection
plates of 1.5 m each.

The chain segments are made of studless R4 links, with a nominal diameter of 142 mm. Their weight in water is 3.44 kN/m,
and their drag coefficient is estimated to 2.4 (wrt. nominal diameter). The steel wire rope is made of sheathed spiral strand wire,
with a diameter of 156 mm (incl. 20 mm plastic sheathing). Its weight in water is 0.91 kN/m, and the drag coefficient is 1.2 (wrt.
diameter including sheathing). Both segment types have a minimum breaking load larger than 16 MN.
9



Marine Structures 86 (2022) 103309T. Sauder et al.

l
S
e
l

r

Table 4
List of sea-states with corresponding significant wave height 𝐻𝑠, wave peak period 𝑇𝑝 and mean wind
velocity 𝑈𝑤. Sea-states 1–15 are used for the training of the ANN, while 16–30 are used for validation.
Wind and wave propagation direction was 10 deg with respect to North.
Training set Validation set

Sea-state 𝐻𝑠 𝑇𝑝 𝑈𝑤 Sea-state 𝐻𝑠 𝑇𝑝 𝑈𝑤
# [m] [s] [m/s] # [m] [s] [m/s]

1 1.0 14.5 4.5 16 2.0 5.5 7.0
2 1.0 20.5 4.5 17 2.0 15.5 7.0
3 2.0 1.5 7.0 18 4.0 8.5 11.4
4 4.0 10.5 11.4 19 4.0 17.5 11.4
5 5.0 5.5 13.4 20 5.0 11.5 13.4
6 6.0 17.5 15.2 21 7.0 8.5 16.9
7 7.0 13.5 16.9 22 8.0 16.5 18.5
8 8.0 8.5 18.5 23 9.0 9.5 20.0
9 11.0 15.5 22.6 24 9.0 13.5 20.0
10 12.0 12.5 23.7 25 11.0 10.5 22.6
11 12.0 14.5 23.7 26 11.0 13.5 22.6
12 12.0 16.5 23.7 27 13.0 11.5 24.7
13 13.0 14.5 24.7 28 14.0 14.5 25.7
14 13.0 15.5 24.7 29 14.0 12.5 25.7
15 15.0 17.5 26.6 30 15.0 15.5 26.6

3.2. Numerical model and motion/tension simulations

Mooring line responses are computed using time domain simulations, with a decoupled approach6: first, floater motions are
simulated with a quasi-static representation of the mooring line forces. Then the motion from step 1 is imposed on finite-element
(FE) models of the mooring lines of interest, to obtain time series of mooring line axial tension that include dynamic effects such
as drag and inertia.

The first step is performed with the computer program SIMO [23], which solves the nonlinear and dynamic equation of motion
in time domain with excitation from waves and wind. Waves are described by the double-peaked Torsethaugen wave spectrum [26],
assuming long-crested (unidirectional) sea. Wind speed fluctuations are modelled by the NPD/ISO wind spectrum [26], with a mean
wind velocity 𝑈𝑤 related to 𝐻𝑠 by regression made on hindcast data. The quasi-static representation of the mooring lines implies that
the nonlinear restoring characteristics of the lines are accounted for, whereas dynamic effects due to drag and inertia are neglected in
the SIMO analysis. The numerical model includes frequency dependent hydrodynamic coefficients for first and second order wave
excitation based on potential theory, where the latter have been adjusted empirically through comparison to model test results.
Frequency-dependent added mass and potential damping are represented by retardation functions. Wind loads are included by
means of quadratic force coefficients. Additional damping is provided through linear and quadratic damping matrices, representing
viscous damping due to columns and pontoons as well as damping contributions induced by mooring lines and risers. Quasi-static
models of the risers are included to ensure that their stiffness contributions are accounted for.

The second step is performed with RIFLEX [19], using bar elements for the mooring line FE model. Geometric nonlinearities are
accounted for. Drag, added mass and inertia effects on the mooring line responses are modelled. Marine growth is accounted for
through increased drag coefficients and unit mass according to [27].

The sea-states used in the present case study are listed in Table 4, and have been chosen to be similar to the ones in [21, Table
1]. Wind and wave propagation direction was 10 deg, meaning that lines 1, 5, 9, 13 were solicited in very different ways: line 1
would be a ‘‘windward’’ line, line 9 a ‘‘leeward’’ line, while line 5 and 13 would experience transverse top motions. Simulations
were performed for three hours in each sea-state. Candidate top segment lengths ranged from 16 m shorter than the nominal length
to 24 m longer than the nominal length, by increments of 4 m. This led to 𝑁𝑐 = 11 candidates. Fig. 8 shows an example of simulated
fairlead motions and associated top tensions for lines 1 and 5. Note from the bottom figures that the top tension amplitude depends
significantly on the line length, due to the geometric nonlinearities.

3.3. Fractal dimension of the data set

In this Section, the concepts and method described in Section 2.5, are illustrated by using the present data. The fractal dimension
of four data sets are presented in Fig. 9. The first two sets are based on the instantaneous displacement of the fairlead 𝑑(𝑡), and the
ast two ones on the tadpole compression 𝑝(𝑡) of the recent history of the fairlead, with the same decay times and basis size as in
ection 2. Both sets are augmented with the instantaneous tension measurement. The fractal dimension of each set is presented for
ach of the four lines, and as a function of the significant wave height for eight sea-states relevant for fatigue (𝐻𝑠 − 𝑇𝑝 pairs with a
ow return period).

6 See e.g. [25] for a discussion on the differences between coupled and decoupled (referred to as ‘‘separated’’ in the reference) simulation of mooring line
10
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Fig. 8. Example of time series obtained from RIFLEX, and used for the training of the bank of 𝑁𝑐 neural networks. In both plots, 𝐻𝑠 = 11 m, 𝑇𝑝 = 15.5 s, and
𝑈𝑤 = 22.6 m/s. The data corresponding to line 1 (mostly in-line motions) and line 5 (mostly transverse motions) are shown on the left-hand side and right-hand
side, respectively. The three first rows show the motions in {𝑓} from which 𝑝 is computed. The last row shows the tensions at the fairleads for 𝑁𝑐 line length
variations compared to nominal length. The length variation in [m] is given in the legends.

The first remark is that the fractal dimensions of {𝑑}𝑡≥0{𝑑, 𝐹 }𝑡≥0 are consistently different, averaging to 2.6 for the former, and
11
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Fig. 9. Comparison of the fractal dimensions of (1) instantaneous fairlead displacements (square markers) and (2) the tadpole compression of the recent history
of the fairlead displacements (circle markers). Both sets are taken alone (black), or augmented with the top tension (red). Fractal dimensions are presented as
a function of 𝐻𝑠 for sea-states of relevance for fatigue analyses, and for all four lines.

where line dynamics plays a role on the tension. On the other hand, the fractal dimensions of {𝑝}𝑡≥0{𝑝, 𝐹 }𝑡≥0 are practically the
same, indicating that there is a functional relationship, which we will do in the next section.

Interestingly, the fractal dimension of the {𝑝}𝑡≥0 data set decreases when increasing 𝐻𝑠. A physical explanation is related to the
fact that for the selected sea-states, the peak wave period tends to increase with the significant wave height, and so does the typical
period of the fairlead motions. These can then be described by a smaller number of elements of the basis shown in Fig. 4.

3.4. Training and validation of the ANN

The 15 first sea-states listed in Table 4 are used to generate training data for the bank of 𝑁𝑐 = 11 ANN. A total of 𝑁training = 2500
training points are selected randomly in these sea-states. For each of them, and for each of the four mooring lines, 𝑝 is computed
from the recent past history of the corresponding fairlead motions, and associated to the simulated tension 𝐹 (for each of the 𝑁𝑐
candidates). The training phase of the 𝑁𝑐 neural networks takes less than one minute on a conventional laptop. Once the training was
done, the corresponding sea-states were left aside, and only the 15 next ones were used for validation. Validation was performed
by selecting 105 random instants in the validation sea-states, and comparing the tension predicted by the ANN, with the actual
simulated tension. Fig. 10 shows the distribution of the tension error 𝜖 = |𝐹 − 𝐹 | for both the training set and the validation set. As
expected the ANN performs well on the training set, with a 95th percentile of the error of less than 0.5% of the pretension in the
lines. For the validation cases, not used in training, the 99th percentile of the prediction error is approximately twice as big than
for the training set, which indicates good prediction and no over-fitting of the training data.

3.5. Estimator performance under normal operations

Let us now assess the performance of the estimator described in Section 2.7. To this end, synthetic ‘‘measurements’’ are generated
by adding noise and bias to the simulated top tension, and used to assess the performance of the estimator described in Section 2.7.
The noise is Gaussian, with zero mean and a standard deviation equal to 5% of the mean tension. The bias is a random number
uniformly distributed between −30% and +30% of the mean tension. These synthetic ‘‘measured’’ tensions can be compared to the
true ones by considering the grey and black curves in the top plots in Figs. 11 and 12. These figures correspond to lines 1 & 5, and
9 & 13 respectively. The actual line lengths, indicated on the third row plot, are randomly chosen, and are to be estimated. The
sea-states are randomly selected among the validation set.

In each column of each figure, the first plot from the top shows the true top tension, the synthetic measurement, and the tension
estimate output from the observer (which we will discuss below). The second plot shows the dynamic tension 𝐹𝑑,𝑗 as predicted by
the 𝑁𝑐 ANNs and as measured 𝐹𝑑,𝑚. The dynamic tensions are here obtained by an online band-pass filter with cut-off frequencies
at 2 mHz and 1 Hz. The third plot shows the value of the indicator functions 𝛬𝑗 defined in Eq. (11), emphasizing the indicator
for the actual line length. Based on these indicators, the best and second best line lengths candidates are presented (i.e. the line
12
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Fig. 10. Probability of exceedance of the error made by the bank of ANNs, obtained from the training set (red) and from the validation set (black). The 99th
percentile of the error is 20 kN and 40 kN respectively.

lengths corresponding to candidate 𝑗1 and 𝑗2, according to the notation used in Section 2), on the fourth plot. The fifth plot shows
the weighing factor 𝜆𝑗 for the two best candidates, as calculated in Eq. (12) . The weights of the following candidates are in general
ery small and are not represented.

The estimator is started at 𝑡 = 500 s, after convergence of the band-pass filter, and the behaviour of the estimator is shown for
he following 1000 s. For the examples involving lines 1, 5, and 9, it takes between 60 and 175 s before all indicators exceed 𝛬min

and the estimator begins to output an estimate. When this happens, the estimated tension is immediately of good quality (meaning
that the length is correctly estimated at once), and does not change anymore. It is clear that strong variations in the indicator 𝛬𝑗
occur when significant dynamic tension is observed, i.e. when it is possible to discriminate between the dynamic stiffness of the
various candidates. For the case with line 13, the dynamic tension rarely exceeds 100 kN, and some 𝛬𝑗 remain therefore smaller
than 𝛬min during the considered 500 s, meaning that no estimate is provided for this line.

3.6. Estimator performance under winching operations

We show now how the estimator behaves when winching is performed at random instants. In sea-state 28, starting from either
a taut line (−16 m) or a slacker line (+20 m), 4 m of chain are paid out (i.e. the line length increases by 4 m). The estimator has
been running for 500 s and the estimator provides a correct value of the tension before winching starts. The winch is activated at
𝑡 = 1000 s, 4 m of mooring chains are payed out over 200 s. Results are shown in Fig. 13. Whether starting from a slack or taut
line, the estimator converges towards the true tension after 𝑡 ≃ 1800 s. This performance deteriorates in a calmer sea-state with less
dynamic tension, where indicators would be updated at a lower pace, and it increases if a larger portion of chain was paid out due
to a larger change of the dynamic tension.

3.7. Estimation robustness in presence of current

For given fairlead motions, the presence of an ambient current influences both the mean and the dynamic tension in mooring
lines, due to the change in drag loads. Meanwhile, the estimator embeds no information about the influence of current on the line
tension, since the bank of perceptrons is trained with simulation data obtained without current (see Section 3.2). In the present
section we therefore investigate the robustness of the estimator to the presence of current: we verify whether the line length and
mean tensions remain correctly estimated, in spite of an unmodelled current.

We consider a linear current profile with velocity 𝑈𝑐 at the surface 𝑈𝑐∕2 at the seabed. Note that the current velocity at the sea-
bed would probably be less in reality, but our choice, inducing a larger parasitic loading all along the mooring line, is deliberately
made for the purpose of this robustness check. The current propagates in the same direction as the waves.

Additional RIFLEX simulations are run in the same way as described in Section 3.2, including now a current with 𝑈𝑐 = 0.5 m∕s
and 𝑈𝑐 = 1 m∕s, but using the same fairlead motions as for 𝑈𝑐 = 0 m∕s. Figs. 14 and 15 show the effect of the current velocity 𝑈𝑐 on
the mean and dynamic tension, respectively, and compare it to the effect of changing the line length by a quantity 𝛥𝑙. This is done
for line 1 in a relevant sea-state, that contributes significantly to fatigue damage (sea-state 21, 𝐻𝑠 = 7 m, 𝑇𝑝 = 8.5 s, 𝑈𝑤 = 16.9 m∕s,
see Table 4). From Fig. 14, for a realistic range of 𝛥𝑙 and 𝑈𝑐 values, the mean tension is found to be much more sensitive to a
change of line length 𝛥𝑙 than to 𝑈𝑐 . This is also visible in the time series presented on the top of Fig. 15. However, the bottom plot
in Fig. 15 shows that this does not hold for the dynamic (band-pass filtered) tension 𝐹 that drives the estimation, see Eq. (10).
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Fig. 11. Examples of performance of the estimator for line 1 (left hand side) and line 5 (r.h.s.). Sea-state and line length are chosen randomly. First row: true
tension, measured tension (biased and noisy) and estimated tension as well as estimation error. Second row: true dynamic tension, and dynamic tension predicted
by all ANN candidates. Third row: 𝛬𝑗 -indicator accumulating the dynamic tension estimation error for all candidates. Fourth row: true line length, and length
corresponding to the first and second best estimates. Fifth row: weights associated to the first and second best estimates to compute estimated tension on top
plot. Note that the time-window is different for the second row, to properly represent details of the time series.

Indeed, changing the line length by 𝛥𝑙 = ±4 m or increasing 𝑈𝑐 up to 1 m/s lead to similar changes in the time-series amplitudes.
The question is now whether the changes of features in the 𝐹𝑑 time-series induced by varying 𝑈𝑐 are sufficiently small compared
to those induced by varying 𝛥𝑙, for the estimator to estimate 𝛥𝑙 correctly.

This is investigated for sea-states 20–30 with 𝐻𝑠 ≥ 5.0 m, leading to enough line dynamics for the estimator to work correctly in
nominal conditions (no current), and which have not been used in training of the perceptron. In Fig. 16, for each sea-state, the first
four bars show the true change of mean tension obtained by varying 𝛥𝑙 and 𝑈𝑐 , the reference being the mean tension when 𝛥𝑙 = 0
m and 𝑈𝑐 = 0 m/s (nominal case). The three last bars show the variation of the estimated mean value (compared to the nominal
case) output by the estimator when the spurious current velocity is 0, 0.5 or 1 m/s. The mean values are averages of the time series
taken over 1000 s.

For all considered sea-states, except sea-state 20, the estimation error is similar with and without spurious current, and
comparable in magnitude to the (small) change of mean tension induced by the current. For sea-state 20 and for 𝑈𝑐 = 1 m∕s,
the estimation error is larger, and comparable to the change of mean tension induced by a change of line length. This indicates
that, in this case, the estimator has failed to identify the correct line length by comparing the measured dynamic tension to the
ones that have been ‘‘learned’’ without current. In other words, for this condition, the current affects significantly the features in
𝐹𝑑 , compared to the ones induced by fairlead motions. This issue disappears for a lower current velocity (𝑈𝑐 = 0.5 m∕s) or when
the sea-state become more energetic.
14
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Fig. 12. Examples of performance of the estimator for line 9 (l.h.s) and 13 (r.h.s). See Fig. 11 for details.

To conclude, top tensions provided by the estimator are found to be robust to the presence of unmodelled current, if the sea-state
s sufficiently energetic (𝐻𝑠 > 5 m in the present case). This corresponds to sea states that contribute to fatigue damage in North
ea climate. Robustness is achieved here because current, even with the rather conservative profile chosen in this study, has a
omparatively minor effect on the dynamic tension than a change in line length. Note that if this, for another system, were not the
ase, an option would be to augment the estimator with perceptrons trained with simulation data including current.

. Conclusion

Life extension of existing FPUs requires unbiased estimates of tensions in mooring lines, because the mean tension affects the
atigue damage in mooring chains. Condition-based maintenance of floating wind parks will set similar requirements because wind
urbines generate a large mean thrust (especially in moderate wind conditions and sea-states), which results in large mean static
oads on the mooring system.

The estimation method presented in this paper allows to correct the bias present in mooring line tension measurements. Available
n-board measurements are combined with a parameterized nonlinear FEM model of the as-installed mooring system. By comparing
he dynamic response of various model candidates, the unbiased estimate of the tension in the mooring is found. The presented
ethod is based on (1) a kinematic observer, (2) the compression of the recent history of fairlead motions, (3) a bank of neural
etworks, each one corresponding to a given line length/static tension, and (4) a heuristic approach to selecting the most promising
odel among the candidates. Given that enough (wave-induced) excitation is present, the estimator converges towards the true

alue of the tension, and copes effectively with transients such as winching operations, and with the presence of oceanic current.
15
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Fig. 13. Examples of winching out 4 m on line 1, starting from a taut line (l.h.s.) and slack line (r.h.s.). The winching starts at 1000 s and ends at 1200 s.
See main text and Fig. 11 for details about the presented quantities. A minor difference compared to Figs. 11 and 12, is that the third row now presents the
indicators corresponding to the true line lengths before and after winching.

Fig. 14. Variation of the mean tension in line 1 in sea-state 21 (𝐻𝑠 = 7 m, 𝑇𝑝 = 8.5 s, 𝑈𝑤 = 16.9 m∕s, see Table 4), in presence of current with surface velocity
𝑈𝑐 and for various top segment lengths variations 𝛥𝑙.
16
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Fig. 15. Variation of the total tension 𝐹 (top) and dynamic tension 𝐹𝑑 (bottom) in line 1 in sea-state 21 (𝐻𝑠 = 7 m, 𝑇𝑝 = 8.5 s, 𝑈𝑤 = 16.9 m∕s, see Table 4), in
presence of current with surface velocity 𝑈𝑐 and for various top segment lengths variations 𝛥𝑙.

Fig. 16. Deviation of the mean tension (either true or estimated) from the nominal mean tension (𝛥𝑙 = 0 m, 𝑈𝑐 = 0 m/s).

The computational efficiency of this method opens for on-board processing of the data (edge computing) to reduce bandwidth
and storage requirements. Top tension estimates can be trivially be supplemented by other quantities of interest such as bending
stresses in risers and cables at the touch-down point. This is therefore a promising generic tool for the development of complete
digital twins of slender marine structures.

Ongoing work targets the validation of the estimation method for mooring systems based on field measurements. If needed,
other parameters that affect the mean line tension might be added to the estimation problem. Examples are marine growth and the
presence of ocean current, whose effect on top tension can be computed from nonlinear FEM. The main challenge would then lie in
the large resulting number of model candidates 𝑁𝑐 that the estimator has to choose from, and thus in a possibly poorer convergence
rate.
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