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Abstract 

With the rapid expansion of the tourist sector in many nations, tourism forecasting has piqued the 

interest of marketers and academic researchers. Despite that interest, necessary knowledge about 

tourism forecasting is still lacking. This study addresses crucial questions to better understand the 

mechanisms underlying forecasting in tourism. In the present study, we investigate whether 

forecasting performance could be improved by merging tourism forecasts given by two different 

models: LF and PMI. The investigation measures forecasting of two different metrics over four 

distinct lead periods. Two error measures are employed to assess forecast accuracy: the mean 

absolute percentage error and the mean squared error.  

To combine the forecasts, we used four established methods, i.e. The simple average method (SA), 

the geometric mean method (GEOM), the inverse of the mean squared forecast error method 

(INVM), and ultimately the variance-covariance method (VACO). Our results show remarkable 

consistency. For the first metric, the combination of forecasts ranks between the two single model 

forecasts for both error measures. The findings of the other metric reveal that the forecast 

combination gives the most accurate forecast. 

In addition to the four different weighting methods, this study proposes a method of combining 

forecasts using neural networking. This latter approach shows results that differs from the other 

four methodologies. The neural networks reveal inconsistent and erroneous results when the mean 

absolute percentage error is used to rank forecast accuracy. However, when using the mean squared 

error, the approach rates first out of all the other methods for all lead times. 

Altogether, we demonstrate that combining two reasonably accurate forecasts decreases forecast 

error. Across all forecasting horizons, the combined forecast is much more accurate than the worst 

single model forecast. Furthermore, the results reveal that when two relatively accurate forecasts 

are merged, as with metric 2 in the current study, the combined forecast has more minor errors 

than both single forecasts. The findings indicate that a forecast combination in tourism might yield 

positive outcomes. 
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1 Introduction 

1.1 Background 

Scientist Francis Galton saw people at a cattle show in 1906 participating in a contest to predict an 

ox's weight in pounds (Galton, 1907). Although no one, including cattle specialists, could 

determine the ox's precise weight, the mean value of all the visitors' estimates was just a pound 

higher than the animal's actual weight (Galton, 1907). In other words, the group estimate was 

significantly more accurate than any individual estimate. Galton had discovered how a collection 

of individuals might be wiser than any of its members (Surowiecki, 2005). The scientist's discovery 

is the essence of the wisdom of crowd's theory. The theory might be considered a forerunner for a 

particularly significant topic in today's society: forecast combination. 

Forecasting is a method of predicting future behavior by evaluating historical trends and data. 

(Kun, 2021). The method is a prerequisite for properties to accurately analyze their demand, price 

fluctuations, trends, and seasonality. Many industries have benefitted from forecasting 

(Arsmtrong, 2001), and the tourism sector is no exception (Song et al., 2009). With the rapid 

expansion of the tourist sector in many established and emerging nations, tourism forecasting has 

sparked the interest of marketers and scholars alike. Accurate tourist demand estimates are critical 

for the private sector regarding business planning and investment or destination governments 

regarding tourism policy creation and execution (Song et al., 2009). Due to the nature of the sector 

and its operational characteristics and problems, demand forecasting in the hotel industry has 

become relatively significant (Song et al., 2009). Forecasting demand is vital because of the 

enormous changes that may occur and because it is difficult to assess the success of attempts to 

increase occupancy rates (Yüksel, 2007). 

Various quantitative strategies have been used to anticipate tourism demand throughout the years. 

Time series modeling, live forecasting, and regression are examples of these practical approaches 

(Song et al., 2009). This study investigates whether forecasting performance is enhanced by 

merging different forecasting models' tourism forecasts. Chen and Chuang (2000) observed that 

the days between the forecast and the projected day significantly affected the amount of demand 
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uncertainty. Given the emphasis that tourist planners and commercial decision-makers place on 

forecasting accuracy, academics must investigate the best methodologies for tourism demand 

forecasting. 

Combination forecasting strategies combine separate forecasts given by several models using 

suitable weighting algorithms described in the general forecasting literature. Previous research on 

forecast combination indicates that combining distinct forecasts might increase forecasting 

accuracy (Bates & Granger, 1969). Although forecast combination has received much attention in 

the general forecasting area, its role in tourism forecasting remains unsettled.  

In this thesis, we investigate whether forecasting performance is enhanced by merging tourism 

forecasts from different forecasting models. Furthermore, we examine how forecast combinations 

may enhance the overall forecasting accuracy of tourism demand models. The main goal of the 

present study is to go deeper into the possibilities for improving forecasting outcomes in the hotel 

industry by merging forecasts from two distinct types of individual forecasts. The present work is 

based on the demand for various hotels in Norway, Sweden, and Finland within a highly volatile 

timeframe; the Covid-19 pandemic. The research issue addressed in this thesis is: Does combining 

two different demand predictions result in more accurate demand projections? 

1.2 Outline 

The analysis of this thesis follows four steps. First, the data supplied for the thesis is evaluated, 

and the forecast inaccuracy for each of the four lead periods is investigated. Second, five 

alternative combination algorithms are employed to provide combination forecasts across four 

periods: 7-days, 14-days, 28-days, and 42-days. Third, the statistical significance of the variations 

in accuracy between combination predictions and single forecasts is determined. Fourth, 

differences in predicting accuracy are investigated in terms of the combination technique utilized 

and the length of the forecasting horizon.  
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The thesis is broken into seven sections. Section one (Introduction) introduces the topics discussed 

within the present work and establishes the goal of the thesis. Section two (Theory) presents the 

relevant theory for the thesis. The third section (Data) presents the dataset and describes some of 

its essential aspects. The fourth section (Methods) presents the methods utilized to solve the thesis 

question. The findings of the approaches mentioned in section four are presented in section five of 

the thesis (Results). Following that, section six (Discussion) addresses the outcome concerning the 

thesis's question. Finally, section seven (Conclusions) presents our main conclusions. 
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2 Theory 

2.1 Forecasting  

Forecasting has always been crucial to decision-making and planning. The future's unpredictability 

challenges individuals and organizations to minimize risks while maximizing benefits. To address 

real-world difficulties, the enormous variety of forecasting applications necessitates a vast 

collection of forecasting approaches (Petropoulos et al., 2022). In the 21st century, forecasting has 

grown tremendously in both theory and practice. Rapid computer developments have made it 

possible to analyze more extensive and complicated data sets, sparking interest in analytics and 

data science.  

Consequently, the forecaster's toolbox has expanded in quantity and sophistication (Petropoulos et 

al., 2022). The current expansion in machine learning has permitted the development of dense and 

complex prediction algorithms, which are gaining popularity among forecasters. Other 

approaches, such as statistical methods like Bayesian forecasting and complicated regression 

models, have also profited from computer breakthroughs (Petropoulos et al., 2022). Moreover, 

advancements have not been restricted to those based on technological developments. For instance, 

the literature on judgmental forecasting has grown significantly, owing primarily to the "wisdom 

of crowds" concept (Petropoulos et al., 2022). 

Forecasting theory is founded on the assumption that current and historical information may be 

used to create predictions (Petropoulos et al., 2022). A forecast is a prediction regarding the future 

value of a variable. Forecasts, or predictions, rely on data about variables that change through time, 

introducing new difficulties and possibilities. Multiple regression analysis enables us to quantify 

past relationships, determine if those relationships have remained stable over time, create 

quantitative projections about the future, and evaluate the correctness of those forecasts (Stock, 

2020). 
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An essential stage in forecasting is often determining when something can be reliably forecasted 

and when projections will be of little value. A practical and good forecast can capture authentic 

patterns and linkages in historical data while not replicating previous occurrences that will not 

occur again (J.Hydman & Athanasopoulos, 2018). A competent forecasting model can distinguish 

between a random fluctuation in primary data that can be ignored and a genuine trend that should 

be modeled. Some believe forecasting is impossible in a changing environment; however, this is 

incorrect. Every environment changes, and a good forecasting model reflects the way things 

change. Forecasts seldom presume that the environment remains constant (J.Hydman & 

Athanasopoulos, 2018). A typical forecasting assumption is that the environment will continue to 

evolve in the same manner it has in the past. A highly volatile environment will continue to be 

extremely volatile in the future. Conversely, a nonvolatile environment will continue in the same 

way in the future (J.Hydman & Athanasopoulos, 2018). 

Several forecasting models may be used to anticipate the future. The availability of historical data 

determines the optimal model, the strength of the correlations between the forecast variable and 

any explanatory factors, and the intended application of the predictions (J.Hydman & 

Athanasopoulos, 2018). The essential forecasting models in this thesis are classified as quantitative 

forecasting. According to Hydman and Athanasopoulos (2018), quantitative forecasting may be 

used when two requirements are met. Firstly, numerical information about the past must be 

available. Secondly, it must be realistic to expect that certain features of historical patterns will 

persist in the future. 

2.1.1 Demand forecasting 

Demand forecasting in the production of goods may be seen as a function connected to projecting 

the consumption of items so that they can be created correctly to fulfill demand. Demand 

forecasting is a typical statistical activity in business. It influences production, transportation, and 

staff scheduling choices and provides a direction for long-term strategic planning (Archer, 1987). 

Proper demand forecasting provides organizations with helpful information about their potential 



 

 

6 

 

in their present and other markets, allowing managers to make educated pricing, company growth 

plans, and market potential decisions (Archer, 1987). 

The prediction for the future may differ depending on what type of demand forecasting the 

company chooses. There are several different ways to conduct the forecasting process within 

demand forecasting. Utilizing several demand forecasts may enhance forecasting performance 

(Archer, 1987). Using many forecasting models can expose discrepancies in forecasts. These 

disparities may indicate a need for more study or improved data inputs (Archer, 1987).  

The data provided in this thesis comes from short-term demand forecasting. Short-term demand 

forecasting is limited to the next three to twelve months (Rheude, 2020). This can help manage the 

just-in-time supply chain. Looking at short-term demand may change estimates depending on real-

time sales data. It enables the ability to react swiftly to changes in client demand (Rheude, 2020). 

Forecasting is divided into two main parts: quantitative and qualitative forecasting. Within the 

different types of demand forecasting, there are several ways to create the forecasts quantitively 

and qualitatively. This thesis will go deeper into the econometric demand forecasting approach. 

The econometric technique necessitates data computation (Rheude, 2020). The method combines 

sales data with information about external influences that influence demand. After the 

combination, a mathematical formula is developed to forecast future client demand. The 

econometric demand forecasting approach considers economic factor interactions (Rheude, 2020).  

2.1.2 RMS and Hotel Forecasting 

Revenue management has expanded dramatically in the lodging sector over the last three decades 

and is now regarded as an essential component of hotels' marketing and operational strategy (Cross 

R. C., 2011). Revenue management uses disciplined analytics to forecast customer behavior at the 

micro-market level and optimize product availability by utilizing price elasticity to maximize 

revenue growth and profit. Revenue management's primary goal is to sell the right product to the 

right consumer at the right time, at the right price, and with the appropriate bundle (Cross R. G., 
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1997). Hotel revenue management strategies were created to economically match or control 

variable demand with the hotel's limited and perishable capacity. This is accomplished by utilizing 

a variety of room pricing and allocation mechanisms and addressing key revenue management 

issues. These notions include reserving a portion of the capacity for higher-paying customers later, 

efficient pricing discrimination tactics to collect as much of the consumer surplus as feasible, and 

rigorous overbooking regulations to prevent consumers from canceling at the last minute 

(Koupriouchina et al., 2014). 

A vital part of the revenue management tasks for hotel businesses is forecasting demand. 

Forecasting in hotels varies for individual and group guests. Because of group consumers, 

management better understands demand's quantitative and qualitative components. Meanwhile, 

individual demand is more difficult to foresee (Yüksel, 2007). As the day of stay approaches, hotel 

room occupancy must be anticipated and re-predicted several times. Forecasts calculated many 

weeks in advance enable revenue managers to create marketing tactics that may be deployed in 

reaction to potential low-demand times, generally collaborating with the sales team. Short-term 

projections decide between a few tactical options, such as staff management or inventory 

modifications. Consequently, it is critical for an effective demand management system to evaluate 

the accuracy of a forecasting method at multiple distinct prediction horizons and track how 

accuracy changes as the date of stay approaches (Koupriouchina et al., 2014). 

Ultimately, a revenue management system requires forecasts of several quantities. These quantities 

are cancellation probabilities, price elasticity, demand, and revenue. The performance of the 

revenue management system for a hotel business depends very largely on the accuracy of these 

forecasts (Koupriouchina et al., 2014). As defined previously, a forecast is a prediction regarding 

the future value of a variable. Consequently, a hotel business cannot rely on a forecast's prognosis 

as uncertainty is always connected to the future. Improving and sustaining forecast quality is a 

critical challenge for revenue managers and automated tools. Ultimately, forecasting accuracy has 

emerged as one of the most pressing issues in the lodging industry. Subpar execution of the 

forecasts will impede the hotels' efforts to optimize income (Koupriouchina et al., 2014). 
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The hotel sector is subject to swings in demand. Due to the nature of the sector and its operational 

characteristics and obstacles, demand forecasting has become very significant in the hotel industry 

(Yüksel, 2007). Hotel forecasting varies depending on whether the consumer is a solitary or a 

group. Due to group clients, management better understands demand's quantitative and qualitative 

components (Yüksel, 2007). 

Conversely, individuals make forecasting demand more challenging. Forecasting challenges in 

hotels can be approximated using either downward or upward forecasting. Downward forecasting 

employs aggregation, which means that the difficulties are forecasted together. Upward forecasting 

assesses the concerns independently. According to Yüksel (2008), downward forecasting is less 

expensive and more accurate during stagnant demand periods. In nonstationary demand periods, 

however, upward forecasting is recommended (Yüksel, 2007). The Covid-19 epidemic has 

significantly impacted the data used for the present study. Consequently, this thesis will 

concentrate on upward forecasting.  

Forecasting demand at a high level is critical for a successful hotel operation. A robust prediction 

model may assist purchasing choices, action plans, marketing strategy, hotel upkeep, personnel 

decisions, and inventories. However, a faulty forecasting model may cost a hotel business much 

revenue, making preparing for the future challenging. Consequently, the value of improved 

forecasts is relatively high in the hotel industry (Yüksel, 2007). 

2.1.3 Forecasting accuracy 

Because the future is unpredictable, errors in forecasting are inevitable. The error made by the 

forecast is realized after time has passed, and the actual value is measured. The discrepancy 

between the actual value !" and the forecasted value !#"  is known as the forecast error (Stock, 

2020). 
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Forecast	error = !" − !#" [1] 

Since forecast errors are unavoidable, the forecaster's goal is to minimize them as much as possible 

to make the forecasts achieve maximum accuracy. A quantitative measure is needed to reach this 

goal and understand what it means to have a small forecast error. 

Various forecasting accuracy measures have been suggested and widely explored in the generic 

forecasting literature. Although there are numerous forecast accuracy measures, there is no 

universally accepted measure for all situations because they all have their own set of issues 

(Koupriouchina et al., 2014). In this study, we decided to use the mean absolute percentage error 

and the mean squared forecast error to evaluate and determine the performance of the different 

forecasting methods.  

The mean absolute percentage error (MAPE) is one of the most frequently used measures for 

forecast accuracy. This measure was selected because it is easy to communicate and interpret by 

the hospitality industry and helpful in comparing forecasts (Koupriouchina et al., 2014). It 

measures the accuracy as a percentage and is found by taking the sum of the individual absolute 

errors |3|4 , divided by the actual value !4, and finding the average (Vandeput, 2019). 

MAPE	 =
1
9
	:

|34|

!4

;

4<=

[2] 

Another of the most commonly used measures is the mean squared forecast error (MSFE), 

measured by squaring the individual forecast errors and then finding the average sum of the 

squared errors.  
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MSFE	 =
1
9
	:34

@

;

4<=

[3] 

The mean squared error is often used because squaring the error numbers yields all positive values. 

Because mean squared deviations are easier to work with mathematically, they are frequently 

utilized in statistical optimization. In practice, significant forecast errors can be far more costly 

than small ones. A sequence of minor forecast errors usually generates only minor issues for the 

user, but a single significant forecast inaccuracy might confuse the entire forecasting process. The 

MSFE captures this principle by calculating the square of the forecast error, which means that huge 

errors are penalized significantly more than small ones (Stock, 2020). 

Significant prediction errors can cause severe issues due to misallocating resources in tourism 

demand and the hospitality industry. Therefore, having multiple minor deviations rather than a few 

major ones is preferable. Therefore, knowing which forecasting methods to avoid can be 

interesting for those in the industry. This is also why the MSFE was chosen as an error measure.  

2.2 Wisdom of crowds 

The wisdom of crowds' theory holds that big groups of individuals are more innovative than 

individual specialists in problem-solving, decision-making, inventing, and forecasting 

(Surowiecki, 2005). The notion is that an individual's viewpoint is intrinsically skewed (Halton, 

2021). However, using the average knowledge of a population can reduce the bias or noise to 

provide a more precise and coherent outcome. James Surowiecki (2005) popularized the wisdom 

of crowd's notion by investigating how huge groups have produced superior judgments in various 

industries. Despite its current popularity, the notion of wisdom of crowds may be traced back to 

ancient Greece and, more particularly, Aristotle's theory of collective judgment (Maskivker, 2013). 

There is always some noise in any demand forecasting situation, making forecasting difficult. The 

wisdom of crowds' idea holds that because idiosyncratic noise is associated with any individual 

answer, taking the average of numerous replies tends to balance out the noise. The wisdom of 
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crowds' notion does not only hold to human estimate. The idea may also be applied to computer 

estimations and algorithms in current times. The wisdom of crowds' concept influences the notion 

of combining forecasts (Petropoulos et al., 2022).  

2.2.1 Collective intelligence 

Collective intelligence, according to (Kurvers et al., 2016) is one of the most promising techniques 

for improving decision-making. In relation to solving complicated cognitive challenges, collective 

intelligence refers to a group's ability to outperform individual decision-makers. In an investigation 

performed by Kurvers and co-workers (2016), they looked at two significant areas of medical 

diagnostics: breast and skin cancer detection. They investigated whether integrating the 

independent judgments of numerous doctors outperformed the best doctor in a group. The study 

utilized simulation research based on massive real-world datasets containing more than 140 

doctors making more than 20,000 diagnoses (Kurvers et al., 2016). The study discovered that 

diagnostic accuracy similarity is necessary for collective intelligence. When doctors' diagnostic 

accuracy was relatively similar, aggregating their independent judgments outperformed the best 

doctor in the group. However, when doctors' diagnostic accuracy differed too much, the study 

found that aggregating the judgments did not result in more accurate detection (Kurvers et al., 

2016). 

2.3 Combining forecasts 

Initially, the forecasting process was based on a single approach from the available alternatives. 

However, because of the market's complexity, single outcomes may not be adequate for decision-

making in many cases. Aiming towards increasingly accurate projections with the lowest possible 

error, the theory of combining forecasts erupted. Combining forecasts is a process of composing 

predictions using some objective or subjective procedure to generate a final combined forecast 

(Mancuso & Werner, 2013). Over the years, a substantial body of literature on forecast 

combinations has accumulated. This line of research aimed to decide whether prediction accuracy 

may be significantly improved by combining multiple individual forecasts. The following section 
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of the thesis gives a detailed evaluation of some discoveries made on the subject of forecast 

combining. 

The work by Bates and Granger (1969) is regarded as a critical piece on combining forecasts. 

Slightly earlier, Crane and Crotty (1967) published an article where they suggested that combining 

forecasts through regression might yield positive findings. In their study, Crane and Crotty (1967) 

combined two forecasting techniques; time series analysis and multiple regression. The two-stage 

model was successfully applied to an asset management problem within banks, forecasting demand 

deposits. The authors concluded that the two-stage model effectively integrates knowledge from 

the dependent variable's previous patterns with information from casually connected variables 

(Crane & Crotty, 1967). Despite the two authors' findings, it was the work of Bates and Granger 

(1969) and Reid (1968, 1969) that supplied the first push for the creation of prediction in 

combining forecasts theory (Clemen, 1989). 

J.M. Bates and C.W.J Granger (1969) analyzed whether combining two forecasts would better 

predict future behavior. The authors observed that merging two forecasts of the same event might 

result in fruitful findings if the goal was to get the best forecast possible. Their work combined 

two different forecast sets of airline passengers to create a composite set of forecasts. The issue 

for Bates and Granger was determining how much weight to give each prediction. The goal was 

to select an approach likely to provide minimal errors for the combined forecasts. They proposed 

combining forecasts using a linear combination of two non-biased objective projections. The first 

projection was given a weight B, and the other was given a weight (1 − B). Ultimately, the 

following equation was created: 

E = 	BF= + (1 − B)F@ [4] 

where F= is the value of the first forecast, F@ is the value of the second forecast, C is the value of 

the equation, and k is a factor that minimizes the error variance (Bates & Granger, 1969). 
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Essentially, Bates and Granger used the historical mistakes of each of the original forecasts to 

calculate the weights to assign to these two original forecasts when constructing the combined 

forecasts. They eventually determined that the composite forecasts produce a lower mean-square 

error than the original ones. Most forecasters regard Bates and Granger as foundational authors in 

combining predictions (Clemen, 1989). In some ways, this is accurate. These researchers were the 

first to construct a broad mathematical model for optimally integrating forecasts and use their 

methodologies in real-world circumstances (Clemen, 1989). 

Reid (1968) discovered three actual gross domestic product growth rate estimations. The 

publication released one of the earliest articles where the study aimed to combine forecasts for an 

optimal error variance measure. In the upcoming year, Reid published another article on the 

combining forecast subject. Reid (1969) developed the mathematics for combining more than two 

forecasts. The development was then used to combine multiple forecasts for several economic 

variables. He discovered that it was possible to gain some improvements in forecasting by 

combinations of forecasts. 

After the discoveries by Bates and Granger (1969) and Reid (1968,1969), the field of forecast 

combination got a large amount of attraction. The number of studies and discoveries made in the 

field spiked substantially. A cumulative number of research articles published on combined 

forecasts from 1960 to 1990 are represented in Figure 1. 
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Figure 1: Graph showing the number of articles published on combined forecasts from 1960  to 1990. 

(Clemen, 1989) 

The discoveries made by Bates and Granger and Reid caused a stream of published articles. This 

stream of publishment included important work by Dickinson (1973, 1975), Bunn (1975, 1977), 

and Öller (1978). The articles are theoretical, emphasizing building distinct sections of statistical 

models for forecast combinations. These works are considered essential additions to the forecast 

combination field (Clemen, 1989).  

Madriakis and Hibon (1979) and Newbold and Granger (1974) conducted seminal works 

comparing forecasts' performance for various forecasting methods. Madriakis and Hibon (1979) 

analyzed why some forecasting methods outperformed others under various conditions. The 

studies showed that basic forecasting models outperformed advanced ones when considerable 

randomness was included in the data (Makridakis & Hibon, 1979). In the following years, Spyros 

Makridakis conducted a forecasting competition called the "M-competition", which is discussed 

in detail in Makridakis (1982). In this competition, 1001 different economic time series were 

forecasted using various time series forecasting methods. Forecast performance was assessed using 

several error metrics. While the competition's primary goal was to assess the predicting 
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performance of various time series approaches, two distinct combination strategies were 

investigated. Both combinations fared well compared to the different strategies, with the simple 

average outperforming the two (Makridakis et al., 1982; Clemen, 1989). 

Applications have grown in number as the concept of combining forecasts, and the usefulness of 

doing so has expanded. According to Clemen (1989), using a combination of forecasts increases 

forecast accuracy. Combining forecasts has proven to be a valuable tool for any industry that needs 

demand predictions. Many theoretical and empirical concerns in forecasting have been addressed, 

and distinct fundamental issues have been answered to a large extent. However, several difficulties 

must be addressed throughout various businesses. When combining forecasts, the most pressing 

challenge is determining how to assign weights to each forecast. This study will go more into this 

issue for the hotel industry. 
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3 Data 

This thesis examines the accuracy of hotel demand forecasts. Actual – and predicted – demand 

must be evaluated to develop conclusions relating to the thesis aim. d2o is the innovator and market 

leader in real-time performance management software. d2o's objective is to provide hotels with 

analytics and optimization to quickly deploy resources where and when they are most required. 

d2o creates algorithms and tools for precise forecasting using real-time data (d2o, 2020). d2o 

provided the data used in this study. In addition, live forecasting data is provided by each hotel.  

Each lead time comprises two projections: LF and PMI. The LF is a regularly updated prognosis 

by individual hotel revenue management teams. In certain circumstances, the LF and PMI are 

similar in the data. In this scenario, the hotel companies elected to rely on the PMI projection rather 

than their own forecast. 

3.1 General information and labeling 

This section explains the organization of the data. The dataset contains 1346 rows of data with 

information about 32 hotels. The data contains various information and labeling, which is 

explained in this part. The data provided in this thesis is labeled as shown in the list below.  

• Chain: The three different types of hotel chains that is represented in the data: 

o Chain A: A large hotel chain with at least three different brands 

o Chain B: A small hotel chain with unbranded individual properties 

o Chain C: A small hotel chain with a franchise and independent properties 

• Brand: Chain's brand, or a brand operating as a franchise. The same brand always has the 

same label in the data.  

• Fake name: Chain + brand + name = fake property name 

• Type: The three different types of hotels represented in the data: 

o Type B&B: The properties whose primary source of revenue is by far their rooms 
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o Type M&E: The properties that get much revenue from rooms and rely on meetings 

and other events. 

o Type XX: The properties that benefit mainly from their location (for example, 

airport hotels) or other reasons. 

• City: The city in which the hotel is located 

• Capacity: The property's current maximum capacity of rooms. 

• LF:  Live forecast; this is the saved forecast used in other parts of PMI. The live forecast 

can be created manually, imported by an external source, or automatically updated by 

PMI's algorithms. 

• PMI: PMI's forecast using ML and statistical algorithms, without human intervention. D2o 

provided it. 

• XX 7, XX 14, XX 28, and XX 42: Forecast type and the number of days before it was 

created (lead time). 

• Actual: The actual value of RN and ARR. 

3.2 Room Nights and Average Room Revenue 

In the present study, forecasts of two separate metrics are considered: room nights and average 

room revenue. Each hotel's number of booked rooms is abbreviated as room nights (RN). The 

average room revenue (ARR) forecasts represent the average room price for which a hotel may 

sell its rooms. Interestingly, the overall forecasts for room nights perform much worse than the 

overall forecasts for average room revenue. Table 1 presents the accuracy of the two forecasts, 

each with the four different lead times. The accuracy is measured by using mean absolute 

percentage error (MAPE). 
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Table 1: MAPE measurements of different forecasts presented in the present study 

Looking at the percentages in Table 1, the mistake in the ARR estimates is significantly lower than 

the error in the room nights projected. The difference in accuracy between the room nights 

prediction and the average room revenue projection is attributable to the fact that the room nights 

forecast is substantially more sensitive during highly volatile forecasting periods, such as the 

period from which the data in this thesis was projected. Even in a very unpredictable timeline, a 

hotel must always have some reference to the price they charge for a hotel room to remain in 

business. The room nights variable, in contrast, is significantly more delicate, as several variables 

might influence the number of people that check into a hotel. Covid-19 made it nearly impossible 

for hotel owners to forecast customers in this situation. Thus, the room nights projections perform 

significantly worse than the ARR estimates. 

3.3 Forecasting horizon 

Forecasts for one, two, four, and six weeks are included in the data. This section of our study 

demonstrates the accuracy of the data within the different time horizons and shortly discusses the 

impact of time horizons in forecasting. Research shows that a short lead time decreases the risk of 

demand forecasting (De Treville, 2014). Longer lead times increase risk since the further distant 

the projection, the more uncertainty around the prognosis. Demand forecasting risk requires 

optimizing the production schedule, which may be controlled via lead time compression. 

According to the influence of demand forecasting accuracy, the shorter the lead time, the more 

minor the inaccuracy of demand uncertainty (Chen & Chuang, 2000). 
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Table 1 clearly illustrates that the forecast is less accurate the further away the projected day is. 

This poses a significant problem as it is much more beneficial for a revenue management team to 

have good predictions for larger lead times. The greater the time interval between the forecast date 

and the actual date (i.e., the forecast horizon), the more successful the revenue management 

response to the projection (Benavides-Velasco et al., 2014). For example, if it is forecasted many 

months in advance that a hotel will have poor occupancy during a specific week, revenue 

management and sales teams might utilize this time to develop and implement initiatives to rectify 

the issue. However, if the projection is only known a few days in advance, only a few revenue 

management tactical choices remain possible, such as altering inventory constraints (Benavides-

Velasco et al., 2014). 

3.4 Data representation 

Each hotel has two sorts of forecasts: LF and PMI. LF is each hotel's prediction. Each hotel has 

unique conditions, and the prediction accuracy of one hotel may differ significantly from that of 

another. Hence, the accuracy of the LF is highly dependent on the skill of the various hotel 

management revenue teams. A plot of the seven-day projections for hotel AC1 is created to 

understand the forecasts and their accuracy better. Forecast values are plotted versus actual values; 

the plot is shown in Figure 2. It is noteworthy that this is not a general representation as the plot 

for another hotel may be substantially different. 
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Figure 2: Plot of the 7-day forecasts for hotel AC1 (LF and PMI). The forecasts are plotted against the 

actual value. The days are along the x-axis, and the number of rooms that are booked at the hotel is along 

the y-axis 

A box plot of the error values is constructed to understand the data better. Box plots are valuable 

because they give a visual overview of the data, allowing for easy determination of mean values, 

data set dispersion and skewness. Box plots split data into portions that include around 25% of the 

data in that set. The plot is presented in Figure 3.  
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Figure 3: A boxplot of the MAPEs for each RNs forecast series. The gap between the bottom line and the 

box reflects the data's 0-25th percentile. The gap between the box and the top line reflects the 75th-100th 

percentile, while the box represents the 25th-75th percentile. 

The supplied dataset has unpredictable data as the covid-19 epidemic made forecasting demand 

challenging. Consequently, there are some considerable outliers in the data. The significant outliers 

are factored into the calculation of the combinined forecasts. Thus, it is critical to visualize the 

significant outliers to have a solid grasp of the influence such outliers might have on the 

computation, particularly with a smaller dataset. The y-axis size is modified to visualize these 

outliers; the results are shown in Figure 4. The numerous dots show the data outliers over the 100th 

percentile in the box plot in Figure 4. 
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Figure 4: Representation of significant MAPE outliers on RN. 

As shown in Figure 4, the most significant outliers vary from 4000 percent to 25000 percent, which 

is exceptionally high. The high outlier values will influence the data's subsequent computation. 

The plot in Figure 3 and Figure 4 are of the MAPEs in the RN forecast. A similar plot is made of 

the ARR forecasts errors. The plot is shown in Figure 5. 
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Figure 5: A boxplot of the MAPEs for each of the ARR forecast series. 

When the y-axis in Figure 3 and Figure 5 are compared, the ARR projection is more accurate than 

the RN forecast. Figure 5's error levels are significantly lower than Figure 3 and Figure 4. Outlier 

values in the ARR forecast are not nearly as significant as those in the room nights forecast. 

3.5 Considerations based on pre-analysis data characteristics 

Due to the nature of the data, specific changes to the design of this illustrative research are judged 

essential. The changes are discussed in this section as they mirror the reality of revenue 

management techniques. The changes also emphasize the significance of error messages and the 

implications of addressing such failures. Furthermore, the revisions emphasize the need for 

accurate prediction numbers when merging forecasts. 
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Segment-level data should be used ideally since it best depicts the reality of daily occupancy 

forecasting for hotel revenue management, where choices are segment-based and require segment-

level prediction and accuracy evaluations (Koupriouchina et al., 2014). This method would result 

in significantly more accurate forecasts with fewer significant anomalies. However, as the 

following discussion demonstrates, the reality of operating property level data shows that this may 

not always be possible due to the nature of some error measurements (Koupriouchina et al., 2014). 

Another essential factor to consider is that there will always be some ambiguity in the data because 

no one can foresee the future with absolute precision.  

The MAPE measure is employed as one of the vital error measures throughout this study. The 

MAPE measure's formula is presented in equation [5]. According to the formula, the MAPE 

measure divides by the actual value at period t. When a segment's actual occupancy is zero, the 

MAPE is undefined; that is, it cannot be computed due to the zero value of its denominator, 

resulting in the incomputable value message "#DIV/0!" within MS Excel. Clearly, the problem of 

missing observations (of computed error measures) owing to zero daily actuals defines the MAPE 

measure and all forecasting accuracy measures with a percentage error component (Koupriouchina 

et al., 2014).  

There are various solutions to the problem of zero values. If the number of incomputable days is 

considerable, the hotel might not employ any percentage-based error metrics. This strategy can 

influence the reliable forecast since different types of forecast error metrics provide different 

outcomes. Another appropriate method is to disregard the incomputable periods. The main 

disadvantage of the latter strategy is that it ignores a potentially large number of forecast errors. 

Many of the incomputable periods could have had a non-zero forecast, implying a non-zero 

forecast error for that incomputable period that should have been included in the accuracy 

assessment (Koupriouchina et al., 2014). Despite the disadvantage, this technique may be the best 

when just a tiny fraction of the dataset contains zero values. There were 24 of 1346 rows in the 

dataset used for this study that included such zero values; hence it was decided to discard the 

incomputable periods.  
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4 Methods 

Five methods of combining forecasts have been used in this study. In this section, we first 

examined the single model forecasts and provided various prediction error measurements. 

Furtherly, we present the five methods we used to integrate the forecasts. 

4.1 Performance of PMI and LF 

4.1.1 Forecast accuracy 

Performance was evaluated using two of the most popular accuracy measures in the hospitality 

forecasting literature; the MAPE and the MSFE (Koupriouchina et al., 2014). The error measures 

for each data row were calculated in MS Excel. Furtherly, the mean of all the measures was 

calculated. Feil! Fant ikke referansekilden. 

 

Figure 6: LF and PMI MAPEs for RN and ARR 

Figure 6 represents the MAPEs for each forecast on RN and ARR. The figure shows that PMI7 

performed the best on both RN and ARR, having the lowest MAPEs of 38,2% and 11,5%. The 
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PMI performed better than LF for all time horizons on RN. However, the PMI only performed 

better on the seven- and fourteen-day time horizons on ARR. Figure 7 represents the MSFE 

measures. The MSFEs provided the same results as the MAPEs, with the PMI performing the best 

on the seven- and fourteen-day time horizon. The PMI7 performed the best for both room nights 

and ARR, according to the MSFEs. 

 

Figure 7: LF and PMI MSFEs on RN and ARR 

4.1.2 Forecast statistics 

In order to understand the characteristics of the data, statistics of the error measurements were 

analyzed. The PMI7 forecast was thoroughly analyzed as it was the most accurate forecast. The 

standard deviation for each of the different prognoses was calculated, and the result of PMI7 was 

further used to check the distribution of errors around the mean value of 38%. The standard 

deviation measurements are shown in Feil! Fant ikke referansekilden..  
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Table 2: MAPE Standard deviations of LF and PMI 

 

Figure 8: PMI7 Absolute Percentage Error distribution 

The calculated standard deviations are shown in Feil! Fant ikke referansekilden.2, pointing to a 

massive spread in the absolute percentage errors. Although the PMI7 had the lowest MAPE and 

was most accurate, the errors are more spread out than for other prognoses. The reason for these 

vast deviations were three extremely high dataset errors. Figure 8 shows that the distribution of 

the absolute percentage errors positively skewed as there were more errors below the mean value 

than above. Consequently, the graph skewed to the left.  
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4.1.3 Observations and considerations 

The MAPE and the MSFE values indicated that the PMI and LF forecasts performed poorly. The 

best performing prognosis was the PMI7. Although the PMI7 performed the best, a MAPE of 38% 

on room nights is still a significant percentage error. Overall, the MAPE and MSFE measurements 

were unnaturally high, indicating a significant improvement potential. 

The forecasts had significant errors due to some extreme values in the dataset. This resulted in 

skewed data with high error measures and massive standard deviations. The MAPEs were 

measured without the extreme value dates to comprehend the magnitude of which those values 

offset the data. The calculations showed a 17% decrease in MAPE for PMI7. In addition, the 

standard deviation decreased by 650%. It was considered to ignore the extreme value dates when 

evaluating the forecasts. However, it was ultimately decided to keep the dates in the dataset as the 

errors were fundamental and represented how inaccurate the forecasts may be in today's 

unpredictable environment.   

4.2 Combining forecasts  

The performance evaluation showed that the single model forecasts were poor. Hence, a way of 

producing more accurate forecasts was necessary. This study conducts a set of different 

combination approaches to study the possibility of achieving more accurate forecasts. Specifically, 

we investigated four different combination methods from the forecasting literature. In addition, we 

created a way of combining forecasts using neural networking. 

4.2.1 Simple average 

The most straightforward procedure for combining forecasts was to take an arithmetic average. 

This process offered a reasonable starting point and was found to outperform more complex 

combination methods (Clemen, 1989). According to Clemen (1989), the simple average (SA) 

offers the advantages of impartiality, robustness, and an excellent "track record" in economic and 

business forecasting. Therefore, the SA is considered a popular choice in many forecast 
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combination studies and a valuable benchmark. Thus, the SA method was the first method used to 

combine the forecasts in this study.  

Because the combined weight was assigned equally to each of the individual forecasts, the simple 

average combination approach calculated the composite forecasts without considering the previous 

performance of the individual forecasts. The simple average combination method is expressed as, 

FI4 = 	:
FJ4
9

;

J<=

	 [5] 

where FI4 was the combined forecast, FJ4 was the Lth forecast in time t, and n was the number of 

individual forecasts that are combined. 

In this study, the PMI and the LF are combined by the SA procedure, and the SA was found for 

each time horizon. The SA was found in MS Excel by first finding the arithmetic average of the 

predictions for all the dates. The combined forecasting predictions were denoted with AVG 

followed by the time horizon. The simple average for a seven-day time horizon would then be 

AVG7. Table 3 shows a section of the calculated output using the SA combination method.  

 

Table 3: MAPE calculation with SA combination method 

Further, the procedures of finding the error measures were conducted. The MAPE and the MSFE 

of the AVG forecast were measured to analyze the combined forecasts' performance. The orange-

colored cells in Table 3 show a section of the calculated MAPE for the SA combined forecasts.  

Actual AVG-7 AVG-14 AVG-28 AVG-42 Actual ARR AVG:7 AVG:14 AVG:28 AVG:42 AVG7 AVG14 AVG28 AVG42 AVG_7 AVG_14 AVG_28 LF_42
8 7,0 11,0 46,0 55,0 824,2 362,7 463,6 1 016,9 979,6 12,50 % 37,50 % 475,00 % 587,50 % 55,99 % 43,76 % 23,38 % 18,85 %

14 28,0 29,5 46,0 59,5 1 190,7 875,3 1 174,7 1 142,0 1 135,4 100,00 % 110,71 % 228,57 % 325,00 % 26,49 % 1,34 % 4,09 % 4,65 %
10 25,0 25,0 44,0 48,0 858,2 779,0 1 011,3 1 025,4 1 030,7 150,00 % 150,00 % 340,00 % 380,00 % 9,22 % 17,84 % 19,49 % 20,11 %
15 26,0 38,0 71,0 77,0 964,1 946,6 949,4 960,0 966,8 73,33 % 153,33 % 373,33 % 413,33 % 1,82 % 1,53 % 0,43 % 0,28 %
22 34,5 48,5 47,5 51,5 1 241,6 782,6 784,1 867,8 887,8 56,82 % 120,45 % 115,91 % 134,09 % 36,96 % 36,84 % 30,11 % 28,49 %
30 38,5 51,0 47,0 50,5 676,3 743,7 783,0 878,0 877,1 28,33 % 70,00 % 56,67 % 68,33 % 9,97 % 15,79 % 29,83 % 29,70 %
16 18,5 15,0 18,5 20,0 676,9 868,5 703,2 862,1 885,5 15,63 % 6,25 % 15,63 % 25,00 % 28,30 % 3,87 % 27,35 % 30,80 %
34 24,5 40,0 46,5 41,0 1 270,6 912,8 904,8 888,8 940,3 27,94 % 17,65 % 36,76 % 20,59 % 28,16 % 28,79 % 30,05 % 25,99 %
30 37,0 40,0 47,5 44,5 865,4 849,1 1 217,1 1 128,0 1 113,2 23,33 % 33,33 % 58,33 % 48,33 % 1,89 % 40,63 % 30,34 % 28,62 %
30 35,0 37,0 40,0 43,5 1 090,8 923,1 1 169,2 1 102,2 1 107,9 16,67 % 23,33 % 33,33 % 45,00 % 15,37 % 7,18 % 1,04 % 1,56 %
14 30,0 41,0 34,0 37,5 1 012,3 862,5 999,1 973,2 1 039,8 114,29 % 192,86 % 142,86 % 167,86 % 14,80 % 1,31 % 3,86 % 2,71 %

Room nights ARR Room nights Absolute Percentage Error ARR Absolute Percentage Error
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4.2.2 Geometric mean  

Using the arithmetic average is only one of the conventional ways to combine forecasts. Other 

sorts of averages could also be valuable in forecast combinations. The geometric mean was 

calculated and used to combine the forecasts of LF and PMI. The geometric mean has the 

advantage of always returning a lower value than the arithmetic mean. As a result, it provides some 

shrinking, which is a desired feature (Andrawis et al., 2010). Consequently, this method of 

combining was included as a combination method. 

The geometric mean M of the two forecasts was found by taking the square root of the product of 

the two forecasting predictions	N and O on time P. 

M4 = QN4O4	 [6] 

The method was abbreviated as GEOM and was conducted for all the time horizons on MS Excel, 

similarly to the simple average method. 

4.2.3 Inverse of the Mean Squared Forecast Error 

Stock and Watson (1999) devised a system in which the weights of the individual forecasts were 

proportional to the inverse of the MSFE. This method was abbreviated as the INVM method. The 

weighting of one forecast in the combination mix was the proportional size of the sum of its means 

squared forecast errors. The weights for each of the forecasts were computed as follows: 
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S= = 	
∑ UVWX4

(@)4
4<Y

∑ UVWX4
(=) +	∑ UVWX4

(@)4
4<Y

4
4<Y

	 [7] 

S@ = 	
∑ UVWX4

(=)4
4<Y

∑ UVWX4
(=) +	∑ UVWX4

(@)4
4<Y

4
4<Y

	 [8] 

Where UVWX4
(J) was the mean squared forecast error for forecast L on time P. Therefore, the MSFEs 

of the LF and PMI forecasts were used to determine the combination weights. The weights for the 

two individual forecasts were computed in MS Excel and are presented in Table 4. 

 

Table 4: Weights computed with the INVM method 

4.2.4 Variance-covariance method 

Bates and Granger (1969) were the first to present the variance-covariance approach. The variance-

covariance approach of forecast combining has a simple underlying logic. In essence and in its 

most basic form, it addresses the potential that one may reveal information that the other does not 

when comparing two rival projections. Consequently, a combined forecast based on them can 

outperform each of the individual forecast estimates. Bates and Granger (1969) assumed that the 

individual projections would perform consistently over time to derive the variance-covariance 

formula. A linear combination of the two sets of forecasts would provide the combined forecast, 

with the first set receiving a weight of k and the second receiving a weight of (1-k). Section 2.3 

examined the equation in-depth (equation [4]). By assuming consistency in the forecasts, the 

variance of the two forecasts could be denoted by \=@ and  \@@ for all values of time P. The variance 

of errors in the combined forecast could then be written as follows:  

\I@ = 	B@\=
@ +	(1 − B)@\@

@ + 	2]B\=(1 − B)\@ [9] 

Horizon 7 14 28 42 7 14 28 42
LF 26,9 % 33,5 % 32,3 % 43,5 % 49,8 % 49,7 % 50,4 % 50,3 %
PMI 73,1 % 66,5 % 67,7 % 56,5 % 50,2 % 50,3 % 49,6 % 49,7 %

Room nights ARR
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Where k was the proportional weight assigned to the first set of forecasts and ρ was the correlation 

coefficient between the mistakes in the first and second sets of forecasts. The value of k should be 

chosen so that the total forecast errors are minor. We selected to reduce the total variance \I@  in 

particular. By differentiating with respect to k and equating to zero, we obtain the minimum \I@ 

occurs when: 

B =
\@
@ 	− 	]\=\@

	\=
@ − \@

@ − 2]\=\@
[10] 

The preceding calculation was computed in MS Excel to try and find optimal weights for the 

forecasts. The variance and covariance of the various forecasts were determined using the built-in 

features in MS Excel. The variance and covariance were then utilized in equation [10] to compute 

the weights between the LF and PMI forecasts. The values used are shown in Table 5.  

 

Table 5: Variance and covariance for LF and PMI. Green tables show variances, and the blue table shows 

the covariances.  

 

Table 6: Weights calculated from the VACO combination method 

Forecast LF7 LF14 LF28 LF42 PMI7 PMI14 PMI28 PMI42
Variance 50,12 50,27 50,46 50,71 25,55 6,94 6,59 10,43

Forecast LF7 LF14 LF28 LF42 PMI7 PMI14 PMI28 PMI42
Variance 0,40 0,40 0,54 0,29 0,39 0,37 0,54 0,37

Horizon 7 14 28 42 7 14 28 42
Covariance 35,69 18,48 17,80 22,57 0,39 0,38 0,54 0,33

ARR

Room nights ARR

Room nights

Horizon 7 14 28 42 7 14 28 42
LF 19,95 % 1,17 % 1,01 % 3,27 % 50,82 % 52,41 % 49,92 % 44,31 %
PMI 80,05 % 98,83 % 98,99 % 96,73 % 49,18 % 47,59 % 50,08 % 55,69 %

Room nights ARR
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The weights assigned to the LF and PMI are shown in Table 6. After determining the weights, the 

results were applied to the forecasts, and the variance-covariance method values were calculated. 

The MAPE and the MSFE of the combination were calculated to map the accuracy of the forecast 

combination. The error calculations are discussed in the results chapter.  

4.2.5 Using a neural network to find optimal weights 

Neural Networks, also known as Artificial Neural Networks, are mathematical formulations 

inspired by the work and operation of biological neurons. They distinguish themselves by their 

capacity to simulate nonstationary, non-linear, and very complicated datasets. With improved 

computer capacity, this feature propelled neural networks to the forefront of study in almost every 

science sector, including demand forecasting (Petropoulos et al., 2022). 

A standard neural network structure consists of three layers: input, hidden, and output. Each layer 

is made up of nodes. The input layer is the initial layer in any neural network, and the number of 

nodes corresponds to the number of explanatory variables, also known as inputs. The last layer is 

the output layer, with the same number of nodes as the number of response variables (forecasts). 

There are one or more hidden layers between the input and output layers where the nodes specify 

the degree of complexity the model can fit (Petropoulos, et al., 2022). The structure of a neural 

network is shown in Figure 9. 
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Figure 9: Figure of a standard neural network structure that consists of the input layer, hidden layer (y), 

and output layer (Bringsjord, 2018) 

Each node in one layer is connected (weighted) to all or a subset of the nodes in the following 

layer. Neural networks process the information: the explanatory variables are contained in the 

input nodes. The connections between the input and the first hidden node weight these variables, 

and the information reaches the hidden nodes as a weighted sum of the inputs. A non-linear or 

linear algorithm in the hidden nodes frequently transforms the information received. This 

procedure continues until the information reaches the forecast/output layer. Within the neural 

network, the weights that connect the nodes are adjusted such that the network maps the input 

value of the training data to the matching output value. This mapping is based on a loss function 

determined by the forecasting problem (Petropoulos et al., 2022). 

The model built in this study utilized the two types of forecasts presented in the data and found 

optimal weights for each by comparing the forecast values with the actual value. The network 

would continually try to understand the pattern of the forecasts concerning the actual value by 

utilizing some of the data as training data. Following training, the neural network would be 

provided solely with the forecast values as input. Next, the neural network would try to predict the 

actual value based on the pattern learned in the training process by weighting the two inputs. The 

weighting and mathematical calculations were all made inside the neural network. As this model 
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was made to present the weights as outputs, the neural network could not have any hidden layers. 

By adding hidden layers to the network, the complexity would rise, and it would not be possible 

to extract the weights used by the network. A perceptron is a neural network without hidden layers, 

so the model was a perceptron. 

Like a neural network, a perceptron assigns weights to each input. The perceptron then adds a bias, 

which is a hidden value, to the weighted inputs. The perceptron would generate a weighted net 

sum by summing the inputs and adding a bias. Because there are no hidden layers, the weighted 

sum was the perceptron's output, and the sum was measured with the actual value. After comparing 

the total and the actual amount, the perceptron would use an error function to determine how close 

the sum was to the actual value. The perceptron then used the information to modify the weights. 

Ultimately, the perceptron would have found the weights that gave the least amount of error. The 

construction of a perceptron is displayed in Figure 10.  

 

 

Figure 10: The construction of a perceptron 

Importing the data from the excel sheet into the Python workbook was the first step in creating the 

perceptron. Following that, it was determined which forecasts would be used. As mentioned in 

section 3.5, some of the data provided have an 'Actual' value of zero in the dataset. The dataset 
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provided for the thesis is relatively small for a neural network. Therefore, such an anomaly in the 

dataset might have created significant disruptions in the weighting of inputs, ultimately leading to 

non-representative outcomes. Consequently, it was decided to eliminate any row in which the 

'Actual' value was equal to zero. 

The next stage in establishing the perceptron was to indicate which rows would be used as training 

data and which would be utilized as targets. The algorithm predicts the results of the testing 

samples using the parameters computed with the training samples and then compares the forecast 

to the target information to determine how well the prediction went. It would utilize this data to 

determine how to recalculate based on the training samples. The test size needed to be set after 

specifying that the perceptron would use the forecast values to predict the target values ('Actual' 

values). The test size represented the proportion of the dataset to include in the test split. The test 

size decided how much data was allocated for strictly training the perceptron. Usually, the test size 

is set to 25% of the datasets, but because the dataset presented in this thesis is relatively small for 

a neural network, the test size was reduced to 20%.  

The neural network must be layered once the training and target data have been provided to the 

model. As previously stated, the model is a perceptron with no hidden layers. Therefore, the only 

layers that must be defined are the input and output layers. Some hyperparameters need to be set 

when building a neural network: the learning rate and the loss function. The learning rate may be 

the most crucial hyperparameter when constructing a neural network. The learning rate is a 

hyperparameter that specifies how much the model should change in response to the predicted 

error each time the model weights are updated. Choosing the learning rate was problematic since 

a value too low may have resulted in a complex training process that may become stuck. In 

contrast, a high value may have resulted in learning a suboptimal set of weights too quickly, 

creating an unstable training process (Brownlee, 2019). The learning rate used in this study was 

found by trial and error. Several dataset areas have significant error measurements, as described 

in the data chapter. Setting the learning rate to a "high" number may make these differences in the 

data significantly impact the weighting, resulting in a chosen learning rate of 0.01. 
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We employ two forms of loss functions in the present work: MAPE and MSE. As a result, the 

perceptron's natural loss function would be either MAPE or MSE. Because MSE is commonly 

employed in neural networks, this perceptron employed MSE as the error function. The stacking 

of the perceptron was completed once the hyperparameters are specified.  

The perceptron struggled to identify effective weightings due to a lack of sufficient and consistent 

data. In order to improve consistency in weight computation, the entire code was placed in a while 

loop, and the perceptron was executed one hundred times for each forecast. The outcomes would 

then be stored in an array. Consequently, the array would have one hundred weights for each of 

the forecasts. Finally, the array's average value was determined. The possibility of insufficient 

training data influencing weighting would be significantly reduced in this manner. The code used 

to combine the forecasts is shown in Figure 11. 
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Figure 11: The perceptron code with explanatory comments 
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5 Results 

This section presents the results of employing the various forecast combination methods. The 

MAPEs and MSFEs were calculated for each approach. We chose to only display the findings for 

the MAPE error measure in situations when the two error measurements had the same outcome.  

5.1 Combination methods 

5.1.1 Simple Average (SA) 

We achieved interesting results by combining the LF and PMI forecasts with the SA approach. 

The arithmetic average between the two forecasts for all time horizons was calculated. Further, the 

error measures were conducted to compare the performance of the combined forecast to the 

individual ones. This comparison is visualized by the two figures below, where Figure 12 displays 

the MAPE for the combined and individual forecasts on room nights, and Figure 13 presents the 

same on ARR. 
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Figure 12: MAPE on RN for LF, PMI, and SA 

Comparing the accuracy results on room nights, we observed that the PMI forecast still was the 

most accurate among the three forecasts on all time horizons. The AVG forecast was also observed 

to perform better than the LF forecast across all time horizons, which ultimately makes the LF the 

least accurate forecast. The AVG forecast fell between the two individual ones on performance on 

RN, as shown in Figure 13. 

While the accuracy results put the AVG forecast between the PMI and the LF on room nights, the 

AVG forecast performed the best on ARR according to the MAPE and the MSFE measures. The 

MAPE results are displayed in Figure 13 and show that the AVG outperforms both single model 

forecasts on nearly all the time horizons except for the 42-day lead where the LF performed as 

well as the AVG.  
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Figure 13: MAPE on ARR for LF, PMI, and SA 

 

5.1.2 Geometric Mean (GEOM) 

As well as with the SA method, combining the forecasts with the geometric mean also proved to 

outperform the LF forecast across all time horizons for RN. As depicted in Figure 14, The GEOM 

fell short compared to the PMI for room nights.  
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Figure 14: MAPE on RN for LF, PMI, and GEOM 

On ARR, however, GEOM outperformed both individual forecasts almost identically to the simple 

average combination approach according to the MAPE and the MSFE. 

5.1.3 Inverse of the MSFE (INVM) 

The INVM method outperformed LF on all RN forecasts, with the best MAPE being 41% on a 7-

day lead versus LFs 52,9%. The PMI forecasts were not outperformed on RN, which ultimately 

placed the INVM forecast in-between the individual forecasts according to the MAPE and MSFE. 

Figure 15 displays how the INVM method outperforms the LF forecast on RN and how close the 

INVM method is to the PMI on a 7-day lead. 

52,9 %

60,8 %

70,0 %

77,7 %

38,2 % 39,7 %

50,8 %

64,0 %

43,3 %
46,6 %

56,6 %

68,1 %

0,0 %

10,0 %

20,0 %

30,0 %

40,0 %

50,0 %

60,0 %

70,0 %

80,0 %

90,0 %

7 14 28 42

M
AP

E

Horizon

MAPE on Room nights

LF

PMI

GEOM



 

 

43 

 

 

Figure 15: MAPE on RN for LF, PMI, and INVM 

The MAPEs of the INVM method on ARR are visualized in Figure 16 and show how much the 

INVM outperformed the individual forecasts. Equivalently with the average-based combination 

methods, the INVM method outperformed the LF and the PMI on ARR across all time horizons. 

This further supports the theory that the ARR are more accurately predicted by combining the PMI 

and LF instead of using them individually. 
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Figure 16: MAPE on ARR for LF, PMI, and INVM 

 

5.1.4 Variance-Covariance method (VACO) 

The weighted computation of the LF and PMI projections for the various time horizons was 

calculated, and the error measurements were performed to demonstrate the accuracy of the 

combination approach. Positive findings were obtained by combining the different forecasts using 

the variance-covariance approach. The outcomes of the combinations were compared to the 

individual forecasts to get a good picture of the total performance. The measurements are depicted 

in the graphs shown in Figure 17. 
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Figure 17: MAPE on RN for LF, PMI, and VACO 

Figure 17 shows that the PMI was marginally better than the VACO combination for each lead 

time. However, LF was significantly poorer than the other two. Table 6 demonstrates that the 

weighting attributed to the LF room nights projection was relatively low for each lead time. Thus, 

the VACO approach would be more like the PMI forecast than LF. Because of the modest weight 

provided to the LF for the combination, the forecast combination performed marginally worse than 

the PMI forecast. Combining forecasts with the VACO approach for RN projections was 

ineffective since the PMI outperformed the forecast combination. However, using the VACO 

method on the ARR metric yielded interesting results. The findings are displayed in Figure 18. 
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Figure 18: MAPE on ARR for LF, PMI, and VACO.  

Figure 18 shows that, in contrast to the RN predictions, the VACO forecast combination for ARR 

was the most accurate projection. The MAPE reveals that the VACO combination of forecasts 

surpassed LF and PMI for predictions with lead times of 7, 14, and 28 days. However, for the 42-

day prediction, LF surpassed the others. As a result, the VACO method's forecast combination is 

advantageous for ARR estimates. 

5.1.5 Perceptron (PERC) 

The perceptron was created to calculate the optimal weights for each forecast combination. By 

introducing two forecasts into the perceptron and comparing them to the actual value, the algorithm 

aimed to learn the pattern and eventually present the user with the optimal weights for the forecast 

combination. The dataset supplied for the study is too small for a neural network. Consequently, 

the neural network did not get the appropriate quantity of training data. The size of the dataset 

resulted in lackluster training sizes, ultimately leading to inconsistent conclusions. Generally, the 
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more data utilized as input in a neural network, the more accurate the network is. In contrast, scarce 

data may lead the neural network's conclusions to deviate significantly. Such anomalies were seen 

in the perceptron. The perceptron randomized the training data every time the code was ran, as 

mentioned in section 4.2.5. Since the training data is limited, the network would learn a different 

pattern each time the code was executed. 

Consequently, the perceptron would output different weights each time. An average of one 

hundred weights for each forecast was used to improve consistency, but the results were still 

insufficient. A plot of the MAPE for the combined forecasts compared to the MAPE of LF and 

PMI is provided in Figure 19.  

 

Figure 19: MAPE on RN for LF, PMI, and PERC. 

The perceptron showed higher accuracy for the ARR metric. The MAPEs of the forecast 

combination compared to the MAPEs of the LF and PMI for ARR is displayed in Figure 20.  
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Figure 20: MAPE on ARR for LF, PMI, and PERC. 

The fundamental purpose of this approach was whether we could improve prediction accuracy by 

combining forecasts. It is difficult to respond to this issue based on the graphs shown in Figure 19 

and Figure 20. In Figure 19, the PMI beat the combination approach. However, the combination 

technique outperformed LF during the first two lead periods. The results of the second graph are 

more ameliorating than those of the first. The PERC combination for the 14-day lead time 

outperformed the individual forecasts. However, the combination technique performed the worst 

for other lead times. The discrepancy in the forecast can be attributed to the model's lack of 

consistent training data. The data is inconsistent in its projection and, more crucially, is too limited. 

Thus, depending on which part of the dataset is utilized as training data, specific predictions will 

perform better while others will perform worse than the individual forecast. 

Despite not being able to get concrete answers to the research question, the perceptron produced a 

fascinating result when using the MSFE to measure the accuracy of the forecasts. The results are 

shown in Figure 21. 
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Figure 21: MSFE on ARR for LF, PMI, and PERC. 

When utilizing the MSFE to gauge forecast accuracy, the forecast combination beat both the PMI 

and the LF, as shown in Figure 21. The MSFE squared the predicted error compared to the actual 

value. Consequently, big mistakes were severely punished by the approach. This indicated that the 

PERC errors are more consistent and have smaller values than the two single model forecasts. The 

perceptron employed MSE for determining weights, which explains the outcome.  

5.2 Summaries and rankings of forecast performances 

Two summary tables and a ranking table were established to overview the forecast performances 

of all the different forecasts. Table 7 summarizes forecast performances on room nights, and Table 

8 does the same for average room revenue. Table 9 is a performance ranking of each forecast for 

all time horizons according to their MAPE and MSFE results. Furtherly, the results are discussed 

in section 6. 
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Table 7: Summary of forecast performances on RN 

 

Table 8: Summary of forecast performances on ARR  

ROOM NIGHTS
Accuracy measure Forecasting horizon Forecasting method

LF PMI AVG GEOM INVM VACO PERC
MAPE 7 days 52,9 % 38,2 % 44,3 % 43,3 % 41,0 % 40,2 % 47,8 %

14 days 60,8 % 39,7 % 48,9 % 46,6 % 45,5 % 39,9 % 55,3 %
28 days 70,0 % 50,8 % 59,1 % 56,6 % 55,9 % 51,0 % 74,8 %
42 days 77,7 % 64,0 % 69,9 % 68,1 % 69,0 % 64,4 % 85,0 %

MSFE 7 days 1251,3 459,6 704,4 619,8 553,5 521,0 545,0
14 days 1763,2 889,6 1163,7 1161,2 1025,2 1034,3 973,2
28 days 3219,9 1539,0 1938,8 1837,0 1690,1 1714,3 2498,9
42 days 3121,3 2400,4 2593,0 2543,7 2537,3 2560,9 3602,0

AVERAGE ROOM REVENUE
Accuracy measure Forecasting horizon Forecasting method

LF PMI AVG GEOM INVM VACO PERC
MAPE 7 days 12,2 % 11,5 % 11,4 % 11,5 % 11,4 % 11,4 % 14,5 %

14 days 13,4 % 12,9 % 12,7 % 12,8 % 12,7 % 12,7 % 12,5 %
28 days 15,5 % 16,0 % 15,4 % 15,4 % 15,4 % 15,4 % 18,8 %
42 days 15,5 % 16,1 % 15,5 % 15,6 % 15,5 % 15,6 % 16,2 %

MSFE 7 days 131261,5 130101,0 128693,3 128825,7 128690,7 128703,4 125822,7
14 days 137498,2 135686,1 133924,4 135466,4 133909,9 133966,8 125594,3
28 days 147727,5 149850,5 147222,0 147538,3 146946,6 147223,9 145596,0
42 days 152156,6 154210,1 151907,2 152266,0 151671,8 152037,7 145319,6
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Table 9: Forecast rankings based on MAPE and MSFE measures 

 

 

 

RANKING

Rank Forecast MAPE Forecast MSFE Forecast MAPE Forecast MSFE
1 PMI7 38,2 % PMI7 459,6 INVM7 11,379 % PERC14 125594,3
2 PMI14 39,7 % VACO7 521,0 AVG7 11,380 % PERC7 125822,7
3 VACO14 39,9 % PERC7 545,0 VACO7 11,385 % INVM7 128690,7
4 VACO7 40,2 % INVM7 553,5 GEOM7 11,480 % AVG7 128693,3
5 INVM7 41,0 % GEOM7 619,8 PMI7 11,524 % VACO7 128703,4
6 GEOM7 43,3 % AVG7 704,4 LF7 12,193 % GEOM7 128825,7
7 AVG7 44,3 % PMI14 889,6 PERC14 12,496 % PMI7 130101,0
8 INVM14 45,5 % PERC14 973,2 INVM14 12,651 % LF7 131261,5
9 GEOM14 46,6 % INVM14 1025,2 AVG14 12,652 % INVM14 133909,9

10 PERC7 47,8 % VACO14 1034,3 VACO14 12,665 % AVG14 133924,4
11 AVG14 48,9 % GEOM14 1161,2 GEOM14 12,790 % VACO14 133966,8
12 PMI28 50,8 % AVG14 1163,7 PMI14 12,937 % GEOM14 135466,4
13 VACO28 51,0 % LF7 1251,3 LF14 13,370 % PMI14 135686,1
14 LF7 52,9 % PMI28 1539,0 PERC7 14,519 % LF14 137498,2
15 PERC14 55,3 % INVM28 1690,1 INVM28 15,353 % PERC42 145319,6
16 INVM28 55,9 % VACO28 1714,3 AVG28 15,355 % PERC28 145596,0
17 GEOM28 56,6 % LF14 1763,2 VACO28 15,356 % INVM28 146946,6
18 AVG28 59,1 % GEOM28 1837,0 GEOM28 15,400 % AVG28 147222,0
19 LF14 60,8 % AVG28 1938,8 LF42 15,513 % VACO28 147223,9
20 PMI42 64,0 % PMI42 2400,4 INVM42 15,540 % GEOM28 147538,3
21 VACO42 64,4 % PERC28 2498,9 AVG42 15,542 % LF 28 147727,5
22 GEOM42 68,1 % INVM42 2537,3 LF 28 15,547 % PMI28 149850,5
23 INVM42 69,0 % GEOM42 2543,7 VACO42 15,577 % INVM42 151671,8
24 AVG42 69,9 % VACO42 2560,9 GEOM42 15,590 % AVG42 151907,2
25 LF 28 70,0 % AVG42 2593,0 PMI28 15,960 % VACO42 152037,7
26 PERC28 74,8 % LF42 3121,3 PMI42 16,071 % LF42 152156,6
27 LF42 77,7 % LF 28 3219,9 PERC42 16,247 % GEOM42 152266,0
28 PERC42 85,0 % PERC42 3602,0 PERC28 18,845 % PMI42 154210,1

Room Nights ARR
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6 Discussion  

Results from the present study indicate that the combination of forecasts can outperform single 

individual forecasts on forecast accuracy, especially for the ARR metric. Table 9 shows that 

according to the MAPE and MSFE measures, every forecast combination method performed 

outperforms the individual forecasts of LF and PMI on ARR prediction. The performance 

evaluation of the PMI and LF forecasts shows that PMI is the most accurate one, with a MAPE of 

11,52%. Four of five combined forecasts beat this accuracy, with INVM being the most accurate 

one, yielding an 11,37% MAPE. All combined forecasts outperform the individual forecasts on 

MSFE, with two PERC forecasts being the most accurate. 

Despite the ARR results strongly favoring forecast combinations over individual forecasts, the RN 

results are not as convincing. Between the two individual forecasts, it was found that the PMI has 

the lowest MAPE of 38,2% and the lowest MSFE. Table 9 shows that neither was beaten by any 

of the five combination forecasts. The closest one is the one of VACO, with a 39,9% MAPE. 

However, all five combination forecasts beat LF on all time horizons. Consequently, the combined 

forecasts fall between the two individual forecasts on performance as they only manage to beat 

one of the individual forecasts. The ultimate goal was to achieve better accuracy than both 

individual forecasts, which was not achieved on RN. 

A question that arises is why forecast combinations are favorable on ARR prediction and not on 

RN. According to Bates and Granger (1969), a combined forecast will offer a lower forecast error 

when one of the forecasts has information that will help the other forecast produce a better 

prediction. Regarding ARR prediction, the performance of the PMI and LF forecasts was relatively 

good and quite similar. However, for RN, the overall performance is poor, and the accuracy of LF 

and PMI are somewhat dissimilar. Consequently, combining LF and PMI for RN prediction did 

not show good results, providing robustness to the findings of Kurvers et al. (2016). They found 

that collective intelligence only applies when there is similarity in prediction accuracy. Our 

findings show no benefit for the PMI forecast to utilize any of the information LF provides. These 

results support the study of Bates and Granger (1969), as the LF forecast is too inadequate to have 
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a beneficial impact on RN predictions. Conversely, for ARR, the forecast combination is suitable. 

Ultimately, our results show that forecast combination has limitations when producing and 

achieving better forecasts.  

Five combination methods were conducted and tested against the individual LF and PMI. The 

rankings show that overall, the VACO and the INVM methods performed the best, closely 

followed by the simple average methods. Some methods perform consistently at predicting both 

metrics, while others only show strong performance on one target.  

Makridakis and Hibon (1979) demonstrated that simple forecasting models beat sophisticated ones 

when there was significant unpredictability in the data. In the present study, the more sophisticated 

combination methods, such as the VACO and INVM, have the best performance. These methods 

take the historical performance of the individual forecasts into account and outperform the simple 

methods, contradicting the findings in the studies of Makridakis and Hibon (1979). However, the 

results also side with the mentioned study when it comes to the method of the perceptron. The use 

of the perceptron is by far the most advanced combination method in this study and is heavily 

outperformed by the simpler models on four out of five rankings.  

Even though the perceptron did not provide the desired consistency, the data, not the perceptron, 

constrained the model. The model is functional in principle, and the desired consistency should be 

achieved given the appropriate quantity of data. However, there is significant ambiguity about the 

model's capacity to achieve consistency. In this study, the model has only been tested on a small 

data set, making it hard to anticipate the outcome when large data sets are used.  

If more extensive datasets are unavailable, one solution may be to combine all the predictions into 

a single list before running the perceptron. In this case, the input data will be two lists, one 

including all the LF forecasts (LF7, LF14, LF28, and LF42) and the other containing all the PMI 

forecasts. The training data will be quadrupled in this manner. The main issue with this strategy is 

that the perceptron will weigh each prediction equally while training. By evenly weighting the 
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forecasts, the perceptron will alter the same amount for a 7-day prediction and a 42-day prediction. 

Thus, the findings may not give helpful information. 

According to the MSFE results on ARR, the perceptron has the least amount of error across all 

five combination methods. This is because the perceptron calculates optimal weights using the 

mean squared error. It is interesting to note that it is possible to develop the desired error 

measurement in neural networking. Consequently, creating a neural network model that utilizes 

MAPE as the error measurement may lower the mean absolute percentage error.  

Only two error measurements are used to get the results of this study. There are, however, a 

plethora of other error metrics to pick from, each of which may provide different findings. Yüksel 

(2008) emphasizes the need for accurate forecasts in good hotel business. Consequently, one of 

the essential tasks for a revenue management team is determining which error metric to use when 

assessing prediction accuracy. 

In the present study, the different error measurements result in different findings. Stock (2020) 

states that a series of modest forecast errors typically cause only minor problems for the user, but 

a single significant forecast error might doubt the entire forecasting process. Stock (2020) furtherly 

discusses that MSFE encapsulates the principle by computing the square of the forecast error, 

meaning significant errors are punished more than minor ones. Consequently, for a revenue 

management team in the hotel sector, choosing the mean squared error as the error measurement 

may result in more beneficial forecasting.  
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7 Conclusions 

This study investigated hotel forecasts and their accuracy in relation to the actual value. We used 

data provided by d20, a company that provides real-time performance management tools. The data 

predicted two different metrics: room nights and average room revenue. Each of the metrics had 

two different forecasts over four different lead times. We used five methods to aggregate the 

projections; these were: The simple average (SA), the geometric mean method (GEOM), the 

inverse of the mean squared forecast error method (INVM), the variance-covariance method 

(VACO), and ultimately neural networking. The main goal of this study was to unravel the 

following question: Does combining two different demand predictions result in more accurate 

demand projections? 

7.1 Main findings 

The statistical comparison of the forecasting accuracy of the combination and single-model 

predictions was a fundamental contribution of this thesis. By comparing forecasts, we 

demonstrated that forecast combination did not constantly improve forecasting accuracy. Only the 

combined forecasts for one of the metrics, average room revenue, outperformed the individual 

forecasts. Our findings were consistent with earlier forecast combination research, which state that 

the individual predictions included in a forecast combination must contain information that 

benefits the other forecast (Bates & Granger, 1969). This was not applied for room nights because 

the LF for all lead periods was relatively poor. In addition, our findings showed that all 

combination predictions beat the worst single model forecast, implying that forecast combination 

reduces the chance of complete forecasting failure. 

We demonstrated combined projections to be substantially more accurate than the worst single 

model forecasts across all forecasting horizons and combination strategies. However, our forecast 

combination produced the best average room revenue forecasting results. Our findings imply that 

tourism practitioners should use forecast combinations to improve forecasting accuracy. This is 

especially true when the two single model forecasts are accurate. 
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7.2 Future research 

Because our findings are limited to the 32 hotels from which data were collected, our conclusions 

are far from being definitive. Consequently, additional research with larger datasets is required 

before concluding that forecast combination produces consistent outcomes. According to our 

findings, sophisticated methods outperform more simple combination methods. Therefore, it is 

critical to look at this topic's issues. Accordingly, several concerns need to be investigated further: 

(1) why do the sophisticated methods work so well, and (2) under what situations do more simple 

approaches perform better? 
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