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Abstract. The EU and UK have made ambitious commitments under the net-zero plans to decarbonise their
economies by 2050. For this, offshore wind will play a major role, significantly contributing to a paradigm shift
in the power generation and greater volatility of electricity prices. The operating strategy of wind farms should
therefore move from power maximisation to profit maximisation which includes income from providing power
system services and the reduction of maintenance costs. Wind farm flow control (WFFC) is a key enabler for
this shift through mitigation of wake effects in the design and operation phases. The results of the FarmConners
market showcases presented here are the first attempt to economically assess WFFC strategies with respect to
electricity market prices. Here, we present a conceptual simulation study starting from individual turbine control
and extend it to layouts with 10 and 32 turbines operated with WFFC based on the results of five participants.
Each participant belonged to a different research group with their respective simulation environments, flow
models and WFFC strategies. Via a comparative analysis of relative WFFC benefits estimated per participant, the
implications of wind farm size, the applied control strategy and the overall model fidelity are discussed in zero-
subsidy scenarios. For all the participants, it is seen that the income gain can differ significantly from the power
gain depending on the electricity price under the same inflow, and a favourable control strategy for dominant
wind directions can pay off even for low electricity prices. However, a strong correlation between income and
power gain is also observed for the analysed high-electricity-price scenarios, underlining the need for additional
modelling capabilities to carry out a more comprehensive value optimisation including lower prices and system
requirements driven cases.

1 Introduction

The ambitious targets “Net Zero by 2050” within the EU and
UK will be driven, in large part, by a significant rise in off-
shore wind. The UK alone has committed to 40 GW of off-
shore wind by 2030, a near 4-fold increase on its current ca-
pacity. The rapid rise in offshore wind will result in a shift
from electricity prices driven by fossil fuel prices to those
driven by the availability of the renewable energy sources.

This is expected to increase price volatility, which will chal-
lenge wind farm owners/operators to reconsider their design
and operation strategy from power maximisation to revenue
maximisation, particularly in zero-subsidy schemes.

Tools to support wind farm owner/operators to cope with
this transition have been in development for a number of
years within the field of wind farm flow control (WFFC).
WFFC is the coordinated operation of wind turbines within
a wind farm to serve a common goal by taking their aerody-
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namic interactions into account. This may include a diverse
array of objectives from increased energy production and
structural load alleviation to environmental and/or societal
impact mitigation (Meyers et al., 2022). The most important
benefit of the technology, as assessed by experts in a recent
survey (van Wingerden et al., 2020), is the increased energy
production. It is also the most studied objective with varying
results as reported in extensive literature reviews (see e.g.
Kheirabadi and Nagamune, 2019; Andersson et al., 2021;
Houck, 2022) and seen in the FarmConners benchmark for
WFFC code comparison (Göçmen et al., 2022a). However,
the translation of potential increase in energy production via
WFFC to the economic benefits is yet to be quantified. The
FarmConners market showcases are designed to address that
gap (Kölle et al., 2020; Eguinoa et al., 2021).

1.1 FarmConners market showcases

The first of their kind, the FarmConners market showcases
allow researchers to demonstrate the economic benefits of
their control approaches in simulations using realistic envi-
ronmental and market conditions based on 2020 and 2030
variable-electricity-price scenarios. Accordingly, the objec-
tives of the showcases can be summarised as follows:

– Investigate benefits of WFFC for variable electricity
prices.

– Demonstrate the value of WFFC in existing and upcom-
ing market scenarios.

– Investigate the readiness of wind farm flow control for
participation in electricity markets.

Investigating the benefits when participating in the whole-
sale electricity markets will provide insight into how WFFC
can contribute to the revenue when the power is sold for vari-
able prices. Demonstrating the value in existing and upcom-
ing market scenarios will help to understand the benefit of
WFFC in a future with a higher share of wind energy in the
energy mix. Investigating the readiness of WFFC strategies
will provide a better understanding of the state of the art and
reveal the gaps towards market-driven wind farm operation.

The showcases are based on the TotalControl Reference
Wind Power Plant (TC-RWP) with 32 DTU 10 MW wind
turbines in a staggered layout (TotalControl, 2018), hypo-
thetically located at the west coast of Denmark, 20 km west
of the Horns Rev I offshore wind farm. In addition, a sim-
plified subset of the TC-RWP with 10 wind turbines is pro-
vided to facilitate participation using computationally inten-
sive codes. However, the showcase data can be used as input
to a farm with any number of wind turbines because wind
speed and direction are given at one point in the wind farm.
Independent of the layout, the wind farm receives the sim-
ulated electricity price signal for DK1 in NordPool because
of the assumed location off the west coast of Denmark. The

day-ahead electricity prices for both 2020 and 2030 scenar-
ios are simulated using the balancing tool chain presented
in Kanellas et al. (2020), assuming different energy invest-
ments over time. The energy scenarios for 2020 and 2030 are
qualitative considering relevant factors such as higher prices
for fossil fuels in 2030. However, being academic examples,
the time series for 2020 does not coincide with the real day-
ahead prices for 2020 for DK1 in NordPool. For both 2020
and 2030 day-ahead electricity prices, weather data by means
of wind speed and direction are simulated at the central point
of the TC-RWP for the meteorological year of 2012. Match-
ing the meteorological data from 2012, both price time series
(2020 and 2030) are adjusted to the price level of 2012.

The wind turbines and their aerodynamic effects (wakes)
are neglected in the simulations, so the wind inflow can be
considered as the free stream one. More information about
the data generation for the FarmConners market showcases,
including detailed descriptions of the tool chain and assump-
tions, is available in Kölle et al. (2020) and Eguinoa et al.
(2021).

Originally, three showcase sets were defined to reflect dif-
ferent market and operational situations within 2020 and
2030 scenarios – namely (1) high day-ahead electricity
prices, (2) low day-ahead electricity prices, and (3) opera-
tion by the transmission system operator, where the last two
include structural load alleviation as a performance indicator
(Kölle et al., 2020).

The first set with high electricity prices motivates us to
maximise the power output, thus resembling the current sit-
uation. The second set with low electricity prices was de-
fined to provide incentives to not only focus on power pro-
duction but include additional control objectives, in this case
structural load alleviation. The third set with the objective
of power tracking is an outlook to a wind farm operation
that provides power system services and alleviates structural
loads.

The three original showcases enable us to compare dif-
ferent operational strategies with control objectives beyond
power maximisation. Researchers worldwide were invited to
participate by simulating their code using one or more show-
case sets.

1.2 Included showcases and participation

Five participants have submitted their results for this Farm-
Conners market showcase study. These participants are
members in different research groups and thus used differ-
ent simulation environments, different models for the wind
farm flow and different control strategies. Due to the limited
number of participating models capable of providing the rel-
evant outputs for the alleviation of structural loads, the results
presented here are mostly limited to the potential benefits of
WFFC during the first showcase set, i.e. high day-ahead elec-
tricity prices. For that showcase set, the highest 25 % of the
electricity prices (both in 2020 and 2030 scenarios) and their
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Table 1. Overview of the participants (participant IDs P1–P5) per
considered layout. The layout of the subset and full TotalControl
Reference Wind Power Plant (TC-RWP) with 10 and 32 wind tur-
bines, respectively, is indicated when the results are presented in
Sect. 4.

Wind farm layout P1 P2 P3 P4 P5

Single wind turbine x
Subset of TC-RWP x
TC-RWP x x x

respective binned wind inflow data are used (Eguinoa et al.,
2021). The resulting distribution of the prices with respect to
the wind speed and direction bins are presented in Fig. 1 and
further analysed in Sect. 4.1.

Nevertheless, all three showcase sets are demonstrated for
a single turbine with much lower computational cost for
aeroelastic analyses, and the extension of the prospects for
full-scale WFFC is discussed. Additionally, the differences
of the expected benefits between smaller and larger wind
farms are highlighted through the analyses of the subset and
full layout of TC-RWP, i.e. 10 and 32 turbines. The consid-
ered setups for all participants are summarised in Table 1.

1.3 Structure

The structure of the article is as follows. Sect. 2 discusses the
methodology and results applied by P1, demonstrating the
potential of including revenue-based objectives for single-
turbine control in variable electricity prices of 2020 and
2030 market scenarios. The investigation is then focused
on the high-price scenario exclusively and extended to farm
flow control. Accordingly, Sect. 3 presents the models and
methodologies used by the rest of the participants to set
up their WFFC simulations for the showcases. A qualitative
comparison of the results from these simulations and their
corresponding discussion is included in Sect. 4. Finally, con-
clusions are drawn in Sect. 5.

2 Conceptual analysis for a single turbine –
participant P1

The analysis of a single wind turbine, presented in this
section, was performed by participant P1. Control objec-
tives of both optimised revenue and reduced structural loads
were analysed. It therefore provides deeper insight into the
revenue-based control paradigm. An overview of this ap-
proach has been presented previously (Pettas and Cheng,
2021).

The new method proposed here by P1 is to include the
electricity price in the decision-making of the turbine’s op-
erational mode. Using downregulation, power boosting, and
individual blade control (IBC) flexibly according to the in-
stantaneous weather and price conditions, the damage and

revenue accumulation of the turbine over time can be man-
aged. Currently, downregulation (also referred to as curtail-
ment or derating) is used commercially to follow reference
power levels according to the grid system requirements. As
previous numerical (Pettas et al., 2018) and in situ stud-
ies (Kretschmer et al., 2019) have shown, this process also
reduces the structural loading. Moreover, turbine manufac-
turers already offer turbines with power-boosting capabili-
ties to increase the energy production (e.g. Power Boost by
Siemens Gamesa (Siemens Gamesa A/S, 2020), and Power
Uprate by Vestas) which comes with a penalty on structural
loads. Power boosting for the individual turbine is based on
changing the control set points in terms of blade pitch, gener-
ator torque and/or generator speed, effectively changing the
nominal power output. Individual pitch control, in various
implementations, has also been extensively researched (e.g.
Bossanyi, 2005; Gambier, 2021) and sparsely used in the in-
dustry. Combining these existing strategies flexibly and con-
sidering the electricity prices and damage accumulation, the
revenue and structural load objectives can be managed dur-
ing the lifetime of the turbine.

The procedure of implementing and evaluating a flexible
control method at the wind turbine level is summarised in
Fig. 2. The baseline DTU 10 MW reference turbine controller
is modified to achieve the additional controller modes by
adjusting the set points and tuning the gains. The response
of the turbine is derived from aeroelastic simulations and
mapped to a surrogate model. This way, the response of the
turbine can be quickly evaluated at each time step of the in-
put data (price and weather time series). According to the ob-
jectives, an optimisation logic decides the optimal controller
settings, taking into account loads and power levels for each
horizon window.

For this study, the baseline proportional integral (PI) con-
troller of the DTU 10 MW reference wind turbine is modified
to allow varying nominal power ratings from 5 to 13 MW in
downregulation and power-boost modes. This is achieved by
changing the set points for power coefficient (Cp), tip speed
ratio (λ) and blade pitch angles (θ ). The desired set-point
trajectories for the operational modes are identified from
Cp− λ− θ maps, which are obtained by steady-state open-
loop simulations with varying wind and rotor speeds. The
whole process is automated so that, given a desired trajec-
tory, the relevant design variables can be estimated, i.e. the
torque constant, rated values, cut-in, and rated wind speed.
The tuning of the PI pitch controller could not be automated
and was fine-tuned manually.

The approach chosen here was to keep the tip speed ra-
tio constant for all power levels and vary the set points by
changing the fixed pitch angle below rated. As other studies
have shown (Astrain Juangarcia et al., 2018; van den Hoek
and Kanev, 2017) there are trade-offs in each chosen tra-
jectory when evaluated concerning load reduction. The IBC
scheme is based on the direct feedback of the blade root flap-
wise bending moment; more details on this design are given
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Figure 1. Distribution of day-ahead electricity prices per binned wind sector in 2020 (a) and 2030 (b) for the high-price scenarios included
in the present analysis. Sectors represent the wind direction bins (±15◦). Each sector includes 7, 9 and 11 m s−1 (±1 m s−1) wind speed bins
in stacked form following that sequential order from the origin. Radial length of the polar plots indicates the number of samples per bin. The
colour scale represents the prices per bin for both 2020 (a) and 2030 (b) scenarios.

Figure 2. Proposed methodology for flexible control operation of a single wind turbine developed and applied by participant P1. IBC: indi-
vidual blade pitch control.

in Pettas and Cheng (2018). For the power-boosting mode,
the design choice is on whether this should be done with in-
creasing rotor speed or generator torque, or a combination of
the two. To avoid inconsistencies at the transition around the
rated region, it was decided to keep the tip speed ratio con-
stant at the design level and increase both torque and rotor
speed until the new rated value is reached. This contributed
to accurate power tracking at the broadest possible range of
wind speeds with smooth transition between the modes.

The output of the described procedure is a controller with
a required rated value as input and the option to apply IBC.
The next step is to create a surrogate model of the response
that can be used for evaluation and optimisation. As shown
in the literature (see e.g. Dimitrov et al., 2018), different ap-
proaches can be followed with trade-offs in computational

cost and accuracy. Here, a dense factorial sampling approach
was chosen as the dimensions allow for this. In total, 21 420
simulations were performed using the FAST v8 (Jonkman
and Buhl, 2005) software to produce the output space. The
input variable space includes variations of wind speed from
4 to 24 m s−1, with a step size of 1 m s−1, and turbulence
intensity (TI) from 2 % to 24 %, with a step size of 2 %.
The vertical shear coefficient was kept constant at 0.2 to re-
duce the dimensions as it is less dominant on loads than the
other two inputs (Dimitrov et al., 2018). One-hour simula-
tions with three turbulence realisations were performed for
each case while yaw misalignment was neglected. The to-
tal simulation time of each realisation was 3700 s, where the
first 100 s was discarded to remove initial transients. This set
of simulations was repeated for all power ratings between 5
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and 13 MW with a step size of 0.5 MW. The IBC cases were
evaluated only at wind speeds from 10 m s−1 and higher.

The mean of the results of the three turbulence seeds for
each operating point was then tabulated in a 3D matrix for
each quantity of interest (mean of power, DEL of blade root
moment, etc.), forming the basis of the surrogate used here.
To ensure the smoothness of the model and avoid local fluc-
tuations due to controller tuning or seed-to-seed variability,
filtering is applied using a Gaussian convolution kernel. This
structure was probed using a spline-based interpolation to
produce the surrogate response of the system for any of the
quantities of interest.

The evaluation part of the process was implemented sim-
ilar to a time marching simulation, where at each time step
the inputs are wind speed, TI, electricity price, and controller
mode and the outputs are instantaneous and cumulative re-
sponses. The accumulation of quantities such as energy pro-
duction was calculated by integrating the values over time.
For quantities such as the standard deviation of the rotor
speed, the accumulation was done by averaging, and the cu-
mulative load was calculated using Eq. (1) based on the 1 Hz
damage equivalent loads (DELs). N denotes the number of
time steps considered; y is the load channel of interest; m
is the Wöhler exponent, where a value of 10 is used for the
blade-related loads and a value of 4 is used for the rest; and p
is the probability of each instantaneous DEL, which for this
case is equal to 1/N .

DELcumulative(y)=

[
N∑
i=1

[
DEL1 Hz(yi)

]m
p(yi)

]1/m

(1)

The baseline single-turbine response was identified by us-
ing the entire 1-year time series of the FarmConners market
showcase data set, with the baseline rating of 10 MW without
IBC. The optimisation objective is then to reduce the loads
and/or increase the revenue over the whole period of each
data set (2020 and 2030 time series). This problem is not
trivial as there are multiple conflicting objectives in an on-
line optimisation setup. Some of these include the high vari-
ation of the sensitivity of the different loads to the controller
state and wind speed, the correlation of probability of wind
speeds and prices, and the uncertainty of future inputs. For
this preliminary application of the method, the problem was
simplified and treated as an offline single-objective optimisa-
tion problem with a perfect preview. The blade root out-of-
plane moment (BROop) was chosen as a representative load
to be used to correlate power output level to loads for all con-
ditions.

The method was applied for both data sets using the hourly
resolution; i.e. the control strategy of the turbine is changing
every hour according to the wind and price conditions for the
time steps. In Fig. 3, an example of operation with different
controller modes applied over time is shown for the 2030
data. The controller modes in the y axis of the upper-left plot

of Fig. 3 correspond to shut down (0), IBC inactive (1), and
IBC activated (2).

The sensitivity of the method for different objectives is ex-
amined with three cases. Case 1 aims to increase the revenue,
case 2 aims to increase the revenue in a load-neutral manner,
and case 3 aims to decrease the loads. In addition, case 2 was
run with IBC and without IBC. In the lower-right plot, each
small change contributes more to the DEL according to the
number of events (see Eq. 1). As the accumulation continues,
the weight of each added DEL is smaller, making the rate of
change slower in time. Moreover, at the beginning of the cal-
endar year (January), wind speeds are generally higher due
to the winter season, the DELs are in general higher than in
the following months, leading to this temporary overshoot of
the accumulated value. In Fig. 4 the cumulative results of all
methods for both data sets are shown. The trade-off between
the two competing objectives is apparent. Case 1 has a higher
impact on specific loads, which shows that focusing on in-
creasing revenue over some level comes with a high penalty
in loads. Comparing case 2 with the IBC switched off and on,
we can see the impact that IBC has on specific loads, with the
most dominant being, by design, the flapwise blade root mo-
ment (BRMy). In all cases considering the IBC loop, IBC
was activated in power-boosting mode and at wind speeds
above 13 m s−1 with TI higher than 3 %. The highest negative
impact on loads is found at the main shaft torque (LSSTq)
and blade root torsion (BRMz), which are increased signif-
icantly with power boosting and cannot be alleviated with
downregulation or IBC. The gravity-driven loads of edge-
wise (BRMx) and in-plane blade root (BRIp) moments are
not affected in any way. In both years, the achieved increase
in revenue for case 2 was about 5 % with neutral or decreased
loads. The maximum revenue was 10 % for 2020 and 13 %
for 2030, with a penalty of 15 %–20 % at the loads influenced
most by boosting.

The presented results are based on a basic optimisation
logic including user-defined thresholds and trial and error
methods. Nevertheless, the results show that there is sensitiv-
ity of structural loads and revenue to the method used here,
and in other tested cases, not shown here, different trade-
off levels could be achieved. Moreover, a different behaviour
was observed between the two years. Finding an effective
tuning for the 2020 data set was much harder to achieve than
for the 2030 data set. More threshold values had to be tested,
and fine adjustments could result in larger changes. On the
other hand, for 2030, even with rough estimations, the opti-
misation objectives were achieved without much tuning.

Since the weather time series are the same for both years,
the difference lies in the price patterns. Fig. 5 shows the con-
tribution of each binned price and wind speed to the cumu-
lative load and revenue for the two years considering base-
line operation. In 2030 the higher variability of prices pro-
duces more discrete and uncoupled regions of influence for
each objective. This allows us to define thresholds optimis-
ing the two competing objectives with fewer trade-offs and
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Figure 3. Example time series of instantaneous values for a subset of 2030 (a, c) and cumulative values for the whole 1-year time series
of 2030 (b, d). (a) Activation of individual blade pitch control (IBC) for controller modes and operational status (0: turbine shut down; 1:
IBC inactive; 2: IBC activated). (c) Percentage of the instantaneous power output where 100 % corresponds to the nominal power curve.
(b) Accumulated revenue over time for different operational strategies. Normalised with the final accumulated value of the baseline where
the turbine is operated constantly at 10 MW without IBC. (d) Cumulative damage equivalent load (DEL) of blade root out-of-plane moment
(BROop) for the same cases, normalised with the final cumulative value of the baseline where the turbine is operated constantly at 10 MW
without IBC.

Figure 4. Cumulative values of damage equivalent loads (DELs) and revenue for operation of a single wind turbine with different objectives,
in relation to the baseline operation. TBMx: tower bottom side-to-side moment, TBMy: tower bottom fore–aft moment, TBMz: tower bottom
torsion, BRMx: blade root edgewise moment, BRMy: blade root flapwise moment, BRMz: blade root torsion, BROop: blade root out-of-
plane moment, BRIp: blade root in-plane moment, TTMx: tower top roll moment, TTMy: tower top pitch moment, TTMz: tower top yaw
moment, LSSMy: non-rotating low-speed shaft bending moment about the y axis, LSSMy: non-rotating low-speed shaft bending moment
about the z axis, LSSTq: low-speed shaft torque.
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less detailed knowledge of the probabilities. This example
shows that the boundary condition of the markets in which
the wind farms operate influences significantly how much
flexible control (or any other turbine or farm control strategy)
can influence the structural loading and revenue of the sys-
tem. The main impact does not come from the mean level of
the prices but their variability over time. For the near-future
energy systems with increasing renewable penetration, this
behaviour can be expected, and the approach shown here can
be effective to optimise the operational strategy.

The results presented here for a single turbine are an ini-
tial application of the proposed method that was first pub-
lished by Pettas and Cheng (2021). Further analysis will be
performed to identify the true potential and the underlying
connection of the trade-offs between structural loads and rev-
enue, and the results will be discussed in detail in a separate
publication.

The next step would be to add the dimensions of wind di-
rection and wind farm (flow) control to evaluate the holistic
potential of flexible control in wind energy in the future elec-
tricity markets. In that regard, the rest of the paper focuses on
the most beneficial price and wind speed bins for wind farm
flow control as identified in Fig. 5 with corresponding wind
directions presented in Fig. 1.

3 Participants methodology for WFFC – participants
P2–P5

The analysis of the single-turbine control for increased rev-
enue by P1 is extended in this section to wind farm level
to explore the potential power and income gains of differ-
ent WFFC-oriented models with varying control strategies,
both for the 10-turbine layout (participant P2) and the full
TC-RWP with 32 turbines (participants P3–P5). Table 2 pro-
vides a summary of the flow models used by the participants.
More detailed descriptions of the models and the simulation
setups are provided below for each participant.

3.1 Participant P2

3.1.1 Wind farm model

The wind farm model used by participant P2 is FLORIS
(NREL, 2021), where the following sub-models have been
applied:

– velocity deficit – legacy Gauss (Gaussian model) by
Bastankhah and Porté-Agel (2014);

– wake-added turbulence – Crespo-Hernández model
(Crespo and Hernández, 1996);

– wake superposition – modelled with SOSFS (sum of
squares freestream superposition) to combine the wake
velocity deficits to the base flow field (Katic et al.,
1986);

– wake steering – wake deflection model by Bastankhah
and Porté-Agel (2016).

Additionally, power loss due to yaw misalignment in the
controlled upstream turbine is modelled by scaling the effec-
tive wind speed as suggested by Bossanyi (2019) in Eq. (2),
where vavg is the rotor-averaged wind speed, 9 is the steer-
ing control setting and n is the yaw loss exponent. Related
power is then obtained based on this scaled wind speed and
the power curve.

v′avg = vavg cos(9)n/3 (2)

The values for the corresponding model parameters
utilised in the sub-models listed above can be found in Ta-
ble 3. The wake velocity and turbulence model parameters
have been obtained from previous calibration studies on other
offshore wind farms. For TIinitial, the value of ambient TI has
been used. The yaw loss exponent value n is selected within
the range of values already reported in the literature – see ex-
amples in Simley et al. (2021). Shear is considered equal to
zero.

3.1.2 Wind farm and wind turbine control strategies

The wind farm optimisation has been executed using the al-
gorithms available in the FLORIS library, using sequential
least squares programming (SLSQP). The control strategy at
the wind farm level was aimed at maximising the total energy
production of the wind farm per bin through yaw steering.
The wind rose has been divided into 144 sectors (2.5◦ steps)
and 2 m s−1 intervals for wind speed. Optimal set points were
obtained individually for each combination of wind speed
and direction.

Yaw misalignment for wake steering is limited within the
range [0◦, 20◦], where the sign convention is positive yaw
misalignment for anti-clockwise rotation viewed from above.
The range is in accordance with results in the literature (Sim-
ley et al., 2021).

3.2 Participant P3

3.2.1 Wind farm model

Participant P3 used PyWake (Pedersen et al., 2019) to model
the TC-RWP. PyWake can model a wind farm in two ways,
considering only downstream wake propagation as well as an
iterative method that is able to consider wind turbine block-
age effects. Either approach counts with several wake, block-
age and deflection models in its library. The configuration
used by P3 is the following (see Table 1):

– velocity deficit model – Fuga (Ott and Nielsen, 2014),
which is a linearised CFD model developed by DTU
that models wake deficit and wake propagation assum-
ing uniform and fixed turbulence intensity (TI) over the
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Figure 5. Contribution of price and wind speed bins to revenue and damage equivalent load (DEL) of blade root out-of-plane moment
(BROop), obtained by multiplying the counts of each bin with the response obtained with the baseline wind turbine controller in simulations
with the full data sets for 2020 and 2030. All values are normalised to the maximum value for the specific year and metric. Note that regions
with high contributions to revenue on the right are strongly correlated to the bins with (below rated) wind speed and direction in Fig. 1
included in the showcase with high day-ahead electricity prices.

Table 2. Overview of participating models.

P2 P3 P4 P5

Wind farm model FLORIS (v2)a PyWakeb FLORIS (v2)a –
Control strategy Wake steering Combined* Wake steering Combined∗

Velocity deficit model Gauss legacyc Fuga (linearised CFD) Gauss legacyc Gauss legacyc

Added turbulence model Crespo-Hernándezd – Crespo-Hernándezd Crespo-Hernándezd

Wake superposition SOSFSe Linearf SOSFSe Recursiveg

a NREL (2021). b Pedersen et al. (2019). c Bastankhah and Porté-Agel (2014); the term Gauss legacy is used in FLORIS version 2 as opposed to the Gaussian
formulation implementing the near-wake model by Blondel and Cathelain (2020), as described in Fleming et al. (2020). d Crespo and Hernández (1996).
e SOSFS – sum of squares freestream superposition. f PyWake superimposes deficits calculated for each individual turbine, with respect to the local free
stream, which takes into account any wake deficit from upstream turbines (Ott and Nielsen, 2014). g Lanzilao and Meyers (2021). ∗ Combined control strategy
corresponds to the combination of static wake steering and static axial induction.
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Table 3. Model parameters for FLORIS used by P2 and P4. P2 used a set of in-house calibrated parameters; P4 used the default values.
Parameters description (NREL, 2021): α and β are parameters determining the dependence of the downstream boundary between the near-
wake and the far-wake region on the turbulence intensity and the turbine’s induction factor, respectively; ka and kb are parameters used
to determine the linear relationship between the turbulence intensity and the width of the Gaussian wake shape; TIconstant is a constant
scaling the wake-added turbulence intensity; TIai is the axial induction factor exponent used in the calculation of wake-added turbulence;
TIdownstream is the exponent applied to the distance downstream of an upstream turbine normalised by the rotor diameter, used in the
calculation of wake-added turbulence; and n is the power–yaw loss exponent.

α β ka kb TIconstant TIai TIdownstream n

P2 3.0 3.0 0.3503 0.005312 0.1251 9.932× 10−5 −0.4689 1.61
P4 0.58 0.077 0.38 0.004 0.5 0.8 −0.32 1.88

wind farm; in this case a fixed, conservative TI= 5 %
was assumed;

– wake superposition – linear superposition, which is one
of the basic assumptions in Fuga (Ott and Nielsen,
2014);

– added turbulence – Fuga assumes uniform turbulence
represented by vertical shear and surface roughness
height; no added turbulence is needed for estimation of
wake expansion and deficit decrease over distance;

– wake yaw deficit model – Fuga yaw deficit and Fuga
deflection models; Fuga yaw deficit models implicitly
the deficit and deflection models and calculates a set of
lookup tables with the (yaw) longitudinal deficits UT
and UL, due to transverse and longitudinal unit forces,
respectively; Fuga deflection, like the Fuga yaw deficit,
estimates tables for VT and VL, the transverse deficits
generated by unit forces in the transverse and longitu-
dinal directions; since Fuga is a linear model, the final
deflected deficit is calculated by linear superposition of
UT, UL, VT and VL.

3.2.2 Wind farm and wind turbine control strategies

The control strategy was applied to wind turbine and wind
farm levels.

The control strategy at the wind farm level aimed to max-
imise the total wind farm power production by individual
control of wind turbine’s derating and wake steering. The set
point of each turbine was determined using TOPFARM, the
Python package developed by DTU for wind farm optimisa-
tion. The routine built a lookup table of set points (derating
and yaw angle per turbine) dividing the wind rose in 120 sec-
tors of 3◦ and incremental steps of 1 m s−1. Finally, the set
points for the wind direction and speed in the high-price sce-
narios for 2020 and 2030 were obtained by interpolating this
table.

Wind turbine loads were not estimated by P3, but each in-
dividual turbine curve was constructed to operate at maxi-
mum power coefficient, Cp, at a given wind speed and yaw
misalignment, while minimising the thrust coefficient,Ct, for

loads alleviation. The power curves were constructed using
HAWC2aero, a subset of HAWC2, and also developed by
DTU, to simulate the dynamics of a rigid turbine rotor un-
der aerodynamic loads. This approach allows a more precise
estimation of Cp and Ct under yawing conditions.

3.3 Participant P4

3.3.1 Wind farm model

Participant P4 used FLORIS (NREL, 2021) to model the
wind farm flow and power production. The default setting of
FLORIS was used, which means the following sub-models
were activated:

– velocity deficit model – legacy Gauss (Gaussian model)
by Bastankhah and Porté-Agel (2014);

– wake-added turbulence model – Crespo-Hernández
model (Crespo and Hernández, 1996);

– wake superposition – modelled with SOSFS (sum of
squares freestream superposition) to combine the wake
velocity deficits to the base flow field (Katic et al.,
1986);

– wake steering – wake deflection model by Bastankhah
and Porté-Agel (2016).

Default parameters of the FLORIS sub-models were used
in P4 simulation, which are also listed in Table 3. The de-
fault yaw loss exponent in FLORIS, n= 1.88, was deter-
mined based on high-fidelity computational fluid dynamics
(CFD) simulations by (Gebraad et al., 2016). Note that for
simulating yawed and non-yawed wind farm production for
each inflow bin, the wind shear exponent was derived with a
power law based on the mean wind speed at two heights, 50
and 150 m, while the mean turbulence intensity measured at
hub height was used.

3.3.2 Wind farm and wind turbine control strategies

Wake steering was chosen by P4 as the control strategy. Con-
sidering the range of wind directions per inflow bin and that
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different wind directions have different potential for wake
steering, P4 took an averaging approach when simulating
the wind farm flow and power production, both for the non-
yawed cased (normal operation) and the yawed case (with
WFFC).

For a given inflow bin, 31 flow cases were considered, each
representing a flow case with a wind direction in the range of
[−15◦, 15◦] around the wind direction bin centre, θcen, and a
wind speed as the mean wind speed, umean, at hub height.

For each of the 31 flow cases, the optimal yaw angle of
all turbines was found using the SLSQP (sequential least
squares programming) algorithm included in FLORIS, with
the maximal iterations set to 200. The objective of this op-
timisation problem is to maximise the total power output of
the wind farm:

γ ∗1 ,γ
∗

2 , . . . ,γ
∗

Nt
= argmax
γ1,γ2, ... ,γNt

Ptot(γ1,γ2, . . . ,γNt |umean,θ ), (3)

where γ ∗i represents the optimal yaw angle of the ith turbine,
θ ∈ [θcen−15,θcen−14, . . . ,θcen, . . . ,θcen+14,θcen+15] is
the wind direction for this flow case, and the lower and upper
bounds of yaw angle for all turbines are set to −25◦ and 25◦.

Thus, for each inflow bin, there are 31 sets of optimal yaw
angles, each with a different total power output Ptot. The fi-
nal reported power output PWFFC for this inflow bin was the
mean of these 31 cases. Similarly, when calculating the nor-
mal power output PNormal, the mean of the 31 flow cases was
also used.

By considering 31 flow cases with different wind direc-
tions and solving the yaw optimisation problem separately
for each inflow bin, P4 took an idealised or “greedy” ap-
proach that tends to explore the full potential of wake steer-
ing, since the effectiveness of wake steering can be quite sen-
sitive to the wind direction. However, in real-life implemen-
tation, limits on the speed and accuracy of the yawing sys-
tem, uncertainty of the measured inflow wind direction, and
other factors can make the reported energy gain hard to be
fully realised.

3.4 Participant P5

3.4.1 Wind farm model

Participant P5 used an in-house analytical wake model which
combines a Gaussian wake model with a recursive wake
merging methodology (Lanzilao and Meyers, 2021). The
model has previously been used in a power optimisation
study for the TotalControl wind farm using wake steering
(Sood and Meyers, 2022). The following model specifica-
tions were used by P5:

– velocity deficit model – legacy Gauss (Gaussian model)
by Bastankhah and Porté-Agel (2014);

– wake-added turbulence model – Crespo-Hernández
model (Crespo and Hernández, 1996);

– wake superposition – modelled using a recursive wake
merging methodology (Lanzilao and Meyers, 2021);

– wake steering – wake deflection model of Bastankhah
and Porté-Agel (2016).

3.4.2 Wind farm and wind turbine control strategies

The control strategy applied by P5 was a combination of
wake steering and axial induction control of individual wind
turbines within the farm to achieve the optimisation objec-
tive. For power maximisation, this included finding the op-
timal yaw and thrust set points of all the turbines within the
farm to achieve maximum power production according to the
equation

min
γ ,CT
− 1 ∗

∑Nt

k=1

1
2
ρCP(γk,CTk)AkU3

k (γ ,CT),

s.t.−
π

6
< γ <

π

6
,

(4)

where CP is the coefficient of power of each turbine, eval-
uated for a yaw angle γk according to the cosine power law
(Doekemeijer et al., 2020), i.e. CP(γ )= CPcos3γ , multiplied
by the scaling factor η(γ )= 1.08

cosγ . The effect of induction
control by using a sub-optimal thrust coefficient CT was de-
termined by using a lookup table which was previously de-
veloped using OpenFAST. γ and CT are vectors containing
the yaw and thrust set points for all the turbines across the
farm. Turbine yaw angles are limited between ±30◦ to pre-
vent excessive fatigue, and the thrust coefficient is limited
between 0 and 1 to avoid turbine shutdown or over-induction.
Ak is the area of each turbine, andUk is the inflow velocity of
each turbine as a function of upstream yaw angles and thrust
set points, determined using the wake model. The optimisa-
tion problem is solved to obtain set points for all the turbines
within the wind farm using the SLSQP solver from the SciPy
Python package, while utilizing the multi-start approach of
basin hopping to avoid local minima (Virtanen et al., 2020).

4 Results and discussion

The FarmConners market showcases define only the layout
of the wind farm and as simulation input the wind speed and
direction as well as electricity prices. Any other detail of the
implementation is left to the participants. Possible reasons
for different results include (1) different models for wind
farm flow and power production or different parameters for
the same model, (2) different control strategies, (3) differ-
ent optimisation problem formulation and bounds/constraints
on design variables, and (4) different optimisation methods
or different settings of the same algorithm. The percentage
wake losses summarised in Table 4 illustrate the differences
between participant models.

Therefore, the WFFC algorithms detailed in Sect. 3 are not
directly compared against each other but to a wind farm op-
eration without WFFC (also referred to as normal operation)

Wind Energ. Sci., 7, 2181–2200, 2022 https://doi.org/10.5194/wes-7-2181-2022



K. Kölle et al.: FarmConners market showcase results: wind farm flow control considering electricity prices 2191

Table 4. Percentage wake loss for participants P2–P5 in
the high-price scenario for 2020 and 2030, i.e. (Pgross−
PNormal Operation)/Pgross, where Pgross is the theoretical gross pro-
duction without wake losses and PNormal Operation the normal pro-
duction without WFFC simulated by each participant.

P2 P3 P4 P5

2020 9 14 18 12
2030 9 13 18 11

for the same model implementation. During the high-price
scenarios for both 2020 and 2030, it is expected that max-
imum power production will be favoured in the interest of
generating the highest possible income. Accordingly, the rel-
ative metrics for power and income gain are presented in this
section for analysis and discussion.

4.1 Analysis of weather and price conditions

Before presenting the specific results per participant, a com-
parative analysis between 2020 and 2030 is performed for
the weather and price conditions to support the subsequent
discussions. The price time series for 2020 and 2030 were
simulated for the same meteorological year assuming dif-
ferent energy scenarios at the systems level (Eguinoa et al.,
2021). Moreover, the investigated high-price showcase in-
cludes only wind speeds between 6 and 12 m s−1, where the
strongest wake effects are typically observed and the highest
benefit of WFFC can be expected. Thus, the included wind
speed bins are between cut-in and just above the rated wind
speed for the DTU 10 MW reference wind turbine.

As shown in Fig. 1, absolute price values are 2–3 times
higher in 2030 than in 2020. If wind sectors are analysed,
it can be seen that the occurrences in the northwest quad-
rant in 2030 increase with respect to 2020, at the expense of
the southwest quadrant. Similarly, the highest prices within
each year are distributed differently in 2020 and 2030. In
2020, the bins with the highest prices are [15◦ centred sector,
11 m s−1] and [75◦ centred sector, 7 and 9 m s−1], followed
by [195◦ centred sector, 11 m s−1]. By contrast, in 2030 the
bins with the highest prices are mostly concentrated at [75◦

centred sector, 7 and 9 m s−1], followed by [15◦ centred sec-
tor, 11 m s−1].

In conclusion, the price distribution among wind direction
and wind speed bins is not equal in both years despite be-
ing based on the same meteorological time series. This re-
flects how the specific combination of site wind conditions
and market prices shall impact planned operation and prof-
itability assessments for a particular wind farm as the market
evolves during its lifetime.

4.2 Power gain

Figures 6 and 7 show the normalised power gains per wind
direction for 2020 and 2030, respectively. The results are
presented in separate polar plots for each participant with
the considered farm layout on the left. Each sector includes
the wind speed bins in stacked form in the order 7, 9 and
11 m s−1 (±1 m s−1) from the origin. The radial extension of
a bin represents its number of samples, which is fixed in the
showcase set for all participants. The heat map indicates the
normalised power gain per bin in percentages, as shown in
Eq. (5).

Power Gainbin =

[
PWFFC−PNormal Operation

PNormal Operation

]
bin
· 100, (5)

where PWFFC is the farm-wide power using WFFC and
PNormal Operation the farm-wide power in normal opera-
tion, calculated as the sum of the power of all wind tur-
bines. Thus, the normalisation accounts for the size of the
wind farm but not the particular layout. The total power
PWFFC/Normal Operationbin generated by the wind farm per bin
is the sum of the power production of all samples in that bin.

The results from P2 for 2020 are shown in the upper-left
polar plot in Fig. 6. The heat map represents the estimated
power gain where darker shades correspond to higher gains.
Accordingly, it shows that power gains of up to 2 % are es-
timated by P2 for the considered 10-turbine layout. Sectors
with high power gains alternate with others with lower gains
(e.g. 15◦ shows high power gains being adjacent to the sec-
tors 345◦ and 45◦ with low power gains). These high-gain
sectors include the wind directions that are aligned with the
longest rows of turbines, with higher expected wake losses.
Participant P3 reports power gains of up to 4 %. The sectors
with northwest and easterly wind show higher power gains
than the rest. In bins with western wind, very little to no
power gain is reported. This division into favourable wind di-
rections with several adjacent sectors having very high or low
power gains is most extreme among all participants, indicat-
ing high sensitivity to wind direction in the implemented con-
trol settings. The green polar plot shows the results from P4
with power gains of up to 8 %. The power gains achieved by
P4 reach similar values in all sectors having the most uniform
distribution across all bins from all participants. Participant
P5 reported the highest power gains, per bin, of up to 9 %.
A few bins with easterly wind have very high power gains
although their adjacent bins have very low or no power gain.
Adjacent wind speed bins with high and low power gains in
the same sector are observed in P3 and P5 results, which both
applied a combined control strategy. The difference in power
gain for different wind speeds in the same sector is more sig-
nificant for P5 (6 % vs. 4 % difference).

The discussed Figs. 6 and 7 show consistent power gains
between 2020 and 2030 for each participant. As discussed
earlier, the inflow conditions for the simulated whole-year
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Figure 6. Power gain when using wind farm flow control (WFFC) in simulations with the wind inflow and price information for 2020 as
shown in Fig. 1. Each polar plot presents the results of one participant. The wind farm layout considered by this participant is shown on the
left side of the polar plot. The estimated increased production per bin is normalised with respect to the production under normal operation
without WFFC. For each sector, the stacked gains are indicated as heat maps and reported per 7, 9 and 11 m s−1 along the radial direction,
with respect to the number of samples per bin.

energy scenarios are identical. However, the differences are
observed due to the definition of the high-price showcases
as they correspond to slightly different periods during 2020
and 2030, resulting in nonidentical wind distributions shown
in Fig. 1. The power gains from P2 for 2030 are very simi-
lar to those in 2020. The distribution of power gains between
the wind speeds per sector is almost the same. An excep-
tion is the 75◦ sector, where the 11 m s−1 bin has the low-
est power gain in 2020 but the highest in 2030. However, the
power gain is still in a similar range. Comparing the red polar
plots for P3 in Figs. 6 and 7, the most significant difference is
that the power gain for northeastern winds is lower while the
power gain for bins with southern wind increases. Moreover,
the 9 m s−1 bins for western wind directions (255◦ and 285◦)
have higher power gains relative to the 7 and 11 m s−1 bins in
the same sector. The power gain from P4 for the same bins in
2020 and 2030 is visually indistinguishable. The purple po-
lar plots in Figs. 6 and 7 show very similar colour patterns.
However, there are less distinct differences in 2030 among
the bins in the same sector with eastern directions. The max-
imum power gain attained slightly increases.

There are, however, differences between the participants.
First, the maximum power gain ranges from 2 % for P2 to
10 % for P5. Participant P5 reports also the largest range of

power gains. The low levels of power gain estimated by P2
might simply be related to the smaller layout with overall
lower wake losses. In the larger layout considered by the rest
of the participants, higher wake losses are observed, which
are expected to result in potentially higher WFFC gains. The
polar plots for P2 and P4 for both years show local maxima
for wind directions from the north (with bin centres of 15◦

and 345◦), the east (with bin centres of 75◦ and 105◦), the
south (with bin centres of 165◦ and 195◦) and the west (with
a bin centre of 255◦ and 285◦). These are sectors with high
electricity prices or a high number of samples per bin (see
Fig. 1). While this applies for P4 with the full TC-RWP for
two adjacent sectors, P2 with the subset of TC-RWP achieved
this for one wind direction sector. The difference is more dis-
tinct for P2 than P4, where both P2 and P4 applied wake
steering as WFFC strategy.

This pattern of power gains across sectors does not ap-
pear for P3 and P5, which applied both wake steering and in-
duction control to the TC-RWP layout. Having applied com-
bined control strategies, their results show more variation be-
tween wind speed bins in the same sector. Instead of single
or two adjacent sectors, advantageous wind directions seem
to cover a broader range of wind directions.
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Figure 7. Power gain when using wind farm flow control (WFFC) in simulations with the wind inflow and price information for 2030 as
shown in Fig. 1. Each polar plot presents the results of one participant. The wind farm layout considered by this participant is shown on the
left side of the polar plot. The estimated increased production per bin is normalised with respect to the production under normal operation
without WFFC. For each sector, the stacked gains are indicated as heat maps and reported per 7, 9 and 11 m s−1 along the radial direction,
with respect to the number of samples per bin.

An interesting observation is that P3 has the lowest and
almost no power gain for western wind (sectors with 255◦

and 285◦ in Fig. 6), while P4 has the highest power gains
for the same sectors. Both P3 and P4 simulated the full TC-
RWP using different control strategies and flow models. The
difference in control strategies is considered to be the main
driver for the disparate behaviour even though the different
flow models will also have an impact.

4.3 Energy gain

Figure 8 summarises the energy gains during high prices for
2020 and 2030. Each bar represents the energy gain for one
participant, as a normalised sum over all bins:

1Enorm
total =

∑
bin

[
EWFFC−ENormal Operation

ENormal Operation

]
bin
. (6)

The generated energy EWFFC/Normal Operation [MWh] per bin
is

EWFFC/Normal Operationbin = nbin
∑
WT
PWT, (7)

where nbin [h] is the number of samples in that bin, and
PWT [MW] is the power produced at each wind turbine. In

the showcase data set, bins have a 1 h resolution, such that
multiplying samples and power production in a bin gives the
energy.

The results for 2020 and 2030 are consistent for each par-
ticipant reaching similar percentages in both years. Partic-
ipant P2 achieves in both years a normalised energy gain
of 1 %, P3 of 1.7 %, and P4 of 5.5 %. The energy gain re-
ported by P5 in 2030 is also about the same as that in 2020.
However, P5 is the only participant with somewhat different
energy gains in 2020 and 2030. Participant P5 was also the
one with the largest variance of power gains across the bins,
reaching up to 10 %. The normalised energy gains from P2,
P3 and P5 range from 1 % to 2 %. Participant P4, reaching a
much higher energy gain of 5 %, was the one with the highest
wake loss (see Table 4) and the most even power gains over
all bins (see Figs. 6 and 7). Furthermore, P3 and P5 have the
same normalised energy gain in 2020 despite the large dif-
ferences in power gains per sector.

All participants achieve a minimum of 1 % energy gain.
A recent expert elicitation revealed that wind farm operators
and turbine manufacturers consider already an increase of
the annual energy production of less than 1 % as sufficient
to justify the field implementation of WFFC (van Wingerden
et al., 2020). This supports the general industrial potential
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Figure 8. Energy gain (1E) in percentage when using wind farm flow control (WFFC) in simulations with the wind inflow and price
information as shown in Fig. 1 for 2020 (a) and 2030 (b), with respect to the production under normal operation without WFFC, calculated
using Eq. (6) for each participant, and where normalisation is performed per bin. Each bar indicates the results for one of the participants
P2–P5.

of WFFC even without the consideration of the electricity
prices.

4.4 Income gain

The total income gain per participant during high prices for
both years is shown in Fig. 9. It is calculated by multiplying
the energy gain per bin with the respective electricity price
before summing it over all bins.

The income gain in 2030 is in general much higher than in
2020 because of the higher price level in that showcase set.
Comparing the income gains per participant for both years,
the numbers are consistent with the energy gains shown in
Fig. 8. As expected, P2 has the lowest income gains due to
the smaller number of wind turbines in the simulated layout.
Although all the other participants used the TC-RWP, they
report very different income gains as also the energy gains in
Fig. 8 suggest. More specifically, the average income gain per
wind turbine in 2020 lies for P2 with EUR 2000 in the same
range as for P3 with EUR 2300 and P5 with EUR 3100. P4
achieves with EUR 7800 a more than doubled income gain
per wind turbine. This corresponds to the higher estimated
wake loss (see Table 4) and thus a larger potential benefit of
using WFFC.

The income gain per bin shown in Figs. 10 and 11 is cal-
culated as

Income Gainbin =
[
EWFFCbin −ENormal Operationbin

]
·Pbin, (8)

where Pbin is the unit price [EUR/MWh] per bin. The vari-
ability in prices among the bins is low for the investigated
high-price showcase as shown in Fig. 1. Accordingly, the
income gain in Figs. 10 and 11 reported per participating

model during the high prices is mainly driven by the esti-
mated power gain.

Consequently for both 2020 and 2030 simulations, the sec-
tors with estimated power gain are seen beneficial for the ad-
ditional income via WFFC. However, the energy production
is higher for the higher wind speed bins below rated, and, to-
gether with a larger number of samples per bin, the income
gain for 9 and 11 m s−1 is expected to be higher. This is re-
flected by the darker colours observed at the outer rings of
the polar plots in Figs. 10 and 11.

Most significant across all participants and both years is
the bin with a wind direction of 315◦ and a wind speed of
11 m s−1, which has a much darker shade in the income gains
compared to the normalised power gains. In the 2020 sce-
nario, there is also a distinct difference between the 11 m s−1

and the 9 m s−1 bin in this sector. Participant P3 has in 2020
high power gains for eastern wind sectors (45–115◦). The in-
come gain for these sectors is, however, rather low due to the
low number of samples in these bins (illustrated by the radial
axes in the polar plots). For P4, the dominant income gain for
the 11 m s−1 bins with western inflow (195–345◦) is very ob-
vious, while the 7 m s−1 bins show lighter colours in Figs. 10
and 11 compared to the normalised power gain in Figs. 6
and 7. In contrast to the other participants, P5 achieves also
a high income gain for the 9 m s−1 bins in the 75◦ and 115◦

sectors. The income gain is even higher than for the 11 m s−1

315◦ bin. This corresponds to the highest power gains that
P5 reports in the wind sectors with 75 and 115◦ inflow.

In order to investigate the contribution of the individual
turbines to the total income gain, the reported values for 2020
and 2030 scenarios are broken down into the contribution of
single wind turbines for the considered layouts in Figs. 12
and 13. Each bar represents the income gain achieved by
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Figure 9. Total income gain (1income) in EUR when using wind farm flow control (WFFC) in simulations with the wind inflow and price
information as shown in Fig. 1 for 2020 (a) and 2030 (b), compared to the production under normal operation without WFFC. Each bar
indicates the results for one of the participants P2–P5.

Figure 10. Income gain when using wind farm flow control (WFFC) in simulations with the wind inflow and price information for 2020 as
shown in Fig. 1. Each polar plot presents the results of one participant. The wind farm layout considered by this participant is shown on the
left side of the polar plot. The estimated income with WFFC is compared to the income under normal operation without WFFC. For each
sector, the stacked gains are indicated as heat maps and reported per 7, 9 and 11 m s−1 along the radial direction, with respect to the number
of samples per bin.
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Figure 11. Income gain when using wind farm flow control (WFFC) in simulations with the wind inflow and price information for 2030 as
shown in Fig. 1. Each polar plot presents the results of one participant. The wind farm layout considered by this participant is shown on the
left side of the polar plot. The estimated income with WFFC is compared to the income under normal operation without WFFC. For each
sector, the stacked gains are indicated as heat maps and reported per 7, 9 and 11 m s−1 along the radial direction, with respect to the number
of samples per bin.

Figure 12. Income gain per wind turbine when using wind farm flow control (WFFC) in simulations with the wind inflow and price
information for 2020 as shown in Fig. 1. Each bar shows the difference between the income with WFFC and the income under normal
operation without WFFC for one participant. The turbine IDs coincide with the numbering in the farm layout shown in e.g. Fig. 11. Note that
P2 investigates the subset layout, and the results (in blue) are available for those 10 turbines only.

the turbine (with turbine IDs specified by the polar plots
per participant in, e.g. Fig. 10), where the colour indicates
the participants. The TC-RWP subset with 10 wind turbines
considered by P2 includes WT11–WT16, WT18–WT20, and
WT24.

Although lower gains are reported due to the smaller lay-
out investigated by P2, the normalised standard deviation (or

the coefficient of variance) among the income gain per tur-
bine reaches up to 60 %, which is equivalent to P4 results
with the 32-turbine layout. The highest variance is observed
in P3 results, reaching more than 67 %, and the lowest is re-
ported by P5, with less than 40 %. This behaviour is the same
for both 2020 and 2030, and it follows the trends presented
in Fig. 10 closely, where the sensitivity of the income gain to
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Figure 13. Income gain per wind turbine when using wind farm flow control (WFFC) in simulations with the wind inflow and price
information for 2030 as shown in Fig. 1. Each bar shows the difference between the income with WFFC and the income under normal
operation without WFFC for one participant. The turbine IDs coincide with the numbering in the farm layout shown in e.g. Fig. 11. Note that
P2 investigates the subset layout, and the results (in blue) are available for those 10 turbines only.

wind direction is observed to be the highest in P3 and lowest
in P5 results for 2020 high electricity prices.

For the 2020 scenario, wind turbines with negative income
gain are WT1 for P3 and P4 and WT13 for P2. These wind
turbines are located in the upwind direction for inflow from
the west where the bins contain many samples and relatively
high prices (see Fig. 1). The wind turbines with the highest
income gains for all participants in 2020 are WT11, WT15
and WT19. These are located in the centre of the TC-RWP
having the highest wake losses – thus the highest potential
for wake mitigation via WFFC – from any wind direction.
Conversely, turbine WT29, which is located at the northwest
corner, is reported to have very low income gain by P3, P4
and P5, with full layout investigation. This WT is the first up-
stream WT for wind coming from the dominant northwest-
ern direction, such that it does not benefit from reduced wake
losses due to WFFC but is rather sacrificed for the benefit of
the whole wind farm. In the TC-RWP subset used by P2, the
lower income gains for WT11 and WT19 can be explained
by the reduced wake effect as they are located at the outside
of the 10-turbine layout close to an edge.

As northwest winds become more frequent for high prices
in 2030, the profile of the waked turbines changes slightly
and only P3 reports an income loss for WT1 in Fig. 13. The
most beneficial turbines in terms of the income gain are the
same as in 2020. However, slight differences in trends can
be observed at the turbines located around the edge of the
considered layout, e.g. WT11 for P2, WT2 for P4, and WT31
for P3 and P5, typically an increase compared to 2020 results.

During both 2020 and 2030 scenarios, it is very interest-
ing to compare P3 and P5 results as both have implemented
combined flow control strategies for their optimisation in full
TC-RWP layout. Figures 12 and 13 show that the expected
income gain provided by those two participants are indeed
similar, especially for the turbines located in the centre of the
wind farm. Therefore, it can be said that the differences ob-
served for the turbines at the edge of the layout (upstream
turbines) are the main drivers for the disparity in the overall

income gain per wind direction sector presented in Figs. 10
and 11. It also indicates potentially different control settings
applied to those upstream turbines, resulting in dissimilar
power losses. However, the overall benefit in terms of wake
mitigation is quite comparable for the investigated high-price
scenarios in 2020 and 2030, as also shown in Fig. 9.

5 Conclusions and future work

This article presents the results of the FarmConners market
showcases, which are the first to study WFFC in simulations
with variable electricity prices. The results from five partici-
pants are analysed and compared to demonstrate the potential
benefit of WFFC in electricity market scenarios. The analy-
sis starts at the individual turbine level with the examination
of a method that applies different control strategies depend-
ing on the electricity price and finishes at the wind farm level
with a comparative study of four different implementations
of WFFC strategies simulating scenarios with high electric-
ity prices in 2020 and 2030.

The main outcomes and observations of the FarmConners
market showcases are summarised in the list below. They are
given as qualitative statements due to the associated uncer-
tainties in the reported benefits and sorted according to the
steps followed in the analysis.

– Benefit of flexible, market-driven, multi-objective con-
trol. The benefit of revenue maximisation and structural
load reduction as control objectives depending on the
electricity prices is demonstrated at a single wind tur-
bine. Extending this strategy to the operation of wind
farms can be beneficial for all stakeholders, where the
power production is increased when high demands lead
to high electricity prices, and it is decreased when low
demands cause low prices.

– Limited model capabilities to include structural load al-
leviation in the objective function. The original Farm-
Conners market showcases defined three sets from
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which only the high-price scenarios could be analysed
here. This is due to the lack of participating models for
the other sets which included constraining or reducing
structural loads in the control objectives.

– Impact of wind farm layout. As already observed in pre-
vious WFFC power maximisation studies, the number
of turbines in a wind farm and its layout clearly in-
fluences the achievable income gain per wind sector.
The dominant wind direction and the upstream or down-
stream position of wind turbines have a significant im-
pact on the operational strategy that is best suited to re-
duce wake losses in a particular setting. The power gain
per wind speed and direction bin then translates into in-
come gain through the electricity price distribution and
relative frequency of occurrences.

– Consistent results for different participants. The nor-
malised gains of the four analysed WFFC implementa-
tions are in good agreement. Despite the different con-
trol strategies and simulation setups, similar normalised
energy gains are achieved. In particular, the two par-
ticipants that apply wake steering agree well in which
wind sectors low or high power gains are achieved. The
two participants that combine wake steering with ax-
ial induction control have more diverse results, which
is likely due to the larger range of potential control ac-
tions, but lead to similar gains in total for the overall
period. The differences between the models seen in the
estimated wake losses are represented in the energy gain
where WFFC increased the energy gain the most for the
model with the highest wake loss.

– Combination of factors in income gain. For particular
meteorological conditions and layout, it has been shown
how the specific combination of different factors, such
as price distribution among wind speed and direction
bins, their frequency of occurrence, available power for
such bins (wind speed dependent), wake loss reduction,
or WFFC strategy applied, makes the difference when it
comes to income gain, rather than just the contribution
of each factor independently. This combination could
be integrated into the design of advanced WFFC strate-
gies, beyond power maximisation. It also reflects how
the time evolution of such combination can affect the
economic assessment for a wind farm during its life-
time, e.g. if/when the electricity market evolves.

The reported numerical results are deterministic values for
particular simulation environments. The uncertainties of the
actual price signals and especially of wind forecasts can be
in the same range as the reported gains here. While this is out
of the scope of this conceptual study, an uncertainty quantifi-
cation should be included in future investigations for a com-
prehensive evaluation of the estimated benefits per partici-
pating model and to identify the true value of the technol-
ogy in the variable market scenarios. For the former, further

reading is encouraged on studies investigating the sensitiv-
ity and optimisation of widely used WFFC-oriented models
under input uncertainties as well as the embedded uncertain-
ties in the model parameters (Rott et al., 2018; Simley et al.,
2020; Quick et al., 2020; Hulsman et al., 2020; van Beek
et al., 2021; Howland, 2021). Accordingly, the present study
should be read as an initial assessment of potential bene-
fits when considering electricity prices in the operation of
wind farms. With a minimum of 1 % of normalised energy
gains for high prices reported by the participating models,
it certainly motivates further investigation of multi-objective
WFFC.

Moreover, the lack of participation in the showcase sets
that also consider structural load alleviation motivates further
research towards developing WFFC beyond power maximi-
sation. These algorithms should be tested in extensive simu-
lation studies covering a variety of future energy scenarios to
evaluate their performance.

This will also help to quantify the benefit of maximising
the income instead of the power gain as this study indicates.
Unfavourable wind conditions in which the operational strat-
egy only slightly increases the power gains can still result
in high income gains if the electricity prices are high at the
same time.

Code availability. The notebooks for the market show-
case results, including data snippets, can be achieved via
the public repository of FarmConners market showcases
(https://doi.org/10.5281/zenodo.6203808, Göçmen et al., 2022b).

Data availability. All the data used in FarmConners market show-
cases are available for non-commercial purposes. Please contact
us using the details provided under the wiki page of the Farm-
Conners market showcases https://farmconners-market-showcase.
readthedocs.io/en/latest/contact_us.html (FarmConners Market
Showcases Wiki, 2022).
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