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Abstract 

This thesis concerns the past and future emissions within the Norwegian economy. It employs 

retrospective analysis to analyse past sectoral emissions on a national level and supervised 

machine learning to predict emissions 5 years ahead for Norwegian municipalities. Policies 

addressing GHG-emissions have been on the agenda for over 30 years, yet sectoral emissions 

from Norwegian economic activity have risen 10.4% compared to the 1990-level. Most 

retrospective analysis carried out on emissions only analyses trends and tentative causes. 

Underlying drivers of emissions therefore remain unquantified, and their magnitude remains 

unknown. A logarithmic mean divisia index decomposition analysis is provided on sectoral 

emissions from 10 economic sectors in the period 1990 – 2019 alleviate the problem/provide 

answers on this area. The analysis shows that economic growth and worsening energy 

efficiency, particularly in the transport and petroleum & mining sectors, have contributed to a 

net increase of 6218 mktCO2e in emissions. Results also show that changes in economic 

structure, decreased usage of fossil fuels and increased carbon efficiency have worked as 

abating factors, but that they are outweighed by the factors which contribute to increase in 

emissions. 

 

Given Norway’s ambition of curbing its own emissions by a significant degree by 2030 and 

then net zero by 2050. While these goals are specific only to certain types of emissions, it is 

still a somewhat open question as to how emissions might develop in the near future. A 

supervised machine learning analysis was carried out on GHG emissions from 354 

municipalities in the period 2009 – 2019. An architecture using univariate linear regression 

tests for variable selection and extreme gradient boosting for prediction on a panelised dataset 

of emissions provided the lowest prediction error and projects that emissions from Norwegian 

municipalities will fall, reaching a level of 33 470 mktCO2e in 2025. 
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1 Introduction 

1.1 Introduction 

The latest IPCC report, AR6 Climate Change 2022: Impacts, Adaptation and Vulnerability 

(IPCC, 2022a), was published on the 28th of February 2022, and summarises the observed 

and projected impacts and risks of climate change. The report marks the 32nd anniversary of 

the release the first report (IPCC, 2022d) and thus indicates how long climate change has 

been on the international agenda. The main finding of the report is summarised as follows: 

 

“Climate change is affecting nature, people’s lives and infrastructure everywhere. Its 

dangerous and pervasive impacts are increasingly evident in every region of our world. 

These impacts are hindering efforts to meet basic human needs and they threaten sustainable 

development across the globe” (IPCC, 2022c). 

 

The reports' summary for policymakers highlights the negative effects across the vast 

majority of areas across all continents (IPCC, 2022b). The negative impacts relate to food 

security, access to drinking water and key economic sectors all have an alarming number of 

projected negative effects due to climate change (IPCC, 2022b). It is evident that climate 

change, in the words of Secretary-General of the UN security council Antonio Guterres, “Is 

the defining issue of our time” (UN Security Council  SC/14445, 2021). By virtue of being an 

existential threat to society, climate change is also a threat to future prosperity and 

sustainable development.  

 

Globally, climate change is driven by greenhouse gas (GHG) emissions. As such,  

Norway has like many other countries made policies that seek to curb emissions. Norwegian 

policies have aimed to lower emissions domestically and internationally and have been in 

place at least since 1989 (A. Gullberg & S. Aakre, 2015; Berg, 2015). The current set of goals 

contains a carbon budget set in cooperation with the EU. The target is a 40% reduction in non 

ETS-regulated emissions compared to 2005-levels (St. Meld. 13 (2020–2021)) along with the 

Paris agreement commitment of a 50% cut compared to 1990-levels by 2030. The cuts laid 

out by the EU counts cuts for all of Europe, abatement projects can therefore be carried out in 

other countries. The Norwegian government has expressed in their own climate strategy that 

there will be a focus on cuts domestically (St. Meld. 13 (2020–2021)). But despite having had 

policies targeted towards curbing emissions for the better part of the last 30 years, Norway 
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has failed to reach the goal of keeping its domestic non-EU Emissions Trading System (EU 

ETS) regulated emissions to 48 million tonnes of CO2-equivalents (MtCO2e) by 2020.  

 

The failure of reaching past targets for cuts in emissions and the ambitious goals set for the 

future raises two questions. First, why did Norway fall short of our targets despite 30 years of 

targeted policy? This is fundamentally a political question, but it also has an empirical aspect. 

(Norwegian Environment Agency, 2022). Following the literature review carried out for this 

thesis, most research conducted on Norwegian GHG emissions the last 20 years seems to 

focus on consumption based (indirect) emissions (Huang & Bohne, 2012; Peters & Hertwich, 

2006; Steen-Olsen et al., 2016). These are studies where emissions embodied in the 

production and consumption of materials through their entire lifecycle are factored in. There 

are few recent economy-wide studies on production based (direct) emissions in Norway 

which quantifies the effect of drivers. Furthermore, reports on past emissions analyses by 

public bodies tend to restrict themselves to analysing trends (Norwegian Environment 

Agency, 2020). Consequently, the extent of how factors such as economic growth, carbon 

intensity and sectoral balances affect direct emissions remains partly unexplored. This thesis 

seeks to provide answers on this area. For this purpose, a retrospective study can provide 

answers. The second question relates to how emissions might develop in the future. This is 

especially relevant given the ambition of cutting domestic emissions by 2030.  

 
1.2 Research questions 

A substantial part of Norwegian climate policy has been aimed towards reducing emissions 

abroad (Berg, 2015) through programmes such as NICFI, which is a programme that aims to 

stop deforestation of rain forests internationally, and purchases of ETS quotas as outlined by 

T. Moe (2012). But, as made clear by white paper 13 (St. Meld. 13 (2020–2021)) strong 

commitments will also be made domestically in the coming decade. As 92.4% of domestic 

emissions stem from economic activity (Statistics Norway, 2021), the remaining few 

percentages within households and the effects of land absorption on emissions (LULUCF) 

falls beyond the scope of the retrospective analysis. Index decomposition analysis provides a 

way to quantify the effect of drivers on past emissions in order to study what effect they have 

had and will be the main tool for the retrospective analysis. 

  

Regarding future emissions this thesis will, by means of supervised machine learning 

methods, seek to develop a model which can accurately predict future direct emissions with a 
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prediction horizon of 5 years. This second part of the analysis is carried out with the 

additional goal of identifying covariate importance in relation to the development of future 

emissions. The predictive power of machine learning depends on the amount of data points 

for prediction available (Halevy et al., 2009). So, while it would be an interesting endeavour 

to predict emissions on a national- or county-wide level, municipal GHG emissions make it 

possible to form the largest dataset and henceforth potentially better predictions. As the 

subject matter of this paper concerns past and future emissions, the research questions are 

split into corresponding categories. The research questions for the purposes of this study are: 

 

RQ 1: Retrospective analysis 
What are the main drivers of change in sectoral emissions in Norway between 1990 and 
2019? 
 

RQ 2 Machine learning prediction:  

How are direct GHG emissions on a municipal level likely to develop over the next 5 years? 

As sub-questions, I ask the following 

a. (How) can a supervised machine learning model architecture predict future emissions 

reliably? 

b. Does the winning architecture add predictive power compared to a naïve model? 

c. Which variables are the most significant with regards to predicting future greenhouse 

gas emissions? 

 

To carry out the retrospective analysis emissions are decomposed into subsequent drivers of 

emissions where each factor is selected based reviews of prior studies. Contributions of each 

driver are then measured over time using logarithmic mean divisa index decomposition 

analysis (LMDI-IDA). The method will be applied on 10 sectors in order to determine how 

the activity, structure and intensity-measures within the economy have affected direct 

emissions in the period of 1990 - 2019. 

 

The predictive part of this thesis is carried out by first identifying relevant covariates through 

a literature review. Then, an architecture for prediction methods will be devised, and 

deployed via Python’s sci-kit learn library, which offers access to a rich toolbox for 

supervised machine learning. The algorithm which exhibits the lowest amount of prediction 

error will then be selected to forecast future GHG emissions for all municipalities in Norway 
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with a horizon of 5 years. 

 

1.3 Structure of the thesis 

Chapter 2 in this thesis provides exploratory analysis on both sectoral emissions on a national 

level, and total emissions on a municipal level in order to reveal trends and structure in the 

data. It also reviews existing analyses on Norwegian emissions. This is done with the purpose 

of providing context to the analysis in subsequent chapters. Chapter 3 provides an in-depth 

review of methods applied to retrospective analysis of emissions and which method is most 

applicable given the data at hand. It also outlines how the LMDI-IDA method has been 

implemented in the context of this thesis. Chapter 4 discusses and reviews machine learning 

methods and their application to predicting emissions. It also outlines the method 

implemented for prediction of future emissions in Norwegian municipalities. 

Chapter 5 discusses results from the retrospective and predictive analysis, whilst chapter 6 

contains concluding remarks.  

 

2 Past emissions and trends in Norway  

In order to provide context for both the retrospective index decomposition analysis and the 

machine learning methods, it is necessary to investigate historical emissions. There are 

several ways of making emission accounts in order to attribute them to their source. Before 

looking at historical emissions it is necessary to understand what is being counted in the data. 

On the national level, Statistics Norway provides two principal ways of categorising 

emissions (Statistics Norway, 2015). The first is sectoral emissions from economic activities 

in Norway and it follows the same classifications as GDP and the national energy accounts. It 

is thus highly compatible with GDP and energy data for analysis purposes. The second 

method ties emissions to emitting activity such as the production of different metals, types of 

vehicles and even fermentation in production of beer. The way these two are allocated 

geographically are different. Emissions tied to economic sectors follow economic entities just 

like GDP and energy does. As such, it also includes emissions from Norwegian economic 

activity abroad. Emissions grouped by emitting source includes all emissions made within the 

geographical boundaries of Norway, including emissions from foreign entities. Municipal 

GHG emissions are based on the latter category. This difference in geographical allocation 

explains why the two types of accounts might be different in absolute terms and the sizes of 
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different sectors. 

 

2.1 Norwegian emissions attributed to economic sectors 

As evident from figure 1, sectoral carbon emissions in Norway have for the last 30 years 

fluctuated between 60 000 and 75 000 mktCO2e. Figure 1 shows that the largest emitting 

sectors in Norway are transport, manufacturing, and mining and petroleum. In the year 2020 

these three accounted for approximately 72% of total emissions. In terms of structure the 

balance between sectors has been quite stable over time, although manufacturing has gone 

from being the largest polluting sector in 1990 to being the third most polluting sector in 

2020. At the same time the share of emissions from mining and petroleum has grown, 

especially in the period leading up to 2005 before starting to decrease somewhat after 2015. 

Transportation has for most of the last 30 years been the largest polluting sector, see figure 1.  

 

Figure 1 - Norwegian GHG emission per sector, millions of tons CO2e (SSB, 2021) 

 

Looking at sub-sectors within the transportation sector in figure 2, two observations stand 

out. First, there is an upwards trend in emissions. Second, we see that the largest single 

source of emissions is ocean transport. Norway is, measured in terms of value, the fourth 

largest shipping nation in the world (Norwegian Shipowners' Association, 2021). Ocean 

transport accounted for in this sector thus includes emissions made abroad (Statistics 

Norway, 2015). Norwegian GDP and energy accounts are also adjusted to include this 

activity. Air transport is also another sector that is counted internationally, but subsidiaries 

registered abroad are left out. So, while Norway is home to large international flight 
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companies such as Norwegian, they presumably register much of their activities abroad 

which do not count towards domestic emissions, despite air travel being a very carbon-

intensive mode of transportation. This could explain while emissions from air travel are so 

low compared to sea transport. Another aspect to note about air transport is that the emissions 

from the sector were growing in the period 2011-2019 before lowering drastically in 2020. 

The latter is the effect of covid-19 related lockdowns and travelling restrictions. One last 

thing to note from emissions within subsectors of transportation is that emissions stemming 

from land transport are larger in 2020 than they were in 1990, despite the recent surge in 

adoption electric vehicles in private households (Statistics Norway, 2022b).  

 

 
Figure 2 - Sub-sectoral emissions from the transport sector (SSB, 2021) 

 

As evident from figure 3, in manufacturing, there has been a decline in emissions of almost 

10 000 MKtCO2e. This is partially due to the production of basic metals emitting less from 

2009 onwards. Refined petroleum products and pharmaceuticals has also decreased its 

emissions from over 6000 MKtCO2 in 1990 to approximately 4700 MKtCO2e in 2020 thus 

lowering emissions. There has also been a steady decline in emissions from the production of 

wood products since the mid 90’s.  
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Figure 3 - Sub-sector emissions from manufacturing (SSB, 2021) 

 

The last sub-sector of note is mining and petroleum extraction. Here emissions rose sharply 

in the 90’s, from 8700 MKtCO2e in 1990 to over 14 000 MKtCO2e in 2000 and have stayed 

above that number ever since. Emissions reached a peak in 2015 at near 16 400 MKtCO2e 

and have towards 2020 decreased towards the 14-mark. The sector is completely dominated 

by the emissions from oil and gas extraction, accounting for nearly all of the sector’s 

emissions, see figure 4.  

 
Figure 4 - Sub-sectoral emissions from mining, oil and gas extraction (SSB, 2021) 
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2.2 Municipal GHG emissions  

The municipal GHG-emission accounts go back to 2009. At first, they were compiled by 

Statistics Norway, but have since 2015 been provided by Norwegian Environmental Agency. 

The emissions are, as mentioned, categorised according to emitting activity (Jacobsen & 

Lillesund, 2021). The accounts also contain economic sectors, but following correspondence 

with the Norwegian Environmental Agency (Seim, 2022), these sectors are differently 

categorised from the GDP accounts. Therefore, there is a different sectoral breakdown 

compared to national accounts. Geographically, emissions are allocated to the municipality 

they occur in. This means that activities offshore and aviation beyond a flight altitude of 

914,4 meters are not included. 

  

 

 

The two largest polluting sectors in municipalities as a whole is the sector named “industry, 

oil and gas” along with transport on land which account for more than 50% of emissions 

since 2009.  Runners up are the agriculture and sea transport sectors which contribute 12.1% 

and 12.2% respectively. In terms of development over time there seems to be a weakly 

decreasing trend in emissions across several regions, especially in Oslo, Viken, Rogaland, 

and Vestfold and Telemark. In the region of Vestland this trend is much stronger from 2013 

onwards. There are also large regional differences in terms of the scale of emissions from 

Figure 5 - Regional emissions by county and sector (Norwegian 

Environmental Agency, 2021)  



15 
 

municipalities. A scatterplot analysis reveals that some of this heterogeneity stems from 

municipalities that are home to emission intensive-industry. In the case of Vestland, Alver 

municipality, which is home to a large petroleum refinery, emits over a third of the county’s 

total amount.   

 

 

 

2.3 Retrospective analysis of GHG-emissions in Norway 

So far, it’s evident that emissions in the Norwegian economy is subject to inertias, increases 

and reductions. With climate change being one of the most important issues of our time there 

is much research related to economic activity and emissions. With data from Norway being 

readily available there are several examples of studies which analyses direct emissions and 

quantifies drivers as part of an international analysis. Andreoni and Galmarini (2012) analyse 

emissions from sea- and air-transport from 14 countries, including Norway, and finds that 

increased economic activity has led to higher emissions in both sectors across the studied 

countries. Moutinho et al. (2018) studies Norwegian emissions as part of an international 

decomposition analysis featuring 23 countries through the period of 1985 to 2011. They find 

that the fossil intensity of fuels has on an aggregate level been falling steadily in the period, 

while the share of renewables has been increasing, thus creating downward pressure on 

emissions. However economic growth has to some degree counteracted the abatement. The 

Figure 6 - Scatter plot of municipal emissions 
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same results can be found in Xu and Ang (2013) and a much earlier study by Hamilton and 

Turton (2002). 

 

On the sub-national level the national inventory reports provide a thorough review of trends 

and developments (Norwegian Environment Agency, 2020). It shows that the diminishing 

emissions from sectors such as manufacturing, waste and industrial processes are offset by 

increased emissions in the petroleum and transport sectors. The reason stated for the 

increased emissions from the petroleum industry is “[…] explained by the increase of oil and 

gas production and the increase of energy demand in extraction, due to aging of oil fields and 

transition from oil to gas” (Norwegian Environment Agency, 2020, p. 38). While this report 

yields very good qualitative reasoning on why emissions change in its respective sector it 

does not yield any answers on the magnitude of the effects listed. 

 

Other research related to Norwegian emissions seems to mainly focus on indirect emissions. 

That is, emissions embodied in consumption or usage of materials where impacts from the 

lifecycle of material flows are included. Yamakawa and Peters (2011) provide a structural 

decomposition analysis of Norwegian greenhouse gas emissions embodied in imports, 

exports and consumption for the time-period 1990 – 2002. Their results show that “70% of 

the growth in Norway's energy consumption and greenhouse gas emissions was caused by the 

production of exported products, in particular oil and gas production”. Their study shows 

how Norway should make cuts in their petroleum-exporting industries if they are to 

contribute positively towards reaching stated goals for global emission cuts. As their main 

focus is on imports and exports, they group domestic sectors together. Hence, this study 

doesn’t show how structural changes between economic sectors affect emissions over time 

domestically. Further studies documenting indirect emissions embodied in trade (Peters & 

Hertwich, 2006) and household consumption (Steen-Olsen et al., 2016) have also been 

carried out for the year 2000 and 1999 – 2012 respectively. Both show how indirect 

emissions were increasing for the time-period studied. Further studies analysing sector 

specific indirect emissions can be found in Huang and Bohne (2012),  Ziegler et al. (2013), 

Hertwich and Roux (2011) and Sparrevik and Utstøl (2020). All these show how different 

drivers, economic activity and material consumption contributes towards indirect emissions 

in their respective sector. 

 

Direct emissions seem to be a more sparsely studied area, at least in terms of retrospective 
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analysis. Gavenas et al. (2015) studies direct emissions from the petroleum sector and find 

that emissions per unit of extraction rises as fields deplete. Simonsen et al. (2019) studies the 

cruise industry and show that 11.4% of their emissions happen in municipal ports. Aamaas 

(2019); Korsbakken (2020) and Korsbakken (2021) provide analysis which aims to create 

future projections of municipal emissions in Oslo, Bergen and Kristiansand. The models used 

in these studies decompose emissions across all sectors but use these to project future 

emissions according to given policy scenarios. As such they chart the tentative effects of 

drivers on emissions. Naturally, since these studies are carried out on a municipal level, they 

convey little information about the national level (nor were they meant to). 

 

The only sector-wide study which decomposes and analyses the effect of drivers on 

emissions historically is Bruvoll and Larsen (2004). They decompose emissions into 9 

different drivers across 8 different sectors. They find that emissions increased 15.5% in the 

time period studied. This was due to economic growth, population growth and structural 

change in the economy outweighing the efficiency gains from energy mixture, energy 

intensity and improvements in production methods. Overall, they also identified that 

emissions were falling per unit of GDP. The period studied was 1990 – 1999.  

 

The literature review carried out for this thesis has only identified a few sector-specific 

studies on direct emissions (Gavenas et al., 2015). The only sectoral decomposition of direct 

greenhouse gas emissions seems to be Bruvoll and Larsen (2004). Their study provides a 

decomposition of emissions for the period 1990 – 1999 along with a general equilibrium 

simulation to identify the effect of carbon taxes.  

 

The relatively small body of knowledge regarding how drivers of emissions have affected 

direct emissions within Norway the last 20 years should give pause. Questions regarding how 

shifts in economic structure, activity and efficiency of fossil fuel-use could benefit from more 

thorough documentation. 

 

3 Retrospective analysis: Method and data 
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3.1 On retrospective analysis of emissions – a broad overview of viable 

methodologies 

 

Retrospective analysis of GHG emissions is a diverse field with several of methodologies. In 

their literature review charting research related to greenhouse gas emissions and economic 

growth Mardani et al. (2019) identify several constellations of commonly used 

methodologies. These are Structural Decomposition Analysis (SDA), regression-based 

methods and Index Decomposition Analysis (IDA). Each of these have their respective 

strengths and weaknesses as well as data requirements. They are not mutually exclusive 

methodologies, as they can complement each other. Metcalf (2008)provides an evocative 

example of combining all three IDA and regression-based methods to identify the magnitude 

of drivers of emissions, and then which factors affect these drivers the most. For the sake of 

simplicity, a broad overview of the three methodologies and their application to retrospective 

analysis of emissions in isolation will be provided below.  

 

Table 1 - Overview of methods used for quantification of drivers on emissions 

 Structural 

decomposition 

analysis 

Regression-based 

analysis 

(STIRPAT) 

Index Decomposition 

analysis 

Object of study Indirect emissions and 

direct emissions 

Direct emissions Direct emissions 

Estimator/technique Non-parametric index 

& Leontief inverse 

Regression methods Non-parametric index 

Data requirements Input-output tables, 

emission factors 

N << p Data on drivers and 

emissions for at least two 

time periods 

 

SDA-based methods are non-parametric and trace material flows both nationally and 

internationally. de Boer and Rodrigues (2020) point out that it is a method in which the link 

between impact and consumption activities is explored as the method can account for indirect 

emissions embodied in consumption of materials. As shown in chapter 3,  Peters and 

Hertwich (2006) is an example of such analysis applied to Norway. Studies using these 

methods often emphasise the considerable effect of emissions embodied in high consumption 

of material- and energy-intensive goods 
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Regression based methods are widely used across many scientific fields and perhaps 

especially within the field of economics. Common for all is that they abide by the rules and 

conditions of their respective estimation technique. Broadly speaking, the majority of these 

are based on the law of large numbers (Hsu & Robbins, 1947) and asymptotic convergence of 

estimators (Wooldridge, 2013). According to York et al. (2003) the STIRPAT model is a 

common way of estimating the effect of drivers using conventional regression methods. Here, 

the IPAT identity, which according to Harrison and Pierce (2000, p. 7) stipulates that 

emissions (impact, I) are the product of population (P), affluence (A) and technology (T), is 

adapted into a structural equation for which parameters can be estimated. There are many 

more such models including various studies centred around proving or disproving the 

Environmental Kuznets Curve (Stern, 2003) as well as ex-post studies of effects related to 

environmental taxation. 

 

Index decomposition analysis is the third methodology considered. According to Xu and Ang 

(2013) there were at least 80 papers published between 1991 and 2012. Further examples of 

usage can be found in Le Quéré et al. (2019), Trotta (2020) and O’ Mahony et al. (2012). The 

latter two studies were applied on a sectoral level in Finland and Ireland in order to chart 

energy efficiency gains and contributors to carbon emissions. Subsequently they provide 

good proofs of concept for the purposes of this thesis. The method was initially developed to 

decompose and analyse changes in energy usage (Ang, 2004), as such that is also a field in 

which many studies using the methodology can be found in. Having said that, there are 

studies analysing drivers of emissions on an international level using the method as early as 

1991 (Torvanger, 1991).  

 

Fundamentally, the method allows for decomposition of an aggregate measure, like 

greenhouse gas emissions, into subsequent drivers and then measurement of how these affect 

the aggregate measure. The decomposition is first carried out via decomposing the aggregate 

through putting the drivers into an identity, then different kinds of index theory methods are 

applied to identify changes in drivers over time and how much they affect the aggregate 

measure. In their literary review de Boer and Rodrigues (2020) highlight how these methods 

are also used in the consumer price index, producer price index, producer price index and 

human development index. According to their article the earliest recorded use of an index 

analysis of price changes is the French economist Dutot who in 1738 looked at the price 
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changes of several commodities vs incomes and concluded Louis XV was worse off 

compared to his ancestor Louis XII based on the difference in factors. 

 

3.2 Why LMDI-IDA? 

The task at hand is to decompose emissions and quantify the effect of drivers. For this we 

have seen that there are three separate families of methods that can help achieve this purpose. 

However, SDA methods are dependent on input-output data (Hoekstra & van den Bergh, 

2003). These tables are only available from Statistics Norway in the same format in the 

period between 2012 and 2019. In relation to identifying the effect of drivers of emissions by 

using regression methods, we arguably face a lack of data. F. Harrell (2015) writes the 

following on page 72 about sample size: “[…] in many situations a fitted regression model is 

likely to be reliable when the number of predictors (or candidate predictors if using variable 

selection) p is less than m/10 or m/20, where m is the limiting sample size”. The period 1990 

– 2019 makes for 29 observations. At best this would make for a model with less than 3 

variables if reliable results are to be considered, provided there are no multicollinearity 

issues. This is too restrictive in terms of modelling drivers of sectoral greenhouse gas 

emissions and not a viable methodology.  

 

Hoekstra and van den Bergh (2003) as well as de Boer and Rodrigues (2020), point to how 

index decomposition analysis methods can provide analysis with few datapoints. In fact, the 

method only needs data from two points in time to work. If data exists over an interval of 

time, it is also possible to chain the analysis and sum the changes in order to get the effect of 

drivers. Ang and Goh (2019, p. 836) stress that chaining the analysis is always preferred 

because it reveals the year-on year changes and thus provides the best results. Unlike 

regression-based methods, having only 29 observations is not an obstacle for IDA-based 

methods. Thus, it is a suitable methodology for retrospective analysis of Norwegian 

greenhouse gas emissions. 

 

3.3 On selection of index method, data and drivers 

While the adequacy of index decomposition analysis for retrospective analysis of emissions 

has been established the matter of identifying the most suitable index method needs to be 

settled. There are numerous indexes available and Ang (2004) identifies the most commonly 

used index methods as Shapley-Sun, Logarithmic-mean divisia (LMDI), Arithmetic mean 
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divisia, modified Fischer and Marshall Edgeworth. Between these index methods the 

multiplicative and additive version of LMDI come out on top based on the fact that they yield 

decompositions without residuals, yield easily interpretable results, can be adapted to handle 

zero-values and have consistency in aggregation. This means that year-on year results can be 

aggregated safely, and that results can be interpreted both on a sectoral level and an aggregate 

level. The only real drawback with the index method is that it is not robust against negative 

values. But in the context of decomposition of emissions, negative values are very rare as 

emissions, energy and GDP-data are always positive numbers. As such the LMDI 

decomposition method is the most suited for retrospective analysis of Norwegian emissions. 

The additive and multiplicative versions of the LMDI index have the same properties, aside 

from that the additive version yields results in the same unit as the aggregate size studied, 

while the multiplicative version yields percentages. Getting the results in terms of emissions 

have several advantages over percentages. First, it becomes much easier to check if there is a 

residual present in the results. Second, if the need arises for interpreting result as percentages, 

they can easily be converted.  

 

3.3.1 Data and selection of drivers of emissions 

Conceptually there is no limit to the number of drivers applied within an LMDI index 

decomposition analysis (LMDI-IDA) as long as the drivers can form an identity equation. 

However, which drivers to choose ultimately depends on the problem at hand and data 

availability. This study analyses sectoral emissions, hence, there’s a requirement that all other 

data can be separated into the same sectors as the emissions data. While energy and emissions 

data in Norway follow the same sectoral breakdown, sectors by GDP are categorised slightly 

differently. Fortunately, Statistics Norway provides correspondence-tables that associate the 

sectors in the energy, gdp and emissions data (Statistics Norway, 2009). It’s possible to 

categorise all three in such a way that they can be used together.  

 

In their literature review on the application of LMDI-IDA methods applied to emissions, Xu 

and Ang (2013) commonly used drivers as overall activity in the economy (GDP), economic 

structure, energy intensity, fossil share of energy, and GHG-intensity. Equation 3.1 shows 

how this can be done on a sectoral level: 
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𝐶 ≡  𝐶 ≡  𝐴
𝐴

𝐴

𝐸

𝐴

𝐸

𝐸

𝐶

𝐸
≡ 𝐴  ×  𝑆  × 𝐸𝐼 × 𝐹 × 𝑈   

 

 
 
(3.1) 

Where 𝐶 is aggregate emissions, 𝑖 indicates sector, 𝑗 fossil fuel type,  𝐶  is emissions per 

sector, 𝐴 is the activity level (total GDP), 𝑆 =  is sectoral GDP, 𝐸𝐼  =  is sectoral 

energy use, 𝐹 =   is fossil energy use of type 𝑗, and 𝑈 =  is the carbon intensity 

of fossil fuel 𝑗. As such, the model is able to capture the effect of shifts in sectoral balances 

(structural change), how much energy is consumed per economic output, the fossil share of 

energy used and how GHG-intense the fossil usage of energy is in the sector. The method 

implicitly assumes that emissions are the result of fossil fuels, this is a weakness when 

considering industries like agriculture where the emissions stem from animals. But as the data 

on sectoral emissions in chapter 2 have shown, most emissions stem from CO2, so this 

assumption is more correct than it is wrong. 

 

Table 2 - Data used for LMDI-IDA analysis 

Variable Sectoral breakdown 

at collection 

Unit 

GDP 61 NOK, Value added at 

basic prices  

Total energy use per 

sector 

31 GWh, consumption 

for energy purposes 

Fossil energy use per 

sector  

31 GWh, consumption 

for energy purposes 

Total emissions per 

sector 

31 Megaton CO2e 

 

 

The data on sectoral GDP (Statistics Norway, 2022a) sectoral energy use (Staistics Norway, 

2021)  and sectoral emissions (SSB, 2021) are all available for the time period 1990 – 2019. 

The GDP data uses real prices with 2015 as its reference year and measures “Value added 

and gross income generated from domestic production in an industry or sector […]” 



23 
 

(Statistics Norway, 2014). As mentioned in chapter 2, sectoral emissions include international 

shipping and flights from companies register in Norway. This is because it is not possible to 

separate domestic air transport and shipping from international the period 1990 – 2000 due to 

energy data not being available for this period. Furthermore, they are also an integral part of 

Norwegian economic activity as they operate out of Norway and are thus regulated by 

Norwegian policies. Thus, they were included. 

 

Energy accounts are complex. This is because crude oil has more uses than just energy. As 

such consumption of energy have different categories in the Norwegian energy accounts. 

Consumption for energy purposes and total consumption, which includes petroleum turned 

into other products like plastics and so forth. For this study, consumption for energy purposes 

was chosen, as the petroleum only turns into a GHG once its combusted. The fossil energy 

category includes energy consumed from coal and its derivatives, natural gas, and crude oil. 

As waste is estimated to contain 20% plastics when its combusted, 20 % of the energy 

derived from waste is counted as fossil. Total energy consumption of energy products 

includes all energy consumed.  

 

3.4 Application of additive LMDI-IDA 

The additive LMDI-IDA is outlined by Ang (2015). It is a method which allows the 

decomposition of an aggregate measure into factors or drivers and then assess their impact 

over time. In an additive decomposition change in emissions (C) from year to year will then 

be expressed as such: 

∆𝐶 =  𝐶 − 𝐶 =  ∆𝐶  + ⋯ +  ∆𝐶   3.2 

 

And the identity shown in 3.1 given the data selected is 

    

𝑘𝑡𝐶𝑂2𝑒 , ,
≡ 𝐺𝐷𝑃

𝐺𝐷𝑃 ,

𝐺𝐷𝑃

𝐺𝑊ℎ ,

𝐺𝐷𝑃 ,

𝑓𝐺𝑊ℎ ,

𝐺𝑊ℎ ,

𝑘𝑡𝐶𝑂2𝑒 ,

𝑓𝐺𝑊ℎ ,
 

3.3 

s = sector, t = time, C = emissions, fGWh = fossil energy use; measured in GWh, GWh = total energy use, measured in GWh 

  

The generalised form for calculating the effect of drivers within a sector between two time 

periods can be written as: 
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∆𝐶 =  
𝐶 −  𝐶

𝑙𝑛 𝐶 −  𝑙𝑛 𝐶
ln

𝐹 ,

𝐹 ,

  
3.4 

 

Where 𝑖 indicates sector, 𝐶 is emissions, 𝐹 is factor and 𝑛 is factor number and the 

superscripts 𝑇 and 0 indicate time. Results will be in the number of units the individual factor 

adds or removes from the contributor from period to period. Results can then be graphed or 

put in tables for each sector. Xu and Ang (2013) provide a full overview of how this 

framework has been applied to studies in relation to emission studies.  

 
3.5 Limitations of LMDI-IDA 

- The method uses gdp -> inherits all the problems with it. It isn’t really “output” we 

measure but we treat it as such. I.e. monetary measures are only a proxy of the actual 

volumes of materials and services 

- Current model implicitly assumes that all emissions that come from economic activity 

are due to energy use. That isn’t strictly true, 

- Treats the Norwegian economy as a closed system. Structural shifts in and out of the 

country doesn’t show up. This is somewhat alleviated that we’re only looking at 

energy consumption but disregard energy production. 

- Lumped all fossils together in one category, so results only give the degree of GWh 

that are derived from fossil fuels in general, and not per fuel. This was done for ease 

of interpretation of results. 

 

4 Supervised machine learning: Method and data 

Athey (2019) summarises supervised machine learning as a method which uses “a set of 

features or covariates (X) to predict an outcome (Y)”. This could mean forecasting, or it 

could imply prediction of time-static phenomena. It is called supervised learning because the 

outcome variable Y guides the learning process which consists of describing associations and 

patterns in the input measures X, as well as how they relate to Y (Hastie et al., 2009). 

 

In machine learning the goal is to minimise prediction error whilst treating the functional 

relationship of what is modelled as unknown (Breiman, 2001b). Strategies and models are 

then devised and deployed algorithmically in order to find the best compromise between bias 
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and variance thus the best goodness of fit. It does not seek to estimate the true parameters of 

covariates like in econometrics. Put differently, machine learning methods can tell us whether 

a set of covariates adequately predict an outcome, and which model yields the best 

approximation of functional relationships. It is important to note that the functional 

relationship need not be true in the real world and that this restricts what we can learn from 

machine learning methods. The relationship to the real world ultimately depends on the data 

fed to the algorithm. For example, Athey (2019) points to how pianos can be reliable 

predictors of the presence of cats in pictures if the training & validation datasets associate the 

two. But that pianos have next to zero causal effect on turning animals in households into 

cats. So, to hammer this home, the goal of machine learning methods is not to find the true 

effect of a parameter, nor its causal powers. It finds predictors, and the robustness of these are 

ultimately a function of the model and the data used. Machine learning models might 

associate cats and pianos because people find it funny to have their cats walk on pianos. Not 

because pianos cause animals in their proximity to become cats. But, despite the possibility of 

relationships between factors in machine learning models being spurious, they might still tell 

us something. In the example of cats, it tells us that people like to take pictures of them in 

proximity to pianos – and from that we can learn something. So, while the importance of 

variables in a model making predictions of future greenhouse gas emissions might be 

spurious, they tell us that they have predictive power and are thus worthy of further 

investigation. This is a different approach to conventional econometric methods which seeks 

to estimate ceteris paribus (all else being equal) effects of covariates upon a dependent 

variable. Or put in terms of cats, the goal of a conventional econometric inquiry could for 

example involve estimating the propensity of pianos causing cat-ness in nearby animals. 

 

The goal of the supervised machine learning methods employed in thesis is not to implement 

an estimation technique for measuring the effect of given parameters or policies, like in 

Bruvoll and Larsen (2004). Instead, it seeks to provide solid predictions, and to disclose 

which factors that have the strongest predictive power in order to forecast future emissions in 

Norwegian municipalities. There are potentially large differences between municipalities due 

to differences in geography, demography and economic structure. This could lead to different 

functional relationships in factors that predict future emissions. Machine learning methods 

specialises in dealing with complex functional relationships. As such it could yield highly 

accurate predictions. And while the functional relationship of variables might just be an 

approximation of real-world relationships, supervised machine learning methods could at the 
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very least tell us which relationships the variables might not have. For example, if the 

functional relationship of factors proves to be poorly predicted by linear models, but well by 

models that are more robust to non-linearities and scores of interaction terms, then it is likely 

that the functional relationship in the data is not linear. 

 

4.1 Machine learning and emissions prediction 

There are several examples of studies employing supervised machine learning methods for 

prediction of localised greenhouse gas emissions from buildings and industrial processes. 

Examples can be found the literature reviews of Seyedzadeh et al. (2018) and Adams et al. 

(2020). Studies that seek to make predictions related to greenhouse gas emissions on regional 

or aggregate level seem to be fewer in number. Among these are Mardani et al. (2020) which 

employ artificial neural networks along with clustering techniques in order to predict 

emissions of the G20 nations for the same year. They find that their methodology can predict 

with a mean absolute error (MAE) of 0,065 thus making their method a viable tool for 

estimation of current emissions. Acheampong and Boateng (2019) forecast carbon intensities 

per unit of fossil energy consumed for 9 countries using a neural network and 

macroeconomic variables such as energy consumption, economic growth, financial 

development index, population and trademark applications. They use mean square error 

(MSE) as their prediction error measure and the model returns prediction errors in the order 

of 𝑀𝑆𝐸 < 0.01. The MSE measure returns the prediction error as the squared value of the 

independent variable. In this study the CO2 intensity is given in kg per kg oil consumed. 

With such a low prediction error this goes to show how accurate predictions could be when 

using machine learning methods. Wei et al. (2018) provides the most interesting results 

applicable to this study. The study makes forecasts for the region of . Like other studies, their 

results are highly accurate, reporting a prediction error (RMSE) of only 0.002. Since the 

target variable in their study is 10 ktCO2e this amounts to an error 20 tonnes of CO2e 

compared to actual emissions. Their method uses more complex models than what is used in 

this thesis. Hence an explanation on how the models employed in their study work will not be 

provided here. Explanations of the models used by Wei et al. (2018), can be found in Huang 

et al. (2006), which gives an introduction to Extreme Learning Machines, Breiman (2001a), 

which outlines random forest models and Hussien et al. (2020), which systematically reviews 

the application of moth flame optimisation algorithms. For an introduction to neural networks 

in general, see Hastie et al. (2009, p. 389). The reasons for Wei et al. being relevant for the 
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research problems in this thesis are the following: 

 

1. The study provides a good overview of how machine learning methods can be used in 

selection of input variables from their dataset, and how different selection algorithms 

can improve the performance of their predictive models.   

2. Their predictions vs the actual emissions are shown over a time period of 5 years 

where there is a change in trend of the actual emissions. Hence, giving an intuitive 

understanding of the quality of the predictions of future emissions. And how their 

models can predict changes in trend. 

3. The study provides a detailed overview of variable importance for predictions. This 

gives an indication of which variables could be useful for predictions elsewhere. 

4. Lastly, they provide a thorough presentation of their process and the order in which 

the models where implemented, thus making it easier to replicate similar process 

flows.  

 

The variables in used in their study include public spending on infrastructure, sectoral GDP, 

population density, numbers of vehicles, R&D spending, coal and gas usage, production 

outputs and consumption data. The most reliable predictors in their study are shown to be 

total investments in fixed assets, sectoral GDP balances and population densities (Wei et al., 

2018, p. 28997, tab. 3). The results from this table were used as inspiration in building the 

dataset for the predictions made in this thesis, more on that in chapter 4.3. While there are 

structural differences between the economy of Hebei and Norway there are also similarities. 

Roads are still used for driving, fossil fuels are still used as an energy source, and goods are 

transported for many of the same reasons in both regions. Consequently, variables should 

also carry across. Furthermore, the inclusion of machine learning methods for variable 

selection makes sure that only variables with the highest predictive outcome are selected for 

the predictive analysis. This solves the problem of using trial and error for variable selection 

and can improve model performance in scenarios where the predictive power of input 

variables is unknown. 

 

There is one final thing worth discussing in the results from Wei et al.’s study. The variable 

importances are given in terms of mean decrease in gini impurity measures, which indicate 

how important a variable is in a random-forest model for making predictions (for an extended 

note on variable selection in random forest models, see appendix X). This measure only 
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shows how important variables are for predictions in the given model and not their predictive 

power in general. It is notable that many variables have similar scores. In machine learning 

this could mean that many variables have weak predictive power and that robust predictions 

emerge from how well model manages to summarise and learn from weak predictors. The 

modelling strategy proposed in this thesis operates on this assumption, and this has led to the 

inclusion of a model designed to deal with this issue, namely XG boost. 

 

It is evident that machine learning can provide accurate predictions of future emissions. 

While the number of studies existing on this area are few, the findings are promising. 

Machine learning can make robust predictions where the functional relationships between 

variables are unknown and can deal with scenarios where the predictive power of variables 

are potentially unknown. To this date there are no studies that have tried to apply machine 

learning methods in making predictions of future emissions in Norway. And while the level 

of this analysis was chosen based on the number of available data points for construction of 

the largest possible dataset, it has the added bonus of being a tool for forecasting emissions 

across all municipalities in Norway. In other words, if the predictions from the models used 

in this study are sound, it can function as a prototype for other, more extensive frameworks 

making predictions of future emissions, even in municipalities which lack the expertise for 

doing this manually. 

 

 
4.2 Dataset, characteristics and created features 

Raw data  Variable name Area Unit 
Source statistic, (SN = 
Statistics Norway) 

Surface area of 
agricultural land acre_ag_area Agriculture Acres SN table 06447 

Surface area of buildings 
under, and finished 
construction 

compl area 
nonhousing, 
constr area non 
housing Construction m2 SN table 05939 

Number of existing 
buildings, excl housing buildings Construction q SN table 03173 
Number of housing units n_houses Construction q SN table 03175 
Population Population Demography q SN table 11342 
Population density pop/km2 Demography pop/km2 SN table 11342 
Agricultural land in use acre_ag_area Demography Acres (?) SN table 11342 
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Population growth 
Population 
growth Demography % 

Derived from SN table 
11342 

Imputation dummy, 
electricity. Indicates 
imputation where 
necessary in 2009 el_imp Dummy n.a n.a 
Imputation dummy, 
indicating imputed years 
in emissions data em_imp Dummy n.a n.a 
Dummy indicating 
presence of large 
commercial port in 
municipality port Dummy n.a n.a 

Employees in primary 
sector 

Employees in 
primary sector 

Economic 
measure of 
activity q SN table 07984 

Employees in secondary 
sector 

Employees in 
secondary sector 

Economic 
measure of 
activity q SN table 07984 

Employees in tertiary 
sector 

Employees in 
tertiary sector 

Economic 
measure of 
activity q SN table 07984 

Municipal emissions in 
time t+5 (target variable) tCO2e_t5 Emissions log(tCO2e) 

Norwegian Environmental 
Agency, Municipal 
emissions 

Municipal emissions for 
time t and before 

past emissions 
l_tCO2e Emissions log(tCO2e) 

Norwegian Environmental 
Agency, Municipal 
emissions 

Electicity consumption for 
4 user groups. Mining & 
industry, households and 
agriculture, service 
industry, and in total 

GWh usage total, 
GWh Mining and 
industry, GWh 
Service-sector, 
GWh Households 
and agriculture,  Energy GWh SN table 10314 

Gross investments in 
public roads NOK per km roadinv_NOK/km Transport NOK SN table 11816 

Shipping freight received 
and shipped pr port, 
international, domestic 
and total 

sea freight dom 
(tons), sea freight 
int (tons), tot 
freight (tons) Transport Tons SN table 03648 

Number of ships arriving 
in ports per year per ship 
type & total n [ship type] Transport q SN table 08203 
Tonnage of ships arriving 
in ports per year per type 
& total 

tonnage 
[shiptype] Transport Ton SN table 09518 
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Amount of registered 
vehichles per vehicle type. 
All vehicle types 

n vehicles: 
[vehicle type] Transport q SN table 07849 

Amount of registered 
vehichles per fueltype. All 
fueltypes 

n vehicle 
fueltype: 
[fueltype] Transport q SN table 07849 

% of electric vehicles 
registered fuel: electricity % Transport % Derived from SN 07849 

 

 

The municipal reorganisation in 2020 complicated building the main dataset. While the 

emissions data for municipalities follows the new organisation with 365 municipalities, not 

all time-series from Statistics Norway have been merged into their new municipal units. To 

overcome this problem, a list from the Norwegian Mapping Authority was used (Norwegian 

Mapping Authority, 2020). This list shows which municipalities were merged and their new 

names post-merging and made it possible to merge old municipalities into new 

municipalities. Municipalities which were split had to be left out of the analysis, fortunately 

this only applied to 2 municipalities (Tysfjord and Snillfjord).  

 

The master dataset contains 54 variables on 349 municipalities. The municipalities of 

Hammarøy, Tolga-Os, Hitra, and Narvik, Steinkjer and Heim lacked data to such a degree 

across many variables and were as such dropped from the dataset. The created features for 

this dataset were growth measures of existing data. Population growth in each municipality 

was derived from year-on-year changes in population and the number of electrical vehicles 

was derived from data on vehicle fuel types. Two dummy variables indicating where linear 

interpolation has been applied to fill in missing data. These two are applicable for municipal 

emissions and electricity consumption. Imputed variables are applicable for the years 2010, 

2012 and 2014 for emissions and 2009 for electricity consumption. 

 

4.2.1 Treatment of missing data 

The emissions data from the Norwegian Environmental Agency lacks data for the years 2010, 

2012 and 2014. To deal with this problem linear interpolation was used in order to create new 

datapoints. The reasoning behind using linear interpolation is that the emissions data in 

Norwegian municipalities seems on average to have a slow rate of change. Furthermore, 

since there are datapoints around the missing data, linear interpolation at least captures the 

trend in the data. In addition, a dummy variable was created indicating which years were 
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imputed. 

 

Missing data on the surface area allocated to agriculture was found in 16 municipalities. Most 

of the missing data were for singular years in timeseries with little change.  These were 

imputed with linear interpolation. There were 4 municipalities which had no data for the 

entire time series, these were Berlevåg, Måsøy, Træna and Fedje. The amount of farmland 

here was assumed to be the average of all farmlands across Norway.  

 

The source data on public expenditure per km of road from Statistics Norway is split two 

time-series. One pre-2015, and one post 2015. The time series overlap for the years 2015-16. 

These two had to be merged in order to be usable. Furthermore, the data doesn’t follow the 

new organisation of municipalities, and so old municipalities had to be merged into new 

municipalities as well. It became evident that 14 municipalities suffered from error in 

reporting their data to Statistics Norway. These municipalities were found to only have data 

in either one or the other series. These were extracted and treated such that their expenditure 

from the old or the new time series (depending on where the data was reported) and merged 

into the usable time series in the master dataset. 
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4.3 Model architecture and methods applied 

  

 

 
Figure 7 - Overview of machine learning architecture employed 

 

The full model architecture is shown in figure 7 As machine learning ultimately comes down 

to trial and error in order to see which approach yields the best predictions, two versions of 

the master data set were created and tested in parallel. The prediction problem is the same for 

both - to predict emissions 5 years into the future. Both datasets contain the same 

information, just structured differently. In the wide-form dataset, each variable from a 

specific year in the long-form dataset becomes its own variable. For example, the number for 

registered vehicles in the long form dataset becomes registered vehicles in 2010, 2011, 2012 
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and so forth. This is why the variable count in the wide-form dataset is so high. The 

background for this approach came from Verenich et al. (2019) refers to this type of encoding 

the data as index encoding.  

 

  

 

 
Figure 8 - example of index encoded data from longitudinal data (Verenich et al., 2019, tab. 1, tab 7) 

 

What will now follow is a brief explanation of each node in the model architecture and its 

purpose in the process. In the case of the predictive models applied, an extended note on how 

these work in detail can be found in appendix A.  

 

4.3.1 Variable transformations 

The first step in the process was log-transform the emissions data. As seen in figure 6 in 

chapter 2, there are about 10 municipalities which dwarf all others in terms of GHG-

emissions. Some of these house petroleum refineries, others heavy industry, and some are 

large cities. This led to the distribution of emissions to be heavily skewed, thus ruling out any 

form of regression-based methods unless rectified. Hence it was deemed necessary to log-

transform emissions.  

 

The second step implemented was normalising all the independent variables. This sets all the 

variables to the scale [0,1], without distorting the differences in their respective ranges or 

imposing much loss to the data. Normalisation is done via equation 4.1 
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𝑥 =  
(𝑥 −  𝑥 )

(𝑥 − 𝑥 )
 

4.1 

 

The normalisation was carried out due to the extreme difference in scale between variables. 

For instance, the amount of public funds allocated per km of road are on the order of 

50 000 𝑁𝑂𝐾 > while the number of new busses registered in a municipality per year is 

typically smaller than 50. The cost of doing this is that the effect of outliers is reduced, on the 

upside it enables the usage of clustering algorithms which are sensitive to the scales of data 

points when calculating the Euclidean distance between datapoints and assigning them to 

different clusters. Municipalities are different, and systemic differences are highly likely, thus 

this was deemed a necessary step. 

 

4.3.2 Clustering method 

K-means clustering is what’s known as a clustering algorithm. It identifies k clusters within 

the data and then assigns each observation to a cluster based on a similarity measure between 

observations known as Euclidean distance. In layman’s terms it is a method that can identify 

similar observations in a dataset and then attach a label to them indicating their respective 

categories. This method was employed to determine if there were any structural differences 

between observations. The method itself requires that the researcher sets the number of 

clusters. However, a method known as silhouette scoring can be used to determine the 

optimum number of clusters known as silhouette scoring. See appendix D for how silhouette 

scoring occurs. The number of clusters with the highest silhouette score is the optimum 

number of clusters. Surprisingly, the number of optimum clusters turned out to be 0 for both, 

thus indicating that all datapoints belong to the same cluster. 

Figure 8 - Silhouette scores for optimal amounts of clusters 
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4.3.3 Splitting of data into training and test datasets 

A fundamental principle of supervised machine learning is to split the data into training data 

and testing data. The idea is to validate the models’ performances on unseen date in order to 

make sure that it can make solid predictions out of sample and doesn’t overfit For the wide-

form dataset this is entirely unproblematic. However, special care needed to be taken when 

splitting the panel data. This is because of the temporal dimension contained within the 

dataset. If one randomly selects a subset of data that includes a temporal dimension one might 

risk what’s known as data leakage (Hannun et al., 2021). Which means that the model has 

access to data which it shouldn’t have at that point in time. In other words, the model might 

have access to the data it is trying to predict. In the context of the data in this thesis such an 

example would be samples from 2015 being used to predict data from the same year. This 

inhibits any learning in the model and so data leakage makes any model useless in predicting 

anything out of sample. To get around this problem, a procedure developed by Griffin (2020) 

was deployed. The short version of how this was done is that instead of using randomly 

selecting samples for the testing and training datasets, the selection was done by selecting the 

ordered time series of municipalities at random. The proportion of training data vs test data is 

75/25 

 

4.3.4 Variable selection 

Feature selection in the model was done in two ways. The first, was to use scikit learn’s 

f_regression feature selector (Pedregosa, 2011a). This works the same as a regular pearson 
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correlation score, but it returns all correlations as positive variables such that it’s easier to 

select the variables with the strongest correlation. The method implemented selects the 15 

most highly correlated variables. The formula applied for each variable inside the 

f_regression module is: 

 

E[(𝑥 −  �̅�)(𝑦 − 𝑦)]

𝜎 𝜎
 

4.2 

 

The second way to choose input variables was achieved by using a random forest model. See 

appendix A for an extended note on how random forest models operate and how they are 

applicable to variable input selection. As the random forest model tests for how well a set of 

variables X predict an outcome Y implicitly makes it suited for variable selection. The fact 

that these models make no formal distribution assumptions about the data given and are non-

parametric (Richmond, 2016) makes the model flexible in terms of what inputs it can handle. 

The number of variables this method outputs depends on how many variables exert predictive 

power on the dependent variable. Variables are selected on the basis of their mean decrease in 

gini impurity. Ultimately, gini impurity gives the probability for misclassifying an 

observation (Loazia, 2020). Tree-based models use this scoring to assess whether a split 

based on a variable was a good one or not. If the split is bad, the score is high and vice-versa. 

The mean decrease in gini impurity thus measures the quality of splits using a given variable 

in tree-based models. This is used to measure the predictive variables and is the reason why 

random forest models can be used for variable selection. The mean decrease in gini impurity 

scores always add up to 1. Hence, the importance scores from a random forest models will 

always be on the interval (0, 1). The background for its inclusion was inspired by Wei et al. 

(2018). Care needs to be taken when using this measure as it generally favours continuous 

variables and categorical variables of high ordinality, however since nearly all the variables 

in the dataset used are continuous variables this is deemed not to be a problem. 

 

4.3.5 Models fitted 

Once the most relevant variables for predicting future emissions were selected both datasets 

were passed into a battery of predictive models. The predictive models chosen were regular 
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linear regression, elastic-net regression and XGboost1. Linear regression was included due to 

its ease of use and the fact that when used on panel data with cluster robust standard errors, 

the model becomes a pooled OLS model. Furthermore, if this model does well in making 

solid predictions on emissions from Norwegian municipalities it could be an indication that 

the functional relationship between explanatory variables is linear. The elastic-net model was 

included because that it performs further dimensionality reduction in the data given such that 

it only selects the most relevant input variables. It also tends to select the variable with the 

strongest predictive power when faced with two input variables with high collinearity. This 

deals with the problem of using the correlation-based f_regression module as a variable 

selector as it could potentially choose variables with strong collinearity. Lastly, the XG boost 

model was included due to its well documented performance on a multitude of prediction 

problems be it cross-sectional (Nielsen, 2016; Shwartz-Ziv & Armon, 2022) or even 

longitudinal data (Chen, 2021). 

 

4.3.6 Optimisation of hyper-parameters 

Each model has settings which in turn affects the learning process and the quality of 

predictions. For example, in the case of a random forest model these settings regulate the 

number of trees that the algorithm with estimate, or the maximum depth of each tree can 

have. In the field of machine learning these are often referred to as hyper-parameters. A 

challenge in any supervised machine-learning process is to find the set of hyper-parameters 

which provide the best possible predictions. Grid-search is a method for automating this 

process (Pedregosa, 2011b). According to scikit-learn’s documentation on grid-search it is an 

exhaustive search of all hyper-parameters defined by the researcher. The machine learning 

models are then estimated for each combination of hyper-parameters iteratively, and then 

results are stored and selected based upon a score function. The type of score can vary based 

on the needs of the researcher. As this thesis seeks to build a model which makes accurate 

predictions, root mean square error was chosen as the scoring function. 

 

4.3.7 Benchmark model 

In order to see if any model provides predictive power, it is important to compare it to a naïve 

 
1 Appendix D provides an extensive account on how these models work, their strengths and their weaknesses. 
Linear regression was left out of this appendix as it is assumed that the reader is familiar with OLS regression. 
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benchmark model, The naïve models used for benchmarking the predictive models are 

derived from Wooldridge (2020, p. 376). The purpose of any naïve model is to provide a 

baseline forecast without any explanatory variables (i.e. simulating a basic guess). For both 

datasets the naïve model is implemented as follows: 

 

𝑦 , = 𝑦 , + 𝜀 ,  

 

4.3.8 Model assessment, selection criteria and variable importance 

Model performance in machine learning is measured in terms of predication errors. This 

thesis uses three measures root mean square error (RMSE), mean absolute percentage error 

(MAPE) and r2 which is included in order to see how much of the variance in emissions the 

models can pick up on. The RMSE score was selected because it returns prediction errors in 

the same unit as the target variable. I.e., production error will be returned in terms of tCO2e.  

 

𝑅𝑀𝑆𝐸 =  
1

𝑁
(𝑦 − 𝑦)  

 

Since it squares the distance between predicted and actual emissions, it will give a weight to 

large errors, which is desirable for the purposes of the prediction problem at hand. Because in 

addition to making accurate predictions, the model selected should also be correct in the 

magnitude of total emissions such that it can forecast not only on a local level but also on an 

aggregate level. 

 

𝑀𝐴𝑃𝐸 =  
1

𝑛

𝑦 −  𝑦

𝑦
 

 

The MAPE score is included not because it is the best measure for model accuracy, but 

because it gives an intuitive sense of how accurate model predictions are on average. As 

such, model performance is judged by its RMSE, while the MAPE score is only used to get 

an understanding of how good the predictions are in terms of average percentages. 
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5 Results and discussion 

This chapter is divided into two parts. The first part contains discussion of the results from 

the retrospective LMDI-IDA analysis. The purpose of this part of the analysis was to identify 

the main drivers of sectoral emissions in Norway between 1990 and 2019. Aggregated 

results, with the effect of each driving factor of emissions, will thus be shown first. Following 

this, the analysis indicates that there are three sectors which have had the strongest effect on 

emissions. These are the transport, mining and petroleum, and industry sectors. These three 

will be discussed in detail considering their major impact on sectoral emissions. Detailed 

figures of results per driver can be found in appendix B. 

 

The second part of this chapter shows the results from the machine learning predictions. The 

predictive performance of the different model-architectures are first assessed in terms of their 

model evaluation scores. Predicted versus actual values will be shown for the winning model 

along with its respective variable importances. A forecast of aggregate emissions will then 

follow as forecasts for all Norwegian municipalities are far too many to visualise. 

 
 
5.1 Results of retrospective LMDI-IDA 

 

𝐶 , =  𝑘𝑡𝐶𝑂2𝑒 , ≡ 𝐺𝐷𝑃
𝐺𝐷𝑃 ,

𝐺𝐷𝑃

𝐺𝑊ℎ ,

𝐺𝐷𝑃 ,

𝑓𝐺𝑊ℎ ,

𝐺𝑊ℎ ,

𝑘𝑡𝐶𝑂2𝑒 ,

𝑓𝐺𝑊ℎ ,
 (5.1) 

  

∆𝐶 =  
𝐶 − 𝐶

𝑙𝑛 𝐶 −  𝑙𝑛 𝐶
ln

𝐹 ,

𝐹 ,

  (5.2) 

 

The decomposition equation used for the LMDI index decomposition analysis (LMDI-IDA) 

is given in 5.1 above. The subsequent effect of the drivers over time is given by equation 5.2. 

The LMDI-IDA is meant to give a decomposition without any residual term and is consistent 

in aggregation. As such it is possible to assess the accuracy of the decomposition by taking 

the difference between the sum of changes in emissions over the period studies and compare 

it to the actual aggregate emissions from that period. This residual term should be 0, but can 

in reality be larger than that due to the division of factors that happens when the identity 

equation is formed. The residual in the results of this analysis is precisely 4,37 ∗ 10 . We 
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see that some rounding error has happened, but the difference is negligible, and the LMDI-

IDA analysis has thus been performed correctly. Furthermore, from the results of the sectoral 

decompositions it is evident that the analysis is very sensitive to industries with high GHG-

intensity. Given that the LMDI-IDA model measures the effect of drivers on emissions this is 

to be expected. After all, a change in a factor in an industry which doesn’t emit much will 

neither abate, nor pollute much. Since there are three large polluting sectors in the Norwegian 

economy, namely transport, industry, mining and petroleum this is where the effects of 

changes in drivers are the most extreme. In cases where efficiency gains have abated 

emissions, gains from these industries are generally large, this is likewise for cases where 

worsening efficiencies contribute to emissions. 

 

 
Figure 9 - Sum of effect of drivers on direct GHG emissions from economic sectors 1990 - 2019 

 

The aggregated results of the analysis are shown in figure 8. We see that GDP growth and 

energy efficiency losses have contributed most strongly to increasing sectoral emissions. 

Further, changes in economic structure, falling share of fossil fuels, and increased carbon 

efficiency of fossils have had an abating effect. Ultimately, the drivers of increased emissions 

are of greater magnitude than drivers of lower emissions. Hence, there has been a 6218 

mktCO2e increase in emissions since 1990. Over half of this stems from economic growth. 

The primacy of this factor is consistent with the findings in other sector-wide LMDI-IDA-

based studies that apply similar factors as drivers (Andreoni & Galmarini, 2016; 

Kumbaroğlu, 2011; O’ Mahony et al., 2012; Oh et al., 2010; Yao et al., 2015) and the 
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analysis carried out by Bruvoll and Larsen (2004). Since structural changes in the economy 

have had a diminishing effect on emissions, this could be an indication of structural shifts 

towards industries with lower GHG-intensities. However, this analysis does not factor in 

international trade flows, thus it is unable to tell if the changes we see are due to shifts from 

high-polluting to lower polluting sectors, or if these GHG-intense sectors have been gradually 

outsourced. When it comes to the share of fossil fuels and carbon efficiency both have an 

abating effect which adds up to over 2000 mktCO2e. Surprisingly the results indicate that 

worsening energy efficiency has contributed strongly towards increasing emissions. This 

result undoes all the abatement stemming from structural changes in the economy. In other 

studies, this effect is usually opposite. For instance, Le Quéré et al. (2019) showed that 

increasing energy efficiency along with de-fossilisation of fuels was a leading cause of lower 

emissions in 18 developed countries. 

 

 
Figure 10 - Contributions towards emissions per sector in mkt CO2e 

 

Figure 9 shows the contributions from each driver per sectors. The results reflect the 

development of sectoral emissions seen in chapter two. First of all, there are two sectors 

which dwarf all others in terms of contributions towards higher sectoral emissions. These two 

sectors are mining and petroleum, and transport. Each has contributed over 6000 mktCO2e 

towards Norwegian emissions in the studied time period. The reasons for this are their 

inherent GHG-intensity combined with increased economic growth in the economy combined 

with worsening energy efficiency and GHG-intensity per unit of fossil fuel expended. It is 

difficult to say exactly why the efficiency in these two sectors have fallen. Since the analysis 
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uses sectoral GDP, it could be that it is sensitive to price variations in inputs and outputs such 

as the oil price. But while the price of brent crude oil has varied greatly the last 30 years as 

shown in figure 10, figure 11 shows that there is a trend in the worsening energy efficiency 

for both sectors from the mid 1990’s and onwards. Besides, if oil prices go up so too do the 

revenues in the petroleum industry, sectoral GDP follows, and the resulting GWh/GDP ratio 

should improve. It is difficult to be conclusive without deeper analysis, which is beyond the 

scope of this thesis. However, figure 11 shows that the energy efficiency in the petroleum 

sector fell while the price of crude reached historical highs in real terms. This runs counter to 

the hypothesis of oil prices being a significant factor in explaining the worsening energy 

efficiency. Brandt (2011) shows how depleting oil and gas fields could offer an explanation 

for why it consumes more energy compared to its output over time. They show that as 

reservoirs gradually empty, more energy inputs are necessary for extraction. Likewise, 

Gavenas et al. (2015) also show that this effect has led to higher emissions from the 

petroleum industry in Norway. This effect could help explain the worsening energy 

efficiency and the significant contribution towards emissions from this sector. 

 

 
Figure 10 - Energy efficiencies of transport and, mining & petroleum sector. 

 



43 
 

 
Figure 11 - Price of brent crude per barrel (PPI adjusted), (US EIA, 2022) 

 

In the case of transport, results from this analysis are consistent with an analysis from 

Statistics Norway which documents worsening energy efficiency for the sector in the period 

2010 – 2016 (Statistics Norway, 2017, Fig. 4). Poulsen et al. (2022) documents how shipping 

routes are planned to maximise economic gain but sacrifices both energy and carbon 

efficiency in order to achieve this. This could be a potential explanation for the worsening 

energy efficiency, given the size of the shipping sector in Norway and as seen in chapter 2, 

emissions from ocean transport constitute most of the emissions in the sector. Likewise, a 

study from the transport sector in Finland shows that energy efficiency in land transport 

increased in the period 1995 – 2002 but then decreased towards 2009 (Liimatainen & 

Pöllänen, 2010)1. A study on the sizes of smaller vehicles carried out by the International 

Council on Clean Transportation shows how vehicle sizes and weights have increased since 

1980’s (ICCT, 2017, Fig. 5, p. 50), but that the share of fossil fuels among small vehicles has 

been falling. If this also applies to other vehicles this could help explain why a worsening 

energy efficiency, a lower share of fossil fuels and worsening carbon efficiency per unit of 

fossil fuels occur at the same time. Furthermore, one must also remember the temporal 

dimension of this analysis. 10 years of increased efficiency measures might not outweigh the 

effect 20 years of worsening measures might have had on emissions. A final point regarding 

the transport sector worth discussing is the effect stemming from changes in economic 

structure. Transport is the sector in which this effect is the strongest, and in practical terms it 

implies that the size of the transportation sector has shrunk compared to others. 

 

The results on the industry sector indicate that while economic growth has led to an increase 

of about 8000 mktCO2e, this is more than negated by the effects of structural change and the 

increased GHG-efficiency of fossil fuels. Overall, there has been a reduction of 8275 ktCO2e 

in this sector, which is by far the largest reduction out of all the sectors studied. The effect of 
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structural change is easily explainable as it simply means that the sector has become smaller 

in relation to other sectors over time. Whether this is due to a substitution effect with other 

sectors in the Norwegian economy or if it is due to outsourcing cannot be determined in this 

analysis and could benefit from further study as it could shed light on the effectiveness of 

climate policy related to Norwegian industry the last thirty years. The Norwegian Water 

Resources and Energy Directorate suggests that most of the reductions stem from fewer 

process-related emissions, which constitutes most of the emissions from this sector (NVE, 

2020, p. 12).  In other words, most of the reduction has happened due to the implementation 

of production processes which emit less. Interestingly, according to their analysis most of 

these abatement measures were done in the period 1990 – 2010 and emissions have remained 

stagnant since. In the same report, the potential for increased electrification of the industry, 

which still uses a substantial amount of fossil energy, is assessed. They find that the potential 

for further abatement is considerable but contingent on expansion of the electric grid, as well 

as increased production of electricity if prices are to remain low. 

 

Given the magnitude in the emissions coming from these two sectors just discussed, it 

follows that if Norway wishes to decrease its sectoral emissions, much could be gained from 

policies aimed at making structural shifts away from the transport and petroleum industry or 

increasing their energy efficiency. The Norwegian government has indicated that it wishes to 

electrify its petroleum sector which will likely lead to such an outcome.  However, the 

current climate policy in Norway makes little mention of measures tied to international 

shipping. In the national climate plan for 2021 – 2030 it is only mentioned once in brief (St. 

Meld. 13 (2020-2021), p. 15). Moreover, only the domestic sea-transport sector is mentioned 

in the roadmaps for a green economy (Ministry of Climate and Environment, 2021). Given 

pledges given in the Paris agreement, perhaps more attention should be given to this sector. 

 

 
5.2 Results of predictive analysis 

 

Following the results of the estimation it is evident that the architecture developed for 

prediction municipal GHG emissions 5 years ahead succeeded. In fact, both the panelised 

data and the cross-sectional data enabled accurate predictions and the predictive models beat 

the baseline model with a wide margin. As the target variable was 𝑙𝑜𝑔(𝑡𝐶𝑂2𝑒 ) the RMSE 

is in log tonnes of CO2e. It surprising that the results from the cross-sectional dataset, which 
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were estimated using data from 2015 and before, made accurate predictions for 2020. Two 

results are worth discussing, these two are the RF-LinReg (Random Forest – Linear 

Regression model), and the Corr-XGboost model on the panelised data. Predicted vs actual 

values will be shown for these and a forecast for emissions in 2025 will be made using the 

latter, considering this model provided the best performance. 

 

Table 3 - Prediction results on testing data 

Model Dataset RMSE MAPE R2 

Baseline Cross-sectional 1.77 0.83 0.00 

RF – LinReg  Cross-sectional 0.15 0.09 0.97 

RF – Elastic net Cross-sectional 0.46 0.34 0.79 

RF – Xgboost  Cross-sectional 0.21 0.01 0.96 

Corr – LinReg  Cross-sectional 0.16 0.01 0.97 

Corr – Elastic net Cross-sectional 0.57 0.03 0.73 

Corr – XGBoost Cross-sectional 0.21 0.01 0.96 

Baseline Panel data 1.08 0.83 0.00 

RF – LinReg 

(Pooled OLS) 

Panel data 0.70 0.05 0.69 

RF – Elastic net Panel data 0.86 0.06 0.52 

RF – XGboost  Panel data 0.14 0.01 0.98 

Corr – LinReg 

(Pooled OLS) 

Panel data 0.92 0.01 0.45 

Corr – Elastic net Panel data 0.61 0.04 0.76 

Corr – XGBoost Panel data 0.13 0.08 0.98 

Trend model Panel data 1.08 0.83 0.00 

 

Figure 10 shows the RF-LinReg model’s performance in estimating emissions for 2020 using 

data from 2015 and before. Both the estimated and predicted values were exponentiated post-

estimation to show the true magnitudes of the values. It is evident that the model predicts 

very well on average and can even do well with outliers. The RMSE of this model is 0.15, 

which corresponds to an average error of 𝑒 . = 1.16 tonnes per year. 
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Figure 1211 – Predicted vs actual values. The numbers on the x-axis represents individual municipalities  

 

The input variables in the linear regression model were selected by the random forest input 

selector. As covered in chapter 4, these scores always add up to 1, and show which variables 

are the most important in making predictions within the model. A higher score indicates 

higher importance, and vice-versa.  Evidently, past electricity consumption from the years 

2009-20015 are the variables with the highest predictive power. Considering that employees 

from the primary, secondary and tertiary also show up as contributing variables to predictions 

it seems that the random forest variable selector is sensitive to the economic structure of the 

municipalities it is applied to. 

 

 
Figure 1312 - Variable importance of selected variables in the cross-sectional dataset 
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The winning model was the Corr-XGboost model applied on the panel dataset. Since the 

predictions were made on panel data the model can do dynamic predictions. For the training 

and test data, model’s first prediction year is 2014 and the last is 2020. In figure 12 the 

performance of the model is plotted against the actual values of the testing data. Each dimple 

in the line presents one municipality over time. Noticeably the model manages to capture the 

magnitude for the emissions for each municipality. This is likely due to the inclusion of 

historical emissions as a variable. However, it seems to struggle with the trend in some of the 

outliers, and in the most extreme cases it severely underestimates the emissions. This could 

be because there are variables specific to these outliers are not present in the dataset. It could 

also have something to do with the normalisation applied to the data, as it gives outlier 

variables a maximum value of 1. However, for many municipalities, and especially those 

with fewer emissions, the model seems to perform better. Examples of predicted vs observed 

emissions can be found in appendix D. 

 

 
Figure 1413 - Predicted emissions between 2016 - 2020 with XG boost using data from 2015 and before. Each 

dimple in the line represents one municipality in the time-period 2014-2020 
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The input variables selected via sci-kit learn’s f_regression module are different from the 

ones selected by the RF model on the cross sectional dataset. Since this module ranks the 

exactly the same as a regular pearson correlation matrix would, the variable importances were 

converted back to regular correlations for ease of interpretations. Using this method of input-

selection, heterogeneity of variables have grown. We see that demographic data now plays a 

larger role with population, amounts of buildings (non-housing) and amount of housing units 

being included. Aside from electricity usage the number of different types of vehicles were 

also selected. This method of selecting variables does not seem sensitive to the economic 

structure of municipalities. 

 

 

 
Figure 1514 - Pearson corelations with target variable 

 

The XGboost weight measure, which calculates the amount of time a variable was used to 

split trees in the model during estimations, was used to assess the importances of predictors in 

the winning model. In figure 14 The past emissions l tCO2e variable which shows historical 

emissions is by far the most important variable. As such this is the most significant variable 

for predicting future emissions. Other factors include buildings, power usage and tractors. 

However, Since XG boost is a model which can combine many variables with weak 

predictive power, and then combine them into something with greater predictive power. It is 

likely that most of the variables shown in the feature weight diagram have little predictive 
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power by themselves. This measure has the same problem as gini scores in that it measure the 

amount of splits on the trees the model fits to estimate the parameters. Again, as most 

variables are continuous this was judged not to be an issue. 

 
Figure 1615 - Variable importance of XGboost mode measured by feature-weight on panel data dataset 

 

 

 

 
Figure 1716 - Aggregated emissions forecast  

 

After finishing the training and testing process, new data was given to the corr-XGboost 

model to make forecasts. Since the model predicts 5 years ahead the last timestep is 2025. A, 

aggregate forecast was made by adding all the time-series in the forecasted dataset together. 

On aggregate the model seems to be able to capture the trend of the future emissions and 
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indicates that they will lower towards the 3.35 mgtCO2e-mark in 2025. It seems that the 

model overestimates the emissions in 2020, due to the corona pandemic, and so the pace of 

the decreasing emissions is too slow compared to the current trend. However, given that 2020 

was an outlier year in many ways, it would be interesting to see how well the predictions hold 

up given new data. Furthermore, the model is consistent in aggregation even despite not 

being able to accurately predict the behaviour of outliers. This implies that even the wrongful 

predictions weren’t too far off the mark in absolute terms and that on average, the model is 

relatively precise. 

 

Given the results of the analysis limitations of machine learning becomes clear. While the 

models used are able to provide accurate predictions, it is generally difficult to understand the 

effect of variables on predictions. This is because the measures only say how important 

predictions were inside the model. Extrapolating that to the real world is difficult and variable 

importances cannot be compared with findings from other, models. This sets a limit to what 

can be learned from the models used here. For example, while the number of tractors in a 

municipality today might contribute to predicting emissions in 5 years, it is unclear to what 

degree they contribute. This is because the functional relationship found by models such as 

XGboost remain inside the model. 

 

On the positive side, while the predictions from the models used in this study are not perfect, 

they go a long way to show that even with relatively simple machine learning models, good 

predictions of future emissions are achievable. The models employed here can merely be seen 

as a prototype for more advanced architectures that can deal better with the entity-effects at 

play. The results also show how macro-economic data can be used for making forecasts of 

emissions with machine learning in Norway, thus meaning that more research using these 

methods might have something to add regarding questions of how future emissions might 

develop. 
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6 Conclusion 

Climate change has been on the agenda for 30 years in Norway and ambitious goals for 

reducing emissions have been set for the next decade. This prompted two questions. First, 

what have been the main drivers of change in sectoral emissions in Norway for this period, 

and second, how are emissions on a municipal level likely to develop the next 5 years. To 

identify the main drivers of change of sectoral emissions, a retrospective analysis based on 

the LMDI-IDA framework was carried out. It showed that economic growth and worsening 

energy efficiency particularly in the transport, and mining and petroleum industry were the 

strongest factors in increasing emissions. Structural change, a lower share of fossil fuels and 

an increased carbon-efficiency of fossil fuels have all had abating effects on emission. 

Furthermore, the driving forces of emissions were of a greater magnitude than the abating 

factors leading to an increase in sectoral emissions of 6218 mktCO2e since 1990. Lastly, the 

industry sector was shown to be the largest abating factor, both due to structural change, and 

an increased carbon efficiency of fossil fuels. It is not clear why energy efficiency has 

dropped for the transportation, and mining and petroleum sector, and further studies are 

needed in order to shed light on these issues. 

 
The predictive part of this this thesis employed machine learning methods to predict 

emissions on a municipal level 5 years into the future. It was shown that supervised machine 

learning methods can produce robust predictions, and that they add more explanatory power 

than naïve models. Two datasets were developed for the predictive analysis, one cross-

sectional and one in a panel format. A random-forest feature selector combined with a linear 

regression model performed best on the cross-sectional dataset, while an XGboost model 

with a pearson correlation feature selector performed best on the panel data. The most 

reliable predictor of future emissions was shown to be past emissions. Variable importance 

otherwise varied across datasets. Electricity usage, and number of employees across sectors 

proved to be the most important variables for the cross-sectional dataset while buildings 

provided the highest feature importance scores in the panel data set. Predictions of future 

emissions in all Norwegian municipalities for the period 2020-2025 were made. The 

predictions were able to capture the trend of emissions but was not able to foresee the fall in 

emissions in 2020. The predictions indicate that the trend of lower emissions will continue 

towards 2025. It is difficult to say exactly how much emissions will continue to decrease 
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given that the winning model estimated in this thesis couldn’t anticipate the effect of the 

pandemic. However, the results from the predictive analysis indicate that machine learning is 

a viable methodology for providing forecasts of municipal emissions, but further 

development of more accurate models are needed if they are to provide good answers to 

whether Norway is on track to reaching its climate policy goals or not.    
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8 Appendix A: Note on the machine learning methods applied 

 
Clustering algorithms applied (K-means and DB-scan) 

Purpose of using these is to help find patterns in the data. K-means uses Euclidean distance 

functions to look for similarity between observations. Observations that form their own blob 

are labelled as a cluster by the algorithm. 

- Show equations of model 

- State usage of silhouette score for deciding on optimum amount of clusters 

- This step is done as part of the  

 

 

Elastic-net regularised regression 

Regularised regression introduces penalty terms in the estimation of parameters. It is a group 

of methods where variable selection are built into the model. It seeks to lower both bias and 

variance in predictions by lowering the importance of coefficients for variables with low 

predictive power (Hastie et al., 2009). This is why models that applies regularised regression 

are often referred to as “shrinkage methods”. The fundamental idea behind these types of 

models is that it introduces a penalty term λ into the estimation of parameters. This changes 

the way coefficients relate to each other. 

 

𝜷  =  arg min|𝒚 − 𝑿𝜷| +   𝜆 𝜷 + 𝜆 |𝜷| (A.1) 

 

A popular rendition of these methods is the Elastic-net model. Equation 4.1 shows how the 

estimation of a beta parameter is changed by the two penalty terms applied. The two penalty 

terms are used in combination and were derived from the Lasso and Ridge regression models. 

Zou and Hastie (2005), which pioneered the model point to how the inclusion of these two 

terms together help overcome some of challenges associated with the usage of the terms on 

their own. This especially applies situations where there are strong correlations between 

variables but where a model needs implicit variable selection. These are scenarios where the 

lasso can be unstable since it will tend to select one of the two correlating variables. At the 

same time it solves the problem Ridge regression has when faced with many variables that do 

not add to the prediction as ridge regression penalty terms can never reach 0.  How this 
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happens becomes evident when considering the extended notation, the penalty term as the 

model creates a linear combination out of the two penalty terms based on values of α on the 

interval (0, 1). In the Elastic-net model both λ and α are hyperparameters which are set 

outside of the model and must thus be optimised for using grid-search. 

 

 

 

(A.2) 

 

  

 

The model tends to do well in scenarios where p >> n, where there are many correlating 

variables as “The second term encourages highly correlated features to be averaged, while the 

first term encourages a sparse solution in the coefficients of these averaged features” (Hastie 

et al., 2009, p. 662).   

 

Random forest regressor 

In order to understand random forests, it is necessary 

to build a basic understanding of regression trees 

which form the basic building block of the model. 

The model was originally laid out in L. Breiman 

(1984) but the explanations here will be from Schiltz 

et al. (2018) and Hastie et al. (2009). Regression trees 

and forests are, often referred to as CART, are models 

that do not assume any specific functional form of 

the variables. The model fits a tree based on simple 

if-then rules that the model identifies in the data. 

Each covariate in the model is allocated a space 

“[…] where, the predicted value of the response 

variable within each region can be obtained as the 

mean of all the observations that belong to each 

region” (Schiltz et al, 2018, p. 3). I.e., the model 

splits the data into non-overlapping groups based on the mean within the respective group 

Figure 17 - Example of regression tree and covariate 

categories (Schiltz et al, 2018, p. 3) 
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and then it arranges them in hierarchical form. Each group corresponds to a leaf in the tree. 

Each new branch in the tree is based on the threshold value which minimises the squared sum 

of errors for the mean of each group. There can only be two branches per group. Schiltz et al. 

(2018, p. 3) define the model of regression trees as 

 

 

 

(A.3) 

 

Where 𝑅  are the regions in the covariate space 𝑐  is the mean of all observations belonging 

to that covariate space 𝑅 . Splitting variables for each point are according to Hastie et al. 

(2009, p. 307) given by the model  

 

 
(A.4) 

 

Which splits for the s that minimises the equation  

 

(A.5) 

 

 

where for any variable j and split point s the solution is given by  

 
(A.6) 

 

 

The size of a tree is governed by a cost-complexity pruning function which effectively works 

against how large the tree can grow. Mathematically the cost complexity criterion is given by  

 

 

(A.7) 

 

 

Where |𝑇| is the number of terminal nodes in the tree, 𝑄 (𝑇) is the average sum of squares 

for the average of each leaf and 𝑁  is the number of observations per node m in the tree. For 
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any α, the branch 𝑇 ⊆ 𝑇  (for branch α belonging to tree 𝑇 ) one wants to minimise the cost 

complexity criterion. α is a hyperparameter set outside the model and it governs how large a 

tree can grow.  

 

On their own individual regression trees often suffer from a propensity to overfit and small 

differences in the data can prompt new branches making the final fit of the model somewhat 

arbitrary. Furthermore, if the original split at the bottom of the tree is wrong, errors propagate 

through the entire tree. As such it is a method that has very high variance, but often leads to 

little bias. These problems can be solved by fitting many trees and then averaging the results 

according to some rule. This process relies on bagging (selection of subsamples with 

replacement) and gives rise to the Random Forest model. Since the model fits multiple 

models and then averages results from each fit it becomes less prone to overfitting and can 

thus handle more input variables as well as yielding a higher degree of accuracy. The full 

algorithm for the Random Forest model is given by: 

 

 
Figure 18 - Random Forest algorithm according to by Hastie et al. (2009, p. 588) 

 

The expected value of the forest is the same as each individual tree, this ensures that the 

model keep the low bias inherent to regressor trees. In order to minimise the variance the 

model randomly selects a subset of the input variables before it fits each tree such that after B 

trees the random forest regressor is according to Hastie et al (2009, p. 589)  
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(A.8) 

 

 

𝑇(𝑥; 𝛩 ) is the formal expression of the tree and 𝛩 are the parameters which the trees 

estimate. Finally, the random forest model leaves a proportion of the dataset out when fitting 

its trees. This is referred to as the out of bag (OOB) sample. Once the Random Forest model 

has finishes fitting its trees it runs the OOB samples through the created regression trees in 

order to validate its build. The prediction error is given by the amount of OOB samples which 

are correctly estimated by the individual trees and yields the stopping criterium for ending the 

cycle of fitting the model. In other words, the estimation stops once the OOB error stabilises 

(Hastie et al., 2009, p. 593). 

 

Feature importance in Random Forests 

The mean decrease in impurity is a way to measure variable importance in tree-based models 

like Random Forest and XGboost and is Sci-kit learn’s default inbuilt method for seeing 

which variables good contributors to predicting the target variable successfully. The number 

is calucated by the formula  

 

This measures the risk of misclassification of groups inside the model. In effect it is a 

measure that measures how well variables cause splits in the random forest model when it 

splits trees. The inclusion of this measure enables the RF model to be used as a feature 

selector because utltimately, many variables will cause very few splits in the model, while 

others will cause many. As such one can select the n most predictive variables from the 

model as features used inside other models. As Random Forest regressor model is built on the 

regression tree model it doesn’t making any assumptions about the distribution or 

relationships within the data either. 

 

 

 

 

 



64 
 

XGboost 

XGboost is a random forest model taken further. It is a very complicated model so this text 

will only seek to build an intuitive understanding of what the model does. The approach is the 

same where many weak models are put into an ensemble, and together they provide much 

stronger predictions than on their own. Like in the random forest, these weak learners are 

regression trees.  Each weak learner has a prediction rate which is only slightly better than the 

expected value and the learns iteratively by employing gradient descent to minimise a given 

loss function (usually prediction error measures). This means that it remembers the error 

given when fitting a specific variable. This means the if a variable is proven to give a large 

error, it is weeded out from the prediction of the algorithm. It also has inbuilt regularisation 

for the fitting of trees (like the Elastic-net model). This is why the model is providing good 

results in nearly all instances. Like the random forest the model doesn’t make any 

distributional assumptions and have been used to make predictions on cross-sectional 

(Shwartz-Ziv & Armon, 2022), panel (Chen, 2021) and time-series data(Nielsen, 2016) 

 

 
Figure 19 – Evolution of tree based models (Morde, 2019) 
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9 Appendix B: Sectoral results from LMDI-IDA analysis 
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10 Appendix D: Predicted vs observed results of individual 

municipalities 
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11 Appendix D: Hyper parameters for models estimated 

 
 

Model Parameter combination 

RF feature selector n_estimators: 40 

F_regression feature 

selector 

Select 15 strongest 

correlations 

XG-boost (cross sectional) Learning rate: 0.05 

Gamma: 0.05 

Max depth: 60 

N_estmators: 600 

Elastic net Alpha: 0.04 

L1 ratio: 0.47 

Tolerance: 10 

XG-boost (Panel) Learning rate: 0.05 

Gamma: 0.05 

Max depth: 60 

N_estmators: 200 

Elastic net Alpha: 0.02 

L1 ratio: 0.05 

Tolerance: 5 

 
 



 

 

 


