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In the last decade, several countries have included feed efficiency (as residual feed intake;
RFI) in their breeding goal. Recent studies showed that RFI is favorably correlated with
methane emissions. Thus, selecting for lower emitting animals indirectly through RFI could
be a short-term strategy in order to achieve the intended reduction set by the EU
Commission (-55% for 2030). The objectives were to 1) estimate genetic parameters
for six methane traits, including genetic correlations between methane traits, production,
and feed efficiency traits, 2) evaluate the expected correlated response of methane traits
when selecting for feed efficiency with or without including methane, 3) quantify the impact
of reducing methane emissions in dairy cattle using the Danish Holstein population as an
example. A total of 26,664 CH4 breath records from 647 Danish Holstein cows measured
over 7 years in a research farm were analyzed. Records on dry matter intake (DMI), body
weight (BW), and energy corrected milk (ECM) were also available. Methane traits were
methane concentration (MeC, ppm), methane production (MeP; g/d), methane yield (MeY;
g CH4/kg DMI), methane intensity (MeI; g CH4/kg ECM), residual methane concentration
(RMeC), residual methane production (RMeP, g/d), and two definitions of residual feed
intake with or without including body weight change (RFI1, RFI2). The estimated heritability
of MeC was 0.20 ± 0.05 and for MeP, it was 0.21 ± 0.05, whereas heritability estimates for
MeY and MeI were 0.22 ± 0.05 and 0.18 ± 0.04, and for the RMeC and RMeP, they were
0.23 ± 0.06 and 0.16 ± 0.02, respectively. Genetic correlations between methane traits
ranged from moderate to highly correlated (0.48 ± 0.16–0.98 ± 0.01). Genetic correlations
between methane traits and feed efficiency were all positive, ranging from 0.05 ± 0.20
(MeI-RFI2) to 0.76 ± 0.09 (MeP-RFI2). Selection index calculations showed that selecting
for feed efficiency has a positive impact on reducing methane emissions’ expected
response, independently of the trait used (MeP, RMeP, or MeI). Nevertheless, adding a
negative economic value for methane would accelerate the response and help to reach the
reduction goal in fewer generations. Therefore, including methane in the breeding goal
seems to be a faster way to achieve the desired methane emission reductions in dairy
cattle.
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INTRODUCTION

Methane (CH4) contributes substantially to global warming,
being the second most important greenhouse gas (GHG) after
carbon dioxide (CO2; Knapp et al., 2014). Enteric fermentation by
ruminants contributes to 44.3% of the global livestock emissions
(FAO, IFAD, UNICEF, WFP, AND WHO, 2018). Methane is a
by-product of the enteric (microbial) fermentation of
carbohydrates in the reticulum-rumen of farm animals (Gray
et al., 1951) and represents 8–9% of feed energy losses (Olijhoek
et al., 2020). Furthermore, CH4 gas has been classified as a short-
lived air pollutant (Tong et al., 2015), making its reduction a
possible solution for global warming in the short term. Reducing
enteric CH4 emissions in ruminants is imperative, given the
commitment by the EU Commission (2021) to reduce GHG
by 55% in 2030 and become neutral by 2050. Over the past
decade, the scientific community has investigated different paths
to reduce CH4 emissions, through different scientific disciplines,
such as animal nutrition, physiology, management and genetics
(de Haas et al., 2011; Waghorn and Hegarty, 2011; Alcock et al.,
2015; Pickering et al., 2015). Some of the approaches include a)
feed additives to reduce emissions (nutrition), b) identifying
lower emitting animals at the same level of production
(genetics), c) improving animal health, replacement of
animals, and manure management, and d) reducing the
consumption of animal products. Nevertheless, the advantage
of genetics is that the reductions in CH4 are cumulative through
generations and are permanent. Still, the combined sum of the
strategies could help to reduce methane emissions faster and on
time according to the EU regulations.

Enteric CH4 was an expensive and labor-intensive trait to
collect with the traditional methods as respiration chambers;
therefore, it was scarcely recorded until the appearance of new
cheaper and easier methods (Garnsworthy et al., 2019). Given this
lack of data, there is no common agreement on which traits
should be included in the breeding goal trait in genetic/genomic
selection (de Haas et al., 2017). The standard trait for methane
emissions is methane production (MeP; g/d), as this is the trait
measured by the most accepted method to measure CH4:
respiration chambers. One of these new cheaper and easier
methods, the “sniffers” (instrument measuring CH4 in breath
by burps), is becoming more popular. These methods, though,
measure CH4 as concentration (in ppm; MeC) not MeP. For this
reason, some authors have used methane concentration as trait
(López-Paredes et al., 2020; Sypniewski et al., 2021; Manzanilla-
Pech et al., 2022) as it is a direct measurement from some
recording instrumentation such as sniffers. However, this raw
phenotype does not account for the size (weight), production or
feed intake of the animal. Furthermore, animal nutritionist and
farmers (Dijkstra et al., 2011; van Lingen et al., 2014) prefer
definitions that express emission in terms of CH4 per kg of
output, as CH4 intensity (MeI = g CH4/kg milk), or input like
methane yield (MeY = g CH4/kg feed). However, selecting for a
ratio trait present some statistical disadvantages like strong
correlations with the denominator, in this case represented by
economically important trait(s) already present in the breeding
goal. Additionally it presents difficulty of interpretation of the

selection response due to antagonism between the response in the
numerator and the denominator (Berry and Crowley, 2013). For
this reason, geneticists have suggested a residual trait (Hayes
et al., 2016), adopting the concept of residual feed intake (RFI;
Berry and Crowley, 2013)This approach creates a trait
independent of production and weight, with the purpose of
selecting for more feed efficient animals without affecting milk
production. Several definitions of residual methane have been
suggested, correcting or adjusting methane for production, feed,
and weight (Manzanilla-Pech et al., 2016; Manzanilla-Pech et al.,
2021; Richardson et al., 2021). Again, there is limited agreement
on which residual trait should be used. Furthermore, this raw
phenotype does not account for the size (weight), production, or
feed intake of the animal. For this reason, it could be an option to
use a residual methane trait (RMeC) that would help to account
for milk production (energy corrected milk, ECM) and body
weight (BW) of the animal in comparison to MeC that only
provides a concentration. Another residual trait suggested could
be RMeP that would help to reduce the induced covariance
structure with MeP, ECM, and BW, given the use of these
traits in the calculation of MeP (Madsen et al., 2010).

Given that feed costs represent a large proportion of the total
costs of production and there has been a large interest in
improving feed efficiency. In the last decade, several countries
(i.e., Netherlands, Australia, United States, Denmark,
United Kingdom) have included feed efficiency in their
breeding goal through some index called saved feed or feed
saved (Veerkamp et al., 2013; Pryce et al., 2015; Andersen
et al., 2020; Holstein-USA, 2021; Li et al., 2021). Residual feed
intake has been proposed as a proxy trait for feed efficiency in
several species including cattle, pig, and poultry (Veerkamp et al.,
2013; Sypniewski et al., 2021). Traditionally, feed efficiency can be
defined as the difference between the actual and predicted intake.
Moreover, feed efficiency is also related to energy balance
(Pickering et al., 2015), defined as the difference between the
energy a cow expends for milk production, maintenance, growth,
and reproduction and the energy a cow gains from the intake of
nutrients (Alcock et al., 2015). An unwanted effect of an increased
negative energy balance is known to adversely affect fertility, so it
remains important to adjust RFI for body weight changes to avoid
this effect. Furthermore, methane emissions represent a gross
energy loss from feed intake up to 12% (Gerber et al., 2013).
Therefore, improving feed efficiency in cattle is also expected to
help lower methane emissions (de Haas et al., 2017; Garnsworthy
et al., 2019; Olijhoek et al., 2020). However, it has not been
analyzed further what the impact of selecting for feed efficiency
could have on lowering methane emissions. Therefore, it is
required quantifying the possible reductions of methane as
correlated response, when selecting for feed efficiency.

The objectives of this study were to 1) estimate genetic
parameters for six CH4 traits (MeP, MeC, MeI, MeY, RMeP,
RMeC), including genetic correlations between methane traits,
production, and feed efficiency traits, 2) evaluate the expected
correlated response of methane traits when selecting for feed
efficiency with or without including methane, 3) quantify the
economic impact of reducing methane emissions in Holstein
dairy cattle in Denmark as an example.
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MATERIALS AND METHODS

Methane Data Collection and Editing
Measurements of CH4 and CO2 on 650 Holstein cows recorded
between 2013 and 2020 at the Danish Cattle Research Center
(DCRC, Tjele, Denmark) were available. Data have been partially
described previously by Zetouni et al. (2018), Difford et al. (2020),
and Manzanilla-Pech et al. (2020). Methane breath concentration
(CH4 in parts per million, ppm, referred to as MeC) was
measured by the non-dispersive infrared CH4 sensor
(Guardian NG, Edinburgh Instruments Ltd., Livingston,
United Kingdom), and in parallel, CO2 was measured using
the same technique (Gascard, Edinburgh Instruments Ltd.,
Livingston, United Kingdom) installed in each of the three
automatic milking stations (AMS). Equipment details,
technical specification as sensor calibration and management
of the raw data from thresholds for ambient background, and
a cow head-lifting algorithm are reported in Difford et al. (2016).
Cows were part of several nutritional experiments, and diets
included primarily rolled barley, corn silage, grass clover silage,
rapeseed meal, and soybean meal. The DCRC barn is a loose
housing system with access to AMS (DeLaval International AB,
Tumba, Sweden). Weekly records on ECM, BW, and DMI were
available from 960 primiparous cows from the research farm
(DCRC, Foulum, Denmark), most of them during the same
period of time that methane concentration was measured,
including cows with methane records and its contemporary
relatives. Cows were fed with automated feeders (Insentec,
RIC system, Marknesse, the Netherlands). Body weight was
measured automatically at each milking and averaged per
week (Li et al., 2017). The AMS was fitted with a weighing
platform (Danvaegt, Hinnerup, Denmark) that recorded BW
at each milking. ECM was calculated using the following
formula (Sjaunja et al., 1991):

ECM (kg) � 0.25Milk (kg) + 12.2 Fat content (kg)

+ 7.7 Protein content (kg). (1)
Weekly averages for CH4 and CO2 records were calculated to

match the weekly records of ECM and BW available to calculate
MeP. Data were filtered to only include the weekly averages,
where a maximum of 3 days was allowed to be missing within a
week, and individual cows required a minimum of three weekly
measurements to be retained for further analysis. After editing,
26,664 weekly MeC records from 647 Danish Holstein cows and
19,123 MeP records from 575 from Holstein cows were analyzed.
Natural logarithm (ln) transformation was applied, as MeC was
not normally distributed, and this was multiplied by 100 to avoid
problems with the scale of the other traits. Methane production
was calculated as follows using the formula of (Madsen et al.,
2010) based on heat producing units (HPU):

CH4 (L/d) � (CH4/CO2) x 180 x 24 x HPU, (2)
where

HPU � 5.6 BW0.75 (MBW) + 22 ECM

+ 1.6 x 10 − 5 × (number of days in pregnancy)3. (3)

Secondly, converting CH4 in L/d to g/d using the formula:

MeP � CH4 g/d � Density ×CH4(L/d), (4)
where the density of CH4 at 20°C = 0.668 g/L.

Additionally, four methane traits that account for production
level and weight were calculated: methane yield (MeY) was
defined as MeP divided by DMI, and methane intensity (MeI)
was calculated using MeP divided by ECM. Residual methane
concentration (RMeC) was the residual of the partial regression
of MeC on ECM and MBW, whereas RMeP was the residual of
the partial regression of MeP on ECM and MBW along with
fixed effects described in the model (5). Furthermore, residual
feed intake 1 (RFI1) was the residual of the partial regression of
DMI on MBW and ECM (according to the two-step RFI from
Tempelman et al. (2015), along with fixed effects described in
the model (5). An additional residual feed intake (RFI2) was
based on the partial regression of DMI on MBW and ECM
including body weight change (ΔBW).

Variance Component Estimation
For each trait (MeP, MeC, MeI, MeY, RMeP, RMeC), variance
components were estimated using the AI-REML algorithm with
the DMU software (Version 6, Release 5.4; (Madsen and Jensen,
2014)). Genetic and phenotypic correlations were estimated
through pairwise bivariate analyses between the traits. A
pedigree containing the identification of the cow, sire, and
dam with 11,778 animals (3,024 sires and 7,754 cows) after
pruning in the relationship matrix was used, with an average
of 10 generations.

The model used to estimate the variance components was

yijklmn � μ + EYSi + LACTWEEKj
+ PARk(ACC)

+ al + pem + eijklmn, [5]
where yijklmn is the phenotype for MeC, MeP, MeY and MeI; μ is
the mean; EYS is the fixed effect ith for experiment-year-season
(115 classes); LACTWEEK is the fixed effect jth for a week of
lactation (44 classes); PAR is the fixed effect for the kth parity
number (1, 2, 3+); and ACC is the age of cow at calving in months
as covariate. Random effects are as follows: a is the additive genetic
effect lth distributed as N (0, A σ2a), in which A is the relationship
matrix and σ2a is the genetic variance, pe is the permanent
environmental effect mth (within and across parities) distributed
as N (0, I σ2pe), where I is an identity matrix and σ2pe is the
permanent environmental variance and e is the residual effect
of yijklmn. The model for the residual traits (RMeC, RMeP,
RFI1, RFI2) included only the mean, additive genetic effect,
permanent environmental effect, and residual effect, as the fixed
effects have been accounted for in the calculation of the
residual trait.

Correlated Response of Selection in Past,
Current, and Future Scenarios
Given that currently RFI is part of the saved feed index (Andersen
et al., 2020) and it has been included in the net total merit (NTM)
since 2020, an interesting question is to quantify the reduction on
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methane traits given its favorable correlationwith RFI. The definition
of saved feed in the Nordic countries was described by Sørensen et al.
(2018) as: EBV (saved feed) = EBV (maintenance) + EBV(metabolic
efficiency), where maintenance is MBW and metabolic efficiency is
RFI. Therefore, we developed three selection indexes: a) MeP, b)
RMeP, and c)MeI. Methane production was chosen, as it is the most
commonly used trait in terms of methane emissions in dairy cattle.
Residual methane was proposed in this study as candidate trait to be
included in the breeding goal given its independencywith production
and weight. Methane intensity was included due to its popularity
among some sectors and as exercise to quantify the possible CH4

reduction in terms of the unit of product (milk). Within each index,
there were three possible scenarios reflecting past, current, and future
situations. Given the lack of information on the correlation between
functional traits included in the NTM (e.g., fertility and longevity)
and methane production, this exercise only focused on ECM, BW
and RFI. Furthermore, all scenarios are assuming zero correlations
with health traits based on Zetouni et al. (Gerber et al., 2013) (udder
health = 0.06), and low to zero correlations with conformation traits
(stature = 0.01, body depth = -0.03 and chest width = −0.20). Last, as
the genetic correlation between RFI1 and RFI2 was 0.86, for the
correlated response, we used RFI1 given its practicality in the
calculation. Scenario zero (SC0) represents the impact on
methane with the past situation, when selection was only for milk
production (ECM); scenario one (SC1) represents the current
situation with RFI included through saved feed in the breeding
goal for Nordic countries; scenario 2 (SC2) represents a future
situation where methane is included in the breeding goal. The
scenario zero (base scenario; SC0) only included an economic
value for ECM (−0.6). Additionally, scenarios 1 and 2 (SC1 and
SC2) included an economic value for RFI of -0.2 euro, according to
the results of Stephansen et al. (2021). Furthermore, scenario (SC2)
has been divided into A and B with different economic values, A)
−0.005 and B) −0.017 being for MeP and RMeP, respectively. These
values were based on the status report for 2021 for Denmark
(Klimarådet, 2022), where the price suggested is 1,500 Danish
kroner per ton of CO2e, and we took two possible scenarios
(EPA Agency, 2022) A) to a 100-year global warming potential
where 1 kg CH4 = 25 CO2e, and B) to a 20-year global warming
potential period where 1 kg CH4 = 84 CO2e. For MeI, the economic
values were calculated as the trait definition, gMeP/kg of ECM being
equal to -0.0083 for scenario 2A (−0.005/0.6) and −0.0283 (−0.017/
0.6) for scenario 2B. The economic values for MeP and RMeP are
given in euro per g/d, whereas the economic values for MeI are given
in euro per g MeP/kg ECM; and ECM and RFI are given in euro per
kg/d. All scenarios set economic values for MBW to zero. Genetic
variances, correlations and heritabilities obtained from this study
were used in the calculation of the expected responses of ECM and
RFI and the correlated responses for MBW and MeP or RMeP.
Furthermore, reliabilities of the EBVs were assumed at 0.81 (average
reliability for ECM).

RESULTS AND DISCUSSION

Descriptive statistics for all traits (MeP, MeC, MeI, MeY, RMeP,
RMeC, RFI1, RFI2) are presented inTable 1. The average forMeP

was 337.9 g/d, whereas for MeI, it is 9.2 g CH4/kg ECM and for
MeY, it is 15.4 g CH4/kg DMI. These averages are similar to the
values previously reported by Lassen and Løvendahl (2016),
Breider et al. (2019), Richardson et al. (2021), and Sypniewski
et al. (2021).

Heritabilities and Genetic Correlations
Estimated genetic, permanent environmental, residual variances,
heritabilities, and repeatabilities for all traits are presented in
Table 2. Heritabilities were moderate ranging from 0.13 ± 0.02
(RFI1) and 0.23 ± 0.06 (RMeC). Estimated heritability for MeP
was 0.21 ± 0.05, which is consistent to the previously reported
estimates (Lassen and Løvendahl, 2016; Pszczola et al., 2017;
Breider et al., 2019). Likewise, heritability for MeI was 0.18 ± 0.04,
similar to the values reported previously (Lassen and Løvendahl,
2016; Kandel et al., 2017; van Engelen et al., 2018).

Estimated genetic (rg) and phenotypic correlations (rp)
between the six methane traits (MeP, MeC, MeI, MeY, RMeP,
RMeC) are presented in Table 3. All methane traits were
moderate to highly positive phenotypically correlated to each
other, ranging from 0.48 ± 0.02 (MeI-MeC) to 0.98 ± 0.00
(RMeC-MeC). Genetic correlations of MeC (the phenotypic
raw trait) with the other methane traits ranged from 0.48 ±
0.16 (MeI) to 0.71 ± 0.12 (MeP), whereas rg between MeP (the
reference trait) with the other methane traits ranged from 0.48 ±
0.16 (MeI) to 0.82 ± 0.07 (RMeP). Furthermore, RMeP was highly
(above 0.8) genetic and phenotypically correlated with all the
traits except forMeC; this could represent an advantage when this
trait is added to the breeding goal given that it could represent all
the other methane phenotypes. For example, as for farmers and
nutritionists, MeI and MeY are important, and the correlations
between RMeP and MeI and MeY are 0.85 and 0.88, respectively,
and RMeP could be used as a proxy for them.

Estimated genetic and phenotypic correlations between
methane traits and efficiency traits are presented in Table 4.
Genetic correlations between RFI1 andmethane traits were low to
moderate, positively correlated for all traits, ranging from 0.16 ±
0.19 (MeY) to 0.65 ± 0.13 (MeP), whereas rg between RFI2
(including ΔBW) ranged from 0.05 ± 0.20 (MeI) to 0.76 ±
0.09 (MeP). These positive genetic correlations are favorable
when selecting for RFI, given that the goal is to reduce RFI;
this will also reduce methane emissions (in different magnitudes
depending on the trait). However, for some of the traits (MeC,
MeI, MeY) due to the large standard errors, these genetic
correlations were not different from zero. The highest
correlations with RFI (1 and 2) were found with MeP and
RMeP. Nevertheless, for MeP, it would be difficult to increase
milk and decrease methane at the same time given the high
genetic correlation between MeP and ECM (0.79). Thus, RMeP
could be suggested as a trait to include in the breeding goal given
its low to zero correlation with ECM (0.12) and BW (0.06),
meaning that this trait is almost independent of these traits and
we could decrease methane without compromising milk
production or the weight of cows. However, this suggestion is
based on our results, including high and positive genetic
correlations between RMeP, MeP, and RFI; further analyses
with more data would be recommended to confirm these results.

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 8859324

Manzanilla-Pech et al. Breeding for Low Methane-Emitting Cows

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


TABLE 1 | Descriptive statistics for methane, and efficiency traits for Danish Holstein cows.

Trait Number of cows Number of records Unit Mean SD Minimum Maximum

MeP 575 19,126 g/d 337.9 86.2 77.3 598.7
MeC 647 26,664 log (ppm)*100 573.8 51.5 414.0 731.5
MeI 573 19,018 g CH4/kg of ECM 9.2 2.3 1.9 29.5
MeY 572 18,845 g CH4/kg of DMI 15.4 3.4 3.7 35.8
RMeP 511 9,511 g/d −0.1 62.7 −310.7 271.4
RMeC 517 11,285 g/d −0.6 45.3 −169.1 168.9
RFI1 955 31,839 g/d 0.0 1.8 −16.9 11.1
RFI2 955 14,842 g/d 0.0 2.2 −15.9 12.1

MeP = methane production, MeC = methane concentration, MeI = methane intensity, MeY = methane yield, RMeP = residual methane production on ECM and MBW, RMeC = residual
methane concentration on ECM and MBW, RFI2 = residual feed intake on ECM and MBW, and RFI2 = residual feed intake on ECM, MBW, and BW.

TABLE 2 | Estimated genetic (σ2a), permanent environmental (σ2pe), residual (σ2e) variances, heritabilities (h2), permanent environmental ratios (pe2) and repeatabilities (rep) with
(SE) for methane, production, maintenance, and efficiency traits.

Trait σ2a σ2pe σ2e h2 pe2 rep

MeP 1,160.6 1,456.8 2,923.9 0.21 (0.05) 0.26 (0.04) 0.47 (0.04)
MeC 474.8 956.9 942.9 0.20 (0.05) 0.40 (0.05) 0.60 (0.04)
MeI 0.7 1.2 2.3 0.18 (0.04) 0.29 (0.04) 0.47 (0.04)
MeY 2.2 2.3 5.7 0.22 (0.05) 0.23 (0.04) 0.45 (0.04)
RMeP 629.7 827.5 2,384.9 0.16 (0.04) 0.21 (0.04) 0.37 (0.04)
RMeC 479.5 716.2 881.3 0.23 (0.06) 0.34 (0.05) 0.57 (0.05)
RFI1 0.47 0.59 2.57 0.13 (0.02) 0.16 (0.02) 0.29 (0.02)
RFI2 0.98 1.06 3.25 0.18 (0.03) 0.20 (0.02) 0.38 (0.02)
ECM 26.9 9.1 21.1 0.47 (0.03) 0.16 (0.03) 0.63 (0.03)
MBW 34.7 26.1 11.7 0.48 (0.04) 0.36 (0.03) 0.84 (0.03)

MeP = methane production, MeC = methane concentration, MeI = methane intensity, MeY = methane yield, RMeP = residual methane production on ECM and MBW, RMeC = residual
methane concentration on ECM and MBW, RFI1 = residual feed intake on ECM and MBW, RFI2 = residual feed intake on ECM, MBW, and BW.

TABLE 3 | Estimated genetic (below diagonal) and phenotypic correlations (above diagonal) with (SE) between methane traits.

Trait MeP MeC MeI MeY RMeP RMeC

MeP — 0.63 (0.02) 0.51 (0.02) 0.84 (0.01) 0.81 (0.01) 0.52 (0.02)
MeC 0.71 (0.12) — 0.48 (0.02) 0.59 (0.02) 0.63 (0.01) 0.98 (0.00)
MeI 0.48 (0.16) 0.48 (0.16) — 0.59 (0.02) 0.85 (0.01) 0.56 (0.02)
MeY 0.77 (0.07) 0.58 (0.14) 0.58 (0.14) — 0.84 (0.01) 0.55 (0.02)
RMeP 0.82 (0.07) 0.70 (0.11) 0.85 (0.07) 0.88 (0.05) — 0.65 (0.01)
RMeC 0.77 (0.08) 0.69 (0.12) 0.84 (0.08) 0.95 (0.02) 0.98 (0.01) —

MeP = methane production, MeC = methane concentration, MeI = methane intensity, MeY = methane yield, RMeP = residual methane production on ECM and MBW, RMeC = residual
methane concentration on ECM and MBW, RMeP = residual methane production on ECM, MBW, and DMI..

TABLE 4 | Estimated genetic (rg) and phenotypic (rp) correlations with (SE) between methane traits and production, maintenance, and efficiency traits.

Trait MeP MeC MeI MeY RMeP RMeC

rg RFI1 0.65 (0.13) 0.34 (0.18)a 0.28 (0.19)a 0.16 (0.19)a 0.48 (0.15) 0.33 (0.15)
RFI2 0.76 (0.09) 0.32 (0.17)a 0.05 (0.20)a 0.35 (0.16)a 0.47 (0.15) 0.36 (0.17)
ECM 0.79 (0.05) 0.35 (0.14) −0.54 (0.11) 0.42 (0.12) 0.12 (0.16)a −0.11 (0.16)a

MBW 0.32 (0.14) 0.26 (0.17)a 0.37 (0.14) −0.11 (0.15)a 0.06 (0.16)a 0.20 (0.17)a

rp RFI1 0.17 (0.02) 0.12 (0.02) 0.19 (0.02) −0.23 (0.02) 0.22 (0.02) 0.13 (0.02)
RFI2 0.45 (0.02) 0.23 (0.02) −0.09 (0.03) 0.01 (0.03)a 0.16 (0.02) 0.09 (0.03)
ECM 0.58 (0.02) 0.22 (0.03) −0.41 (0.02) 0.30 (0.03) −0.01 (0.03) −0.02 (0.03)a

MBW 0.19 (0.03) −0.01 (0.03)a 0.01 (0.03)a 0.04 (0.03)a 0.20 (0.03) 0.00 (0.03)a

MeP = methane production, MeC = methane concentration, MeI = methane intensity, MeY = methane yield, RMeP = residual methane production on ECM and MBW, RMeC = residual
methane concentration on ECM and MBW, RFI1 = residual feed intake on ECM and MBW, RFI2 = residual feed intake on ECM, MBW, and BW.
aCorrelations not different from zero based on two SE.
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Best Candidate Trait to be Included in the
breeding Goal
As stated before, many countries have opted to use sniffers to
record methane emissions, given the practical ease of installation
in automated milking stations, bringing an additional phenotype
called CH4 breath concentration (MeC) (Madsen et al., 2010;
Calderón-Chagoya et al., 2019; Sypniewski et al., 2019; Difford
et al., 2020). However, to calculate MeP from CH4 (and CO2),
ECM and BW are needed (Madsen et al., 2010), leading to an
artificially induced covariance structure between traits resulting
in high correlations between MeP and ECM and BW
(Manzanilla-Pech et al., 2020; Manzanilla-Pech et al., 2022).
This induced covariance could be removed by the calculation
of adjusted traits as residual traits. Residual methane
concentration calculation had the purpose of having a trait
that does not involve MeP (but MeC) accounting for the
weight and production of the animal. However, RMeC had
lower genetic correlations with MeP and RFI in comparison
with RMeP. Therefore, the use of RMeP seems to be the most
plausible for including in a selection index, especially since its
genetic correlations with the other methane traits are high and
positive, ranging from 0.70 (MeC) to 0.98 (RMeC), and the
genetic correlation with MeP is 0.82 and RFI is 0.48. Similarly,
Richardson et al. (Richardson et al., 2021) proposed a residual
methane trait adjusted only by ECM, as candidate trait for the
inclusion in routine genetic evaluation, based on its practicality of
recording ECM in a pasture-based system. Breath concentration
traits (MeC and RMeC) could have some benefits being the raw
unadulterated trait (MeC) and not being “modified” using traits
as ECM and MBW. However, given that the unit of MeC and
RMeC is log(ppm), the interpretation of the addition to the
breeding goal of any of these traits will not be straightforward
as other traits are in kg/d. Additionally, farms and AMS designs
have a great impact on the ppm values, which makes a fair
comparison of phenotype difficult and reduce its suitability to be
elected as a candidate methane trait. Furthermore, MeI and MeY
are popular among some sectors (nutritionists, farmers, and
livestock farming systems) as they are presented in terms of

the unit of milk produced or the unit of feed consumed. Despite
that ratio traits (MeI and MeY) are not the preferred candidate
trait to be included in the breeding goal given the problems
previously stated, this does not mean that MeI or MeY cannot be
improved. By selecting on other methane traits highly correlated
with MeI or MeY, it is possible to improve these traits. Gerber
et al. (2011) acknowledgedMeI as a proxy for system productivity
and concluded that even if MeP increases with higher yields, MeI
declines as animal productivity increases. This could dilute the
effect of the emissions in one cow over a larger volume of milk
produced, in comparison to requiring the number of lower milk
producing cows needed to produce the same amount of milk
under a low or fixed level production system, which would
inevitably produce more CH4 than a single cow. In
conclusion, RMeP is a suitable candidate trait to be included
in the breeding goal, given its high correlations with other
methane traits and that it has the same advantages as MeP
without compromising the genetic correlations with
production and maintenance traits. The residual methane
production allows for disentanglement of the differences
between cows similar in production and weight with respect to
their methane production. Still, some traits as MeI would be
useful when explaining or comparing the amount of methane
produce respecting the amount of milk produced.

Correlated Response of Methane When
Selecting for Feed Efficient Cows
Correlated response to selection for MeP, RMeP, and MeI using
ECM, MBW, and RFI is presented in Table 5. Most scenarios for
MeP and RMeP presented a positive response to selection, which
can be translated as an increase on methane emissions. The
exception was scenario SC2B for RMeP where the response
was negative (−0.88), meaning an actual reduction on the
methane emissions. Unlike, MeI (g CH4/kg ECM) decreased in
all scenarios. The scenario zero (SC0) showed a scenario where
the main trait to select was ECM. In SC0, the correlated response
of MeP was an increase of 24.22 g/d, whereas for RMeP, it was

TABLE 5 | Correlated response to selection for MeP, RMeP, and MeI using ECM, MBW, and RFI.

Trait Scenarios Input economic values (€) Output response

ECM RFI MBW MeP ECM RFI MBW MeP

MeP SC0 0.6 0 0 0 4.67 0.30 0.05 24.22
SC1 0.6 −0.2 0 0 4.65 0.28 0.01 23.73
SC2A 0.6 −0.2 0 −0.005 4.60 0.26 −0.09 22.79
SC2B 0.6 −0.2 0 −0.017 4.42 0.22 −0.35 20.06

RMeP SC0 0.6 0 0 0 4.67 0.30 0.05 2.71
SC1 0.6 −0.2 0 0 4.65 0.28 0.01 2.27
SC2A 0.6 −0.2 0 −0.005 4.64 0.26 0.02 1.34
SC2B 0.6 −0.2 0 −0.017 4.58 0.23 0.05 −0.88

MeI SC0 0.6 0 0 0 4.67 0.30 0.05 −0.41
SC1 0.6 −0.2 0 0 4.65 0.28 0.01 −0.42
SC2A 0.6 −0.2 0 −0.0083 4.65 0.27 0.00 −0.43
SC2B 0.6 −0.2 0 −0.0283 4.65 0.27 0.00 −0.43

MeP = methane production, RMeP = residual methane production on ECM and MBW, MeI = methane intensity, RFI = residual feed intake on ECM and MBW, ECM = energy corrected
milk, MBW=metabolic body weight (BW0.75), SC0 = scenario zero, only selecting for ECM, SC1 = scenario one, including and RFI and ECM, SC2n = scenario two, including ECM, RFI and
methane, either MeP, RMeP with different economic values (A = -0.005, B = -0.017).
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2.71 g/d; this would represent an increase of 7% with respect to
the current average (337.9 g/d) for MeP. For MeI (in SC0), the
correlated response was -0.41 g of CH4/kg of ECM. Scenario 1
(SC1), where RFI is included, observed a reduction in MeP of
0.5 g/d and for RMeP of 0.4 g/d. For MeI (SC1), the correlated
response was -0.42 g of CH4/kg of ECM, which represents 1 g less
per kilogram of milk in comparison to SC0. These reductions are
per animal per generation and they are cumulative. Scenario 2,
where we included an economic value for methane emissions at
two different levels, reducedMeP by 1.43 g/d (SC2A) up to 4.16 g/
d (SC2B) compared to SC0, whereas RMeP reduced by 1.37 g/d
(SC2A) up to 3.59 g/d (SC2B). These reductions in SC2 represent
CH4 reductions of 6–17% compared to SC0 independently of the
trait. For MeI (SC2), the correlated response was −0.43 g of
CH4/kg of ECM, which represent 2 g less per kilogram of milk
in comparison to SC0. Translating these values to kg per cow per
lactation, for SC2A these reductions are between 0.44 (MeP) and
0.42 kg/cow/year (RMeP), whereas for SC2B, these reductions are
between 1.3 (MeP) and 1.1 kg/cow/year (RMeP). Similarly,
Gonzalez-Recio et al. (2020) reported a decrease of 0.39 kg/
cow per year when including methane in the breeding goal,
resulting in a 20% reduction in 10 years. Additionally, there is
an (negative) effect on the genetic gain of ECM when including
RFI and greater when including methane. However, this possible
reduction (deceleration in the increase) on the genetic gain of
ECM is lower when including RMeP (2%) instead of MeP (5%) in
SC2B. González-Recio et al. (2020) have also reported a possible
reduction of 10–18% in the genetic gain for production traits as a
collateral effect of including methane in the breeding goal.

There are several interesting points in this analysis; first, that
there is a reduction of methane emissions in SC1, meaning that in
the current situation even if we do not add methane into the
breeding goal, there is a reduction of methane emissions by
including RFI in the breeding goal; given that methane is
correlated with RFI. Several authors have pointed out
previously that by selecting for RFI, we could reduce methane
emissions (Hegarty et al., 2007; de Haas et al., 2011; Manzanilla-
Pech et al., 2021). However, the physiological mechanism behind
this reduction of methane by selecting for feed efficient animals
remains unknown. Basarab et al. (2013) have previously
summarized three hypotheses as to why lower RFIs have lower
MeP or MeY; the first one states that efficient animals with lower
feed energy intake at equal levels of production and BW have
lower MeP. Second, one implicates that shorter retention time of
digestion in the rumen is related with lower MeP, and a third one
involves ruminal retention in combination with host response in
microbial communities favoring digestibility. On the other hand,
some nutritionist experiments have unsuccessfully attempted to
prove a link between low RFI and low CH4 (Hegarty et al., 2007;
Fitzsimons et al., 2013; McDonnell et al., 2016). As nutritional
manipulations sometimes affect RFI and give results in directions
opposite to genetic differences, likely as effects on the
microbiome. However, the effects of additives on the
microbiome are indeed interesting and they could be useful in
combined strategies (genetics plus feed additives). Additionally, a
number of animals limit most of the nutritional experiments and
no genetic component is included, but several diets are, which

could explain the results. These results (Hegarty et al., 2007;
Fitzsimons et al., 2013; McDonnell et al., 2016) showed little
evidence of a direct effect of RFI on ruminal CH4 emissions (g/
day) and that differences observed are a reflection of the variance
in DMI between animals (Kenny et al., 2018). Therefore, this
topic needs to be further investigated to elucidate the
physiological mechanism behind the links between methane
reduction and feed efficiency.

Despite the reduction on the expected response (deceleration)
of methane emissions by including RFI in the breeding goal, it
seems that this reduction will not be enough to reach the intended
global reductions of GHG at country and at the EU level (EU
Commission, 2021). Therefore, additional (negative) weights
should be included for methane traits to accomplish a desired
reduction in the GHG emission from dairy cattle in the next 10
and 30 years. For this reason, including methane through one of
its traits is a potential way to accelerate this reduction onmethane
emissions. The outcome of this analysis shows that including
either MeP or RMeP in the breeding goal would be translated as a
deceleration of the increase of methane emissions compared to
the actual scenario, where no methane trait is included. However,
the advantage of RMeP would be that this trait is independent of
the production and body weight of the animal. For this reason,
the effect of including an economic value for methane has smaller
effect on the genetic gain of ECM, in comparison to that of MeP.
This is the primary advantage of residual traits; in this case, RMeP
has been corrected by ECM and MBW, thus having low or close
to zero correlations with the production traits.

Furthermore, there has been an interest to express the
reduction in MeI; in other words, in terms of the unit of CH4

per kg of ECM produced. In this study, we also included MeI as a
candidate trait to visualize the correlated response of MeI when
including RFI in the breeding goal. The response was favorable
(negative), meaning that selecting for efficient cows will also have
a positive impact by reducing methane (−0.41 to −0.43 g) for
methane emitted by the unit of production (kg of ECM). As
mentioned before, given the increase in milk production per cow,
fewer cows are needed to produce the same amount of milk. So,
independently of the amount of CH4 produced per cow, the MeI
would be diluted by the higher yield, meaning that a high
producing cow will have lower MeI than a low producing cow.
In the last decade, as a result of selection on highly milk
producing cows, MeI (g CH4/kg ECM) has shown a constant
decrease (Moate et al., 2014; González-Recio et al., 2020).
Therefore, the breeding objective could help to improve MeI
but by including MeP (or RMeP) and ECM in the selection index
and not MeI directly. Moreover, it is arbitrary how to include a
ratio trait into the breeding goal, as it is unclear whether the
response is established through changing the numerator, the
denominator, or both.

Sensitivity Analysis: Study Case Denmark
Based on the results of the selection index analysis, we quantified
the economic impact of the reduction of methane possible when
including either MeP or RMeP in the breeding goal. This exercise
was done for Denmark, based on the Danish statistics publicly
available (Klimarådet, 2022; Statbank Statistics Denmark, 2022).
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The volume of methane reduction was calculated as the difference
between the two most extreme scenarios SC2B vs. SC0. For MeP, it
was 4.16 g/d and for RMeP, it was 3.65 g/d; if we multiply this for
305 days per lactation, it gives us a reduction of 1.27 and 1.11 kg
methane per year per cow, respectively. Multiplying these numbers
for the total number of dairy cows in Denmark (Statbank Statistics
Denmark, 2022) (550K) results in 612 and 698 ton CH4. Taking
into account that the total amount of CH4 produced by dairy cattle
in a year in Denmark was 86.59 kt (Albrektsen et al., 2021), this
reduction barely represents 1%. However, if we translate this
reduction of CH4 to cost, the importance of this exercise
becomes clearer. As CH4 is usually expressed in a ton of CO2

equivalents (CO2e), to convert ton CH4 to ton CO2e requires a
multiplication of 25 (for a 100-year global warming potential where
1 kg CH4 = 25 CO2e) or for 84 (for a 20-year global warming
potential period where 1 kg CH4 = 84 CO2e). For MeP, this would
represent 17.4 K ton CO2e or 58.6 K ton CO2e depending on the
period of global warming potential used, whereas for RMeP, this
would represent 15.3 K ton CO2e or 51.4 K ton CO2e. Based on the
previous calculation of 1,500 DKK (or €200) per ton CO2e
according to Klimarådet (2022), this apparently small reduction
at the cow level on methane emissions could be translated to a
saved cost of 3.5–11.7 million € when using MeP and from 3.1 to
10.4 million € when using RMeP per year for the whole Danish
dairy sector (1 € = 7.45 kroner). Our results are in agreement with
the 25-year simulation in the Australian beef industry assuming an
annual rate response of −0.08 kg DM/d, a cumulative CH4

reduction of 568,100 ton (22.7 K ton/year) was achieved, which
represented €8.5 million/year in carbon credits (Alford et al., 2006).

In conclusion, residual methane production has shown
potential benefits as candidate trait when selecting for reduced
methane emissions, like being highly correlated with efficiency
traits and weakly correlated with production. Additionally,
residual methane production is highly correlated with the
other methane traits, which is favorable when there is interest
in more than one trait. Furthermore, selection index calculations
showed that selecting for feed efficiency (RFI) has a positive
impact on reducing methane emissions independently of the trait
used; nevertheless, adding a negative economic value for methane

would accelerate the response and help to reach the reduction
goal in fewer generations. Therefore, including methane traits in
the breeding goal shall be the preferable way to achieve the
desired methane reductions in dairy cattle. Consequently,
including methane in the breeding goal seems to be imperative
in order to obtain the intended reduction of methane emissions in
the coming years, despite the possible deceleration in the genetic
gain of milk production. Additionally, if we translate the possible
reductions of methane achieved by including methane in the
breeding goal, this could lead to savings up to 11 million of Euros
in 1 year to the dairy industry, just for Denmark.
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