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“Any sufficiently advanced technology is indistinguishable from
magic.”

– Arthur C. Clarke



Abstract

Data has the potential to transform our environments for the better if utilized to its full

potential. A highly interesting use case of data is in relation to Smart Buildings, where

IoT technology presents new possibilities. With appropriate collection and structuring

of the available data, many new opportunities present themselves.

In this thesis, a data gathering system is proposed for sensors in Arkivenes Hus. To

illustrate the potential in the data, one specific problem is researched, namely that of

indoor climate optimization and its effects on energy usage. The problem description

and the development of the data system comprises identifying governing system equa-

tions using sparse identification of nonlinear dynamics, control strategy using model

predictive control and various machine learning methods to predict energy usage.

For a one day simulation, the proposed optimization strategy yields a 174.86% increase

in energy usage. The conducted work indicates that the proposed model identification

technique is unsuitable for the underlying data utilized in this work. The proposed

model predictive control strategy and machine learning methods contain promising re-

sults.
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Chapter 1

Introduction

Global energy production is currently transitioning from fossil fuels toward renewable

energy sources as a result of climate changes. Renewable energy sources such as solar

and wind are transitory in their nature, and cannot generate electricity on demand like

fossil fuel sources such as coal plants can. In addition to the energy production aspect

of adapting to changing climate, most industries and sectors are working towards min-

imizing emissions and energy usage [61], [68], [79]. Within the construction industry,

modern buildings are planned and built to be more energy efficient as one response to the

problem. Among other things, buildings are getting more airtight to achieve this, giving

excellent thermal protection and minimizing the demand for energy-powered heating [9].

With rising energy prices and energy demand due to electrification, as well as fluctuat-

ing grid properties, forecasting energy requirements is becoming increasingly important.

Monitoring energy consumption allows users to be more conscious of their consumption

and adjust the way energy-intensive systems are utilized. For large office buildings in

particular, predicting future energy consumption can provide two-sided benefits. First

off, building managers can get insight into key elements affecting their buildings en-

ergy demand. Secondly, and perhaps most importantly, accurately predicting energy

demand makes for a more efficient energy grid. With a more fluctuating energy pro-
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duction side, it is crucial to match consumption and supply. Overestimating energy

demand causes excess energy production, which cannot be stored unless transformed

to other forms, a process that introduces new costs and challenges. Underestimating

energy demands can result in a overloaded electrical grid, and in worst case in blackouts.

Whilst raising awareness concerning energy demands is important, it is also critical

to acknowledge the necessity of not sacrificing interior environment while striving to

optimize a building’s energy consumption. The modern population spends up to 90%

of their time indoors, with an average of 8 hours spent at work [78]. Maintaining an

ideal indoor climate is therefore critical for people’s well-being, health, and productiv-

ity, all of which is essential for a productive work environment. Indoor climate is made

up of a variety of physical, chemical, and biological factors [9], some of which include

temperature, lighting and air quality.

As buildings are becoming increasingly more advanced in regards to integration of mod-

ern technology, the term Smart building has emerged. The term has become a large

part of day-to-day conversations, both private and in business and refers to a building

that has control systems and devices interconnected in addition to the features of a

conventional building [101]. Most indoor climatic parameters in such structures are

managed by highly sophisticated systems, e.g. automated ventilation systems. Such

systems are often monitored and controlled with help of IoT (Internet of Things), an

infrastructure technology enabling devices to collect and transfer data [51]. IoT devices

can collect large volumes of data, but interpreting the data without prior knowledge

and expertise in the system might be challenging. To ensure that the information is

easily accessible for monitoring and analysis, it is crucial to facilitate for appropriate,

efficient and secure collection and storage.



This study explores the possibility of predicting future energy demands based on perfor-

mance of ventilation systems, offering useful insight and significant benefits to parties

wishing to optimize their present energy consumption. By creating a digital twin of the

building and its ventilation system, we aim to structure data in such a way that con-

text, algorithms and additional information can be applied to increase the accessibility,

value and application range of the original data. Specifically, the study explores the

possibility of optimizing the indoor temperature, keeping it within the recommended

limits, whilst still keeping the energy usage and cost to a minimum. In this project,

the investigation is based on data collected from sensors located in the ventilation sys-

tems in Arkivenes Hus. Arkivenes Hus is a BREEAM-certified [12] building in class

Excellent, which ensures high quality indoor climate and lower costs related to energy

consumption. The building receives environmentally friendly energy from Ullandhaug

Energi and is classified to Energy Class A. [7]

1.1 Aim of The Project

The aim of this project is to gather data from Arkivenes Hus, use it to optimize in-

door climate comfort and study the effects this has on energy consumption. Thus, the

primary research question is:

How can a control strategy for a ventilation system optimize indoor climate,

and what effect does this have on required energy consumption?

Specific areas requiring research in order to achieve this are:

• How to collect and structure sensor and energy data.

• Identify best way of structuring available sensor data in a digital twin for closer

monitoring of the system.

• Develop model describing relations in the ventilation system.



• How to implement a control strategy.

• Test, compare and identify the best machine learning models for prediction of

energy consumption.

1.2 Outline

• Chapter 2 covers related works with focus on data structuring, optimization and

prediction.

• Chapter 3 introduces all technologies used for the project.

• Chapter 4 provides an overview of how the solution is built, as well as how the

different technologies are utilized in order to solve the problem. It also presents

the process of data analysis, identification of control strategy and utilization of

machine learning.

• Chapter 5 provides an experimental evaluation of all methods utilized. Presenting

the results of different machine learning algorithms and identification of control

strategies.

• Chapter 6 presents a discussion around the work and results.

• Chapter 7 concludes the work.

• Chapter 8 presents possibilities for future work.



Chapter 2

Background and Related Work

In this chapter a brief theoretical overview is provided to insure a better understanding of

how the various steps of our solution are performed. This chapter summarizes the theory

of digital twins, Sparse Identification of Nonlinear Dynamical Systems (SINDy), Model

Predictive Control (MPC), and datasets, machine learning algorithms and evaluation

methods related to energy prediction. This chapter also introduces any related work.

2.1 Digital Twin

It is commonly accepted that the twin concept dates back to technological innovations

from NASA’s Apollo program, completed between 1967 and 1972 [6], [94], [66]. One of

the innovations used in this program was the creation of a physical twin aircraft. This

enabled engineers and scientists to troubleshoot issues without imposing increased risk

to the mission, something which ended up being crucial in bringing home the Apollo 13

mission crew [6].

The technical realm is currently in the era of digital transformation. Within the com-

puter science and engineering literature, notions such as big data [100], industry 4.0 [93]

and IoT [43] have become a common part of the terminology. Frequently mentioned

5



along with these technologies, and advocated for having equally disruptive effects, is

the concept of digital twins [94].

A digital twin (DT) can be defined as a ”digital replica of a physical entity” [57].

An integral part of the potential of digital twins is the possibility to model a digital

replica and combine it with data. This potential is reinforced by the emergence of and

possibilities to incorporate machine learning, thereby bringing data, algorithms and

framework together [57] [94]. This broad definition causes the digital twin literature

to contain a vast amount of different approaches, ranging from manufacturing- [56] to

business- processes [59] , and even digital twin models of entire cities [42]. With such

diverse application areas, combined with the broad and unspecific definition, the digital

twin domain takes a variety of shapes and contain numerous technologies.

The manufacturing and automotive industries are industries where digital twins have

been widely utilized and integrated with success, while the building industry has yet to

incorporate the full potential of digital twin at a similar scale [66]. One major reason

for this is the diversity of aspects and life cycle phases to consider within a building.

Some possible areas for digital twin implementation include building information mod-

elling, facility management, monitoring, logistics, energy analysis and structural system

analysis [66]. A consequence of this large application domain and the broad definition

of digital twin is that there are multiple ways of implementing digital twins, depending

on desired insights.

Some authors [47] define a building information model as a digital twin. BIM enables

3D modelling and information management. A 3D BIM model provides an accurate pic-

ture of how the physical building is constructed and how various aspects and systems

are related to each other, e.g. electrical systems or ventilation. A large number of peo-



ple, each with a different role, are involved in the construction of a new building. It is

critical that relevant information flows amongst these people, and that the information

is as accurate as possible; this is one of the primary reasons for using BIM in construc-

tion projects. Figure 2.1 displays a BIM illustration of Arkivenes Hus as an example of

such a model. A model like this provides information about everything both inside and

outside the building, such as construction materials, furniture, and ventilation systems.

Figure 2.1: 3D BIM illustration of Arkivenes Hus created in Solibri [11], provided by
Veni AS

BIM models provide useful information in the construction process. However, as al-

ready emphasized in this section, one main component of digital twins is the ability to

incorporate data. BIM models lack the ability to provide an updated representation of

the current state of a system based on a continuous data flow [66].

Another method of digital twin representation is knowledge graphs. This approach is

defined through ontologies, which is a compilation of classes, object- and data-properties

used to exhibit facts about and a semantic model of area of interest [3]. A knowledge

graph is a system of connections of nodes or data points expressed as a graph. The



nodes/points are representations of instances, with relevant relationships defined be-

tween the nodes. Such graphs are commonly developed around the concept of linked

data [54], [3]. Linked data revolves around creating links between data (as opposed to

isolated data points), so that a person or machine can explore and discover relations

between entities [54]. Figure 2.2 illustrates and example of a knowledge graph. The

figure depicts the fact that a room contains both a temperature sensor and a motion

sensor.

Figure 2.2: Knowledge graph example displaying the relation between a room and its
sensors.

Creating such knowledge graphs and connecting sensor data to nodes has become a

popular way to develop digital twins, and is now one of the main methods used by

industries, something which will be covered further in Section 3.1.1.

2.2 Sparse Identification of Nonlinear Dynamical Systems

Sparse Identification of Nonlinear Dynamical Systems [13], known as SINDy, is a method

used to identify governing equations for nonlinear dynamical systems. Assume a set of

data-points representing some measurements x(t) ∈ Rn at various times t for a system.

SINDy aims to provide a way to translate the data-points x(t) into a non-linear function

of x(t), f , using the equation
d

dt
x(t) = f(x(t)), (2.1)



which represents a dynamical system for the measured data-points in x(t). x(t) is a vec-

tor on the form x(t) = [x1(t), x2(t), . . . xn(t)]
> and f describes how the system evolves

with time. SINDy uses sparse regression [35], [91], [44] to identify a linear combination

of basis functions that most fully describe the nature of the system. The method is built

around the assumption that most dynamical systems have few relevant terms describing

the system, meaning that f only has a few terms. If one imagines a nonlinear function

space of high dimension, then the equations representing some physical system will be

sparse in this space, given some threshold value [13].

The SIDNy method provides a way to translate data measurements into a dynam-

ical system representing the time progression of the system. Suppose X represents

measurement values of quantities x1, x2, . . . , xn obtained at times t1, . . . , tn:

X =



x1(t1) x2(t1) . . . xn(t1)

x1(t2) x2(t2) . . . xn(t2)

...
...

...

x1(tm) x2(tm) . . . xn(tm)


(2.2)

The derivatives of the monitored variables are represented by Ẋ, either obtained by

measurements or numerically approximated [74], [75]:

Ẋ =



ẋ1(t1) ẋ2(t1) . . . ẋn(t1)

ẋ1(t2) ẋ2(t2) . . . ẋn(t2)

...
...

...

ẋ1(tm) ẋ2(tm) . . . ẋn(tm)


(2.3)

A candidate matrix, denoted Θ(X), is constructed. It contains candidate non-linear



functions for the columns of X:

Θ(X) =


| | |

θ1(X) θ2(X) . . . θ`(X)

| | |

 (2.4)

SINDy aims to find a set of sparse coefficient vectors gathered in a matrix:

Ξ =


| | |

ξ1 ξ2 . . . ξn

| | |

 , (2.5)

where, as described in [5], “ ξi provides the coefficients for a linear combination of basis

functions θ1(x), θ2(x), . . . , θ`(x) representing the ith component function of f : fi(x).

That is to say,

fi(x) = Θ
(
x>

)
ξi, (2.6)

where Θ
(
x>

)
is understood to be a row vector consisting of symbolic functions (whereas

Θ(X) is a matrix whose entries are numerical values).”

Once X, Ẋ, Θ(X) and Ξ are obtained, the sparse regression problem that defines

the active non-linearities is expressed by [13]:

Ẋ = Θ(X)Ξ (2.7)

Least squares regression would yield some values from all of the columns in Θ(X). Sparse

regression is therefore preferred to ensure good regression fit with as few nonlinear right

hand side terms as possible in eq. 2.7. Figure 2.3 provides a schematic of the algorithm.



Figure 2.3: The SINDy algorithm applied on the Lorenz equations. Measurements of
the system performance over time and it’s derivative, are obtained and constructs X
and Ẋ, respectively. Following that, a collection of non-linear state functions, Θ(X),
is built. This collection is used to determine the smallest numbers of terms required
to describe Ẋ = Θ(X)Ξ. The relevant terms in the right-hand side of the dynamics
are denoted by the few entries in the vectors of Ξ, which where solved for using sparse
regression. From [13].

2.3 Model Predictive Control

Model Predictive Control (MPC) focuses on forecasting and optimizing the change

and behavior of a dynamical system caused by changes in independent variables [77].

The objective is to minimize the error between some desired reference trajectory and

predicted future output, as well as minimizing some control action required to obtain

the desired output. A basic MPC structure is shown in Fig. 2.4:



Figure 2.4: Basic structure of MPC [69].

MPC consists of three main aspects: a model used to predict the output of a process

along a future time horizon, estimation of a control strategy to optimize performance and

sliding time horizon strategy. There exist several types of MPCs, such as Linear MPC,

Nonlinear MPC, Robust MPC, Feedback MPC, Pre-computed MPC and Decentralized

MPC [69]. The main concepts for all these variations of MPC remain the same. First,

the future outputs for the forecast horizon are calculated for each time, here denoted

i, using a model describing the system. This step requires all previous recorded inputs

and outputs of the system up to time i, as well as the current state which is treated

as initial condition. Thereafter, a sequence of signals for future control is identified

given the objective to optimize a specified criteria. This is typically to minimize the

error between some desired trajectory of performance and predicted model performance.

With the sequence of control signals identified, only the control signal for the next time

step is transmitted to the system. Then, the time horizon moves one instant and the

process is repeated. This means that the prediction horizon remains the same length,

but slides along one time step per iteration [69], [77]. A typical optimization problem



with MPC can take the form

(2.8)min
u

f(x, u) =
n−1∑
i=0

{(xi − xref,i)
TQ(xi − xref,i) + (ui − uref,i)

TP (ui − uref,i)
T }

+ (xn − xref,n)
TS(xn − xref,n),

subject to some constraints [40]. In Eq. 2.8, differences of the state xi compared to

some reference trajectory xref,i are penalized. This also holds for the control variable

ui, which is compared to some reference uref,i. The references are understood to be

supplied to the controller by some external source [40]. Q,P and S are assumed to be

symmetric.

2.4 Energy prediction

The global energy sector is currently undergoing significant changes, driven by a com-

monly acknowledged goal to reduce global greenhouse gas emission. This affects all

sides of the energy sector. The energy production and supply side are turning their

backs to fossil-driven sources such as coal and transitioning towards renewable sources

like wind and solar. On the demand and consumer side, numerous improvements can

be done. According to statistics, the building sector is a significant consumer of energy,

accounting for 39% of the worlds overall energy consumption [87]. Building energy man-

agement and energy operations rely heavily on either physical models or data-driven

models to create forecasts to improve energy efficiency. Data-driven energy models are

based on data to derive a context between input (e.g. ventilation sensors) and out-

put (e.g. energy consumption). Although physical models can incorporate a greater

amount of detail about a building, data-driven models have the benefit of being easily

implemented and adapted to other buildings. Due to this flexibility, data-driven energy

models are gaining popularity [96]. Data-driven models for energy prediction are based

on machine learning algorithms such as Linear Regression, Recurrent Neural Networks,



Support Vector Machines and Extreme Gradient Boosting [20], [34]. Figure 2.5 depicts

a flow chart of a common process of a machine learning process.

Figure 2.5: General machine learning development flow chart [20].

2.4.1 Linear Regression

Linear Regression aims to model the relation between a output response variable y given

some observed input data x. The most common Linear Regression model is expressed

in Eq. 2.9

Y = a+ bX, (2.9)

where Y represents a variable dependent of some causing variables X. b represents

the regression coefficients of the causing variables X, and a the intercept [53]. Linear

Regression is one of the simplest machine learning implementations as it does not require

parameter tuning. The common way to fit a regression line is by the least-squares



method, which yields the following equations for the parameters a and b

b =

∑n
i (xi − x̄)(yi − ȳ)∑n

i (xi − x̄)2
(2.10)

and

a = ȳ − bx̄ (2.11)

for data points i ∈ [0, n].

2.4.2 Recurrent Neural Networks

Recurrent Neural Networks (RNN) are an extension of the regular feed-forward neural

network and are suited to process sequential data such as time-series and use patterns

to predict outputs [29], [50].

Where regular feed-forward neural networks map from a fixed-size input to a fixed-size

output, Recurrent Neural Networks have the ability to handle input data of varying

length and produce varying length output sequences. The network contains several

successive recurrent layers that are sequentially modeled. Figure 2.6 illustrates the

architecture of a Recurrent Neural Networks.



Figure 2.6: Recurrent Neural Networks.

The difference between a Recurrent Neural Networks and a regular feed-forward neural

network is the introduction of loops in the hidden layers, as shown in Figure 2.6. A

Recurrent Neural Networks with 3 time-steps is unpacked and illustrated in Figure 2.7.

Figure 2.7: Recurrent Neural Networks, 3 time steps.

In Figure 2.7, xt represents the input at time t. xt can represent a d-dimensional

feature vector. yt represents the output at time t. A Recurrent Neural Networks can

produce multiple outputs. In Figure 2.7, the network only generate one output at the

last timestep, t = 3. ht represents a m-dimensional vector storing hidden state values

at time t, often called the current context. ωx is a m-dimensional weight vector for

the input in a recurrent layer. ωh represents a m × m matrix of the weights for the



hidden units. ωy represents a m-dimensional vector of the weights related to the hidden

to output units. bh is a m-dimensional vector representing the bias at the recurrent

layers and by is the bias related to the feed-forward layer. One rectangle in Figure 2.7

illustrates a operation taking place with a given activation function f :

ht+1 = f(xt, ht, wx, wh, bh) = f(wxxt + whht + bh) (2.12)

At time t, the output y is found by

yt = f(ht, wy) = f(wy · ht + by), (2.13)

where ·represents the dot-product. Common activation function choices are the Sig-

moid, RELU or Tanh [4].

One shortcoming of recurrent neural networks is the vanishing gradient problem, a

problem occurring when training using back-propagation related to updating the weights

that are used to connect the hidden layers to themselves. If the weights are small, this

will lead to the gradient vanishing. If the weights are large, it will cause the gradient

to explode [15].

Long short-term memory networks, LSTMs [39], is a version of a recurrent neural net-

work that is designed to overcome the vanishing gradient problem. A LSTM can be

considered as a recurrent neural network where each hidden unit is replaced by what

is known as a LSTM cell, and the addition of a connection between each cell known as

the cell state.

Each LSTM cell maintains a cell state vector. At each time-step, the next LSTM

cell can choose to read, write or reset the cell using a gating mechanism. A LSTM



cell has three gates. A input gate controls whether the memory cell is updated. The

forget gate controls if the memory cell is reset to 0. The output gate controls whether

the information of the current cell state is made visible. Every gate has the Sigmoid

activation function:

it = σ(wi[ht−1, xt] + bi) (2.14)

ft = σ(wf [ht−1, xt] + bf ), (2.15)

and

ot = σ(wo[ht−1, xt] + bo), (2.16)

for the input, forget and output gate, where the wi, wf , wo and bi, bf , bo, represents

the weights and biases, respectively.

In addition to the described gates, a vector C̄ modifies the cell state. This vector

has the Tanh activation function to ensure the distribution of gradients[65], thereby

preventing the vanishing/exploding gradient problem:

C̄t = tanh(wC [ht−1, xt] + bC) (2.17)

A LSTM cell is shown in Figure 2.8.



Figure 2.8: One LSTM cell [72].

LSTMs have shown to perform well when faced with the task of short-term load pre-

diction [95].

2.4.3 Support Vector Machine

Support Vector Machine is a machine learning algorithm providing strong non-linear

capabilities and support for both classification and regression. The main idea of the

Support Vector Machine algorithm is to obtain a hyperplane in an N-dimensional space

that distinctly classifies all data points. N is representative to the number of features

present. SVM separates data in to two classes, and the data points are classified by

identifying the hyperplane with the maximum margin out of multiple planes. The

margin in question refers to the distance between data points of different classes. The

purpose behind maximizing the distance is to provide some reinforcement in order to

increase the confidence related to classification of future data points [32]. In order to



maximize the margin, hinge loss is calculated. Hinge loss is a loss function defined by

Eq. 2.18

c(x, y, f(x)) =


0, if y ∗ f(x)≥1.

1− y ∗ f(x), otherwise.

Meaning that c(x, y, f(x)) = (1− y ∗ f(x))+

(2.18)

To obtain balance between the margin maximization and the loss, a regularisation

parameter is added to the loss function. The result of introducing the regularisation

parameter is presented in Eq. 2.19.

minwλ||w||2+
n∑

i=1

(1− yi〈xi, w〉)+ (2.19)

The loss function is minimized by calculating gradients and updating the weights of the

Eq. 2.19. The gradients are found by taking the partial derivatives with respect to the

weights, the calculation is presented in Eq. 2.20.

δ

δwk
λ||w||2= 2λwk

δ

δwk
(1− yi〈xi, w〉)+ =


0, if y〈xi, w〉≥1.

−yixik, otherwise.

(2.20)

The gradients are updated prior to every classification. The way in which the gradients

are updated depends on whether the data point was correctly classified or misclassified

[32]. If a misclassification has occurred, the update happens according to Eq. 2.21,

which include both the loss and the regularization parameter in the gradient update.

w = w + α ∗ (yi ∗ xi − 2λw) (2.21)



When a data point has been correctly classified, the gradient update is performed ac-

cording to Eq. 2.22 which only updates the gradient from the regularization parameter.

w = w − α ∗ (2λw) (2.22)

When it comes to logistic regression using Support Vector Regression (SVR), the main

idea is to introduce a kernel function, which has the capability of mapping the input

space to a hyper-dimensional space that creates a optimized hyperplane. The function

is expressed in Eq. 2.23, where f(x) denotes the prediction outputs, W denotes the

weight factor, b is the adjustable factor and ϕ(x) represents the mapping function used

to map input space to the hyper-dimensional space [20].

f(x) = WTϕ(x) + b, (2.23)

An area of research where SVM has been proved to perform at a high success rate

is forecasting of energy consumption, this is due to its ability to resolve non-linear

regression issues [19]. SVR has also been proved to be a promising method when it comes

to forecasting aggregated loads of data from single buildings or clusters of buildings,

but that the method might not be the most appropriate for forecasting electricity usage

for an individual household. SVR has been reported to perform well in short-term load

forecasting due to its prediction accuracy and speed in the field [21].

2.4.4 Extreme gradient boosting

Extreme gradient boosting is a type of machine learning referred to as an ensemble

learning algorithm. It is a model constructed from a collection of decision tree models.

The trees are added sequentially to the ensemble and fit to correct prediction errors

made by prior trees. The structure of the model provides it with the capability to

solve vast amounts of data-mining issues in a short period of time, with high accuracy.



The extreme gradient boost (XGBoost) algorithm is based on a gradient boosting algo-

rithm and is one of the most reached for methods in the field of machine learning [20].

The model produces higher level prediction outcomes by managing the complexity and

reducing the level of overfitting with help of the integrated regularization.

Figure 2.9: Extreme Gradient Boosting Algorithm
.

Extreme gradient boosting has been recognized for its performance levels and has won

a large variety of machine learning competitions, making it one of the go-to algorithms

for many data scientists [60]. Some of its known weaknesses is its capability to predict

the future as well as making prediction for values outside the range of the training data.

These weaknesses limit the XGBoost model when applied to regression problems that

involve predicting continuous output. Despite the mentioned weaknesses, Extreme Gra-

dient Boosting algorithms are know to work well for classification problems, situations

with many categorical variables and prediction issues where the range of the target

values present in the training set can be expected.



2.4.5 Model Evaluation

Model evaluation is the process of utilizing various evaluation metrics to get insight

into strengths and weaknesses related to a model, as well as get a better understand-

ing of the performance of the machine learning model in question. Model evaluation

is an important step in machine learning, as it allows one to assess the efficiency and

performance of a model from an early point in the research process. Evaluation can

also be extremely helpful when choosing what model to use for the specific data or

issue. When experimenting with different models, the level of accuracy/error of which

the models perform at is highly interesting. In most cases, a model with as high/low

accuracy/error as possible is desired. There are many evaluation methods available,

reaching from statistical measurements such as confidence intervals to visual plots and

confusion matrices. For the case of our research and predictive models, we will intro-

duce Mean Squared Error (MSE), Mean Absolute Error (MAE), Root Mean Squared

Error (RMSE) and R2-squared, as these are the most commonly reported measures of

predictive accuracy [52].

2.4.5.1 Mean Squared Error (MSE)

The Mean Squared Error (MSE) is a evaluation method often used with regression

models. It describes the distance from a regression line to a set of observed data points.

The distance from a specific point to the regression line is computed and then squared.

Calculating the square root of the distances handles the occurrence of negative values,

leaving us with only positive measures. In addition, computation of the square root also

distributed more weight to points further from the line. In order to obtain the MSE of

the model in its entirety, the mean of all the distances are computed [82]. The lower the

value of the MSE, the better the model is for the data in question. The mathematical

equation used to compute the Mean Square Error is listed in Eq. 2.24,



MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (2.24)

where yi represents the real observed value, ŷi is the predicted value on the regression

line and n is the number of point pairs present or residuals.

2.4.5.2 Mean Absolute Error (MAE)

Mean Absolute Error (MAE) is an evaluation method with many similarities to MSE. It

is a model often used in relation to regression problems, and utilizes the distance between

the actual measurements and the predicted values in its calculations. The MAE of a

model with respect to a specific test dataset is calculated according to Eq. 2.25, where

yi represents the real observed value, ŷi is the predicted value on the regression line and

n is the number of residuals.

MAE =

∑n
i=1 abs(yi − ŷi)

n
(2.25)

The absolute value of the distance between the true measured value and the respected

predicted value is calculated for all values, producing n prediction errors. The mean

of all calculated prediction errors are added, before being divided by the number of

calculated errors, leaving us with a measure of the MAE of the model [81].

2.4.5.3 Root Mean Square Error (RMSE)

Root Mean Square Error (RMSE) is an evaluation method built on MSE (2.4.5.1).

RMSE is computed by taking the square root of the mean of the square of all prediction

errors computed for a data set. The mathematical equation representing RMSE is

presented in Eq.2.26. yi represents the real observed value, ŷi is the predicted value on

the regression line and n is the number of distances computed. This function gives us

a measurement of how spread out the computed residuals are, also representing how



concentrated the data is around the regression line [63].

RMSE =

√√√√ 1

n

n∑
i=1

(y − ŷ)2 (2.26)

RMSE is very commonly utilized for evaluation of prediction models , it is often used

in climatology, forecasting, and regression analysis to verify experimental results and is

considered an excellent general-purpose error metric for numerical predictions. RMSE

is a good measure of accuracy, but only to compare prediction errors of different models

or model configurations for a particular variable and not between variables, as it is

scale-dependent.

2.4.5.4 R-squared

R-squared (R2) is a statistical measure that represents the percentage of variance of

a dependent variable that can be explained by an independent variable/variables in a

regression model. The measure produces decimal values ranging from 0 to 1, however

it is most usually expressed as the equivalent percentage ranging from 0% to 100%.

R2 gives information about how close the specific data is to the fitted regression line,

generally the higher the R2 the better the fit of the model is. R-squared of a model is

measured according to the following equation;

R2 = 1−
∑

(yi − ŷi)
2∑

(yi − ȳ)2
(2.27)

where yi represents the actual value, ŷi is the corresponding predicted value and ȳ is

the mean of the y values.

For instance if R2 of a model is computed according to Eq.2.27 and result in 100%, then

all observed variation can be explained by movement in the input values. Such a case

is visualised graphically in Figure 2.10



Figure 2.10: R2 = 1. All variation in y can be explained by variation in x

2.5 Datasets

This section gives an overview of the historical dataset utilized for training our machine

learning models.

2.5.1 Training Data

In order to train various models for prediction of energy consumption and ventilation

system sensor values, a large selection of historical data is combined in a single set of

training data. All historical data has been collected from Arkivenes Hus and stored by

Veni AS.

The original historical dataset contains data related to a large variety of sensors sta-

tioned in the ventilation system. The values are representative for a 10-day period, from

April 17th 2022 to April 27th 2022. For the present study, some of the original values

are not of interest and will be removed prior to further work. This will be discussed

in further detail in section 4.3. In addition to a variation of sensor values, the dataset

contains a feature representing the energy provided to and consumed by the ventilation



system. Both the historical sensor data and the historical energy data is represented by

real-time values on a 10 minute basis, allowing for efficient preprocessing and analysis.



Chapter 3

Tools and libraries

This chapter explores all relevant technologies related to this thesis.

3.1 Azure Services

This section gives an introduction to the Azure platform and some of the many services

accessible. It will give an overview of the Azure services utilized for this research, along

with some of their key features.

Azure is a public digital cloud computing platform created by Microsoft, meaning that

in addition to traditional cloud services which provides data storage, the platform en-

ables users to engage in agile cloud computing [97]. The aim of the platform is to assist

businesses manage what can be view as large challenges and reach any organizational

goals.

This area of technology is a growing industry commonly referred to as PaaS (Platform

as a Service), SaaS (Software as a service) and IaaS (Infrastructure as a service). Azure

can be considered to be a provider of all these services. The Azure portal provides a

wide variety of cloud services, including computation, analytics, storage and network-

ing. The services are helpful tools when developing new technology and applications,

28



as well as running existing applications in the cloud.

Many of the tools used during this research are provided by Azure and they repre-

sent only a few of the countless services available in the Azure platform.

3.1.1 Azure Digital Twin

Azure Digital Twin is a platform for developing and interacting with digital models of

real-world physical systems [27]. When using Azure Digital Twin, one first creates a

digital twin model representing the desired system, and then one can connect real world

sensor data to the model. In order to create a model in Azure Digital Twin, one needs

to use what is called the Digital Twin Definition Language.

3.1.1.1 Digital Twin Definition Language

This subsection provides a brief summary of the Digital Twin Definition Language

(DTDL), mainly extracted from the official documentation of the language, which is

found in [28].

The Digital Twin Definition Language (DTDL) is based on JSON-LD, JSON for Linked

Data, which is a variant of JSON used for large scale integration and reasoning of data

[25]. A model created with DTDL must have a top level interface that provides a de-

scription of the contents of the system which is modelled. The top level interface should

encapsulate the entire model. The model interface is built around four classes defined

in the DTDL language: Telemetry, Property, Relationship and Component.

• Telemetry describes measurements or events, e.g. a continuous temperature mea-

surement from a thermostat. The data stream from a telemetry field is not stored

in digital twins, but has to be managed in real time as it appear in the model.



• Property represents data fields which contain information of about the state of

an entity. Unlike telemetry, properties can viewed at any time as they contain

storage abilities.

• Relationships enables one to define how entities in a digital twin are related to

each other. Relationships can be defined with distinct semantic definitions, e.g.

contains (”Building contains floor) or (”System contains sensor”). By defining re-

lationships between entities, the digital twin model provides a graph of connected

entities.

• Components enables the construction of a model interface as an aggregation of

other models, if desired. E.g., one model component can be temperatureSensor,

another can be motionSensor. These can be used in defining a model room. This

requires first defining the two components as separate models, and then referencing

them in the room model.

Several fields are used to define a model:

• @id is an identifier that must contain information about the model on the formal

dtmi:<domain>:<unique-model-identifier>;<model-version-number>.

• @type describes the type of information.

• @context, used to provide context information about the JSON-LD format. This

is a property of JSON-LD ensuring that the JSON document uses local meaningful

names while still providing meaning elsewhere, despite beeing merged with other

data [46].

• displayName is an optional feature which defines the name that will be shown in

the model.

• contents, which contains the information about the data. The information is

stored in an array of attributes, where each attribute is one of the four classes



(Telemetry, Property, Component, Relationship) described above. Each attribute

must provide a set of features that describe the attribute, such as a name or a

schema.

Since data is a significant aspect of digital twin technologies, DTDL also implements

semantic type annotations, so that analytics, machine learning and other computations

can reason about the semantics of data, and not just the schema of the data.

3.1.2 Azure IoT Hub

This section introduces the concepts of Azure IoT Hub along with some of its key fea-

tures, providing an understanding of how the service is highly useful when working with

a variation of devices and services that desire to be connected.

IoT refers to ’The Internet of Things’ and is a network of different connected phys-

ical devices that exchange data with both each other and other services across the

internet. Azure IoT Hub is a cloud hosted service which serves as a central message

hub for communication between IoT applications and all of their connected devices. As

a central message hub, Azure IoT Hub performs a variation of tasks, including message

processing, triggering actions and collecting information about the device system before

delivering it to an appropriate system or application. The hub is highly scalable and is

capable of handling millions of connected devices along with their back end solutions in

a reliable and secure way [49].

The service provides support for integration with a variation of other Azure services,

allowing user to build end-to-end solutions. For instance Azure IoT Hub integrate well

with services such as Azure Machine Learning and Azure Stream Analytics, which are

both highly interesting services with regards to analysis and prediction issues like in this

research. The simplicity related to integrating Azure IoT Hub with other Azure ser-



vices allows for organizations and developers to efficiently and seamlessly extend their

platform to what it needs to be, without compromising on the platforms scalability or

reliability.

3.1.2.1 Devices

All smart devices has the capability to connect to an Azure IoT Hub, and for large IoT

systems the number of devices can become quite vast. Azure IoT Hub has an identity

registry which stores device information and modules with permission to connect to the

device. This allows for quick and easy identification of the different devices. All devices

and modules must have a registered entry in the identity registry before being able to

connect, and authenticates itself with the IoT Hub by providing credentials stored in the

registry. Devices can be authenticated through two different methods, SAS token-based

authentication or X.509 certificate authentication [49].

Post authentication, the connection is secured utilizing the Transport Layer Security

(TLS) standard. With a secure connection established, the devices can communicate in

a variation of ways. Typically IoT devices send telemetry from their sensors to backend

services in the cloud, but it is also possible for the backend services to send commands

to a device [49]. Examples of telemetry received can be temperature or pressure, reg-

istered by device sensors. Besides telemetry, device properties can also be read or set

from the IoT Hub. Properties can be used to send prompt notifications when an action

is considered complete. Temperature is also an example of a device property as it can

be updated and set on the device or read from a temperature sensor located on the

device.



3.1.2.2 Data Collection

By default all data received in Azure IoT Hub is collected at a built-in endpoint, but

it can also be routed on to different services for additional processing. As soon as a

message route has been created, the data stops flowing to the default endpoint. In order

to spread the data out to multiple subscribers, Event Grid can be utilized. Event Grid

is well integrated with Azure IoT Hub and is a fully managed event service [49]. It

allows the user to manage events across multiple Azure services in an easy and efficient

way, and it works together with Azure IoT Hub to integrate IoT Hub Events into both

Azure and non-Azure services, with low latency [48].

3.1.3 Azure Functions

Azure functions is a cloud service hosted by Microsoft, which allows users to develop

and debug solutions more efficiently. It is available on-demand and provides all the

continually updated resources and infrastructure necessary to run an application [33].

Azure functions runs event-triggered code-blocks in a scalable way without the user

having to provide and manage infrastructure. The code only runs as a response to a

collection of different events, meaning that it does not have to run continuously, but

instead, only when needed. Theses features enables the user to write server-less code

for handling events, with minimal overhead and cost.

3.1.4 Data Storage

This section provides a short introduction to data storage and highlights some of the

key features provided by Azure SQL Database.

Storage of historical data can be of large interest and highly beneficial for a varia-

tion of industries. The method of storage utilized plays a major role in how simple the

process of accessing, using and securing the data is. There is a vast amount of options



when it comes to data storage, ranging from data lakes to SQL databases, which is

utilized for this project.

3.1.4.1 Azure SQL Database

This subsection provides a brief summary of concepts and functionality provided by

Azure SQL Database, mainly retrieved from Azure’s official documentation [8].

Azure SQL Database, managed by Microsoft Azure, is one of the dominant relational

database cloud service on the market today. The service is a fully managed platform as

a service (PaaS) database engine, meaning it handles most of the database-management

functions such as upgrading, patching, backup and monitoring the database without any

user involvements required. This feature significantly reduces administrative overhead

and allows for applications to reach the desired market in less time[55]. Azure SQL

Database service is often chosen by developers and clients for just this reason alone, but

many also opt for the service for one or more of the following reasons [62]:

• They have a desire to build a multi-tenanted software as a service type of appli-

cation

• They are in possession of an existing database, and do not wish to compromise

on either performance or cost.

• They wish to have the opportunity to scale their compute and storage indepen-

dently.

• They wish to start using Azure as a part of their business and want to integrate

azure services with their current applications.

When it comes to deploying the database, Azure offers multiple options [55];

Azure SQL Database - Single database, which creates a single database that relies

only on its own resources and is tiered based on performance and size.



Azure SQL Database - Elastic Pool, which allows for resource sharing, meaning that

databases share their resources with the other databases assigned to the same pool.

Resource sharing allows for processing power to be allocated to only active databases

and not idle ones. Although resources are shared, users are not allowed to query across

databases. In fact, databases assigned to the same pool are not aware of each others

existence, and can therefore not communicate and are dependent on individual security.

Azure SQL managed instance, which is highly compatible with SQL Server. It maxi-

mized its compatibility with SQL Server Databases on premise, making it highly relevant

for instances looking to migrate their existing system to the cloud. Similarly to elastic

pools, Azure SQL managed instance supports resource sharing among databases, but in

this case the databases are not isolated in the same matter. For the user this means

that they have the opportunity to transparently query across databases.

In order to query an Azure SQL Database, regardless of deployment method, queries

needs to be written according to Transact-SQL (T-SQL) language [55]. T-SQL is an ex-

tension to the ANSI(American National Standards Institute) SQL standard and utilizes

well known keywords such as SELECT, FROM, WHERE, ORDER BY. The extension

adds improvements and capabilities, making T-SQL an efficient, robust, and secure

language for both data access and manipulation.

3.2 PySINDy

PySINDy [26] is a Python package implementing the SINDy algorithm described in

Section 2.2. The package consists of three main components, one for each term in Eq.

2.7. The first, differentiation_method is a component used to obtain Ẋ from X if

needed. feature_library enables one to specify the candidate basis functions to be



used in constructing Θ(X). Lastly, optimizer defines which method to use for solving

the sparse regression problem when identifying Ξ. A SINDy object needs all three of

these components. After creating an object, it needs to be fit to measurement data.

3.3 GEKKO

GEKKO [10] is a optimization library for Python, specializing in dynamic optimization

and differential algebraic equation problems. It implements functionality for developing

tools such as moving horizon estimation, real-time optimization and model predictive

control. For MPC, it allows for specification of upper and lower boundaries, soft vari-

ables, control variables and manipulated variables, as well as great freedom in defining

dynamics describing the desired system, be it linear or nonlinear.

3.4 Machine Learning

This section provides all necessary information regarding various technologies utilized

in implementing, running and evaluating the different machine learning algorithms in-

troduced in 2.4. The main resources include Scikit-learn [84] and Tensorflow [90].

3.4.1 Scikit-learn

For implementation of various regression models we can utilize Scikit-learn, a free soft-

ware machine learning library for the Python programming language. It is mainly writ-

ten in Python and uses NumPy [64] extensively for linear algebra and array operations.

The library was first introduced in January 2010, and has been updated throughout the

years. The latest release scikit-learn 1.1.0 was released in May this year [84].

Scikit-learn is the said to be one of the most useful and robust library for working

with machine learning in Python [71]. It provides its users with a variety of efficient

methods which are highly useful when working with both classification issues and real



value prediction issues such as ours. A library such as Scikit-learn simplifies the area of

machine learning vastly and streamlines the process of both preprocessing and predic-

tion.

3.4.2 Tensorflow

For implementation of neural networks, Tensorflow can be utilized. Tensorflow is an

end-to-end platform for machine learning and provides an extensive and flexible collec-

tion of tools, libraries and community resources [90]. The platform allows for researchers

and developers to create state-of-the-art machine learning models and build and deploy

applications powered by machine learning.

Tensorflow facilitate for fast and easy end-to-end model building with its simple and

flexible architecture, and with use high-level APIs such as Keras they enable immediate

model iteration and simple debugging. It promises high quality production regardless

of the users choice of platform, allowing for easy training and deployment in the cloud,

on premise, in the browser or on-device independent of the language used[90].

3.4.2.1 Keras

Keras is a Python written API, running on top of Tensorflow, providing a Python in-

terface for artificial neural networks. The library was developed with the intention of

enabling fast experimentation. Keras, according to the library documentation [88], is

all of the following:

• Simple – but not simplistic. Keras reduces developer cognitive load to free you

to focus on the parts of the problem that really matter.

• Flexible – Keras adopts the principle of progressive disclosure of complexity:

simple workflows should be quick and easy, while arbitrarily advanced workflows



should be possible via a clear path that builds upon what you’ve already learned.

• Powerful – Keras provides industry-strength performance and scalability: it is

used by organizations and companies including NASA, YouTube, or Waymo.



Chapter 4

Method and Approach

This chapter provides all necessary insight into the approach taken and methods utilized

in order to perform our research. It presents a step-by-step implementation of an Azure

digital twin representing Arkivenes Hus, as well as the steps taken to populate the

model with real-life data from sensors located in the building. It provides information

regarding methods utilized in preprocessing sensor and energy data, in order to prepare

it for any further work. Tools used for analysis, system identification and optimization

are explained along with all the different machine learning algorithms used to predict

the upcoming energy consumption.

4.1 Architecture

This section provides an overview of the system’s architecture. A more detailed presen-

tation of the proposed architecture of the subsystem that performs optimization and

prediction is also given.

4.1.1 Overall System

To conduct the study in question, multiple steps are required, all of which are intercon-

nected in some way. Figure 4.1 presents the end-to-end solution, with all actions taken.
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Initially data from ventilation system sensors placed in Arkivenes Hus is collected and

accessed through an Azure IoT Hub before being ingested into an Azure Digital Twin

and stored in an Azure SQL Database via an Azure Function. Simultaneously, his-

torical sensor and energy data is collected from a separate source. This data is then

preprocessed and analysed before optimization is performed. Machine learning is then

applied to the optimized data and prediction of energy consumption is performed.

Figure 4.1: Proposed System Architecture

4.1.2 Optimization and Prediction

In this project, we propose a data-driven architecture to optimize and predict the control

of one of the ventilation systems in Arkivenes hus. The architecture is illustrated in

Fig. 4.2.



Figure 4.2: Proposed architecture for optimization and prediction
.

The first step of this proposed architecture is system identification using SINDy. This

step obtains governing equations of relations on the data. Using this, model predictive

control will be applied to determine the optimal control strategy given some objective.

The output values of the control strategy will be utilized to predict the energy con-

sumption of the ventilation system. The work related to this architecture is presented

in Sections 4.4, 4.5 and 4.6.

4.2 Data Model

This section gives insight into all aspects related to the implementation of an Azure

Digital Twin representing Arkivenes Hus.

4.2.1 Identification of Entities

In order to implement a realistic model, a substantial overview of all entities present in

the building is required. Access to floor plans, system drawings and an extensive 3D

model of the building makes the process of identifying the different entities and mapping

their relations, highly effective. The floor plans provide an initial overview of how many

spaces there are, what types of spaces there are, and where the different spaces are

situated in the building. As for most larger buildings, Arkivenes Hus contains multiple

systems, both electrical and ventilation. For the purposes of this project, we are only

interested in the ventilation systems.
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Figure 4.3: System drawing of ventilation systems in Arkivenes Hus. Made available by
Veni AS.

Figure 4.3 presents a system drawing of a ventilation system in Arkivenes Hus, venti-

lation system 360.006 to be specific. As can be seen in Figure 4.3, the system drawings

gives an overview of what elements and sensors are present in each individual ventila-

tion system, which is of high interest when it comes to mapping additional information

to the various sensor values currently available. Based on the information provided

by these documents, we are able to identify the entities needed to produce a realistic

model, these entities are presented in Appendix A.

In addition to an overview of internal entities, the system drawings also provide a

brief explanation of where the system is located, in form of floor and cardinal direction.

Overall the floor plans and system drawing provide little specific information on the

location of the various ventilation systems in relation to the rooms of the building. In

order to produce an accurate and detailed digital twin, in terms of relationships between

entities, we would greatly benefit from knowing which rooms or zones each ventilation

system serves. The 3D models provides us with the exact desired information. As seen



is Figure 4.4 the digital 3D model visualizes the exact positioning of the ventilation

systems, as well as a clear separation between the systems serving the floor.

Figure 4.4: 3D model of Floor 3 with corresponding ventilation systems in Arkivenes
Hus

Entities are mapped together according to the relationships stated in 4.1.

Entity Relationship Target
Building contains_floor Floor

Floor contains_room Room
Floor contains_room Archive
Floor contains_room Technical Room
Floor contains Shaft

Ventilation system serves Room
Ventilation system contains_sensor Temperature Sensor
Ventilation system contains_sensor SFP Sensor
Ventilation system contains_sensor Pressure Sensor
Ventilation system contains_sensor Relative Performance Sensor
Ventilation system contains_sensor Humidity Sensor
Ventilation system contains_sensor Filter Sensor
Ventilation system contains_sensor Damper Sensor
Ventilation system contains_sensor Battery Sensor
Ventilation system contains_sensor Airflow Sensor

Table 4.1: Mapping of relationships between entities



4.2.2 Implementation of Entity Models

For each of the entities defined in A.1 a entity model is implemented, containing their

respected properties and relationships. The models are implemented according to the

Digital Twin Definition Language (DTDL), and stored as separate JSON files.

Listing 4.1: Example of model implementation - Room entity

{

”@id ” : ”dtmi : com : ah : room ; 1 ” ,

” @context ” : ”dtmi : dtd l : context ; 2 ” ,

”@type ” : ” I n t e r f a c e ” ,

” displayName ” : ”room ” ,

” contents ” : [

{

”@type ” : ” Re la t i on sh ip ” ,

”name ” : ” conta ins_sensor ” ,

” displayName ” : ” conta in s s enso r ”

} ,

{

”@type ” : ” Telemetry ” ,

”name ” : ” Temperature ” ,

” schema ” : ” double ”

} ,

{

”@type ” : ” Property ” ,

”name ” : ”Area ” ,

” schema ” : ” double ”

}

]

}

Listing 4.1 presents an example of how a model is implemented for use in our digital



twin. The model is identified by a model ID, ”@id”, which follows a ”dtmi:com:ah:{en-

tity}:{specification};1” naming convention. All relationships and properties defined in

A.1 are implemented according to the example. All the entity models combined is what

defines the structure of the digital twin, and all instances added to the twin has to be

represented in the models.

4.2.3 Implementation of Graph

In order to produce an actual digital twin, a graph containing all entities and existing

relations has to be created. This implantation is performed in Excel, before the graph

is uploaded to Azure Digital Twin where the graph is read and visualized. It is crucial

that the Excel file is structured correctly in order for it to be imported and read cor-

rectly by Azure’s Digital Twin service. As seen in Table 4.2 the Excel document needs

to be structured in 5 columns; ModelID, ID - unique instance ID, Relationship(From) -

owner of the relationship, Relationship Name and Init Data. In addition to containing

these 5 fields, all instances must have its own unique ID and must be defined prior to

being listed as a Relationship owner.

The structure is well displayed in the table, as instance ”ah” is the owner of the

”contains_floor” relationship and must therefore be defined prior to being used in

the Relationship(From) column for the ah_floor_02 instance. For instances which

occur in multiple relationships, these are inserted below the entry where the instance is

first defined with its unique ID.

ModelID ID(must be unique) Relationship(From) Relationship Name Init Data
dtmi:com:ah:building;1 ah

dtmi:com:ah:ventilation_system;1 ah_ventilation_360.002
dtmi:com:ah:floor;1 ah_floor_02 ah contains_floor

dtmi:com:ah:room:archive;1 ah_room_archive_U3003 ah_floor_U3 contains_room {”Area”: 681.3}
ah_room_archive_U3003 ah_ventilation_360.002 serves

Table 4.2: Digital Twin Graph - Excel structure



4.2.4 Populating the Model

The primary objective of the Digital Twin is to improve access to live sensor data while

also offering useful insight into the relationships between the various entities located

in the building. The model is populated with live data from the physical sensors in

the building, this data is sent to and accessed through an Azure IoT Hub before being

passed to the Digital Twin through an Azure Function.

4.2.4.1 Azure IoT Hub

Real-life data is accessed through our Azure IoT Hub. In Azure IoT Hub several unique

devices are created, representing each of the ventilation systems serving the building.

The real-life data from the sensors in the building is sent as one package per unique

ventilation system, containing the data from all the internal sensors. These packages

are directed to their respected IoT Device, which is present in the device registry.

The IoT Hub receives data stored as objects containing information related to iden-

tifying the sensor, a sample object is provided in listing 4.2. The object provides infor-

mation related to what system in which the sensor is located, as well as the name/id

of the sensor. In addition to identification properties, the object also contains the most

current sensor value, along with the unit of the value. The data is sent to the hub with

a 1 minute frequency, allowing the digital twin to be updated at the same frequency.

Listing 4.2: Sensor object

{

” po int ” : ”RT501” ,

” va lue ” : 22 . 7 ,

” un i t ” : ”°C ” ,

” system ” : ”A360_006”

}



4.2.4.2 Azure Function

For distributing the data to our Azure Digital Twin an Azure Function is created. The

main purpose of the function is to update the digital twin with the newest data collected

from the sensors. In order to perform this task, an EventGridTrigger that runs each

time a new event is registered, is created. For each event, the data received is converted

to a JSON object in order to retrieve the data needed to update the digital twin. The

data is received as a list of sensor objects, consisting of a sensor id (”point”), the most

current sensor value (”value”), the unit of the value (”unit”) and a system id which

identifies what system the sensor is located in (”system”).

By retrieving the system id we can control that all updates occur on the correct sys-

tem in the Digital Twin. The digital twins of the individual sensors are updated by

accessing and matching the sensor identifier with the one stated in the digital twin.

If a match is found, then the previous twin value is updated with the current real-

life value. The update is performed by initializing an instance of a DigitalTwinClient

from the Azure.DigitalTwin.Core library. We can then call the UpdateDigitalTwinAsync

function on the client, and passing it the device ID along with the updated values.

4.2.5 Data Storage

The sensor data received in Azure IoT Hub is valuable for future work related to analysis

and machine learning. Thus, in addition to populating the model, the data is also

ingested into and stored in an Azure SQL Database. The data is injected into the

database through the Azure function used to populate our Digital Twin. After an event

is received and distributed to the accurate instances in the digital twin, the data is

ingested in the database using the following code:



Listing 4.3: Azure function executed for ingesting data into Azure SQL Database

1 var s t r = Environment . GetEnvironmentVariable (” sqldb_connect ion ”) ;

2 us ing SqlConnect ion conn = new SqlConnect ion ( s t r ) ;

3 conn . Open ( ) ;

4 var t ext = $”INSERT INTO [ dbo ] . [ ah_sensors ] ( [ System_id ] , [

Sensor_id ] , [ Sensor_val ] , [ Unit ] ) VALUES ({ dev i ce [ ” system ” ] } ,

{ dev i ce [ ” po int ” ] } , { dev i c e [ ” va lue ” ] } , { dev i ce [ ” un i t ” ] } ) ; ” ;

5 us ing SqlCommand cmd = new SqlCommand( text , conn ) ;

6 var rows = cmd . ExecuteNonQueryAsync ( ) ;

Listing 4.3 presents how a connection with the database is established from the Azure

function by retrieving the environment variable configured in Azure Portal[45][17]. This

variable is then used to establish a connection with the SQL database through a Sql-

Connector() instance. We then define a insertion query, shown on line 4 in the listing.

We then query the database using a SqlCommand() instance, which is executed with our

defined insertion query. The query is executed by calling the ExecuteNonQueryAsync()

function on the initiated SqlCommand() instance.

4.3 Data Preprocessing and Analysis

This section describes the step-by-step preprocessing of the historical data conducted in

Python using Pandas [70]. We go through how the data is initially retrieved and stored

is such a way that we have a clean and informative dataset for use in further work. It

also includes a basic analysis of the data, which was done alongside the preprocessing

to facilitate preprocessing decisions and further work.

4.3.1 Retrieving and Creating Dataset

All data used in this research has been collected and stored by Veni AS, through sensors

located in Arkivenes Hus. As mentioned in section 2.5, the data present in the dataset



was collected at 10 minute rate during the 10-day period from April 17th 2022 til April

27th 2022. Data for each of the different sensors, as well as the energy consumption

measurements, are stored in separate files. Prior to utilizing this data in any further

work, all collected data is combined in one common data set and stored in a Pandas

DataFrame.

4.3.1.1 Timestamp Formatting

In order to structure the data set in the most efficient and informative way possible,

all data points are matched by their respected timestamps. Matching the timestamps

require a common format for all timestamps across all the different sensor data sets.

This is done in Python using a variation of string operators. Originally the timestamps

are represented on four different formats; ’dd-MM-yy hh:mm:ss AM/PM CEST ’, ’dd-

MM-yy hh:mm:ss AM/PM CET ’,’dd-MM-yy hh:mm:ss CEST ’, ’dd-MM-yy hh:mm:ss

CET ’. After formatting all timestamps, they are are all presented by a common format;

’dd-MM-yy hh:mm AM/PM ’.

Post formatting, the timestamp is of type string. In order to prepare and improve

the data set for use in analysis and visualisation, the string is converted to a datetime

object. This is done using the strptime() function from the Datetime module in Python.

4.3.2 Correlation Analysis

In order to determine what features are important and valuable in relation to energy

consumption, we conduct a correlation analysis. A correlation analysis is a statistical

method utilized to obtain a measurement of the strength of the linear relationship be-

tween two variables as well as their directional association [23]. If a correlation analysis

results in a high correlation, a strong relationship between the values can be assumed,

whilst a low correlation points to a weak relation. A value of correlation can be both



positive and negative. A positive correlation is the result of two variables moving in the

same direction , meaning that an increase in one of the variables leads to an increase in

the other. The opposite occurs when a negative correlation is observed, meaning that

a decrease in one variable leads to an increase in the other, making the variables move

in different directions [22].

Our analysis was performed using tools from the Pandas library, specifically the corr()

function. The function calculates the correlation between each of the variables, and

returns the result as a matrix of size [number of features x number of features]. The

result of the correlation analysis performed on the original data set is presented in its

entirety in Appendix C. The analysis shows a large variation in strength of relationship

between the different variables, making the process of feature selection much more ef-

ficient and valuable. Table 4.3 presents an excerpt of the analysis results, representing

the correlation between the final features selected.

Value(kW) JV401 RT501
Value(kW) 1.00 0.98 0.71
JV401 0.98 1.00 0.71
RT501 0.71 0.71 1.00

Table 4.3: Result of correlation analysis between final features

4.3.3 Feature Selection

As previously mentioned, some of the original features are to be considered irrelevant

for the purpose of our research and will therefore be removed. Based on the correlation

analysis, it becomes clear that some specific features have a substantially greater im-

pact on the systems energy demand (Value (kW)) that others. From an overall system

perspective, the features JV401 and RT501 are the most interesting to study further.

These features are highly relevant when speaking of indoor climate, as they directly

affect or represent the temperature of the building.



Table 4.4, provides a brief explanation of what the final features represent, as well

as their intended use in future machine learning models.

Feature Description
JV401 Relative performance of ventilation fan Input
Value(kW) Energy submitted to/consumed by the system in kW Output
RT501 Measured indoor temperature(C) in Arkivenes Hus Output

Table 4.4: Description of selected features

4.3.4 Trends and Patterns

Following preprocessing, we conduct an analysis to explore the selected data for any

trends or patterns. Figure 4.5 depicts the temperature change inside Arkivenes Hus on

a random weekday. The fact that the day under consideration is a weekday is significant

since factors such as occupancy can be anticipated to influence indoor temperature. As

can be seen, the temperature drops at night before rising in the morning around the

time of sunrise. This observation is to be expected, given outdoor temperature and sun

position is known to have a significant impact on indoor temperature and climate. This

insinuates that the temperature drops at night as a result of lower outdoor temperatures

and an occupancy which can be assumed to be close to 0, before rising at sunrise when

temperatures tend to increase. During the active work hours of the day, the temperature

rises steadily until lowering towards the end of the day. The temperature rise is expected

as the building’s occupancy level, as well as the outdoor temperature, are at their highest

during those hours.



Figure 4.5: Indoor temperature in Arkivenes Hus.

Arbeidstilsynet recommends that when conducting light indoor labor, the interior tem-

perature at a workplace not exceed 22 degrees Celsius or fall below 19 degrees Celsius.

This recommendation is based on the significance of maintaining a balanced interior cli-

mate, as working in overly hot or too cold temperatures can be uncomfortable and make

one less productive [89]. Observing the y-axis reveals that the measured temperature of

the building is fairly high during work hours, exceeding the recommended temperature

of 22 degrees for the majority of the day.

As previously stated, Arkivenes Hus is served by several ventilation systems, each of

which serves a distinct portion of the structure. The ventilation systems are in charge

of regulating and maintaining the ideal temperature in the building. The effect the

system has is mainly controlled by the internal fan, which controls the amount of air

supplied to the building. Sensor JV401 measures the relative performance of the fan,

the data collected by the sensor over a 24-hour period is visualised in Figure. 4.6



Figure 4.6: Relative performance of ventilation system serving Arkivenes Hus.

Based on the data presented, it becomes clear that the ventilation system is shut down

during the night, resulting in a relative fan power of 0 %. The system is then turned

back on right around sunrise, before people return to work. The system is set to per-

form at about 60% of possible power, causing a spike in the graph. It is then kept

at consistent level though out the day of around 50% of maximum capacity, slightly

increasing during the busiest hours of the day. The system is shut down again at the

end of the day, around 18:00.

The ventilation system serving a large building, such as Arkivenes Hus, requires en-

ergy to operate. By visualizing the energy consumed by the ventilation system, we

receive significant insight into how system activity influences energy consumption. Fig-

ure 4.7 displays the system’s reported kW consumption every 10 minutes. The observed

pattern corresponds to the activity recorded in the ventilation system and is nearly

equivalent to the pattern found in the relative performance of the ventilation fan. This

implies a close association between the two events, which is also corroborated by the

prior correlation analysis.



Figure 4.7: Energy consumption for ventilation system serving Arkivenes Hus

Aside from the strong association between energy consumption and ventilation system

performance, the patterns seen in ventilation activity also match temperature develop-

ment rather well, demonstrating that the ventilation system has a considerable impact

on indoor temperature as well. This leads us to assume that with the ideal control

system, interior climatic requirements can be met, resulting in a much more optimal

work environment, while possibly still keeping energy consumption to a minimum. This

is the overarching motivation for the research carried out throughout this study.

Appendix B contains illustrations similar to the ones presented in this section, for a

larger selection of days. The visualizations provided support the analysis performed

and present a similar outcome.



4.4 Sparse Identification of Nonlinear Dynamical Systems

4.4.1 Initial Model Identification

For the data utilized in this project, no information about derivatives are known. There-

fore, we initialize a PySINDy model with ability to calculate the finite difference deriva-

tives [31], thereby obtaining Ẋ. When specifying the model’s feature library, meaning

the library of candidate terms Θ(X), we implement a polynomial library, which is the

standard feature library to implement when working with SINDy [67]. We implement

the library such that it contains up to 4th degree polynomials. We use the Sequentially

Thresholded Least Squares algorithm (STLSQ) [76] as optimizer for the regression. The

threshold is set to 0.01, representing the minimum value for a coefficient in the weigh

vector [76]. Any values below this threshold will be set to zero. We also implement

the algorithm with normalization of the X columns by dividing with the L2 norm. We

set the max iteration parameter to 30. The resulting mathematical models and simula-

tion results obtained using this initial model from the work described in this Section is

described in Section 5.2.1.

4.4.2 Smoothed Model

As described in Section 5.2.1, the initial model obtained from SINDy does not deliver

desired results. This is further discussed in Secton 6.1.1. As an adjustment to this

issue, we try to smooth the data used to fit the model. We therefore implement a

Savitzky-Golay filter [83], which has been described to ”reduce noise while maintain the

shape and height of waveform peaks” [83]. Fig 4.8 below illustrates the initial (blue),

and smoothed data (green) used to fit the SINDy model.



Figure 4.8: Original and smoothed data used to fit SINDy model.

4.5 Model Predictive Control

As model predictive control has been proved suitable for ventilation systems [2], [80],

[14], we choose to implement this as control strategy. We formulate a nonlinear model

predictive control problem using the obtained system equation for registered room tem-

perature given activation in the ventilation fan as obtained by SINDy. We define a

manipulated variable u to be the fan power, with a lower boundary of 0 and a upper

boundary of 100, representing the relative fan power, and specify that this variable is

to be included in the optimization. This is done by specifying GEKKO().MV().STATUS()

= 1 [92]. The room temperature measured by RT501 is defined as a state variable T ,



as it is changing over the time horizon. We define upper and lower constraints for

temperature, where the temperature must be within 17.5-18.5 ◦C during the night and

afternoon, and between 21-22 ◦C during the day. This means that the controlled vari-

able reference seeks to follow this trajectory, and that errors are calculated using the

squared error from this trajectory. Specifically, the problem is formulated as:

min
u

∂

∂t
T = 2.05 + 0.029u− 0.003Tu− 0.001T 2 (4.1)

subject to the constraints

TL ≤ Ti ≤ TU (4.2)

and

0 ≤ u ≤ 100. (4.3)

TL and TH represents arrays of lower and upper temperature limits throughout the day,

respectively, and Ti represent the current time step. Note that the term on the right

hand side of Eq. 4.1 is obtained from the work described in Section 5.2.

4.6 Machine Learning Algorithms

In order to properly predict the systems energy consumption and desired sensor values,

we implement a variation of machine learning algorithms fitted on the preprocessed his-

torical dataset introduced and discussed in sections 2.5 and 4.3. The algorithms imple-

mented are Linear Regression, Support Vector Regression, Extreme Gradient Boosting

and LSTM. Implementation is conducted using tools from Python’s Scikit-learn library

and XGBoost [98], as well as modules from the Tensorflow and Keras libraries.



4.6.1 Linear Regression

Linear Regression is perhaps one of the simplest or well understood machine learning

algorithms on the market. In addition to being quite straight forward in terms of imple-

mentation, the model also manages multiple output values, such as ours, without any

additional configuration. For the implementation of the linear regressor, an instance

of the LinearRegression() class from Scikit-learn is initialized with only its default pa-

rameters. The class fits a linear model with the purpose of minimizing the total sum

of squares between observed targets present in the dataset and the targets predicted

through linear approximation. The instance is fitted on training data representing our

input values, X_train, and output values, y_train. Eqs 4.4 and 4.5 display an example

of the structure of the input and output values in question.

Input −→ [48] (4.4)

Output −→ [3.5, 23.1] (4.5)

The training data is provided to the fit(X_train,y_train) method from the LinearRegres-

sion() class. Finally, a set of testing input data, X_test, is fed to a predict(X_test)

method from the same class and a corresponding set of output vectors are predicted

and returned.

4.6.2 Support Vector Regression

Unlike Linear Regression, Support Vector Regressors are originally intended for single

value prediction. This introduces the need for an additional step in the implementation

process. The implementation starts of with initializing an instance of the SVR() class

from the Scikit-learn library. The SVR() class is a supervised learning algorithm that

is used to predict discrete values. The basic idea behind the Support Vector Regression



(SVR) is to find the best fit line. The best fit line is the hyperplane which contains the

highest number of points. Initially an instance of the class is initialized with most of

its default values, with the exception of gamma and C which is assigned according to

the following values; gamma = 0.1 and C = 1e3. After an SVR is created, it is passed

to an instance of the MultiOutputRegressor() class from Scikit-learn. The class allows

us to fit one regressor per target, which in our case equals two. This is a quite simple

strategy for extending regressors which originally only support single-output regression.

After extending the original regressor to a multi-output regressor, the model is fitted on

the available training data, illustrated in Eqs. 4.4 and 4.5. As for the Linear Regression

model, the final step consist of passing a set of testing input data to a predict(X_test)

method which then return a set of predicted vectors.

In addition to the initial implementation, we implement multiple other SVR models

with variation in kernels used. This is done in an attempt to optimize and find the

most appropriate model. The different kernels utilized are gaussian RBF, polynomial

and linear Kernel. The implementation is identical to the initial approach, with the

exception of a specification of the kernel parameter.

4.6.3 Extreme Gradient Boosting

Extreme Gradient Boosting is the last regressor implemented for modeling our data.

Similarly to the two other regressors, tools from existing libraries are utilized. For

the implementation of the Extreme Gradient Boosting regressor an instance of the

XGBRegressor() class from the XGBoost library [98] has been created. Similarly to

Linear Regression, XGB is able to handle multi-output regression, thus, implementation

of the MultiOutputRegressor() from Scikit-learn is not necessary. The model is then

fitted on our training data in the same matter as the other regression algorithms, before

a prediction is preformed on the test data leaving us with a set of predicted output



values.

4.6.4 LSTM

Long Short-Term Memory (LSTM) networks are a type of Recurrent Neural Networks

and is the only neural network implemented and tested during this research. The

implementation of LSTM utilizes classes and methods from Python’s Keras library.

Initially an instance of the Sequential() class from Keras is created. Instances of this class

groups together a linear stack of different layers into what is known as a tf.keras.Model

object. Then a variation of layers are added to the Sequential model, starting with

an LSTM layer. The layer is created using the layers.LSTM class, and it accepts a

variation of parameters upon creation. Parameters that have been specified for this

layer are presented in table 4.5.

Layer Parameters
LSTM Units: 64

input_shape: (1, 1)
activation: Relu

Table 4.5: Specified parameters for LSTM layer

After specifying all necessary layers the model is compiled with Mean Squared Error

(MSE) as loss function and an ”Adam” optimizer. Finally, the model is fitted and

trained on our training data. The model is configured to train according to the following

parameters; Epochs = 100, batchsize = 10.



Chapter 5

Experimental Evaluation

This chapter provides the results obtained by applying the different methods, described

above, in our study case. It presents the estimated equations obtained from our SINDy

implementations, along with the suggested control strategy produced by MPC. In ad-

dition, an overview of the results achieved by the different machine learning algorithms

is provided. Lastly, the final results achieved by the overall system is presented.

5.1 Digital Twin

Figure 5.1 depicts the final Digital Twin of Arkivenes Hus, presenting the structure

of the building along with all systems and sensors present. Every node shown in the

Figure represents an instance of an entity model, all of which are defined according

to the structure explained in section 4.2.2. Nodes visualised with the same color are

instances of the same entity model. The lines connecting the nodes are generated by

the graph, which was implemented with relations found in Arkivenes Hus, following the

excel structure presented in section 4.2.3
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Figure 5.1: Digital Twin of Arkivenes Hus.

Real-life data is as mentioned distributed to the model, providing the nodes with the

most current information, as seen in Figure 5.2. Continuously updating the nodes,

enabling close monitoring. The relationships simplifies the process of identifying location

of sensors and potential issues in the system.

Figure 5.2: Twin node of sensor RT501 updated with real-life data.



5.2 Sparse Identification of Nonlinear Dynamical Systems

5.2.1 Initial Results

The resulting formulas obtained from the SINDy algorithm describing the dynamics of

the system are:

(5.1)(u)′ = −4136.040 + 38.583u+ 771.596T − 0.377u2 − 4.040uT − 53.935T 2

− 0.002u3 + 0.043u2T + 0.117uT 2 + 1.674T 3 − 0.001u2T 2 − 0.019T 4

(5.2)(T )′ = 14.356 +−0.505u+−3.033T + 0.009u2 + 0.049uT

+ 0.238T 2 +−0.001u2T +−0.002uT 2 +−0.008T 3

where u and T are the relative fan power represented by JV401 and the temperature

measured in the room by RT501, respectively. The relations described above in Eqs. 5.1

and 5.2 where identified while fitting the model to the entire data period using sparse

regression as described in section 2.2. After the fitting procedure, we conduct a one

day simulation based on the model. Initial values of 0% fan power and a measured

temperature of 20.5 by RT501 where provided to the model. These values are taken

from the actual measured data on the 18th of April 2022, at 00:00. We simulate the

system for 24hrs, and compare it to the actual measured data, as displayed in Fig. 5.3.



Figure 5.3: SINDy simulation and actual data from 18th of April 2022.

As seen in Fig. 5.3, the governing equations obtained from the model do not accurately

describe the system. This is further discussed in Section 6.1.1.

5.2.2 Smoothed Model Results

Results using smoothed data to fit the SINDy model, as presented in Section 4.4.2 are

presented here. The new Equations describing the system are given as:

(5.3)(u)′ = −174.655 + 0.195u+ 24.504T − 0.013uT − 1.143T 2 + 0.018T 3

(5.4)(T )′ = 2.05 + 0.029u− 0.003uT − 0.001T 2

We simulate the system using this new model, hereby referred to as the smoothed model,

with initial conditions equal to that of the simulation presented in 5.2.1. However, as



identified by the initial model result, it is clear that the model does not capture dynamics

late in the simulation (after half way point). This also holds for the smoothed model.

We therefore choose to only observe how the model fits the first half of the day. The

simulation results are shown in Fig. 5.4 below:

Figure 5.4: SINDy simulation and actual data from first half of 18th of April 2022.

Comparing the smoothed model simulation results in Fig. 5.4 to that of the initial

model simulation in Fig. 5.3, it becomes clear that the initial offsets, as discussed in

Section 6.1.1, are removed. However, further comparing Fig. 5.3 and 5.4, one can see

that the smoothed model has weaker dynamics than that of the initial. The errors of

the models are quantified using the mean square error, and are presented in Table 5.1:



Table 5.1: Mean square error evaluation on SINDy models compared to actual data.

Initial model Smoothed model
MSE JV401 (Fan power) 4347.89 148.85

MSE RT501 (Temperature) 3.53 0.29

Notice that the smoothed model perform better than the initial model on both metrics.

The scores presented in Table 5.1 where calculated using values from midnight up to

noon. Based on the significant lower errors in the smoothed model, we decide to use

the smoothed model for further implementation with model predictive control.

5.3 Model Predictive Control

Fig. 5.5 depicts the identified control strategy for the fan power, JV401, given the

identified smoothed model and respective temperature behaviour and constraints.

Figure 5.5: MPC strategy



As can be seen in Fig. 5.5, in order to keep the temperature (red, upper plot) within the

constraints (black, upper plot), the required fan power is relatively high. Throughout

the day, as the temperature is set to meet higher constraints, the required fan power is

decreased. When the constraints are lowered, the required power once again increases.

5.4 Machine Learning Algorithms

Throughout this research a variation of machine learning models has been implemented,

fitted and tested on our data; Linear Regression, Support Vector Regression (SVR),

Extreme Gradient Boosting and Long Short-Term Memory (LSTM). This section high-

lights all results attained by the various models. All models have been trained on and

applied to the same datasets in order to ensure an as accurate comparison as possible.

In order to properly determine the best model for our data, we will evaluate the results

based on calculated scores and errors.

5.4.1 Performance Evaluation

In order to evaluate the performance of the different models, a variation of error mea-

surements and the model’s R2-score is calculated. Methods of error measurement used

are as follows; Mean Squared Error (MSE), Mean Absolute Error (MAE) and Root

Mean Squared Error (RMSE). The evaluation of all models is presented in table 5.2.

Table 5.2: Evaluation of implemented machine learning models

Model MSE MAE RMSE R-squared
Linear Regression 0.29 0.35 0.54 0.71
SVM Regression (RBF) 0.27 0.31 0.52 0.72
SVM Regression (Linear) 0.31 0.36 0.56 0.69
SVM Regression (Poly) 0.29 0.32 0.54 0.70
Extreme Gradient Boosting 0.25 0.30 0.50 0.74
LSTM 0.27 0.31 0.52 0.72

As can be interpreted form Table 5.2, all models perform at a similar level, with R2-



scores around the high 60s and low 70s. Evaluating the models using the other methods,

also results in a similar performance levels for all models. Our implementation of the Ex-

treme gradient boosting model performs slightly better than the other models, achieving

better results independent of evaluation method used.

5.4.1.1 Linear Regression

Based on the results presented in Table 5.2, it becomes clear that Linear Regression is

an acceptable model for predicting our target values, but not the most optimal of the

ones tested. The model reaches an R2-score of 0.71, meaning that 71% of the variation

observed in the predicted data points can be accounted for by the x values, which rep-

resent the relative fan power of the ventilation system.

Figure 5.6 shows how well of a fit the linear regressor is for each of our target val-

ues. This is represented by a visualisation of our training data and the predictive

Linear Regression model. It is clear that the model is not a perfect fit, however the

model appears to fit some of the target values better than others. Figure 5.6a visualise

the relation between the ventilation system’s relative fan power and the systems energy

consumption. As can be interpreted from the Figure, the relation is not perfectly lin-

ear, resulting in the model not being able to accurately predict values related to higher

relative fan power. As for the relation between our input value and last target value, it

is clear from Figure 5.6b that a Linear Regression might not be the optimal approach.



(a) Fit of model on target value = energy consumption

(b) Fit of model on target value = room temperature

Figure 5.6: Linear Regression model for energy consumption and room temperature as
functions of the relative fan power.



5.4.1.2 SVR

Table 5.3 shows a range of scores achieved by the different variations of the SVR model.

The score is in this case affected by the change in kernel. The results clearly state that

the SVR model running with a Gaussian RBF kernel performs the best on our data,

reaching a R2-score of 72%. In addition to the R2 evaluation, the RBF kernel produces

the lowest errors for all evaluation methods compared to the other kernels evaluated.

Table 5.3: Evaluation of SVM Regression Model

Kernel Evaluation Value
RBF Mean Squared Error (MSE) 0.27

Mean Absolute Error (MAE) 0.31
Root Mean Squared Error (RMSE) 0.52
R-squared score 0.72

Linear Mean Squared Error (MSE) 0.31
Mean Absolute Error (MAE) 0.36
Root Mean Squared Error (RMSE) 0.56
R-squared score 0.69

Polynomial Mean Squared Error (MSE) 0.29
Mean Absolute Error (MAE) 0.32
Root Mean Squared Error (RMSE) 0.54
R-squared score 0.70

Figures 5.7a and 5.7b indicates that the evaluation performed is correct, indicating that

the RBF kernel is performing better than the polynomial and linear kernels. Looking at

the Figures mentioned, we observe a much stronger fit in the model implemented with

a RBF kernel. It is able to interpret the data at a higher level and that way captures

a larger amount of the outliers compared to the other models running on different

configurations.



(a) Kernel evaluation for target value = Energy consumption

(b) Kernel evaluation for target value = Room temperature

Figure 5.7: Evaluation of SVM Regression kernels.

5.4.1.3 Extreme Gradient Boosting

According to our evaluation, the implementation of the extreme gradient boosting al-

gorithm achieves the best results out of all models tested. It has been fitted on our

training dataset, just like the other models, and manages to achieve a satisfying R2-

score of 74%. When visualising the achieved results, Figure 5.8, we see a clear accuracy

pattern across all target values. The model interprets our data sufficiently enough to

be able to predict and place the target values with an acceptable accuracy. This is

strongly represented in the following visualisations of the training data and predicted



data. When plotting this data against the model input value, Relative fan power (%),

and it becomes quite clear that the model has managed to detect the patterns in the

data to a varying extent for the different target values.

(a) Evaluation of XGB model for target - Energy consumption

(b) Evaluation of XGB model for target - Room temperature

Figure 5.8: Extreme Gradient Boosting

For the first target value, represented in Figure 5.8a, we see a clear similarity in pattern

for the measured data and the predicted data. The model manages to place close to all

values in the correct areas, making for great evaluation results. Looking at Figure 5.8b,

we can still observe grate similarities in the pattern of both predicted and real values,



but we observe a larger amount of deviation than for the first target. Looking at the

Figure, we see that the model struggles to identify the real value of the temperature

when the relative fan power is 0. This is due to temperature being strongly impacted by

other non-linear parameters, resulting in a wide range of potential outputs. This is not

the case for energy consumption, which is mostly impacted by the ventilation system’s

fan activity.

5.4.1.4 LSTM

The results presented in 5.2 indicates that the LSTM performs at reasonably high level,

and is among our top three models with a R2-score of 72%. To gain additional insight

into the results achieved, the original dataset is plotted along with predictions made

for both training data and test data. This is done for all target values. The results are

provided in Figure 5.9 and 5.10. It is clear from plots 5.9a and 5.9b, that the model

understands the nature of the original data to a great extent, interpreting the relation

between the systems relative fan power and the measured energy consumption at an

acceptable accuracy rate.

(a) Evaluation of predicted Energy consump-
tion

(b) Evaluation of predicted Energy consump-
tion over time

Figure 5.9: Evaluation of LSTM trained on Regression Formulation of Energy consump-
tion prediction problem



Figure 5.10 shows predictions made for indoor room temperature. We can clearly see

that the model performance is different for the different target values based on how well

the pattern of the predicted values present in Figure 5.10a and 5.10b match the pattern

observed in the original data. The level of resemblance in the patterns observed in

Figure 5.10 is substantially smaller than the similarity observed in Figure 5.9, implying

a much lower accuracy for prediction of room temperature.

(a) Evaluation of predicted Energy consump-
tion

(b) Evaluation of predicted Energy consump-
tion over time

Figure 5.10: Evaluation of LSTM trained on Regression Formulation of Indoor Tem-
perature prediction problem

5.5 System Results

The final step of our proposed architecture is to apply the best performing machine

learning algorithm to the results found with MPC during optimization. Based on the

results presented earlier in this chapter, XGBoost is the model of choice. By conducting

this step we get an indication of how our suggested control strategy affects the energy

consumption, allowing us to determine whether or not this is an optimization worth

performing. Figure 5.11 illustrates the change in energy consumption after optimizing,

and as can clearly be seen, the energy consumption is predicted to lay on a much higher

level throughout the entire day if our control strategy is implemented.



Figure 5.11: Energy consumption post optimization

Compared to today’s energy consumption, the suggested control strategy appears to

require a rather large increase in energy during the evening and night, whilst requiring

a similar amount during the day. This, along with the numbers presented in table 5.4,

suggests that the daily energy requirement will rise significantly, rising from roughly

220 kW to around 600 kW per day. Specifically, the numbers in 5.4 represent a 174.86%

increase using the proposed control strategy compared to that of the current system.

Table 5.4: Daily energy consumption with and without temperature optimization

Daily Energy consumption (kW)
Optimized for temperature 603.86792
Not optimized 219.70000



Chapter 6

Discussion

This chapter addresses all of the results reported in Chapter 5, arguing why they are

as they are and whether the results are as expected or not. The chapter suggests

modifications and alternative methodologies which we believe to be more appropriate

for the studied problem.

6.1 Sparse Identification of Nonlinear Dynamics

6.1.1 Initial Model

As presented and shown in Fig. 5.3 in Section 5.2.1, the governing equations of the

system obtained using SINDy do not accurately describe the system. Specifically, we

notice large errors occurring in the beginning of the simulation, as highlighted by the

red circles in Fig. 6.1 below.
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Figure 6.1: SINDy simulation and actual data from 18th of April 2022, with remarks.

These errors cause the model to offset compared to the original data. An effect of this

offset is that even though the model can understand dynamics later in the simulation

period, the predicted values themselves are affected by this initial offset. Further, the

model seems to be affected by some lag in time when compared to the data. This is

highlighted by the red arrows in Fig. 6.1. If we remove the original offset highlighted

in the red circles, and also adjust the time lag highlighted by the red arrows, then the

model would produce results as shown in Fig. 6.2. Note that this Figure does not depict

real results, but shows the results from the simulation presented in Fig. 5.3 with edits.



Figure 6.2: Edited SINDy simulation together with actual data from 18th of April 2022.

The edits made in Fig. 6.2 was to first account for the initial offset that occurred in

the red circles in Fig. 6.1. This was done by simple approximation, where 40 was

subtracted from all values noted in the upper JV401 graph and a subtraction of 2.0

was applied to all values in the lower RT501 graph. Secondly, to account for the lag

in the response and to also remove the initial offset, we remove the first 2 hours of the

simulation, thereby aligning the dynamics of the simulation with the dynamics shown

in the real data. With the described adjustments, Fig 6.2 illustrates significantly better



results. With the adjustments, we can see that the model in question actually manages

to capture the dynamics of the system to some degree, as seen around the timestamp

04-18 03:00 in Fig. 6.2 for all graphs. The model does not, however, manage to capture

later dynamics in the simulation. Given the poor results obtained from the simulation,

it was decided not to carry on with implementing model predictive control (MPC) with

SINDy, as was done in [30]. The main foundation for implementing SINDy with MPC is

to have accurate equations governing the system, which is not the case here. However,

had the result been more aligned with the edited results, it would have been of interest

to implement MPC as a next step.

When selecting parameters from the model, we followed the “Practical tips” guide in

the PySINDy documentation, which contains insights into selecting numerical differ-

entiation schemes, library selection, optimization and regularization [73]. As discussed

in the guide, numerical differentiation is one of the core components of SINDy as it

provides the target Ẋ on the left hand side of Eq. 2.7. Due to the importance of Ẋ,

the model results are likely to suffer if the derivatives are calculated wrongly.

One possible explanation for the poor model performance may be caused by the noise

in the data. The noise we refer to here is highlighted by the red circles in Fig. 6.3.



Figure 6.3: SINDy simulation and actual data from 18th of April 2022, with potential
noise highlighted.

We did not initially consider this to be noise when fitting the model, as it represents the

pure dynamics of the system. However, we here argue that these “noise-like” dynamics

may cause poor model performance. The reason for this is that finite difference methods

tend to intensify noise in the data [18]. As we see in Fig. 6.3, the data is not smooth.

This can cause the finite difference method to yield derivatives with a larger amount

of noise compared to that of the original data. A potential solution to this problem is

to implement a SINDy model with smoothed finite difference as differentiation method.

We consider this a interesting problem for future work.



Another potential solution to this problem is to smooth the data beforehand, and there-

after apply the finite difference method. We implement this method in Section 4.4.2,

with accompanying results presented in Section 5.2.2.

6.1.2 Smoothed Model

The smoothed model removes the initial offsets illustrated in Fig. 6.1, and ensures that

initial conditions remain similar for the model and that of the actual data. As can be

seen in Fig. 6.1, the smoothed model contains weaker dynamics compared to that of

the initial model. There seems to be no time lag compared to that of Fig. 6.1, but

instead a smooth and steady increase. One drawback of this is that the characteristic

dynamics of the system seem to vanish. This may be explained by the data used to train

the smoothed model compared to that used to train the initial model, as illustrated in

Fig. 4.8. Although the smoothed curves well captures the overall trend, they omit

information about the step-like activation in e.g. the relative power plot. This is a

weakness with smoothing the data. However, since the quantified errors from Tab. 5.1

in Section 5.2.2 show that the error is significantly reduced for the smoothed model, we

decide to use this model for implementation with model predictive control.

6.1.3 Ensemble Model

Another possible cause for the poor model performance is the fact that the data com-

bines slow variations (when the fan operates at a certain level), with sudden variations

(when the fan changes operating mode). This can cause the derivatives to become quite

large over time, as the system behaviour can almost be described by a step function,

which the model is trying to smooth. It would therefore be very interesting to inves-

tigate the possibility of implementing a ensemble model, combining one SINDy model

for the “slow” dynamics and one for the “fast” dynamics. We consider this relevant for

future work.



6.2 Model Predictive Control

As stated in [24], successful deployment of MPC requires multiple aspects. Such aspects

includes model development, test design and control design. The control design of the

MPC presented in this project enables any feedforward setpoint profile to follow the

desired strategy, as has been confirmed by the main author of works such as [38], [37]

and [36], and the co-founder of the GEKKO optimization suite [10]. Therefore, we

consider the main challenges of the MPC method deployed in this work to be related to

that of the underlying model, which is discussed in Section 6.1, and test design. Testing

the MPC is crucial as it can reveal potential run time stability- or numerical issues. It

also allows for the comparison of response plots and that of desired trajectories. Further,

implementing a estimator [41], which has the purpose to align the predictive model with

current measurement is a natural extension after testing. We consider this relevant for

future work.

6.3 Machine Learning Algorithms

A variation of machine learning algorithms has been tested throughout this research, all

being popular for use with energy prediction and with a history of performing well for

use cases such as ours. They are all quite fast and simple to implement and test with

help of tools provided by Skicit-learn and TensorFlow. As presented in chapter 5, all

methods reach a similar R2-score, located in the high 60s and low 70s. The high sim-

ilarity in performance is rather unexpected as the models operate in such different ways.

Despite being popular for energy prediction and holder of the characteristics mentioned,

regression models such as Linear Regression models tend to struggle to meet the de-

sired precision when utilized in prediction issues. This is said to be especially true

for ventilation systems, as they are constantly affected by non-linear factors such as



weather and occupancy [20]. As presented and shown in section 5.4 and Figure 5.6,

the function found with the linear regression model, does not accurately describe the

system. Non-linear factors influencing the system result in outliers and ”unexpected”

values. These values are difficult for linear regression to capture and they affect the re-

gression line in various ways. SVM for regression is often reached for when dealing with

these expected external non-linear factors, and has been widely reported in recent years

[19]. The result of replacing the classic linear regression with an implementation of an

SVR model is presented in section 5.4, where an increase in R2-score and decrease in

error can be observed. Figure 5.7 clearly displays how the SVR model, with the correct

kernel configuration, is able to capture the different variations/outliers occurring in the

data and that way establish a non-linear relationship between the features with higher

R2-score.

Figure 6.4: SVR capturing variation in data

As for the other models implemented, Extreme Gradient Boosting is the model with

the highest level of performance, this is presented in table 5.2. There are other studies

out there supporting this result, and Lu and Meng [99] state that XGBoost is the best



model for predicting AC energy consumption in residential buildings in relation to a

varying amount of input values. All target values for Energy consumption present in

the training set are located within a specified range (0.0,8.8) which correspond to input

values ranging from 0 to 84, covering the majority of the expected test data but not

all. The target value in question is the energy consumed by the ventilation system

per 10 minutes, we estimate that we can expect values ranging from 0 to somewhere

around 10 kW. With a model like XGBoost, that means that in a case where the fan

is set to its maximum power, resulting in an input value of 100, then the model will be

restricted by the upper limit of the energy consumption present in the training data to

some extent, possibly underestimating the increase in energy consumption as the fan

power is increased. By extending the range of the training data to match the range of

the expected real values, we could prevent this from happening and allow XGBoost to

perform to the best of its ability as this is an area that Extreme Gradient Boosting is

known for performing well in, due to its ability to control the model complexity and

reduce overfitting [20].

LSTM was the only neural network implemented and tested, achieving an R2-score

of 72%. Neural networks, such as LSTM, is know for being able to approximate any

continuous function to any desired level of precision, meaning it should be able to pre-

dict our target values even if a test value outside the range of the training data occurs.

LSTM has previously been reported to score better than the other models when ap-

plied to short-term prediction despite being known for its ability to solve complex and

long-time-lag tasks [20]. One issue with applying LSTM to our current data set can be

related to neural networks’ weakness related to overfitting the training data. A limited

set of training data is prone to overfitting as a model, such as our LSTM model, might

discover patterns and trends that in not in fact general for the values occurring in the

test set.



Limitations related to our dataset will be further discussed.

6.3.0.1 Clusters in the Original Data

Common for the models discussed, is the effect clusters in the data have on the final

result. As can be observed in Figure 6.6, clusters occur in the areas related to Relative

fan power ≈ 0 and 45 ≥ Relative fan power ≤ 65. Such clusters are caused by large

collections of data points observed for similar input values. For this specific case, it

is clear that our dataset consist of larger areas without any data points between these

clusters, providing them with an even bigger impact on the models’ interpretation of

the data.

Figure 6.5: Histogram of input values

For the regression models in particular, the heavy weight of the clusters causes the an

intersection between the regression line and the clusters, as this is where most of the

interpreted relationships lay. The close proximity from the regression line to the clus-

tered data points is a possible explanation as to why, for instance, the linear regression

model is able to achieve a competitive R2-score.



Figure 6.6: Clusters in data.

By accumulating additional data, consisting of points spanning a larger portion of the

expected input range, the evaluation would have likely resulted different R2-scores. Re-

gression models, which utilize distance in their computation, might have been negatively

affected as the generated regression lines might have shifted in position and the accu-

mulated distance would be affected by a larger range of points and distances, not just

the clusters. With a higher amount of data points representing the entirety of the input

range, we might also be able to produce models with even higher scores than currently

achieved. A wider range of data, would provide the model with more information and

insight into how the input and targets relate to each other, allowing for the models to

interpret and identify potential patterns, resulting in a higher accuracy score.

6.3.1 Model evaluation per target value

When analysing the results achieved it becomes clear that all off our models perform at

a similar level, regardless of the type of model. The linear regression achieves an overall

score in the same range as the other models, despite the other models’ capability to in-



troduce non-linear relationships and capture the nature of the data to a greater extent.

In order to investigate this further we perform an evaluation of the model for each sep-

arate target value, by comparing the predicted value with the real measurement. Level

of performance is determined with use of MSE and R2-score, similar to the approach

taken when evaluating the models as a whole. The results of the separate evaluations

are presented in table 6.1.

Energy con-
sumption (kW )

Room tempera-
ture (C◦)

Algorithm MSE R2 MSE R2

LR 0.1000 97% 0.4800 46%
SVM 0.0500 98% 0.4900 45%
XGB 0.0500 98% 0.4500 49%

LSTM 0.0600 98% 0.5500 37%

Table 6.1: Model Evaluation Per Target Value

The results clearly state that all the models tested are capable of interpreting the

data related to Energy consumption with a very high R2-score, whilst the performance

achieved in the attempt to predict the respected Room temperature is much lower. For

room temperature, no model is able achieve an R2-score above 50%, which is much lower

than the scores achieved for energy consumption. When evaluated for performance re-

lated to energy consumption, all models reach R2-scores above 97%. The difference in

R2-score is most likely caused by the level off correlation, presented in Table 4.3, be-

tween the relative fan power (input) and the room temperature (output), which is quite

a bit lower than for Energy consumption (output). Just based on these results alone

it becomes clear that the weak performance lowers the total evaluation of the models,

leaving them all with a similar overall score.

A potential solution to this issue could be to split the prediction, using separate and

specified models for each of the target values, instead of implementing Multi-output

Regressors which are currently utilized. Such an approach could enhance prediction



accuracy, which is especially relevant for our Room temperature prediction problem.

By researching the possibility of increasing the accuracy of predicted room temperature

with use of different machine learning models, we could achieve an increase in the total

performance across both targets. We consider this an interesting and valuable research

area for future work.

6.4 Overall System

With regards to the final results presented in Section 5.5, it is clear that the approach

taken and methods utilized is not optimal for the problem in question. We experience

that the optimization performed is not as desired and that substituting the current

control strategy used for ventilation systems in Arkivenes Hus with the one proposed

by our system would only increases the buildings estimated energy consumption.

We argue here that a main driver for this significantly increased energy consumption

is the underlying model used to describe the system. Specifically, in Fig. 5.11, the

energy consumption is noticeably larger than the previous control strategy in periods

when the previous control strategy did not require any energy, e.g. between 04-18 00

and 04-18 05 as well as 04-18 18 as 04-19 00. This increased energy requirement is a

consequence of the high fan power in the same time periods, as shown in the lower plot

in Fig. 5.5. This high fan power period occurs as the temperature is to be within the

lower constraint range, as shown by the upper plot in 5.5. Fig. 6.7 shows the smoothed

SINDy model simulation, as also presented in Section 5.2.2, with highlights.



Figure 6.7: Smoothed SINDy model simulation with highlights.

In Fig. 6.7, the red circles (in both plots) highlight a interesting fact; that the smoothed

SINDy model tend to produce values above that of the original data. We therefore be-

lieve that values obtained using this model are higher than what other potential models

would produce.

It is important to consider the fact that Arkivenes Hus is a complex smart building

with underlying algorithms controlling the behaviour of the different systems serving

the building, such as ventilation systems. It is reasonable to believe that these algo-

rithms influence the relation between our features to such an extent that identifying the

actual relationships using our proposed methods is not the best approach. With ad-

ditional information and knowledge related to these control algorithms, one might bee



able to optimize the existing methods or introduce new methods, making the overall

system more appropriate for solving the problem in question.

6.4.1 Other Approaches

Within the literature, one can classify the identification of ventilation system models

into two categories, black box models and grey box models [1], [80], [58]. Black box

models are based on data-driven approaches where one has no prior information. Grey

box models are based on physical knowledge about the system. Due to difficulties with

thermodynamics, developing a black box model using SINDy was chosen for this project.

However, several other black box models have previously been implemented with success

to model ventilation system. These include ARX [14], ARMAX [85], Box-Jenkins [16]

and Output Error model identification [85]. It is of great interest to consider how these

model would perform in the proposed architecture of this work instead of the SINDy

model. This remains for future work.

Another possible solution to the temperature control problem would be to simply use

one of the machine learning models to predict the fan power based on desired tem-

perature. In such an approach, one would input a desired trajectory of temperature,

and at each point of the trajectory let the model predict the corresponding fan power.

The benefit of this approach is that the relation between fan power and temperature

is learned directly from the data. No mathematical model is developed. As XGBoost

provided the best results for the temperature to fan power relation, we reverse train

a XGBoost model, meaning that we develop a model to predict fan power based on

temperature. We then feed the model with a desired temperature trajectory. Fig. 6.8

below displays the predicted relative fan power (lower plot) based on the temperature

trajectory (upper plot).



Figure 6.8: Predicted fan power based on temperature trajectory, XGBoost.

Since the trained model learns relations directly from the data of the original system,

we notice that the required fan power to keep 18 ◦C reflects that of original data dis-

play in e.g. Fig. 5.4. This strategy illustrates significantly lower required fan power

compared to that of Fig. 5.5. However, the strength of this model (not requiring a

mathematical model) is also it’s main weakness. Since we do not obtain a mathemat-

ical model, we cannot implement such a solution with model predictive control, which

requires a model describing the dynamics. We thus loose the flexibility that comes with

implementing MPC. Such include the ability of handling multi-input multi-output sys-

tems with interactions between inputs and outputs, changes in constraints and preview

capabilities.



Chapter 7

Conclusions

In this work, we have constructed a data integration system for sensors within a build-

ing to liberate data. This data has been utilized on one use case, optimizing indoor

temperature comfort and studying the effects on energy usage by one of the ventilation

systems in the building.

We propose an architecture for this optimization consisting of three steps. The first

step is to identify a mathematical model describing a relation between indoor temper-

ature and the relative fan power of the ventilation system. This is done using sparse

identification of nonlinear dynamics. The second step is to implement a control strategy

for the fan based on changing constraints in temperature throughout the day. This is

achieved using model predictive control. Lastly, we use machine learning to predict

the energy usage of the ventilation system based on the proposed control strategy for

the ventilation fan as obtained by model predictive control. We studied several ma-

chine learning models for energy prediction, and found that XGBoost was the best for

this step. The development and the description of the methodology involved in the

optimization problem at hand constitutes a core part of the thesis.
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With respect to a one day simulation, the proposed architecture yield a 174.86% in-

crease in energy consumption compared to that of the current control system.

For the proposed solution, the main weakness and cause of error lies in the identified

SINDy model describing the relation between temperature and fan power. Alternative

models which may provide an improved result are briefly outlined in the next chapter.



Chapter 8

Future Work

Some points about future work have already been mentioned throughout the Thesis.

We here summarize these as well as point to other thoughts about future directions:

• Implement a SINDy model with smoothed finite difference method.

• Implement a ensemble SINDy model combining “slow” and “fast”.

• Testing the MPC scheme and implementing a estimator.

• It would be of great interest to compare the MPC scheme to some other data-

driven method such as e.g. reinforcement learning.

• An urgent need exists to identify and implement a better mathematical model

describing the relation between temperature and fan power in the ventilation

system.

• Although the current proposed solution results in higher energy usage, it is still

of interest to test the system physically, as physical operation will verify the

simulation results.
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• With time, more data is gathered by the data acquisition system. The data

foundation thus grows. It is therefore of interest to implement a system to auto-

matically re-train the models based on the increased volume of data, and study

the effects of this.



Appendix A

Defined entities for digital twin

Table A.1: Entities defined for digital twin

Entity ID Properties Relationships

Building
ah contains

contains_floor

Floor

ah_floor_{floor

number}
contains

contains_room

Room
ah_room_{room

type}_{room num-

ber}

’Area’:double contains_sensor

Archive
ah_room_archive

_{room number}
’Area’:double contains_sensor

Technical

Room

ah_room_techni-

cal_{room number}
’Area’:double contains_sensor

Shaft
ah_shaft_{shaft

type}_{room num-

ber}

’Area’:double contains_sensor



Ventilation

System

ah_ventilation_{sys-

temID}
serves

contains_sensor

Tempera-

ture Sensor

ah_{sys-

temID}_{sensorID}

’Tempera-
ture’:double

’Setpoint’: double

SFP Sensor
ah_{sys-

temID}_{sensorID}
’SFP’: double

Pressure

Sensor

ah_{sys-

temID}_{sensorID}
’Pressure’: double

’Setpoint’: double

Relative

Performance

Sensor

ah_{sys-

temID}_{sensorID}

’Relative_perfor-

mance’: double

’MaxValue’: double

’MinValue’: double

Humidity

Sensor

ah_{sys-

temID}_{sensorID}

’relative_humidity’:

double

’Setpoint’: double

Filter Sensor
ah_{sys-

temID}_{sensorID}
’Clean’: boolean

Damper Sen-

sor

ah_{sys-

temID}_{sensorID}
’Open’: boolean

Battery Sen-

sor

ah_{sys-

temID}_{sensorID}
’Warm’: boolean

Airflow Sen-

sor

ah_{sys-

temID}_{sensorID}

’Air_per_second’:

double



Appendix B

Daily sensor and energy

measurements



(a) Sensor measurements and energy consump-
tion April 18th 2022

(b) Sensor measurements and energy consump-
tion April 19th 2022

(c) Sensor measurements and energy consump-
tion April 20th 2022

(d) Sensor measurements and energy consump-
tion April 21th 2022

Figure B.1: Daily sensor measurements and energy consumption - Part 1



(a) Sensor measurements and energy consump-
tion April 22th 2022

(b) Sensor measurements and energy consump-
tion April 23rd 2022

(c) Sensor measurements and energy consump-
tion April 24th 2022

(d) Sensor measurements and energy consump-
tion April 25th 2022

Figure B.2: Daily sensor measurements and energy consumption - Part 2



Appendix C

Correlation analysis result
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Smart Building Data Collection and Ventilation System
Energy Prediction

Aleksander Bogunovic Jakobsen, Unni Johanna Blilie Kinstad

Introduction

Data has the potential to transform our environments for the better if
utilized to its full potential. A highly interesting use case of data is in
relation to Smart Buildings, where IoT technology presents new possibilities.
With appropriate collection and structuring of the available data, many new
opportunities present themselves.

In this thesis, a data gathering system is proposed for sensors in Arkivenes
Hus. To illustrate the potential in the data, one specific problem is
researched, namely that of indoor climate optimization and studying the
effects on energy usage.

Main objectives

1.Collect and structure sensor and energy data.

2. Identify governing equations describing relationships in ventilation data.

3. Identify optimal control strategy.

4.Predict energy consumption based on control strategy.

Proposed solution

We propose a data acquisition system as illustrated in Fig. 1

Figure 1: Overall system architecture.

with the optimization and prediction scheme as shown in Fig. 2

Figure 2: Proposed solution for optimization and prediction.

Experiments/Results

Using Sparse Identification of Nonlinear Dynamics (SINDy) [1], we obtain a
model as shown in Fig. 3.

Figure 3: SINDy model result.

We design a MPC, using the acquired relation, to minimize fan power while
keeping temperature within constraints, as seen in Fig. 4

Figure 4: Proposed solution for optimization and prediction.

We implement several ML methods, and find that extreme gradient boosting
[2] provide the best results when predicting energy consumption based on
fan power. Using this, we achieve a 174.86% increase in required energy
consumption compared to the current control strategy.

Discussion

With regards to the final results presented, it is clear that the approach
taken and methods utilized is not optimal for the problem in question.
We experience that the optimization performed is not as desired and that
substituting the current control strategy used for ventilation systems in
Arkivenes Hus with the one proposed by our system would only increases
the buildings estimated energy consumption.

Conclusion

•Standalone MPC and machine learning deliver desired results.
•SINDy model is not accurate enough, need to investigate other options.
•Current solution yields 174.86% energy increase.
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