
ASAHI CANTU

FACULTY OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

NFT as a proof of Digital

Ownership-reward system integrated to a

Secure Distributed Computing Blockchain

Framework

Master's Thesis - Computer Science - June 2022

I, Asahi Cantu, declare that this thesis titled, “NFT as a proof of Digital
Ownership-reward system integrated to a SecureDistributedComputingBlockchain
Framework” and the work presented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a master’s
degree at the University of Stavanger.

� Where I have consulted the published work of others, this is always clearly
attributed.

� Where I have quoted from the work of others, the source is always given.
With the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

“Whereas most technologies tend to automate work-
ers on the periphery doingmenial tasks, blockchains au-
tomate away the center. Insteadof putting the taxi driver
out of a job, blockchain puts Uber out of a job and lets the
taxi drivers work with the customer directly. ”

– Vitalik Buterin, Co-Founder of Ethereum

Abstract

Today, the global economy is dependent on the Internet and computational re-
sources. Although they are tightly interconnected, it is difficult to evaluate their
degree of interdependence. Keeping up with the pace of technology can be a chal-
lenging task, mainly when updating the hardware and software infrastructure. Ev-
ery day, corporations and governments are faced with this issue; most have been
victims of cyber attacks, security breaches, and data leaks. The consequences are
significant in monetary losses; damage remediation is unattainable, even impossi-
ble, in certain circumstances. The repercussions might include reputational dam-
age, legal responsibility, and threats to national security (when attacks are carried
out against critical infrastructures to control the resources of a country), to name a
few. Similarly, data has become such an integral part of many industries that it is
one of themost critical targets for attackers that often is encrypted by ransomware,
stolen, or corrupted. Without data, many companies are not be able to continue
operating as they do. The combination of all these factors complicates the ability
of organizations to cooperate, trust, and share information in efforts to research
and develop solutions for industry and government.

A promising technology can assist in significantly reducing the damage caused
by the security threats outlined above: Blockchain technology has proven to be one
of the most promising inventions of the twenty-first century for transmitting and
protecting informationwhile offering high reliability and availability, low exposure
to attacks, protected encrypted data, and accessible to the entities willing to partic-
ipate. Blockchain enabled the possibility to embed immutable data and compiled
source code known as ‘smart contract’ where certain rules can be programmed to
create business workflows.

This thesis report proposes a Blockchain-based infrastructure solution pro-
vided by ”Hyperledger Fabric” technology for companies to securely transmit and
share information using the latest encryption and data storage technologies op-
erating on the model of distributed systems and smart contracts. By presenting
unique digital assets as Non-Fungible Tokens (NFT), the infrastructure is able to
trust the integrity of the data, while protecting it from counterfeiting. Through the
use of a Blockchain-based file storage system known as IPFS, and by connecting all
the relevant elements together through a web-based application, it is possible to
demonstrate that the implementation of such systems is feasible, highly scalable
and a useful tool that many organizations can utilize to create new work systems
and workflows for digital asset management.

Acknowledgements

I would like to thankmy supervisor, ChunmingRon and Jiahui Geng for their guid-
ance, contribution and help in the elaboration of this thesis project.

Family, friends and colleagues for their support and patience.
Finally, my gratitude to the University of Stavanger and the possibility to work

on this topic.

2

Contents

Acknowledgements 2
0.1 Abbreviations . 5

1 Introduction 7
1.1 Background and Motivation . 7
1.2 Objectives . 8
1.3 Approach and Contributions . 9
1.4 Outline . 10

1.4.1 Chapter 1. Introduction . 10
1.4.2 Chapter 2. Related Work . 10
1.4.3 Chapter 3. Approach . 11
1.4.4 Chapter 4. Experimental Evaluation 11
1.4.5 Chapter 5. Discussions . 11
1.4.6 Chapter 6. Conclusions . 12

2 RelatedWork 13
2.1 Blockchain . 13
2.2 Hyperledger Fabric . 14
2.3 Distributed File systems and IPFS 14

2.3.1 The IPFS System . 15
2.4 NFT-Related systems . 15

2.4.1 NFT on Open Blockchains 16
2.4.2 Permissioned Blockchains 17

3 Approach 18
3.1 Introduction . 18

3.1.1 Blockchain . 18
3.1.2 Blockchain Ledger . 19
3.1.3 Additional generalities . 24

3

3.1.4 Smart Contracts . 24
3.1.5 Hyperledger Fabric . 27
3.1.6 IPFS . 30

3.2 Existing Approaches/Baselines . 32
3.3 Analysis . 36
3.4 Proposed Solution . 38

4 Experimental Evaluation 42
4.1 Use case . 42
4.2 Experimental Setup and Data Set . 42

4.2.1 Scenario . 42
4.3 Experimental Results . 43

4.3.1 System registering and user enrollment 43
4.3.2 NFT Minting and data reading access 43
4.3.3 NFT Transfer . 45
4.3.4 NFT Burning . 46

5 Discussion 49
5.1 Results . 49

5.1.1 Infrastructure statistics . 50
5.1.2 Benchmarking and Blockchain metrics evaluation 52

6 Conclusions 55
6.1 Final comments . 55

6.1.1 Blockchain and DLT . 55
6.1.2 Security . 56
6.1.3 Governance . 56

6.2 Future Work . 56
6.2.1 System integration . 57
6.2.2 NFT and Smart Contract extension 57

A Code and Instructions 62
A.1 File repository . 62
A.2 Instructions to run the code . 62

A.2.1 Prerequisites . 63
A.2.2 Run the application . 63

A.3 NFT Chaincode . 65

0.1 Abbreviations

API Application Program Interface . 24

AWOL Absence Without Official Leave . 22

BFT Byzantine Fault Tolerance . 22

CA Certificate Authority . 29

CFT Crash Fault Tolerant . 27

CID Content Identifier . 31

CPU Central Processing Unit . 51

DAC Decentralized Autonomous Corporation 24

DAG Directed Acyclic Graph . 15

DAO Decentralized Autonomous Organization 16

DAPP Decentralized Application . 21

DFS Distributed File System . 7

DLT Distributed Ledger Technology . 8

DMS Data Management System . 34

DSL Domain-specific Language . 27

EIP Ethereum Improvement Proposals . 15

ERC Ethereum Request for Comments . 8

EHR Electronic Health Records . 33

ETH Ethereum Cryptocurrency token . 57

IPFS Interplanetary File System . 7

IT Information Technology . 34

IoT Internet of Things . 35

IPS Instructions Per Second . 51

kB KiloByte . 51

KB KiloByte . 32

MiB Mebibyte . 51

MPA Multi-party authorization . 35

NFT Non Fungible Token . 8

Nonce Number only used once . 23

OS Operating System . 38

PBFT Practical Byzantine Fault Tolerance 22

PKI Public Key Infrastructure . 29

PoA Proof of Authority . 22

PoET Proof of Elapsed Time . 22

PoS Proof of Stake . 21

PoW Proof of Work . 13

P2P Peer-to-Peer . 30

REST Representational State Transfer . 41

s Seconds . 53

TB TeraByte . 36

TCG Trading Card Game . 16

TPS Transactions Per Second . 53

UAV Unmanned Aerial Vehicle . 34

UI User Interface . 41

USD United States Dollar . 36

WSL Windows Subsystem for Linux . 63

Chapter 1

Introduction

As Blockchain technologies attract the interest of worldwide industries for its in-
trinsic values, new possibilities unleash to promote mutual cooperation in benefit
of building up and improving technologies securely and manageable. Companies
can benefit from such systems when through inter-organizational trust, privacy
and protection; improving and protecting businesses while cooperating and shar-
ing information through a common system.

When it comes to large-volume data sharing and storage, it becomes vital to
verify its authenticity and avoid plagiarism/counterfeiting. This thesis project pro-
poses a system for the treatment of data as a digital asset through the concept of
smart contracts tomanageNon-fungibility in aBlockchain system, and a server/ap-
plication infrastructure to expose the potential and possibilities that data owner-
ship can have when it is brought into decentralized permissioned systems with
Hyperledger Fabric as a Blockchain system and Interplanetary File System (IPFS)
as a Distributed File System (DFS) system.

1.1 Background and Motivation

As digital era keeps evolving and cloud computing increases its power, users and
companies are no longer in full control of their resources, rather than that, they led
third party companies to store their information without fully knowing the way
or locations it could be. In addition to this, recent cyber security risks and the
progress of malware, ransomware and other harmful technologies have put the
whole world into a cyber crisis. Ever since the creation of the interned such cyber
attacks have been increasing exponentially and represent risks for the assets of the
companies, countries and end users. Data is vital, data keeps breaching and leak-

7

ing sometimes without event noticing but months after the damage has happened.
This brings the need for an implementation of a more secure way to store and

manage data through the internetwithout suffering from the present security risks.
Decentralized systems andBlockchain technologies created in the last ten years

offer a tremendous potential to bring organization into a new way to manage their
virtual assets.

It is therefore the purpose of this thesis project to create an architecture and
functional system to record unique ownership of digital assets in a permissioned
blockchain (datasets ownership) while providing the infrastructure to allow its us-
age or deny it depending on the agreements of the system through the issuance of
NFT’s and smart contracts as an alternative solution that allows to alleviate the
present cyber security risks while enabling data management securely and pri-
vately.

1.2 Objectives

The present work will demonstrate the functionality and potential of a digital asset
management systemviaBlockchain andNonFungible Token (NFT) smart contract
with IPFS as a data storage repository.

• Create a permissioned system blockchain with the ability to store Digital As-
sets through the use and extension of the Ethereum Request for Comments
(ERC)-721 protocol and expand its potential for file storage, data sharing and
distribution.

• Use the protocol IPFS to store data and link its address in the blockchain

• Implement a consensus mechanism that incentivize cooperation and partic-
ipation of different parties with the purpose to share, trust, compose and im-
prove data structures and third party systems by implementing a Distributed
Ledger Technology (DLT).

• Provide a baseline platform to allow the usage of NFT and promote mutual
trust the system

• Expose alternative consensus mechanisms to extend the application of the
system in other industries.

• Create a system able to represent ownership of certain digital assets through
the emission of NFT

• Propose a system to transfer such NFTS between institutions as the equiva-
lent of ownership transfer

• Link the ownership system with the identity and blockchain databases.

• Demonstrate that proposed functionality could enable institutions and cor-
porations easy ways to cooperate and compute datasets by using ownership
mechanisms

1.3 Approach and Contributions

This thesis work usesHyperledger Fabric permissionedBlockchain framework as a
base platform to implement an ERC-721 smart contract extension for the creation
and certification of digital assets, which for the aim of this thesis is represented in
data. It also implements an distributed data lake infrastructure through the usage
of a private IPFS network, which allows storage of information in a reliable and
trustless manner. When this data is linked to the ERC-721 smart contract, an NFT
asset is created, and single entity properties like ownership, authenticity, transfer,
royalties, etc, can be exposed to all its participants.

It demonstrate through the creation of a back-end and front-end example ap-
plications the potential of its usage through a simulated token minting and data
sharing environment among different known parties where the unique source of
trust is a central authority and the previous agreement of the rules (consensus
protocol) through which the data can be generated, shared and transferred in the
same manner as if a crypto asset was transferred. Since the environment has been
implemented using Docker Containers Technology, its scalability and security are
granted and can be easily implemented. The results can be visualized in the fol-
lowing github repository, the program can be downloaded and deployed in any
computer system with specific requirements

• ERC-721 protocol creation and extension

• Consensus mechanism

• Infrastructure and Blockchain environment in Hyperledger Fabric

• REST API in the back-end for common collaboration with the blockchain

• Front newWebapplication as a simulation ofwork anddata generation through
the blockchain

• Creation of a private IPFS network and data persistence schema for common
data sharing

A detailed analysis of the systems infrastructure and collaboration, the inter-
pretation of roles and mechanisms that an organization will play to grant plain
participation and collaboration over the blockchain systems in Hyperledger Data
persistence and availability in the IPFS environment.

Generation of a proof of authenticity and non repudiation of data, consensus
protocol, trough the exploration of the blockchain and closes application system.

1.4 Outline

The thesis projects consists of the following chapters:

1.4.1 Chapter 1. Introduction

• A brief explanation of decentralized systems and how they emerged with the
invention of Bitcoin. Through the creation of smart contracts, the issuance
of fungible and non-fungible tokens will be possible, both in a proto-version
and in a more advanced form with the evolution of decentralized systems.
Overview of NFT-based systems, their original applications, and their po-
tential for industrial use

• Further explanation of permissioned blockchain systems and the role of Hy-
perledger Fabric as an open-source platform for industrial applications.

• A brief presentation of IPFS as a decentralized file system and its potential to
use decentralized content-based storage solutions in private networks. These
two systems: ”Hyperledger Fabric” and ”IPFS,” are merged to create an in-
frastructure able to mint NFT representing digital data assets with different
capabilities able to solve modern industry data sharing and solve trust, au-
thenticity, and security problems.

1.4.2 Chapter 2. RelatedWork

• Demonstration how how permissioned blockchain systems developed and
deployed using ”Hyperledger Fabric” have helped industries expedite pro-
cesses and open collaboration with other parties.

• Related work and applications of IPFS as a decentralized file system for the
Web 3.0. Brief explanation of how this has helped to empower end users
and how its application for the industry can create independence and full
ownership of datawith similar reliability as the provided by cloud companies.

• NFT systems based in the Ethereum and other blockchain networks.

• Similar approaches through the implementation of these systems in the pub-
lic blockchain

1.4.3 Chapter 3. Approach

This chapter explains how ”Hyperledger Fabric” and ”IPFS” System were used to-
gether to incorporate a permissioned blockchain system to share data in a secure
and self trusted manner.

• A demonstration of a custom smart contract developed specifically to hold
the necessary instruction for NFT issuance.

• The concept of ”proof of ownership” and ”proof of authenticity” are incor-
porated as consensus mechanisms to avoid data counterfeiting and incen-
tivize its curation, usability and reliability throughmultiple evaluationmech-
anisms.

1.4.4 Chapter 4. Experimental Evaluation

With all the elements provided in 3, a whole infrastructure is assembled and its
functionality is demonstrated through the implementation of Linux containers as
virtual servers emulation the whole systems. back-end and front-tend systems
have been build in addition as this process allows to show the system in its full
potential and propose further system escalation as required.

1.4.5 Chapter 5. Discussions

From proposed solution in 4 future work and other consensus approaches are dis-
cussed. Its scalability and evolution can be set in place for different industry ap-
plications beyond big data sharing.

1.4.6 Chapter 6. Conclusions

This chapter explains how after the development and incorporation of two unre-
lated systems it is possible to create reliable infrastructures with the potential to
change the way companies currently use, store and share information inside and
among other organizations.

Chapter 2

RelatedWork

For the elaboration of this thesis project sourceswith subjects related to blockchain
technology and networking systems had to be consulted.

2.1 Blockchain

Bitcoin whitepaper, where it exposes for the first time ”A peer-to-peer version of
electronic cash”Nakamoto [2008], by elimination the double spend problem in
decentralized systems. It proposes an unbreakable system where any user with
a computer can participate by just joining the network. It provides reliability and
trustless system through theusage of asynchronous encryption, hashing algorithms,
elliptic curves for random password generation, Merkle trees1 and the concept of
”blocks”which are portions of datawith fixed size recording the ledger. The system
compensates computers who keep the system secure by solving a complex math-
ematical problem Proof of Work (PoW). Bitcoin brings security by democratizing
access to all its participants without a central authority and with the generation of
value-appreciation.

1Binary hash tree in which every ”leaf” (node) is labelled with the cryptographic hash of a data
block, and every node that is not a leaf (called a branch, inner node, or inode) is labelled with the
cryptographic hash of the labels of its child nodes. A hash tree allows efficient and secure verifica-
tion of the contents of a large data structure.

13

2.2 Hyperledger Fabric

Hyperledger Fabric is an open source Framework supported by the Hyperledger
foundation2 created to implement permissioned distributed ledger platforms for
industrial applications. It offers modularity and versatility for many enterprise
projects requiring distributed trustless systems where many parties can interact
by joining private channels where a ledger can execute smart contracts and adapt
to the business rules without compromising their corporate business securityHy-
perlerdger [2022]. Unlike public Blockchains, Hyperledger Fabric uses different
services to authorize access to the infrastructure through private channels where
specific smart contract rules can be transacted to simply query the ledger or per-
form operations over stored data.

2.3 Distributed File systems and IPFS

DFS Is a file system spread across multiple locations over a Network. This allows
programs to access or store isolated files the same way as they do local ones, al-
lowing them to access files from any network or computer.

Using a Common File System, the DFS makes it possible for users of physi-
cally distributed systems to share data and resources. For example, using a Local
Area Network (LAN) to connect workstations andmainframes is a Distributed File
System. The DFS consists of two components:

• Transparency of location is achieved through the namespace component.

• File replication provides redundancy.

This combination of components can improve data availability in the event of
failure and heavy load by allowing data sharing across different locations to be
logically grouped under one folder, which is called the DFS root. Using both com-
ponents of the DFS architecture is not required; one can use the namespace com-
ponent without using the file replication component, and one can use the file repli-
cation component without using the namespace component between servers.

2Hyperledger FoundationFoundation [2022a] is a non profit organization that brings together
all the necessary resources and infrastructure to ensure thriving and stable ecosystems around open
source software blockchain projects.

2.3.1 The IPFS System

IPFS is a peer-to-peer distributed file system designed to connect all computing
devices through the same file system. In some ways, IPFS is similar to the Web.
However, IPFS could be viewed as a swarm of BitTorrent3 peers exchanging ob-
jects within a singleGit4 repository. Most commonly when navigating on theWeb,
data is requested and retrieved by its location (better known as location-based ad-
dress), meaning that no matter the type or morphology of the data, it will be re-
trieved by the address where it exists. This implies that data can be amended, ex-
changed and even counterfeited. In contrast, IPFS provides a content-addressed
block storage model where instead of a hyperlink pointing to the location of an ad-
dress, a content-addressed hyperlink ”knows” the content of the file that should
be retrieved. The result is a Generalized Merkle Tree Directed Acyclic Graph
(DAG)5.Benet [2014]

The IPFS protocol combines a distributed hashtable, an incentive-based block
exchange system, and a self-certifying namespace. In IPFS, there is no single point
of failure, and nodes do not need to trust one another.

2.4 NFT-Related systems

As mentioned before, the Ethereum Foundation was first on applying the concept
of Smart Contracts over the Blockchain. When this happened a set of application-
level standards, name registries, library/package formats, programming language
and all the structure of the framework were officially documented in a repository
known as ERC in 2019. In this site many guidelines known as Ethereum Improve-
ment Proposals (EIP) can be found on how to create code for different smart con-
tract specifications. For this work project, the EIPs consulted were:

• ERC-20. Token Standard. Describes the implementation of a standard API
for tokens within smart contracts.Fabian Vogelsteller [2015]

3BitTorrent is a communication protocol for peer-to-peer file sharing, which enables users to
distribute data and electronic files over the Internet in a decentralized manner. To send or receive
files, users use a BitTorrent client on their Internet-connected computer

4Git is a version control system used to keep track of files and data by storing a tree of hashes
and allowing distributed non linear collaboration trough the creation of repositories and branches.

5A Merkle DAG is a Merkle Tree in the form of a directed graph without directed cycles. For
more information about DAG see DAG definition in 3.1.2.

• ERC-721. NFTToken Standard. The following standard allows for the imple-
mentation of a standard API for NFTs within smart contracts. This standard
provides basic functionality to track and transfer NFTset al. [2018a].

• ERC-115. Multi Token Standard. A standard interface for contracts that
manage multiple token types. A single deployed contract may include any
combination of fungible tokens, non-fungible tokens or other configurations
(e.g. semi-fungible tokens)et al. [2018b].

Since its creation, the NFT Standard, has been used for the Decentralized Au-
tonomous Organization (DAO)s and systems have been created to provide tools
to final users for the usage of unique assets. More of this work however has been
implemented in the Open Blockchains.

2.4.1 NFT on Open Blockchains

Many initiatives have emerged as prototypes to explain to the general public the
importance, relevance, andpotential ofNFT for storing and certifying digital unique
assets. At the beginning pure art concepts or games on the Ethereum Blockchain
have been very successful, and led to the generation of speculative markets with
high volatility and frauddue to its economical and lucrative basis Steinwold [2019].

The most successful NFT projects speaking in terms of usability and profitabil-
ity are:

• Rare Pepes (2017). With Ethereum gaining prominence in early 2017,
memes started to be traded there as well. A project named ”Peperium” was
announced to be a “decentralizedmememarketplace andTradingCardGame
(TCG) that allowed anyone to create memes that live eternally on IPFS and
Ethereum.”

• Cryptopunks (2017). A first set of 10,000 unique computer-generated
characters on the Ethereum Blockchain. The platform opted to let anyone
with an Ethereum wallet claim a Cryptopunk for free.

All 10,000Cryptopunkswere swiftly claimedand started a thriving secondary
marketplace where people bought and sold them. By the time they were cre-
ated no ERC-721 standard existed.

• CryptoKitties (2017). It was the first NFT implementation to come main-
stream. It is a blockchain-based virtual game that allows players to adopt,
raise, and trade virtual cats with a unique genetic code embedded in the

smart contract. No single asset would evolve or have same characteristics
as the other and they would show new characteristics over time.

• OpenSea (2017). Is an American online NFT marketplace aimed to work
as a trading market for digital art and buyers. It is the most famous platform
of its kind.

2.4.2 Permissioned Blockchains

Contrary to permissionless NFT platforms, permissioned Blockchains allow use of
corporate data and business workflows to operate inter-system and inter-company
wise.

Examples of NFT Permissioned Platforms are:

• ADecentralized Framework for Patents and Intellectual Property
as NFT in Blockchain NetworksBamakan et al. [2021]. It proposes a
system to implement store of intellectual property and patents in a corpo-
rate multi-shared NFT Blockchain platform. It proposes the architecture of
a system with decentralized authentication and decentralize storage.

• Designof extensiblenon-fungible tokenmodel inHyperledger fab-
ricHong et al. [2019] Presents an extensible NFT token model for support-
ing such assets in Hyperledger Fabric It also applies extensible NFTs such as
document and signature tokens to a decentralized signature service.

Chapter 3

Approach

In this chapter a deeper exploration of the NFT-based systems is presented, same
as the introduction and baseline of all systems. The analysis of the and main solu-
tion and proposed solutions will be presented.

3.1 Introduction

For the creation of this thesis work it was necessary to have a deep understand-
ing of Blockchain Systems, distributed computation, DFSs, to study different con-
sensus mechanisms and implementation of custom smart contracts able to extend
the standards already available. All these technologies and the application of Full
Stack1 technologies create what is known today as theWeb 3.02.

3.1.1 Blockchain

Blockchain-baseddistributeddatabase systems are emerging technologies that aim
to provide users with the necessary tools to perform tasks and computations with-
out the assistance of an intermediate entity, to build self-trust systems where rules
are agreed upon beforehand, and to create the basis for an ecosystem th can be

1It refers to developing both the front end (client-side) and the back end (server-side) compo-
nents of a web application. Each component of the stack involves a special browser, user interface
and server-side technology, frameworks and tools able to create reactive applications and fast asyn-
chronous communications with the server. It includes database technologies, cloud computing,
and DevOps frameworks.

2Web 3.0 will enable websites and apps to process information in a smart human-like manner
through technologies such asmachine learning (ML), big data, and decentralized ledger technology
(DLT), etc

18

used by everyone. Moreover, users may interact democratically and be confident
that committed transactions will be immutable, truthful, and irrefutable3.

In its nature, a Blockchain is basically an immutable unbreakable data storage
structure. It consists of a set of components that allow a set of data to be stored
in small blocks and be linked by a Hash function to the Hash of its predecessor,
forming a chain of blocks that all all the holding systems can verify and validate.
This chain of blocks form aMerkle Tree structure; when the data inside any of the
block changed by malicious users, the rest of the chain will not be approved by the
community, thus resulting on awaste of resources and time. This happens because
the hash of theMerkle tree will change and be different from the rest of the other
nodes.

3.1.2 Blockchain Ledger

Figure 3.1 shows the main components of a Blockchain structure which form the
Ledger. This basic components are generated and validated by the different nodes
in the System and later allow other users to interact and submit transactions to it.
Depending of the type of blockchain different consensus mechanisms are gener-
ated in order to insert and validate the transactions block by block. The compo-
nents of the ledger are:

Block

Represents a set of stored transactions submitted by different users and approved
by node validators. To be able to insert data into a single block, certain rules have
to apply:

• A user connected to the system and willing to insert data (submit a trans-
action) needs to prove its identity with a public and private key, which will
allow him to interact with its asset in order to update the ledger by sensing
or receiving (update or submit). Once the user and its ownership are prop-
erly identified and approved respectively, the transaction enters in a ”data
cache” where other transactions are waiting to be submitted in the ledger.
There are several ways data can be validated and approved to be inserted into
the ledger, but most commonly public Blockchains will request a transaction
fee (paid in tokens) to commit the transaction. The fee allows the system to
function as the machines in charge of maintaining and approving the trans-
actions receive such value in exchange of the resources they use. Depending

3Bitcoin is the first and most famous example of a worldwide distributed blockchain system.

Figure 3.1: Structure of a PoW Blockchain ledger

on the amount paid in the fee, the transaction will take or not priority to be
inserted in the next block. Once the block reaches a certain size or time, it is
generated, hashes and send to other peers.

Version

Indicates the version that the particular blockuses. There are three types of Blockchain
versions.

• Version 1.0 (cryptocurrency)). It used a public ledger to store the data.

• Version 2.0 (Smart Contracts)). Indicates that embedded source code in the

block has been executed for the generation of the block.

• Version 3.0 (Decentralized Application (DAPP)s). It is used to create a de-
centralized structure, such as the Tor Browser.

• Version 4.0 (Blockchain for Industry). Used to create a scalable, affordable
blockchain network so that more people can make use of it.

Timestamp

Used as proof that the particular block is used at what instance of a time. It is also
used as a parameter to verify the authenticity of a block.

Consensus

A consensus is a fault-tolerant mechanism used to achieve agreement on a single
data value or a single state of the network among distributed processes or multi-
agent systems. It allows all parties to participate democratically and enable equal
rights to validate and insert data in the Blockchain.

There are different consensus mechanismsBit [2018]:

• PoW One party proves to another which verifies that a particular computa-
tional effort has been expended. Subsequently, verification can be accom-
plished with minimal effort on the part of the verifying party. By requir-
ing some work from a service requester, such as processing time by a com-
puter, it was initially conceived to deter denial-of-service attacks and other
forms of network abuse. In Bitcoin, it is used as a consensus mechanism
for a permissionless decentralized network in which miners compete to ap-
pend blocks and issue new currency with a success probability proportional
to the computational effort expended. A key characteristic of proof-of-work
schemes is their asymmetry4. Its design contains a built-in incentive struc-
ture that rewards validators by allocating computational capacity to the net-
work with value in the form of money. PoW algorithms aim to deter data
manipulation by establishing considerable energy and hardware-control re-
quirements, thus expending large amounts of resources in the process.

• Proof of Stake (PoS) This method avoids the computational cost associated
with proof-of-work schemes by selecting validators based on their holdings of

4The work (computation) that must be moderately complex, yet feasible by a computer (prover)
but simple to verify by the service provider (verifier)

the associated cryptocurrency. The validators are rewarded for adding trans-
actions to the block. PoS secures a system by requiring validators to possess
some blockchain tokens to mount an attack. Because PoW does not require
complex mathematical calculations, it is more energy-efficient.

• Proof of ElapsedTime (PoET) It is commonly used on apermissionedBlockchain.
First, every node in the systemmust be identifiable and accepted into the net-
work. Then, a standard certificate authority validates them. With PoET, the
“timer” is different for each node. Each participant in the network is assigned
a random amount of time to wait. The first participant to finish waiting gets
to commit the following block to the blockchain.

• Proof of Authority (PoA) It is a spin on PoS consensus that addresses the
risk of how participants in a network can value a stake. the consensus stakes
the actual identities of the nodes in the system and aligns incentives by plac-
ing social capital at risk. A greater incentive is to act in the network’s best
interest if more of its net worth is lodged in a node, therefore wealthier par-
ticipants could go Absence Without Official Leave (AWOL) as they can eat
any financial loss they would receive for doing so. There also exist valida-
tion nodes, which stake their reputation on the network. As compensation,
validators are the only nodes allowed to validate blocks. By identifying val-
idators, PoA consensus becomes inherently centralized and best suited for
private Blockchains and consortiums, such as a group of banks or insurance
companies.

• Byzantine Fault Tolerance (BFT) Allows distributed system to reach con-
sensus (agreement on the same value) even when some of the nodes in the
network fail to respond or respond with incorrect information. The objective
is to safeguard against the system failures by employing collective decision
making when it is both correct and misleading. It aims to reduce influence
of the faulty nodes. BFT is derived from Byzantine Generals’ Problem5.

• Practical Byzantine Fault Tolerance (PBFT) Designed to work efficiently in
asynchronous systems. It is optimized for low overhead time. Its goal was to
solve many problems associated with already available BFT solutions. It has
a primary node and secondary nodes. These nodes work together to reach a

5The Byzantine Generals Problem is a term etched from the computer science description of a
situation where involved parties must agree on a single strategy in order to avoid complete fail-
ure, but where some of the involved parties are corrupt and disseminating false information or are
otherwise unreliable.

consensus, making this systemone of the solutions to the ByzantineGenerals
Problem. The maximum number of faulty/malicious nodes cannot be equal
to or greater than one-third of the total nodes in the system.

• DAG A directed graph is a DAG if and only if it can be topologically ordered,
by arranging the vertices as a linear ordering that is consistent with all edge
directions. To send a transaction, a node must validate two or more trans-
actions that already took place. As more transactions are sent through the
network, that system of checks and balances strengthens. The flow of data
through this model allows the reduction of transactional fees, since they are
approved as users contribute to the security of the network by confirming
past transactions.

Number only used once (Nonce)

Is an arbitrary number that can be used just once in a cryptographic communica-
tion. Such number will never be repeated, and is the result that a machine has to
come across in order to be the first on providing the hash of that number.

Difficulty Target

Is a measure of how difficult it is to mine a block in a blockchain for a particu-
lar cryptocurrency with PoW consensus. A high cryptocurrency difficulty means it
takes additional computing power to verify transactions entered on ablockchain—a
process called mining.

State

It is a pointer that systems of the blockchain system independently hold their own
copy of the blockchain, and the current known ”state” is calculated by processing
each transaction in order as it appears in the ledger. Transactions are bundled and
delivered to each node in the form of a block. As new transactions are distributed
throughout the network, they are independently verified and ”processed” by each
node.

Transactions

Continuously set of data being created or updated in the ledger. Contains relevant
information about the digital assets or smart contract instructions to operate and

change the ledger.

Hash

It is the process of transforming any given key or a string of characters into a new
value through the process of hashing. Shorter, fixed-length values can be repre-
sented by keys that enable finding and using the original data. A hash function
generates new values according to a mathematical algorithm.. To prevent the con-
version of hash back into the original key, a good hash always uses a one-way hash-
ing algorithm.

Merkle Tree

Hash trees or Merkle trees are trees in which every leaf (node) is labelled with a
cryptographic hash of a data block. The cryptographic hash of each inner node’s
label is included in its label. It allows efficient and secure verification of the con-
tents of large data structures. Hash trees are a combination of hash lists and hash
chains.

3.1.3 Additional generalities

All these components are basic to most of the Blockchain systems, regarding how
nodes are assembled into the network dependmostly on the consensusmechanism
adopted. for the purpose of this work the consensus aforementioned were deeply
studied and incorporated in the proposal solution as it will be shown in the next
sections.

3.1.4 Smart Contracts

There is one specific technology created by the Ethereum Foundation which al-
lowed for the first time the embedding of source code into the Blockchain called
smart contract.

A smart contract is a piece of structured code embedded into the Blockchain; it
uses an Application Program Interface (API) to interact with the chain. Once in a
block, it cannot be altered, but new versions and improvements can be reinserted.
There is an implicit economical cost for submitting intelligent contracts into the
chain and executing functions thatwill generate newblocks. Anyonewilling to par-
ticipate and be part of the contract must be a member of a DAO or Decentralized

Autonomous Corporation (DAC), use a public and key as a unique identity and
a private key to sign the transaction being submitted. Generally speaking, smart
contracts are public and can be easily visualized to know the conditions and rules
that the involved parties will use to interact. Ethereum Network was the first
blockchain to implement the generation and execution of Smart Contracts fully.

In thewhite paper Buterin [2014], it stipulates the basis for the usage ofCustom
currencies ans colored coins (first integrated in the Bitcoin Blockchain) and how
they can be extended to the usage of custom tokens coded in a Turing Complete6

programming language.
Smart Contracts have proved to be flexible and adaptable to deploy applica-

tions where trust and decentralization is vital. The technology is relatively new.
Since 2015 many organizations have joined forces to include new programming
language in different sets of ledgers. For the Ethereum Blockchain the standard
language is known as SolidityFoundation [2022b]. With the arrival of other Sys-
tems, new programming languages where created whereas others like the Hyper-
ledger Foundation implement JavaScript, Java, Go and Solidity as well.

They also allowed the creation of DAOs, wheremultiple parties could cooperate
and collaborate in the benefit of the Blockchain ecosystem by agreeing on the rules
that the smart contract was intended to execute depending on the conditions and
situations the users will perform as a result of interacting with the DLT.

This phenomenon called the attention of the industry for its potential to coop-
erate and create immutable database systems, but adapted to an anonymous and
permissioned approach.

Non-fungibility

NFT7 in the blockchain brings tremendous possibilities to store value and a repre-
sentation of physical or virtual objects. When the concept was exploited and im-
plemented for the first time as a true standard in the Ethereum Environmentet al.
[2018c], 8 the public realized of the potential the technology could have to generate

6A concept named after English mathematician and computer scientist Alan Turing- a system
of data-manipulation rules (such as a computer’s instruction set, a programming language, or a
cellular automaton) is said to be ”Turing complete” or ”computationally universal” if it can be used
to simulate any Turing machine.

7An object is fungible when and if it is identical to others and thus can be replaced without any
loss (mutual interchangeability). On the other hand, an object is non-fungible if it posses unique
properties, making it unequal to others and thus of a different transactional value than their recip-
rocals.

8Ethereum is another decentralized open source blockchain with smart contract functionality
embedded since its conception. Conceived in 2013, its creator extended the potential that Bitcoin

value over the issuance of public certificates able to be verified by anyone to proof
authenticity or ownership for predefined assets.

AlthoughNFTs have skyrocketed frompublic Blockchains to demonstrate their
potential with digital art (paintings, music, certification of authenticity, among
others), little has been researched and implemented in the industry. But Non-
fungibility has proven to be a key player for future technologies and mutual col-
laboration. Having a systemwith which companies can implicitly trust and collab-
orate offers tremendous possibilities for the development of knowledge and data
protection.

Figure 3.2: NFT Timeline, from the creation of Bitcoin domains, coloured coins to
the new Ethereum and Altcoin derivatives Own [2021]

Industries can nowadays benefit from blockchain systems to record and track
data in more trustful ways and allow inter-entity cooperation. However, the prob-
lem of privacy, ownership, security and finance emerges when trying to implement
such systems on a public blockchain.

had as a decentralized system to enable the generation of digital contracts.

3.1.5 Hyperledger Fabric

Hyperledger Fabric is an open-source enterprise-grade permissioned DLT plat-
form designed for use in enterprise contexts that delivers crucial differentiating
capabilities over other popular distributed ledger or blockchain platforms. It was
established under the Linux Foundation and currently holds the solid support of
enterprises and developers for continuous improvement. Important features:

• Highly modular and configurable architecture, enabling innovation, versa-
tility, and optimization for various industry use cases (banking, finance, in-
surance, healthcare, human resources, supply chain, digital music delivery,
and others.).

• First distributed ledger platform to support chaincode9 authored in a general-
purpose programming language (Java, Go, and Node.js), facilitating their
development without learning a new language or Domain-specific Language
(DSL).

• Permissioned platform. Unlike public permissionless networks, the partic-
ipants are known to each other. While the participants may not fully trust
one another (they may be competitors in the same industry), a network can
be operated under a governance model built off what trust exists between
participants, such as a legal agreement or framework for handling disputes.

• Support for pluggable consensus protocols enables the platform to be more
effectively customized to fit particular use cases and trustmodels. By default,
Fabric implements BFT consensus fully but could be modified instead for
another Crash Fault Tolerant (CFT) consensus protocol when fewer parties
or organizations participate.

• Can leverage consensus protocols that do not require a native cryptocurrency
to incent costlymining or fuel smart contract execution. Avoidance of a cryp-
tocurrency reduces some significant risk/attack vectors, and the absence of
cryptographic mining operations means that the platform can be deployed
with roughly the exact operational cost as any other distributed system.

• Enables privacy and confidentiality of transactions and chaincode.

These differentiatorsmake Fabric one of the better performing platforms avail-
able today regarding transaction processing and confirmation latency.

9In Hyperledger Fabric Smart Contracts are bettern known as ”chaincode”

Hyperledger Fabric Components

Figure 3.3: Hyperledger Fabric Architecture

• Organization. Virtual representation of a company/organization. Can de-
fine the areas and users that the organization will allow to interact with the

DLT

• User. Defines the entity that will directly interact with the ledger via Fabric
Client through a Public Key Infrastructure (PKI) provided by a Certificate
Authority (CA).

• Application. Is a custom software used by the organization and able to
communicate with the ledger. The application will communicate with the
ledger by sending actions to the Fabric Client.

• Cloud server. Infrastructure that hosts and provides the Fabric Client that
can directly communicate with the ledger.

• Fabric Client. Application built by Hyperledger or custom code able to
send query or update instructions to the ledger by invoking chaincode func-
tions.

• Third-party companies. Other organizations with custom applications or
network infrastructure can also communicate with Fabric client whenever
the CA grants access to the ledger.

• Certificate Authority. Authorization service provider which uses PKI-
based certificates to network member organizations and their users. Issues
one root certificate to each member and one enrollment certificate to each
authorized user.

• Peer. Servers that host a copy of the blockchain. Peers belong to the Orga-
nizations, and different organizations can have more than zero peers. The
peers are coordinated by the ordering service and some of them will be se-
lected as endorsers to validate chaincode transactions.

• Ordering Service is in charge of ordering the transactions. An orderer or
set of orderer nodes form an ordering service. Because Fabric’s design re-
lies on deterministic consensus algorithms, any block validated by the peer
is guaranteed to be final and correct. This architecture promotes finality by
separating the endorsement of chaincode execution (which happens at the
peers) from ordering, which provides advantages in performance and scala-
bility as it eliminates bottlenecks.

• Channel. Is a private tunnel (subnet) of communication between one or
more organizations through which the parties agree over one or more chain-

code instructions. Whenever organizations join a party, no other external en-
tity is able to see the interactions between then, ensuring external anonymity
and inner transparency. Peers can join one or more channels. Each channel
has its own chain of blocks.

• Blockchain. Is the ledger of the infrastructure, it exists in the peers and
communicates via a single channel.

Hyperledger Fabric Workflow

The following steps form part of a typical Fabric workflow configuration:

1. A user invokes a chaincode execution through his application, which gener-
ates a transaction invocation. Client broadcasts the transaction invocation
request to the Endorser peer

2. The Endorser peer checks the Certificate to validate the transaction. If verifi-
cation is approved,it simulates the transaction by generating a response with
a read-write set. Afterwards endorses the generated response using its own
certificate. If the transaction fails a rejection response is sent.

3. The client receives the endorsed proposal responses from Endorsing Peers.

4. The client now sends the approved transaction to the orderer peer for this to
be properly ordered and be included in a block.

5. The orderer node includes the transaction into a block.

6. The orderer node broadcasts the generated block to all Peers (to both En-
dorsing Peers and Committing Peers) on the relevant channel. Then, each
Peer ensures that each transaction in the received block was signed by the
appropriate Endorsing Peers. These individual peers then update their local
ledger with the latest block. Thus all the network gets the ledger synced.

7. The Clients receive any subscribed events if any.

3.1.6 IPFS

IPFS is a distributed, Peer-to-Peer (P2P) file-sharing network enabling a high-
scalability decentralized webBenet [2014]. Unlike common Internet sites that use

Figure 3.4: Hyperledger Fabric General Workflow

location-based address, IPFS stores information via content-based address and in
the same manner as blockchain does, propagates the stored information in blocks
to the connected peers. With this technology one can ensure that the stored data
cannot be forged as the address is a Content Identifier (CID), which in essence is
the root-hash of a Merkle Tree with additional metadata. Similar to blockchain
systems, altering the information by even a single bit would drastically alter the
hashing result.

Properties

• IPFS is made up of all the connected nodes, which can store data and make
it accessible to anyone requesting it.

• If a user requests a file, a copy of the file is cached on their node. The more
different users request that data, the more cached copies will exist. Subse-
quent requests for that file can be fulfilled by any node or combination of
nodes owning the file, preserving that way the stored information.

• Because the data can be stored in pieces on many different computers, all
those systems can feed parts of the data to its destination in parallel. This is
intended to lower latency, reduce bandwidth, and avoid bottlenecks.

• As a result there is no focal point for hackers to attack.

• IPFS also offers the possibility to submit encrypted data.

• Data is stored in chunks of 256 KiloByte (KB), called IPFS objects. Files
larger than that are split into as many IPFS objects as it takes to accommo-
date the file. One IPFS object per file contains links to all of the other IPFS
objects that make up that file.

• Once a file is added to the IPFS network it is given a unique, 24-character
hash CID, which is the identifier within the network. Recalculating the hash
when the file is retrieved verifies the integrity of the file. If the check fails,
the file has been modified.

• When files are legitimately updated, IPFS handles the versioning of files,
meaning that new version of the file is stored along with the previous ver-
sion. IPFS operates like a distributed file system, and this concept of ver-
sioning provides a degree of immutability to that file system.

• a Garbage collector will periodically remove cached IPFS objects unless they
are pinned to be preserved.

Theproperties of thisDFSprovidemeaningful advantages toworkwithBlockchain
Systems since both work decentralized, trustless and in a set of hashed blocks.

3.2 Existing Approaches/Baselines

All the components of the system aforementioned form the baseline for this the-
sis work, however little has been done in permissioned Blockchain systems that
allow data management as a NFT digital asset with IPFS. There is however more
research on its usage for public Blockchain networks and other industry purposes
as the mentioned below.

Figure 3.5: A file being stored in the IPFS network

e-Health

Healthcare systemsmaintain electronicmedical records using the centralized stor-
agemodels, potentially compromising user privacy. Potential threats includeunau-
thorized access to critical information such as identity details, diseases fromwhich
a patient suffers, and misuse of patients’ data. IPFS and blockchain technology, a
distributed off-chain storage of medical data, can be created while preserving pa-
tient privacy.

• Kumar et al. [2020] proposes a framework to facilitate easy access to med-
ical data by authorized entities while preserving consistency, integrity, and
availability.

• Chen et al. [2021] suggests a system able to handle ElectronicHealthRecords
(EHR)s. for diabetes disease detection that provides an earlier detection of
this disease by using various machine learning classification algorithms and
securing the information. Blockchain, and IPFS are used to collect patient’s
health information via wearable sensor devices.

• Kumar et al. [2021] proposes in the same manner a decentralized system for
medical data storage that allows the community to securely share informa-
tion and remove it from central systems since the high cost of data breaches,
cyber attacks and the implicit cost of restructuring the Information Technol-
ogy (IT) infrastructure would prevent the progress in medical research and
creation of new medical alternatives.

• VAHAKGupta et al. [2020] is an interesting project aiming to provide a low-
latency, secure and reliable infrastructure via Ethereum smart contracts, 5-G
and IPFS to allow communication and navigation of Unmanned Aerial Ve-
hicle (UAV)s and improve the air-distribution of medical supplies in areas
hard to reach or in crisis.

• HealChainNi et al. [2019] is a decentralizedDataManagement System (DMS)
forMobileHealthcareUsingConsortiumBlockchain, that aims to build a sys-
tem where security prevails when patients share medical data wirelessly.

• Reen et al. [2019] is another system implementation to handle EHR cripto-
graphically and decentralized.

• Kayastha et al. [2021]Has implemented a case study inNepal for anEthereum
and IPFS based Application model to record and share patient healdh infor-
mation.

Patents and intellectual property

• Bamakan et al. [2022] intends to apply NFT-based patent framework in pub-
lic Blockchain networks and divers DFS to the intellectual property to pro-
mote transparency and liquidity for innovatorswilling to commercialize their
inventions or be funded.

• Agyekum et al. [2019] propose a digital media copyright and content protec-
tion using IPFS and Blockchain to expedite traditional digital copyright so-
lidification and rights which are time consuming and labor-intensive using
Hyperledger Fabric and the management of digital fingerprints for patents,
ensuring immutability and provenance.

• Kalis and Belloum [2018] models a data Integrity and confidentiality frame-
work using encryption, smart contracts and Apache Isis for the automatic
audit trial.

Automotive

Nizamuddin and Abugabah [2021] proposes an IPFS/Ethereum blockchain-based
system for the auto insurance sector to solve the problem of fraud and latency and
bureaucracy that customers facewhenever acquiring insurance for for vehicles. In-
surance prevent the industry from progressing due to the liabilities and difficulties
it presents in many situations to understand it.

Identity and Authorization

Battah et al. [2020] present a solution for Blockchain-basedMulti-party authoriza-
tion (MPA) for Accessing IPFS Encrypted Data using Ethereum smart contracts
and proxy re-encryption algorithms. It incorporates reputation mechanisms in
the smart contracts to rate the oracles based on their malicious and non-malicious
behaviors. Thus, this system can solve insider’s attack problem by ensuring that a
single authority or party is not acting alone.

Tourism

Demirel et al. [2021] have created a model with Blockchain and IPFS integration
for post pandemic economy for the tourism industry to fill the gap in the existing
methods related to the use of the Internet of Things (IoT), devices with smart con-
tracts without a need for intermediaries for the reservations and services secured
by Blockchain. The authors have created a booking system with a unique smart
contract between customers and hotels, including all services that a customer may
need and elimination commission fees as well as reception costs.

Agriculture

Salah et al. [2019] have created a Blockchain-Based Soybean Traceability in Agri-
cultural Supply Chain by utilizing smart contracts to govern and control all in-
teractions and transactions among all the participants involved within the supply
chain ecosystem. All transactions are recorded and stored in the ledger with links
to IPFS and thus providing to all a high level of transparency and traceability into
the supply chain ecosystem in a secure, trusted, reliable, and efficient manner.

3.3 Analysis

Ever since the world has been interconnected over the Internet, malicious parties
have intended to take advantage over their computational resources and digital as-
sets. As technologies improve and the society evolves into a digital world, attacks
become more sophisticated, frequent and devastating. It is increasing month by
month in an exponential ways, compromising governments and companies sys-
tems and data.

Such has been the risk and consequences of cyber attacks and data breaches
that in 2021Wickr [2021]:

1. On average a data breach costs up to 8.64millionUnited StatesDollar (USD).

2. Global Cybercrime costed over 6 trillion

3. Businesses fell victim of ransomware every 11 seconds.

4. Took up to 220 days to contain a data breach, with healthcare industry being
the slowest to recover with over 320 days.

5. As more users perform remote works cybercriminals keep increasing their
attacks over telecommuters and remote access pathways

6. Properly containing a data breach could have saved up to 1 million USD in
less than 200 days

7. More than 8TeraByte (TB) of data were leaked.

8. A total of 270major data breaches occurred, exposing 238Million of records
and 16 billion USD per day.

Moreover, in 2021 several Nordic companies were victim of important cyber at-
tacks ,peaking inDecember 2021O’Dwye [2022]. Affected industries corresponded
to the region’s largest industrial, food and service providing sector. Affected com-
panies were Vestas, Wind Systems, Amedia, Nortura and Nordic Choice Hotels

It is clear thatwith the current resources (both human anddigital) is impossible
to overcome these threats. In addition data has become a vital asset. Companies
are now legally liable to protect it and ensure that is properly protected with state
of the art technologies. Failing to do that could lead them to bankruptcy or serious
fines which in some cases could be of irrecoverable damage, lost of reputation or
even catastrophic disasters for the society.

s

Figure 3.6: Word’s Biggest data breaches and hacks occurred fro 2016 to October
2021 is beautiful [2021]

Hypothesis

With the implementation of a decentralized system in a Hyperledger Fabric and
a chaincode implementing ERC-721 standard with IPFS network, it will be possi-
ble to manage and handle data between organizations in a safer and more secure
way. Sharing information and ensuring that the non-repudation10 principle re-
mains consistent over the network no matter how many parties or users join the
infrastructure.

10Assurance that the sender of information is provided with proof of delivery and the recipient is
provided with proof of the sender’s identity, so neither can later deny having processed the infor-
mation.

Figure 3.7: Top-10 GDPR-per-country data breaches notified per EEA jurisdiction
from May 2018 to October 2020Statista [2020]

3.4 Proposed Solution

Havingproposed thehypothesis to solve inter-organizationdata sharing and trans-
mission through secure channels, the implementation of the system is shown in
this section.

System technologies

The system gathers different technologies for the simulation

• Docker. Set of platformas a service products that useOS-level virtualization
to deliver software in packages called containers.

• Hyperledger Fabric version 2.2 is used in the system. It uses Docker
technology to run and simulate the system. it uses Alpine Linux as the
Operating System (OS) repository.

• Typescript. A programming language superset of JavaScript developed and
maintained byMicrosoft. This codewas used to develop the chaincode, back-
end and front-end systems.

Figure 3.8: System technologies used

• ExpressJS. Back-end web application framework for Node.js designed for
building web applications and APIs.

• React. Open-source front-end JavaScript library for building user interfaces
based on UI components.

• Apache CouchDB. NoSQL document-oriented open-source database.

• IPFS. Decentralized file storage system used content-addressed capabili-
ties configured as a private network. It has been built in GO language and
Alpine Linux as OS. UsesDocker containers as a base image.

Proposed architecture

The components configured and assembled to integrate the infrastructure work in
a Docker system.

• Hyperledger Fabric. A a set of shell scripts and docker files assemble the
required infrastructure to build the DLT. The Fabric infrastructure has the
following subcomponents:

1. Organizations. Two organizations have been created. One organiza-
tions is build primarily to simulate theminting process of aNFTwhereas
the other can receive the minted token. The same process can also be
made in the opposite way.

Figure 3.9: Proposed Architecture

2. Orderer node. Is the node in charge of sorting the transaction and cre-
ating the block. Once the block is created, it is forwarded to one of the
organizations holding the Blockchain ledger. The orderer node does not
hold a copy of the ledger but just coordinates and distributes the issued
transactions.

3. Orderer CA. Is the node in charge of issuing and validating the cer-
tificates of the organizations and the wallet creation (based on the root
certificates) for the users to interact with the system.

4. Channel. Organizations in Hyperledger can join and interact through a
private channel. The channel is previously known by the two organiza-
tions and they participate by having a server that holds a version of the

ledger, a database server and a certificate authority server.

5. Chaincode. The smart contract used to manage the ledger transaction
and mint digital assets as NFTs. The chaincode can be found in the
appendix A.3.

• Private IPFS network. Consists of a set of Docker containers where each
system holds a copy of the IPFS file system.

– IPFS bootstrap node. In the same way as the Ordered node receives
the blocks of a transaction and transmits it to the organization nodes, it
receives the file or data and transmits it to all the interconnected nodes,
ensuring data persistence among the network.

– IPFS Dashboard. It works as the User Interface (UI) of the private net-
work. Provides insights and data about the stored files and a preview of
the data once a user can access through its content.

– IPFSNodes. Each organization can contribute to the systemdata repos-
itory by holding an IPFS server.

• Back-end. Server application that communicates with theHyperledger net-
work and extends its functionality by an API.

– Connects organizations and corporate databases

– Communicates with the CA servers to issue and hold certificates.

– Communicates with IPFS private network API.

– Holds a public Representational State Transfer (REST) API that pro-
vides all the functionality to register organizations, enroll users andmint
NFTs.

– Interacts with the Blockchain smart contract and retrieves the informa-
tion contained in the ledger.

• Front-end. It serves as the UI for user interaction. Allows the simulation
of the system where any user can create an organization, enroll users, mint a
NFT and visualize them in the list.

Chapter 4

Experimental Evaluation

4.1 Use case

To simulate the system functionality a case for two persons from different organi-
zations trying to issue andmint data, send it andmaking it available to one another.

4.2 Experimental Setup and Data Set

4.2.1 Scenario

Simulation of two organizations willing to share data with each other.

Organization 1

Represents an organization with important information gathered from external
resources, expensive and difficult to obtain. Has the technology and infrastructure
to generate data, but does not count with the know how neither infrastructure to
process it or exploit it (similar to machine learning / big data scenarios).

User ’Minter’ ”Organization 1” Creates a user ”Minter” as a company repre-
sentative in charge of submitting the data and creating a NFT version of it inside
the system. Then he can use the system to lend the data, enable a time frame visu-
alization or transfer it.

Organization 2

Represents a technology companywith skillful personal in data processing and do-
main area in the business of ”Organization 1”, but does not have the experience nor

42

technology to gather it. Therefore it needs data from the aforementioned organi-
zation in order to create and expand their business.

User ’Receiver’ ”Organization 2” Creates a user ”Receiver” as a company rep-
resentative in charge of getting access to the NFT minted data by ”Organization 1”
via user ”Minter” which will be used as the data source to perform machine learn-
ing training operations.

With the use of the NFT System framework these parties can cooperate and
participate by trusting that the information is secure, has not been altered and can
be easily verified by them and other parties.

4.3 Experimental Results

The complete simulation of the process is shown in this section.

4.3.1 System registering and user enrollment

The NFT system provides a friendly user interface to allow organizations to be reg-
istered into the Fabric network to use a specific channel. Prior to this process Fab-
ric generated a CA with which they can identify as trusted entities and fair partici-
pants of the network.

The first time an organization registers itself to join a private channel, an admin
account is created. The admin account then is able to configure organization pa-
rameters and new users with restricted access or different mining/system-usage
capabilities. in the figure 4.1 can be visualized the process any organization will
take to register itself as a valid participant with its corresponding representatives.

4.3.2 NFTMinting and data reading access

Once the organizations and users have been properly enrolled it the following steps
must occur:

1. Minter access to the platform and selects the ”Mint NFT option.

2. Minter selects a file and completes the form metadata.

3. Minter clocks on ”submit” button to create the token.

Figure 4.1: Sequence diagram of the Organization and user enrollment process in
the system.

4. The System talks verifies that the file does not exist yet by:

• Asking to add the data file to the IPFS network

• Asking to Fabric if there is any token with the corresponding CID

For any of those cases to be true, the token will not be generated and an error
will be returned.

5. Once everything is approved the token is stored in the DLT with the corre-

Figure 4.2: UI Register organization.

Figure 4.3: UI Enroll Users.

sponding file CID generated.

6. ’Minter’ can now send the CID or additional token information to ’Receiver’.
Then receiver can pull such information from the infrastructure. Because of
its unicity purposes ’Receiver’ will not be able to counterfeit or take owner-
ship of the data unless explicitly stipulated and agreed by both parties.

4.3.3 NFT Transfer

It is possible through the REST API to transfer the generated tokens from one
owner to the other. This process will acknowledge that the new user is the new
owner of the NFT. It is possible then to track the chain of ownership.

4.3.4 NFT Burning

The system also supports burning an NFT, which basically blocks the token and
flags it as unusable. if that happens, burned NFT and CID data cannot be accessed
via the platform.

IT is possible, however to access the data via the IPFS server.

Figure 4.4: Sequence diagram to mint a NFT

Figure 4.5: Front-end showing minting process.

Figure 4.6: Front-end showing minted NFTs in the system.

Chapter 5

Discussion

The implementation of digital asset management through issuance of NFTs repre-
sents a milestone in the generation of decentralized secure frameworks for indus-
trial applications.

The implicit security of Blockchain with Hyperledger management and the pri-
vacy such technology offers will allow different organizations to participate and
cooperate securely, but not anonymously.

All parties will be able to acknowledge data ownership. If desired, data could
be encrypted as well and managed trough additional smart contracts. In addition
to this, IPFS network is able to control, distribute and manage the added data as
a DFS. The final simulation of the environment allows testers, to acknowledge the
workflow of the framework and further expand its capabilities in a modular way.

5.1 Results

The simulation was performed with the following operations:

1. Minting NFT with Text data 10KB

2. Minting NFT with Image data 200KB

3. Minting NFT with Bin data 100MB

4. Minting NFT with a file of 850MB

The highest resource consuming process for the system is whenever data with
high space resources is about to be minted. The communication with the server

49

NFT Statistics

No File type Size Elapsed time (s)

1 Text 10KB 0.5
2 Image 200KB 1.3
3 PDF 100MB 8.3
4 Bin 850MB ∞

Table 5.1: NFT Statistics.

and IPFS network create a bottle neck in the simulation process and by running
the resources locally.

Whenever trying to mint an NFT File larger than 500 MB (previous tests were
madewith other files) the blockchain system, or at least the API server takes signif-
icantly larger amount time than expected to submit the data. Although this might
be a parameter or server side configuration, it certainly refrains users from sub-
mitting large amounts of information.

Final results of the built application indicate that it is potentially feasible to
create decentralized systems specialized in data management and control for in-
dustrial purposes while dealing with chunks of data. For text data it is relatively
easy to mint, submit and visualize under the IPFS Server.

5.1.1 Infrastructure statistics

The following statistics were performed by running docker stats command where
they where later on plotted.

Figure 5.1: Docker statistics from current containers

Memory Usage

The image 5.2 shows the amount of memory used by all the servers. The contain-
ers with higher numbers are the ones used to provide statistics and insights. in
Orange: The container to run statistics, whereas in blue the container running Hy-
perledger explorerUI. The unit ofmeasure has been performed inMebibyte (MiB).

Figure 5.2: Infrastructure Memory Usage. Unit of measure in MiB

CPU Usage

Image 5.3 shows the amount of Central ProcessingUnit (CPU) in termsof Instructions
Per Second (IPS) executed. The peaks shown correspond to the IPFS network.

Network inputs

Image 5.4 shows all network inputs consumed by each container. In color blue it
can be highlighted that IPFS network is the node takingmost of the network inputs
due to the amount of memory consumed after minting large file sizes for the NFT.
Unit of measure is in KiloByte (kB)

Network outputs

Image 5.5 shows all network outputs sent by each container. At the top the con-
tainer used to run the statistics has the most of data sent. In In second place the

Figure 5.3: Infrastructure CPU Usage in IPS

Figure 5.4: Network Inputs

peer node corresponding to organization one presents the one with the most in-
formation transmitted. Unit of measure is in kB.

5.1.2 Benchmarking and Blockchain metrics evaluation

Hyperledger framework has a benchmark tool used to measure the performance
and behavior of the blockchain, test it and evaluate it under stress scenarios to
check its latency and behaviour under heavy usage. Tables 5.2 and 5.3 show the re-

Figure 5.5: Network Outputs

sults thrown in raw data. Figure 5.6 presents relevant information about the usage
andnetwork stress results. as anHTMLreport, which is also available at: https://
htmlpreview.github.io/?https://raw.githubusercontent.com/asahicantu/NFT-Thesis/
main/caliper-benchmarks/report.htmlUnits ofmeasure for the data are in Seconds
(s) and Transactions Per Second (TPS).

Blockchain benchmark Part I.

Name Succ Fail Send Rate (TPS) Max Latency(s) Min Latency (s)

MintNFT. 5000 0 15.0 2.19 0.10
Query all NFTS. 9819 0 338.2 0.06 0.01

Table 5.2: Blockchain Benchmark using Hyperledger Caliper Part I.

Blockchain benchmark Part II.

Name Avg Latency (s) Throughput (TPS)

MintNFT. 0.43 14.9
Query all NFTS. 0.02 338.1

Table 5.3: Blockchain Benchmark using Hyperledger Caliper Part II.

https://htmlpreview.github.io/?https://raw.githubusercontent.com/asahicantu/NFT-Thesis/main/caliper-benchmarks/report.html
https://htmlpreview.github.io/?https://raw.githubusercontent.com/asahicantu/NFT-Thesis/main/caliper-benchmarks/report.html
https://htmlpreview.github.io/?https://raw.githubusercontent.com/asahicantu/NFT-Thesis/main/caliper-benchmarks/report.html

Figure 5.6: Hyperledger Caliper Benchmark results.

Chapter 6

Conclusions

6.1 Final comments

In line with the original hypothesis stated in 3.3 it is possible to confirm that the
construction of decentralized systems is possible and will create yet unforeseen
possibilities to manage information and provide:

• System scalability

• Modularity

• Self Governance by smart contract agreement

• Privacy and security

• Mutual cooperation

Systems such as this can be governed or not by a central authority. Depending
on the business needs and industrial purposes different scenarios could be devel-
oped and simulated.

Key findings through the research and development of this thesis project are:

6.1.1 Blockchain and DLT

. Data integrity and consistency safeguarding. Decentralized system nowadays
allow very easily to verify data origin, integrity and non-repudation principle es-
tablishes new ways of working and contributing for the development and research
of technology.

55

6.1.2 Security

The created infrastructure has several layers of security and implicit elements to
protect parties and their data from improperly accessing information.

CAs

Different parties can choose to rely over a central or multiple CAs. As long as there
is a common agreement previously established by smart contracts and common
consensus, it will be possible to create highly resistant and resilient systems to
malicious attacks. The modularity of Blockchain allows the cooperation of par-
ties in benefit of the whole system, therefore rejecting undesirable or suspicious
behaviour.

Private channels

Private channels in Hyperledger Fabric allow organizations to create a subsystem
inside the framework, where sub smart contracts can be created to allow privacy
between a single, two or more entities in different regions of the world. Therefore,
while every organization can hold a copy of the ledger and data, only those with
the right privileges can be allowed to interact with the hidden rules.

IPFS offers several layers of security, data can be encrypted and directed by
smart contract instructions and even by the security layers set into the built system.

6.1.3 Governance

Organizations can self in their best interest to preserve business functionality and
choose the most suitable way to manage data. That being said, they will be able to
choose which CA is the best, what rules in the smart contract can be implemented
and under which conditions entities can mint or transfer NFTs.

6.2 FutureWork

It is intended for anyone willing to extend and expand the functionality of this
thesis work to move within the following points:

6.2.1 System integration

This thesis project can complement the work made by Rehman [2022], which ex-
plains how shared data can be used to perform workflows for different purposes
such as Big data analytics andMachine learning. One key advantage of this imple-
mentation relies on the fact that participants will have no direct access to shared
data itself, but to a frameworkwhere it can be processed andmanipulated to gener-
ate different models and insights. When connecting both systems, it will be possi-
ble to create and encapsulate information, self data encryption can grant that even
different organizations own a copy of the blockchain and IPFS network, they can-
not read the information unless they do it directly from the proposed application.

6.2.2 NFT and Smart Contract extension

Anextension of ERC-721 smart contract implemented inA.3 can be easily extended
to create new business rules such as:

NFT delegated ownership and transfer

Not only one user, but multiple entities could possess a digital asset, sharing a per-
centage of such element. Therefore new rules can be suggested to interact, protect
and manipulate information.

Consensus

New consensus mechanisms can be generated to incentivize the usage of the net-
work. This project contains for example rules to rank information and create a
reputation level for the organizations, which can increase the value of the minted
NFT. In other scenarios can be possible to create digital ownership by data origin,
geographical location and mechanisms of burning so it cannot be used by other
parties.

Economics through Tokenization

A very interesting approach to explore is the creation of economic tokens inte-
grated with the NFT system. Such tokens and in the same form that Ethereum
Cryptocurrency token (ETH) does with the Ethereum platform, every piece of data
can be linked to another unity of tokens where once transferred its value in tokens
can be transferred as well. The token-value of data can increase as its ranking of

”valuable information” increases, or organization reputation does. Depending on
those economic mechanisms, different companies could be able to generate royal-
ties and incentivize the usage of the system. Furthermore.

Multi-system integration

Furthermore, this project can be integrated with other public Blockchain plat-
forms, and allow the issuance or reading of Ethereum smart contracts, enabling
its execution in the internal network. The possibilities are endless and adaptable
to specific business needs.

List of Figures

3.1 Structure of a PoW Blockchain ledger 20
3.2 NFT Timeline, from the creation of Bitcoin domains, coloured coins

to the new Ethereum and Altcoin derivatives Own [2021] 26
3.3 Hyperledger Fabric Architecture . 28
3.4 Hyperledger Fabric General Workflow 31
3.5 A file being stored in the IPFS network 33
3.6 Word’s Biggest data breaches and hacks occurred fro 2016 to Octo-

ber 2021 is beautiful [2021] . 37
3.7 Top-10 GDPR-per-country data breaches notified per EEA jurisdic-

tion from May 2018 to October 2020Statista [2020] 38
3.8 System technologies used . 39
3.9 Proposed Architecture . 40

4.1 Sequence diagram of the Organization and user enrollment process
in the system. 44

4.2 UI Register organization. 45
4.3 UI Enroll Users. 45
4.4 Sequence diagram to mint a NFT . 47
4.5 Front-end showing minting process. 48
4.6 Front-end showing minted NFTs in the system. 48

5.1 Docker statistics from current containers 50
5.2 Infrastructure Memory Usage. Unit of measure in MiB 51
5.3 Infrastructure CPU Usage in IPS . 52
5.4 Network Inputs . 52
5.5 Network Outputs . 53
5.6 Hyperledger Caliper Benchmark results. 54

A.1 Qr Code which will redirect to the Github Project stated in A.1 . . . 62
A.2 Network shell showing successful run 64
A.3 Server shell showing successful run 64

59

A.4 Client shell showing successful run 65
A.5 Main UI Page should be visible . 65

List of Tables

5.1 NFT Statistics. 50
5.2 Blockchain Benchmark using Hyperledger Caliper Part I. 53
5.3 Blockchain Benchmark using Hyperledger Caliper Part II. 53

61

Appendix A

Code and Instructions

A.1 File repository

The repository with the code to download the system and perform the simulation
is available at: https://github.com/asahicantu/NFT-Thesis. The repository file
includes a video sequence showing the sames steps explained in 4 to perform a
simulation.

Figure A.1: Qr Code which will redirect to the Github Project stated in A.1
.

A.2 Instructions to run the code

To run the project follow the following steps:

62

https://github.com/asahicantu/NFT-Thesis

A.2.1 Prerequisites

A Linux operating system or bash scripting shell is required. On a windows ma-
chine the usage of Windows Subsystem for Linux (WSL) (any Linux distribution)
can help to run the project Docker Desktop installed (if using Windows with WSL
make sure the option ’Use WSL 2 Based engine’ or similar is selected).

A.2.2 Run the application

1. Clone the repository

git clone https://github.com/asahicantu/NFT-Thesis.git

2. Move to the repository’s directory and then to the network directory

cd NFT-Thesis/network

3. Enable execution mode for all .sh (shell scripting files)

find . -name "*.sh" -exec chmod +x {} \;

4. Run the network infrastructure

./network start

5. Confirm no error occurred

6. Run server application in a different terminal

cd ../web/server && npm install && npm run dev`

7. Confirm no error occurred

8. Run web application in a different terminal

cd ../client && npm install && npm run start`

9. Confirm no error occurred

Figure A.2: Network shell showing successful run
.

Figure A.3: Server shell showing successful run
.

10. Open the application in a web browser by using: http://localhost:3000.

11. Confirm all steps were properly followed and no error occurred

http://localhost:3000

Figure A.4: Client shell showing successful run
.

Figure A.5: Main UI Page should be visible
.

A.3 NFT Chaincode

This is the chaincode or smart contract implementing ERC-721 Standard in Hy-
perledger Fabric. File name: tokenERC721Contract.ts

/*
SPDX-License-Identifier: Apache-2.0
*/
import { Context, Contract, Info, Transaction } from 'fabric-contract-api'
import { NFT } from 'common/nft'
import KV from './@types/KV'

@Info({ title: 'TokenERC721Contract', description: 'ERC721 SmartContract,
implemented in TypeScript' })

export class TokenERC721Contract extends Contract {
// Define objectType names for prefix
balancePrefix: string = 'balance'
nftPrefix: string = 'nft'
uriPrefix: string = 'uri'
approvalPrefix: string = 'approval'
// Define key names for options
nameKey: string = 'name'
symbolKey: string = 'symbol'

constructor() {
super('TokenERC721Contract')

}

@Transaction(false)
public async setLogLevel(ctx: Context, loglevel: string): Promise <

void> {
const logger = ctx.logger.setLevel(loglevel)

}

/**
*
* @param {Context} ctx the transaction context
* @returns {Number} The number of non-fungible tokens present in the

ledger
*/
@Transaction(true)
public async GetAllResults(ctx: Context, isHistory: boolean, owner:

string): Promise<any> {
const iterator = await

ctx.stub.getStateByPartialCompositeKey(this.balancePrefix,
[owner])

let allResults = []
let res = await iterator.next() as any
while (!res.done) {

if (res.value && res.value.value.toString()) {
let jsonRes: any = {}
console.log(res.value.value.toString('utf8'))
if (isHistory && isHistory === true) {

jsonRes.TxId = res.value.txId
jsonRes.Timestamp = res.value.timestamp
try {

jsonRes.Value =
JSON.parse(res.value.value.toString('utf8'))

} catch (err) {
console.log(err)
jsonRes.Value = res.value.value.toString('utf8')

}
} else {

jsonRes.Key = res.value.key
try {

jsonRes.Record =
JSON.parse(res.value.value.toString('utf8'))

} catch (err) {
console.log(err)
jsonRes.Record = res.value.value.toString('utf8')

}
}
allResults.push(jsonRes)

}
res = await iterator.next()

}
iterator.close()
return allResults

}

/**
* BalanceOf counts all non-fungible tokens assigned to an owner
*
* @param {Context} ctx the transaction context
* @param {String} owner An owner for whom to query the balance
* @returns {Number} The number of non-fungible tokens owned by the

owner, possibly zero
*/
@Transaction(false)
public async BalanceOf(ctx: Context, owner: string): Promise<number> {

// There is a key record for every non-fungible token in the
format of balancePrefix.owner.tokenId.

// BalanceOf() queries for and counts all records matching
balancePrefix.owner.*

const iterator = await
ctx.stub.getStateByPartialCompositeKey(this.balancePrefix,
[owner])

// Count the number of returned composite keys
let balance = 0
let result = await iterator.next()
while (!result.done) {

balance++
result = await iterator.next()

}
return balance

}

/**
* OwnerOf finds the owner of a non-fungible token
*
* @param {Context} ctx the transaction context
* @param {String} tokenId The identifier for a non-fungible token
* @returns {String} Return the owner of the non-fungible token
*/
@Transaction(false)
public async OwnerOf(ctx: Context, tokenId: string): Promise<string> {

const nft = await this._readNFT(ctx, tokenId)
const owner = nft.Owner
if (!owner) {

throw new Error('No owner is assigned to this token')
}
return owner

}

/**
* TransferFrom transfers the ownership of a non-fungible token
* from one owner to another owner
*
* @param {Context} ctx the transaction context
* @param {String} from The current owner of the non-fungible token
* @param {String} to The new owner
* @param {String} tokenId the non-fungible token to transfer
* @returns {Boolean} Return whether the transfer was successful or not
*/

@Transaction(true)
public async TransferFrom(ctx: Context, from: string, to: string,

tokenId: string): Promise<boolean> {
const sender = ctx.clientIdentity.getID()

const nft = await this._readNFT(ctx, tokenId)

// Check if the sender is the current owner, an authorized
operator,

// or the approved client for this non-fungible token.
const owner = nft.Owner
const approved = nft.ApprovedForTransfer == to
const operatorApproval = await this.IsApprovedForAll(ctx, owner,

sender)
if (owner !== sender && !approved && !operatorApproval) {

throw new Error('The sender is not allowed to transfer the
non-fungible token')

}

// Check if `from` is the current owner
if (owner !== from) {

throw new Error('The from is not the current owner.')
}

// Clear the approved client for this non-fungible token
nft.ApprovedForTransfer = undefined

// Overwrite a non-fungible token to assign a new owner.
nft.Owner = to
const nftKey = ctx.stub.createCompositeKey(this.nftPrefix,

[tokenId])
await ctx.stub.putState(nftKey, Buffer.from(JSON.stringify(nft)))

// Remove a composite key from the balance of the current owner
const balanceKeyFrom =

ctx.stub.createCompositeKey(this.balancePrefix, [from, tokenId])
await ctx.stub.deleteState(balanceKeyFrom)

// Save a composite key to count the balance of a new owner
const balanceKeyTo =

ctx.stub.createCompositeKey(this.balancePrefix, [to, tokenId])

await ctx.stub.putState(balanceKeyTo, Buffer.from('\u0000'))

// Emit the Transfer event
const tokenIdInt = parseInt(tokenId)
const transferEvent = { from: from, to: to, tokenId: tokenIdInt }
ctx.stub.setEvent('Transfer',

Buffer.from(JSON.stringify(transferEvent)))

return true
}

/**
* Approve changes or reaffirms the approved client for a non-fungible

token
*
* @param {Context} ctx the transaction context
* @param {String} approved The new approved client
* @param {String} tokenId the non-fungible token to approve
* @returns {Boolean} Return whether the approval was successful or not
*/
@Transaction(true)
public async Approve(ctx: Context, approved: string, tokenId: string):

Promise<boolean> {
const sender = ctx.clientIdentity.getID()

const nft = await this._readNFT(ctx, tokenId)

// Check if the sender is the current owner of the non-fungible
token

// or an authorized operator of the current owner
const owner = nft.Owner
const operatorApproval = await this.IsApprovedForAll(ctx, owner,

sender)
if (owner !== sender && !operatorApproval) {

throw new Error('The sender is not the current owner nor an
authorized operator')

}

// Update the approved client of the non-fungible token
nft.ApprovedForTransfer = approved
const nftKey = ctx.stub.createCompositeKey(this.nftPrefix,

[tokenId])
await ctx.stub.putState(nftKey, Buffer.from(JSON.stringify(nft)))

// Emit the Approval event
const tokenIdInt = parseInt(tokenId)
const approvalEvent = { owner: owner, approved: approved, tokenId:

tokenIdInt }
ctx.stub.setEvent('Approval',

Buffer.from(JSON.stringify(approvalEvent)))

return true
}

/**
* SetApprovalForAll enables or disables approval for a third party

("operator")
* to manage all of message sender's assets
*
* @param {Context} ctx the transaction context
* @param {String} operator A client to add to the set of authorized

operators
* @param {Boolean} approved True if the operator is approved, false

to revoke approval
* @returns {Boolean} Return whether the approval was successful or not
*/
@Transaction(true)
public async SetApprovalForAll(ctx: Context, operator: string,

approved: boolean): Promise<boolean> {
const sender = ctx.clientIdentity.getID()

const approval = { owner: sender, operator: operator, approved:
approved }

const approvalKey =
ctx.stub.createCompositeKey(this.approvalPrefix, [sender,
operator])

await ctx.stub.putState(approvalKey,
Buffer.from(JSON.stringify(approval)))

// Emit the ApprovalForAll event
const approvalForAllEvent = { owner: sender, operator: operator,

approved: approved }

ctx.stub.setEvent('ApprovalForAll',
Buffer.from(JSON.stringify(approvalForAllEvent)))

return true
}

/**
* GetApproved returns the approved client for a single non-fungible

token
*
* @param {Context} ctx the transaction context
* @param {String} tokenId the non-fungible token to find the approved

client for
* @returns {Object} Return the approved client for this non-fungible

token, or null if there is none
*/
@Transaction(false)
public async GetApproved(ctx: Context, tokenId: string):

Promise<string | object | undefined> {
const nft = await this._readNFT(ctx, tokenId)
return nft.ApprovedForTransfer

}

/**
* IsApprovedForAll returns if a client is an authorized operator for

another client
*
* @param {Context} ctx the transaction context
* @param {String} owner The client that owns the non-fungible tokens
* @param {String} operator The client that acts on behalf of the owner
* @returns {Boolean} Return true if the operator is an approved

operator for the owner, false otherwise
*/
@Transaction(false)
public async IsApprovedForAll(ctx: Context, owner: string, operator:

string): Promise<boolean> {
const approvalKey =

ctx.stub.createCompositeKey(this.approvalPrefix, [owner,
operator])

const approvalBytes = await ctx.stub.getState(approvalKey)
let approved

if (approvalBytes && approvalBytes.length > 0) {
const approval = JSON.parse(approvalBytes.toString())
approved = approval.approved

} else {
approved = false

}

return approved
}

// ============== ERC721 metadata extension ===============

/**
* Name returns a descriptive name for a collection of non-fungible

tokens in this contract
*
* @param {Context} ctx the transaction context
* @returns {String} Returns the name of the token
*/
@Transaction(false)
public async Name(ctx: Context): Promise<string> {

const nameAsBytes = await ctx.stub.getState(this.nameKey)
return nameAsBytes.toString()

}

/**
* Symbol returns an abbreviated name for non-fungible tokens in this

contract.
*
* @param {Context} ctx the transaction context
* @returns {String} Returns the symbol of the token
*/
@Transaction(false)
public async Symbol(ctx: Context): Promise<string> {

const symbolAsBytes = await ctx.stub.getState(this.symbolKey)
return symbolAsBytes.toString()

}

/**
* TokenURI returns a distinct Uniform Resource Identifier (URI) for a

given token.

*
* @param {Context} ctx the transaction context
* @param {string} tokenId The identifier for a non-fungible token
* @returns {String} Returns the URI of the token
*/
@Transaction(false)
public async TokenURI(ctx: Context, tokenId: string): Promise<string> {

const nft = await this._readNFT(ctx, tokenId)
return nft.URI

}

@Transaction(false)
public async Token(ctx: Context, tokenId: string): Promise<NFT> {

const nft = await this._readNFT(ctx, tokenId)
return nft

}
/**
* Tokens returns all non-fungible tokens assigned to an owner
*
* @param {Context} ctx the transaction context
* @param {String} owner An owner for whom to query the balance
* @returns {Array<any>>} The number of non-fungible tokens owned by

the owner, possibly zero
*/
@Transaction(false)
public async Tokens(ctx:Context, owner: string): Promise<Array<NFT>> {

let tokens = new Array<NFT>()
// There is a key record for every non-fungible token in the

format of balancePrefix.owner.tokenId.
// TokensOf() queries for all records matching

balancePrefix.owner.* and returns all of them
const iterator = await

ctx.stub.getStateByPartialCompositeKey(this.balancePrefix,
[owner])

let result = await iterator.next()
while (!result.done) {

//const nft = result
//nfts.push(result.value)
//ctx.logger.getLogger().log('INFO', result.value)
//console.log(result.value)
var val = result.value as KV

const nftKey = ctx.stub.createCompositeKey(this.balancePrefix,
[owner])

var id = val.key.replace(nftKey,'')
id = id.replace(/\u0000/g, '')
let nft = await this._readNFT(ctx, id)
tokens.push(nft)
result = await iterator.next()

}
return tokens

}

@Transaction(false)
public async TokenIds(ctx: Context, owner: string):

Promise<Array<string>> {
let tokenIds = new Array<string>()
// There is a key record for every non-fungible token in the

format of balancePrefix.owner.tokenId.
// TokensOf() queries for all records matching

balancePrefix.owner.* and returns all of them
const iterator = await

ctx.stub.getStateByPartialCompositeKey(this.balancePrefix,
[owner])

let result = await iterator.next()
while (!result.done) {

var val = result.value as KV
tokenIds.push(val.key)
result = await iterator.next()

}
return tokenIds

}

@Transaction(true)
public async Rate(ctx: Context, tokenId: string, organization:

string,rank:string): Promise<NFT> {
const nft = await this._readNFT(ctx, tokenId)
if (!nft.RankerOrganizations.includes(organization)) {

nft.RankerOrganizations.push(organization)
let rankInt = parseInt(rank)
nft.Weight = (rankInt / 5 * nft.Weight)

}
return nft

}

// ============== ERC721 enumeration extension ===============
/**
* TotalSupply counts non-fungible tokens tracked by this contract.
*
* @param {Context} ctx the transaction context
* @returns {Array<NFT>} Returns a count of valid non-fungible tokens

tracked by this contract,
* where each one of them has an assigned and queryable owner.
*/
@Transaction(false)
public async TotalSupply(ctx: Context): Promise<Array<NFT>> {

// There is a key record for every non-fungible token in the
format of nftPrefix.tokenId.

// TotalSupply() queries for and counts all records matching
nftPrefix.*

const iterator = await
ctx.stub.getStateByPartialCompositeKey(this.nftPrefix, [])

let results = []
// Count the number of returned composite keys
let result = await iterator.next()
while (!result.done) {

if (result.value) {
var nft = JSON.parse(result.value.value.toString()) as NFT
results.push(nft)

}
result = await iterator.next()

}
return results

}
/**
* TotalSupplyCount counts non-fungible tokens tracked by this

contract.
*
* @param {Context} ctx the transaction context
* @returns {Number} Returns a count of valid non-fungible tokens

tracked by this contract,
* where each one of them has an assigned and queryable owner.
*/
@Transaction(false)

public async TotalSupplyCount(ctx: Context): Promise<number> {
// There is a key record for every non-fungible token in the

format of nftPrefix.tokenId.
// TotalSupply() queries for and counts all records matching

nftPrefix.*
const iterator = await

ctx.stub.getStateByPartialCompositeKey(this.nftPrefix, [])

// Count the number of returned composite keys
let totalSupply = 0
let result = await iterator.next()
while (!result.done) {

totalSupply++
result = await iterator.next()

}
return totalSupply

}
// ============== Extended Functions for this sample ===============

/**
* Set optional information for a token.
*
* @param {Context} ctx the transaction context
* @param {String} name The name of the token
* @param {String} symbol The symbol of the token
*/
@Transaction(true)
public async SetOption(ctx: Context, name: string, symbol: string):

Promise<boolean> {

// Check minter authorization - this sample assumes Org1 is the
issuer with privilege to set the name and symbol

const clientMSPID = ctx.clientIdentity.getMSPID()
if (clientMSPID !== 'Org1MSP') {

throw new Error('client is not authorized to set the name and
symbol of the token')

}
await ctx.stub.putState(this.nameKey, Buffer.from(name))
await ctx.stub.putState(this.symbolKey, Buffer.from(symbol))
return true

}

/**
* Mint a new non-fungible token
*
* @param {Context} ctx the transaction context
* @param {String} tokenId Unique ID of the non-fungible token to be

minted
* @param {String} tokenURI URI containing metadata of the minted

non-fungible token
* @returns {Object} Return the non-fungible token object
*/

@Transaction(true)
public async Mint(ctx: Context, id: string, uri: string, format:

string, owner: string, ownerOrg: string, filename:
string,date:number): Promise<NFT> {

// Check minter authorization - this sample assumes Org1 is the
issuer with privilege to mint a new token

const clientMSPID = ctx.clientIdentity.getMSPID()
if (clientMSPID !== 'Org1MSP') {

throw new Error('client is not authorized to mint new tokens')
}

// Check if the token to be minted does not exist
let exists = await this._nftExistsById(ctx, id)
if (exists) {

throw new Error(`The token with Id ${id} is already minted.`)
}
exists = await this._nftExistsByUri(ctx, uri)
if(exists){

throw new Error(`The token with Uri ${uri} is already minted`)
}
const nftToken: NFT = {

ID: id,
URI: uri,
FileFormat: format,
Owner: owner,
Organization: ownerOrg,
FileName: filename,
Weight: 0,

ApprovedForTransfer: undefined,
Date:date,
RankerOrganizations: []

}
// Add a non-fungible token
const nftKey = ctx.stub.createCompositeKey(this.nftPrefix,

[nftToken.ID])
await ctx.stub.putState(nftKey,

Buffer.from(JSON.stringify(nftToken)))
const uriKey = ctx.stub.createCompositeKey(this.uriPrefix,

[nftToken.URI])
await ctx.stub.putState(uriKey, Buffer.from(nftToken.ID))
// A composite key would be balancePrefix.owner.tokenId, which

enables partial
// composite key query to find and count all records matching

balance.owner.*
// An empty value would represent a delete, so we simply insert

the null character.
const minter = ctx.clientIdentity.getID() // Get ID of submitting

client identity
const balanceKey = ctx.stub.createCompositeKey(this.balancePrefix,

[minter, nftToken.ID])
await ctx.stub.putState(balanceKey, Buffer.from('\u0000'))

// Emit the Transfer event
const transferEvent = { from: '0x0', to: minter, tokenId:

nftToken.ID }
ctx.stub.setEvent('Transfer',

Buffer.from(JSON.stringify(transferEvent)))
return nftToken

}

/**
* Burn a non-fungible token
*
* @param {Context} ctx the transaction context
* @param {String} tokenId Unique ID of a non-fungible token
* @returns {Boolean} Return whether the burn was successful or not
*/
@Transaction(true)
public async Burn(ctx: Context, tokenId: string): Promise<boolean> {

const owner = ctx.clientIdentity.getID()

// Check if a caller is the owner of the non-fungible token
const nft = await this._readNFT(ctx, tokenId)
if (nft.Owner !== owner) {

throw new Error(`Non-fungible token ${tokenId} is not owned by
${owner}`)

}

// Delete the token
const nftKey = ctx.stub.createCompositeKey(this.nftPrefix,

[tokenId])
await ctx.stub.deleteState(nftKey)

// Remove a composite key from the balance of the owner
const balanceKey = ctx.stub.createCompositeKey(this.balancePrefix,

[owner, tokenId])
await ctx.stub.deleteState(balanceKey)

// Emit the Transfer event
const tokenIdInt = parseInt(tokenId)
const transferEvent = { from: owner, to: '0x0', tokenId:

tokenIdInt }
ctx.stub.setEvent('Transfer',

Buffer.from(JSON.stringify(transferEvent)))

return true
}

/**
* ClientAccountBalance returns the balance of the requesting client's

account.
* @param {Context} ctx the transaction context
* @returns {Number} Returns the account balance
*/
@Transaction(false)
public async ClientAccountBalance(ctx: Context): Promise<number> {

// Get ID of submitting client identity
const clientAccountID = ctx.clientIdentity.getID()
return this.BalanceOf(ctx, clientAccountID)

}

// ClientAccountID returns the id of the requesting client's account.
// In this implementation, the client account ID is the clientId

itself.
// Users can use this function to get their own account id, which they

can then give to others as the payment address
@Transaction(false)
public async ClientAccountID(ctx: Context): Promise<string> {

// Get ID of submitting client identity
const clientAccountID = ctx.clientIdentity.getID()
return clientAccountID

}

private async _readNFT(ctx: Context, tokenId: string): Promise<NFT> {
const nftKey = ctx.stub.createCompositeKey(this.nftPrefix,

[tokenId])
const nftBytes = await ctx.stub.getState(nftKey)
if (!nftBytes || nftBytes.length === 0) {

throw new Error(`The tokenId ${tokenId} is invalid. It does not
exist`)

}
const nft = JSON.parse(nftBytes.toString())
return nft as NFT

}

private async _nftExistsById(ctx: Context, tokenId: string):
Promise<boolean> {
const nftKeyId = ctx.stub.createCompositeKey(this.nftPrefix,

[tokenId])
const nftBytesById = await ctx.stub.getState(nftKeyId)
return nftBytesById && nftBytesById.length > 0

}

private async _nftExistsByUri(ctx: Context, uri:string):
Promise<boolean> {
const nftKeyUri = ctx.stub.createCompositeKey(this.uriPrefix,

[uri])
const nftBytesByUri = await ctx.stub.getState(nftKeyUri)
return nftBytesByUri && nftBytesByUri.length > 0

}
}

Bibliography

Satoshi Nakamoto. Bitcoin whitepaper. URL: https://bitcoin. org/bitcoin. pdf-(:
17.07. 2019), 2008.

Hyperledger Foundation. Hyperledger – open source blockchain technologies.
https://www.hyperledger.org/, 2022a. (Accessed on 05/14/2022).

Hyperlerdger. A blockchain platform for the enterprise — hyperledger-fabricdocs
main documentation. https://hyperledger-fabric.readthedocs.io/en/
release-2.2/, 2022. (Accessed on 05/14/2022).

JuanBenet. Ipfs-content addressed, versioned, p2p file system. https://ipfs.io/
ipfs/QmR7GSQM93Cx5eAg6a6yRzNde1FQv7uL6X1o4k7zrJa3LX/ipfs.draft3.pdf,
2014.

Vitalik Buterin Fabian Vogelsteller. Eip-20: Token standard. https://eips.
ethereum.org/EIPS/eip-20, 11 2015. (Accessed on 05/14/2022).

William Entriken et al. Eip-721: Non-fungible token standard. https://eips.
ethereum.org/EIPS/eip-721, 01 2018a. (Accessed on 05/14/2022).

Witek Radomski Andrew Cooke et al. Eip-1155: Multi token standard. https:
//eips.ethereum.org/EIPS/eip-1155, 06 2018b. (Accessed on 05/14/2022).

Andrew Steinwold. The history of non-fungible tokens (nfts) | by an-
drew steinwold | medium. https://medium.com/@Andrew.Steinwold/
the-history-of-non-fungible-tokens-nfts-f362ca57ae10, 10 2019. (Ac-
cessed on 05/15/2022).

Seyed Mojtaba Hosseini Bamakan, Nasim Nezhadsistani, Omid Bodaghi, and
Qiang Qu. A decentralized framework for patents and intellectual property as
nft in blockchain networks. 2021.

83

https://www.hyperledger.org/
https://hyperledger-fabric.readthedocs.io/en/release-2.2/
https://hyperledger-fabric.readthedocs.io/en/release-2.2/
https://ipfs.io/ipfs/QmR7GSQM93Cx5eAg6a6yRzNde1FQv7uL6X1o4k7zrJa3LX/ipfs.draft3.pdf
https://ipfs.io/ipfs/QmR7GSQM93Cx5eAg6a6yRzNde1FQv7uL6X1o4k7zrJa3LX/ipfs.draft3.pdf
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-721
https://eips.ethereum.org/EIPS/eip-721
https://eips.ethereum.org/EIPS/eip-1155
https://eips.ethereum.org/EIPS/eip-1155
https://medium.com/@Andrew.Steinwold/the-history-of-non-fungible-tokens-nfts-f362ca57ae10
https://medium.com/@Andrew.Steinwold/the-history-of-non-fungible-tokens-nfts-f362ca57ae10

Sangwon Hong, Yoongdoo Noh, and Chanik Park. Design of extensible non-
fungible token model in hyperledger fabric. In Proceedings of the 3rd Work-
shop on Scalable and Resilient Infrastructures for Distributed Ledgers, pages
1–2, 2019.

Daily Bit. 9 types of consensus mechanisms that you
didn’t know about. https://medium.com/the-daily-bit/
9-types-of-consensus-mechanisms-that-you-didnt-know-about-49ec365179da,
04 2018. (Accessed on 05/15/2022).

Vitalik Buterin. Ethereum: A next-generation smart contract
and decentralized application platform. https://ethereum.org/
669c9e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_-_Buterin_
2014.pdf, 2014. (Accessed on 05/11/2022).

Ethereum Foundation. Introduction to smart contracts — solidity
0.8.13 documentation. https://docs.soliditylang.org/en/v0.8.13/
introduction-to-smart-contracts.html, 2022b. (Accessed on 05/14/2022).

William Entriken et al. Eip-721: Non-fungible token standard. https://eips.
ethereum.org/EIPS/eip-721, 01 2018c. (Accessed on 05/24/2022).

Ownest | nft month - history of nfts. https://ownest.io/en/news/
history-of-nfts, 2021. (Accessed on 05/10/2022).

Randhir Kumar, Ningrinla Marchang, and Rakesh Tripathi. Distributed off-
chain storage of patient diagnostic reports in healthcare system using ipfs and
blockchain. In 2020 International Conference on COMmunication Systems
NETworkS (COMSNETS), pages 1–5, 2020. doi: 10.1109/COMSNETS48256.
2020.9027313.

Mengji Chen, Taj Malook, Ateeq Ur Rehman, Yar Muhammad, Mohammad Dah-
man Alshehri, Aamir Akbar, Muhammad Bilal, and Muazzam A. Khan.
Blockchain-enabled healthcare system for detection of diabetes. Journal
of Information Security and Applications, 58:102771, 2021. ISSN 2214-
2126. doi: https://doi.org/10.1016/j.jisa.2021.102771. URL https://www.
sciencedirect.com/science/article/pii/S221421262100020X.

Shivansh Kumar, Aman Kumar Bharti, and Ruhul Amin. Decentralized secure
storage of medical records using blockchain and ipfs: A comparative analysis
with future directions. Security and Privacy, 4(5):e162, 2021.

https://medium.com/the-daily-bit/9-types-of-consensus-mechanisms-that-you-didnt-know-about-49ec365179da
https://medium.com/the-daily-bit/9-types-of-consensus-mechanisms-that-you-didnt-know-about-49ec365179da
https://ethereum.org/669c9e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://ethereum.org/669c9e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://ethereum.org/669c9e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://docs.soliditylang.org/en/v0.8.13/introduction-to-smart-contracts.html
https://docs.soliditylang.org/en/v0.8.13/introduction-to-smart-contracts.html
https://eips.ethereum.org/EIPS/eip-721
https://eips.ethereum.org/EIPS/eip-721
https://ownest.io/en/news/history-of-nfts
https://ownest.io/en/news/history-of-nfts
https://www.sciencedirect.com/science/article/pii/S221421262100020X
https://www.sciencedirect.com/science/article/pii/S221421262100020X

Rajesh Gupta, Arpit Shukla, Parimal Mehta, Pronaya Bhattacharya, Sudeep Tan-
war, Sudhanshu Tyagi, and Neeraj Kumar. Vahak: A blockchain-based outdoor
delivery schemeusing uav for healthcare 4.0 services. In IEEE INFOCOM2020 -
IEEE Conference on Computer Communications Workshops (INFOCOM WK-
SHPS), pages 255–260, 2020. doi: 10.1109/INFOCOMWKSHPS50562.2020.
9162738.

Weiquan Ni, Xumin Huang, Junxing Zhang, and Rong Yu. Healchain: A de-
centralized data management system for mobile healthcare using consortium
blockchain. In 2019 Chinese Control Conference (CCC), pages 6333–6338,
2019. doi: 10.23919/ChiCC.2019.8865388.

Gaganjeet Singh Reen, Manasi Mohandas, and S. Venkatesan. Decentralized pa-
tient centric e- health record management system using blockchain and ipfs. In
2019 IEEE Conference on Information and Communication Technology, pages
1–7, 2019. doi: 10.1109/CICT48419.2019.9066212.

Mahesh Kayastha, Shakir Karim, Raj Sandu, and Ergun Gide. Ethereum
blockchain and inter-planetary file system (ipfs) based application model to
record and share patient health information: An exemplary case study for e-
health education in nepal. In 2021 19th International Conference on Informa-
tion Technology Based Higher Education and Training (ITHET), pages 1–7,
2021. doi: 10.1109/ITHET50392.2021.9759580.

Seyed Mojtaba Hosseini Bamakan, Nasim Nezhadsistani, Omid Bodaghi, and
Qiang Qu. Patents and intellectual property assets as non-fungible tokens; key
technologies and challenges. Scientific Reports, 12(1):1–13, 2022.

Kwame Opuni-Boachie Obour Agyekum, Qi Xia, Yansong Liu, Hong Pu, Christian
Nii Aflah Cobblah, Goodlet Akwasi Kusi, Hanlin Yang, and Jianbin Gao. Digital
media copyright and content protection using ipfs and blockchain. In Interna-
tional Conference on Image and Graphics, pages 266–277. Springer, 2019.

Rosco Kalis and AdamBelloum. Validating data integrity with blockchain. In 2018
IEEE International Conference on Cloud Computing Technology and Science
(CloudCom), pages 272–277, 2018. doi: 10.1109/CloudCom2018.2018.00060.

Nishara Nizamuddin and Ahed Abugabah. Blockchain for automotive: An insight
towards the ipfs blockchain-based auto insurance sector. International Journal
of Electrical & Computer Engineering (2088-8708), 11(3), 2021.

Ammar Ayman Battah, Mohammad Moussa Madine, Hamad Alzaabi, Ibrar
Yaqoob, Khaled Salah, and Raja Jayaraman. Blockchain-based multi-party au-
thorization for accessing ipfs encrypted data. IEEE Access, 8:196813–196825,
2020. doi: 10.1109/ACCESS.2020.3034260.

EnginDemirel, SedaKaragöz Zeren, andKemalHakan. Smart contracts in tourism
industry: amodel with blockchain integration for post pandemic economy. Cur-
rent Issues in Tourism, pages 1–15, 2021.

Khaled Salah, Nishara Nizamuddin, Raja Jayaraman, and Mohammad Omar.
Blockchain-based soybean traceability in agricultural supply chain. IEEE Ac-
cess, 7:73295–73305, 2019. doi: 10.1109/ACCESS.2019.2918000.

Wickr. 10 data breach statistics for 2021 - wickr. https://wickr.com/
10-data-breach-statistics-for-2021/, 2021. (Accessed on 05/16/2022).

Information is beautiful. World’s biggest data breaches & hacks — information
is beautiful. https://www.informationisbeautiful.net/visualizations/
worlds-biggest-data-breaches-hacks/, 10 2021. (Accessed on 05/17/2022).

Gerard O’Dwye. Nordic companies targeted in wave of cyber
attacks. https://www.computerweekly.com/news/252511965/
Nordic-companies-targeted-in-wave-of-cyber-attacks, 01 2022. (Ac-
cessed on 05/16/2022).

Statista. The countries with the most gdpr data breaches
| statista. https://www.statista.com/chart/20566/
personal-data-breaches-notified-per-eea-jurisdiction/, 01 2020.
(Accessed on 05/16/2022).

Ali Akbar Rehman. System for workflow design and execution on data shared be-
tween untrusting organizations for analytics. Master’s thesis, University of Sta-
vanger, Norway, 6 2022.

https://wickr.com/10-data-breach-statistics-for-2021/
https://wickr.com/10-data-breach-statistics-for-2021/
https://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/
https://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/
https://www.computerweekly.com/news/252511965/Nordic-companies-targeted-in-wave-of-cyber-attacks
https://www.computerweekly.com/news/252511965/Nordic-companies-targeted-in-wave-of-cyber-attacks
https://www.statista.com/chart/20566/personal-data-breaches-notified-per-eea-jurisdiction/
https://www.statista.com/chart/20566/personal-data-breaches-notified-per-eea-jurisdiction/

4036 Stavanger

Tel: +47 51 83 10 00

E-mail: post@uis.no

www.uis.no

© 2022 Asahi Cantu

	Acknowledgements
	Abbreviations

	Introduction
	Background and Motivation
	Objectives
	Approach and Contributions
	Outline
	Chapter 1. Introduction
	Chapter 2. Related Work
	Chapter 3. Approach
	Chapter 4. Experimental Evaluation
	Chapter 5. Discussions
	Chapter 6. Conclusions

	Related Work
	Blockchain
	Hyperledger Fabric
	Distributed File systems and IPFS
	The IPFS System

	NFT-Related systems
	NFT on Open Blockchains
	Permissioned Blockchains

	Approach
	Introduction
	Blockchain
	Blockchain Ledger
	Additional generalities
	Smart Contracts
	Hyperledger Fabric
	IPFS

	Existing Approaches/Baselines
	Analysis
	Proposed Solution

	Experimental Evaluation
	Use case
	Experimental Setup and Data Set
	Scenario

	Experimental Results
	System registering and user enrollment
	NFT Minting and data reading access
	NFT Transfer
	NFT Burning

	Discussion
	Results
	Infrastructure statistics
	Benchmarking and Blockchain metrics evaluation

	Conclusions
	Final comments
	Blockchain and DLT
	Security
	Governance

	Future Work
	System integration
	NFT and Smart Contract extension

	Code and Instructions
	File repository
	Instructions to run the code
	Prerequisites
	Run the application

	NFT Chaincode

