
Approved by the Dean 30 Sep 21
Faculty of Science and Technology

FACULTY OF SCIENCE AND TECHNOLOGY

MASTER THESIS

Study programme / specialisation:

Applied Data Science

The spring semester, 2022

Open / Confidential
Author:
Lars Belbo Lukerstuen

…………………………………………

(signature author)

Course coordinator:

Supervisor(s):
Aksel Hiorth

Thesis title:
A Study on Physics Informed Neural Networks,
with Applications for Compartment Models

Credits (ECTS):
30
Keywords:

PiNN, Machine Learning,
Numerical Computation,
Physics Informed Learning

 Pages: 77

 + appendix: 104

 Stavanger, 13/06/2022
 date/year

i

Abstract

The main goal of this thesis was to investigate the methodology of Physics Informed
Neural Networks (PiNN), as a computational tool leveraging differential equations
as a regularization for a learning task. PiNN is a new field of research and there-
fore particular concern was given to the task of obtaining an understanding of the
method, gauging benefits, performance, and appropriateness in relation to estab-
lished methods. In order to develop this knowledge, the methodology was imple-
mented and applied through four case studies, three of which demonstrates achieve-
ments already supported by the literature. In addition case three incorporates a thor-
ough testing scheme, scoping out PiNNs’ capabilities of parameter discovery and
regularization. From this a larger framework is developed. In case four, the frame-
work is utilized applying of the method of PiNN in a real world biomedical context,
realized as a model of the circulatory system. The implementations were realized in
a bottom up approach utilizing the neural network capabilities of PyTorch. Overall,
the findings of the thesis support the established findings of previous literature in
regards to performance and capabilities. Additionally, important details in regards
to implementation and solution validity is highlighted, addressing the conditions
necessary for the optimal use of PiNN as a methodology.

iii

Acknowledgements
My sincerest gratitude will be directed towards my thesis advisor Aksel Hiorth, for
his support and guidance throughout the entire process of shaping this thesis. Not
only did he provide ample feedback, advice, and instruction when needed, but also
maintained and shared an enthusiasm which was found to be of great help in main-
taining motivation, and shaping ideas for the thesis.

v

Contents

Abstract i

Acknowledgements iii

1 Introduction 1
1.1 Problem formulation . 1

2 Background 3
2.1 State of the art . 3
2.2 Machine learning . 4
2.3 Numerical methods and differential equations 4
2.4 Applications, why use a PiNN? . 5

3 Theory 7
3.1 Regression analysis . 7
3.2 The multilayer perceptron model . 8
3.3 Simple feed forward NN example . 9
3.4 Training a Neural Network . 12

3.4.1 Gradient decent regression . 12
Algorithm . 12

3.4.2 The backpropagation algorithm 13
3.4.3 Considerations for neural network training 18
3.4.4 Feature space and activation functions 18
3.4.5 Optimizer algorithms . 19

3.5 Regularization . 19
3.6 Runge-Kutta schemes . 19

3.6.1 Explicit RK . 20
3.6.2 Implicit RK . 21

3.7 Inverse problems . 22
3.8 Physics informed neural networks . 22

3.8.1 Neural networks as solution models of differential equations . 22
3.8.2 The PiNN methodology . 23

Continuous time . 23
3.8.3 Discrete time PiNN . 24
3.8.4 Parameter discovery . 25

Continuous time PiNN . 25
Discrete time PiNN . 26

3.9 Compartment models . 27
3.9.1 General multi-compartment models 27
3.9.2 Numerical solutions to compartment differential equations . . 28

4 Implementation and Case studies 31

vi Contents

4.1 Coding and frameworks . 32
4.2 Overall PiNN implementation structure 32
4.3 Case one PiNN as neural solver . 32

4.3.1 Problem statement . 32
4.3.2 Case 1 Solution . 33

4.4 Case two Lotka Volterra equations . 35
4.4.1 LV discrete time PiNN . 37

Implementation . 37
4.5 Case three the SIR model . 39

4.5.1 Problem statement . 39
4.5.2 PyTorch implementation . 39

10 Random Sampled Data-Points, 100 Domain Points 42
4.5.3 Performance testing scheme . 42

Created simulation data-sets . 43
4.5.4 Performance Testing Results . 44

Round 1 . 45
Round 2 . 47
Rounds 3 - 5 . 49
Rounds 6 and 7 noisy data . 50

4.5.5 Case 2 testing discussion . 52
SIR neural solver difficulties . 53

4.6 Biomedical compartment model: test bolus injection 54
4.6.1 Circulatory compartment models 54
4.6.2 Model subsystem . 55
4.6.3 Test bolus simulation . 56
4.6.4 Gamma variate . 58
4.6.5 Problem formulation . 58

How to apply PiNN? . 59
4.6.6 Strategies and implementation 59

Strategy 1 . 59
Strategy 2 . 61

4.6.7 Testing Schemes . 62
4.6.8 Results . 62

Strategy 1 . 63
Strategy 2 . 64
Plots . 65

4.6.9 Case four summary and discussion 68
Methodology vs implementation 68

5 Conclusion 71
5.1 Case-problems . 71

5.1.1 When is PiNN most sensible? . 71
5.2 Conclusion . 72

Bibliography 75

A SIR Test rounds plots and tables 3-5, 7 79

B Python Code 85

vii

List of Figures

3.1 Single Neuron . 8
3.2 Layer of neurons . 9
3.3 Simple two-layer NN structure . 10
3.4 AND configuration of neurons . 10
3.5 NOT function NN . 11
3.6 XOR function NN . 12
3.7 One-layer neural network . 14
3.8 A compartment structure . 28

4.1 Case one output and error . 35
4.2 LV-system true solution . 36
4.3 Predator Prey model, 10 data-points only neural net 36
4.4 Predator Prey model PiNN,10 data-points, fixed parameters 37
4.5 Discrete Pinn . 38
4.6 Results 10 random sampled data-point 42
4.7 Round 1 Plots . 46
4.8 Round 2 Plots . 49
4.9 Round 6 Plots . 52
4.10 Neural solver SIR difficulties . 54
4.11 Circulatory system and compartment model 55
4.12 Circulatory Subsystem . 55
4.13 Injection of contrast agent and saline chaser 100 seconds (not to scale) . 56
4.14 Reference enhancement c2, ..., c8 (c1 injection compartment not shown) 57
4.15 Two examples of typical TTP fit, (hidden numbers) 58
4.16 8 compartments neural solver attempt 60
4.17 With data loss from compartment 8 . 60
4.18 8 Compartments With Gamma Variate c8 loss 61
4.19 Strategy 1, No-parameter-model, trained on patient data 63
4.20 Strategy 1, No-parameter-model, trained on gamma variate end data . 64
4.21 Pure data, only neural network model 65
4.22 Sq, Sc model, gamma fit (hidden numbers) 66
4.23 Strategy 2 plots, (hidden numbers) . 67

A.1 Round 3 Plots . 81
A.2 Round 4 Plots . 82
A.3 Round 5 Plots . 83
A.4 Round 7 Plots . 84

ix

List of Tables

3.1 XOR output . 10
3.2 AND function . 11
3.3 NOT function . 11
3.4 XOR function . 12
3.5 General butcher table . 21

4.1 Noise free data-sets with varying parameters 43
4.2 Noisy sets . 43
4.3 Test models, name and description . 44
4.4 Test metrics . 44
4.5 Round 1 results . 45
4.6 Round 2 results . 47
4.7 Round 6 results . 51
4.8 Strategy 1 models . 62
4.9 Strategy 2 models . 62
4.10 Strategy 1 performance . 63
4.11 Strategy 2, one patient results . 65

A.1 Round 3 Results . 79
A.2 Round 4 Results Table . 79
A.3 Round 5 Results Table . 80
A.4 Round 7 results . 80

1

Chapter 1

Introduction

As the information age develops, the field of deep learning has seen large success in
it’s endeavour of developing large scale flexible models, leveraging models consist-
ing of millions of parameters, finding and capturing patterns in large sets of data.
The last decade saw a large growth in interest and developments of the techniques
and technology of machine learning, in part due to the computational potential
which has become available. As the technology develops, it sees more widespread
adaptions and potential use cases deeper within several fields of science and indus-
try. However, there are still areas where the standard techniques of deep learning
and machine learning falls short. A not-so unrelated field is the field of mathemat-
ics and scientific computing. Within this field there is the general problem of solv-
ing differential equations. As one would know, differential equations are equations
which models the relationships between rates of change in properties of a system.
Since the properties of physical systems governed by physical laws often incorporate
properties subject to variation and change, differential equations has proven valu-
able in the field of physics and science in general. Despite the various technological
and educational advances in recent years, there are still differential equations that
remains unsolved. The canonical example of this is the Navier Stokes equations, a
set of differential equations which describes the dynamical properties of a fluid. Not
only is there no general solution to this set of equations, but if one was to prove
that three always exists solution one can stand to gain a fair amount of money. The
point to drive home is the following: There are various differential equations de-
scribing dynamics, which may even be vital to some real world operations, which
are difficult to solve. There exists various mature and effective numeric techniques
for solving, or approximating solutions to these problems. However, there are still
challenges to overcome. Considering the recent successes of technologies developed
in deep learning one may ask the question: Can a neural networks solve differential
equations? Maziar Raissi, Paris Perdikaris, and G. E. Karniadakis, 2017 (M. Raissi, P.
Perdikaris, and G. Karniadakis, 2019), answers yes to this question, developing and
setting a foundation for the methodology known as PiNN, Physics Informed Neural
Networks.

1.1 Problem formulation

PiNN, refers to the technique of combining Machine Learning with prior informa-
tion in the from of differential equations. The underlining task of this thesis means to
highlight this technique as a both a machine learning and numerical methodology,
scoping out strengths and weaknesses, while attempting to build an understanding
of the method and cases where it may excel.

3

Chapter 2

Background

One of the goals of the thesis is to explore the methodology of PiNN. Hence con-
sideration will be given to the background and current state of relevant fields. The
PiNN technique can be said to stem from Machine Learning, but also reaches into
the realms of what traditionally has been considered numerical methods. This chap-
ter is meant as a general overview, scoping out the current landscape, some of the
relevant history of the method, and its alternatives.

2.1 State of the art

PiNN is the technique of applying neural networks to problems seeking solutions
to partial and ordinary differential equations (PDE’s/ODE’s). Although the main
idea behind the technique, utilizing neural network models to solve PDE’s is not
necessarily recent (Lagaris, Likas, and Fotiadis, 1998), interest in the method has
seen increased interest in recent years. In particular, Maziar Raissi, Paris Perdikaris,
and G. E. Karniadakis, 2017 introduces and underlines the methodology, coining the
term Physics Informed Neural Networks which has since been followed by many
(Cuomo et al., 2022). Partly the reason for the sudden popularity of the subject is
the development of the technology in the field of machine learning. Deep learning
tool-kits developed in this field, now allows for readily available methods for com-
puting auto-differentiation and neural network models. This in turn has allowed
for better ease of development and progress in the exploring of the method and
its potential applications. As it stands today, interest around PiNN as a technique
is high, and the methodology has been adapted and tested one a widespread set
of problems. Notably Pang, Lu, and G. E. Karniadakis, 2019 adapts the method-
ology into solving differential equations of non integer orders, Stiasny, Chevalier,
and Chatzivasileiadis, 2021 adapts the methodology into a method they coin as RK-
PINN (Runge Kutta-PINN), which was demonstrated to significantly speed up the
computation of solutions to power system ODE’s. Other examples of included ap-
plications within quantum chemistry, thermal fluid dynamics, plasma physics, ma-
terial sciences, geophysics, molecular simulations, differential power systems, and
more (Karniadakis et al., 2021). Even with the recently large amounts of develop-
ments and adaptions for the methodology, Cuomo et al., 2022 expresses an opinion
that there is much more facets of the method which is still to be developed. Notably,
various applications to real-world situations and equations is still an open challenge.

4 Chapter 2. Background

2.2 Machine learning

Machine learning is a field of computer science which originates in the application
of techniques and theories from the field of statistics and regression analysis. As
the names suggest the main concern of machine learning is the development and
investigation of algorithms which are able to process and learn from data. More pre-
cisely, of the task within machine learning one may single out the methodologies
related to supervised learning. Supervised learning algorithms often known as ML-
models, are constructions which essentially have two main functionalities: Reading
input from data, yielding an output, and changing their internal state dependent on
how close this output is to the actual sought value. By repeatedly predicting and
updating the internal state so that the model predicts closer and closer to the actual
answer, the model can be said to be learning.

In the recent decade the field of machine learning has seen a large increase in inter-
est and technological relevance. This is largely due to innovations in the sub-field
known as deep-learning. The name stems from the aspect of the size, or amount
of layers, in the models being deep. The success of these method can partly be at-
tributed to the application of machine learning in cases where the amount of data
processed in considered large (big data). Traditionally, machine learning has been
largely dependent upon the quality of data, where careful considerations for valid-
ity had to be upheld. The ML approach was usually most effective when large focus
was given to the appropriateness of the data, and other pathological effects such as
overfitting, was accounted for. Deep learning solves these problems from the other
perspective. The field has been successful leveraging sheer amount of data, fitting
models with trainable parameters ranging in millions. In a sense, useful information
can be extracted from these large sets of data from the virtue of the sets themselves
being large. This property of deep learning has developed in tandem with the means
of recording and producing relevant data. The ever increasing technological connec-
tives of the world has allowed for the creation and collection of large pools of data.
With these large sets of data, the deep learning methods are adapted to take advan-
tage of scale.

When it comes to the task of finding the underlying structures of data, deep-learning
and machine learning operate on the same principle. Mainly, having a black box
model, trained over either large amounts of data in the deep learning case, or more
selected and carefully considered data in the traditional machine learning sense. The
black box nature of machine learning models introduces a problem in interpretabil-
ity, as the potential of a qualitative inference of the relationships the models may
capture is obscured.

2.3 Numerical methods and differential equations

Numerical methods is a set of techniques developed in order to solve scientific and
mathematical problems by means of numerical analysis. That is, the technique of
solving a problem by means of approximation. The problems these methods are typi-
cally applied to varies in a multitude of subjects and aspects, but one can character-
ize numeric methods overall as a means to solve equations. As a field, the subject
is mature, having developed various techniques over long range of time, both as
general methods useful in various contexts, and special methods for particularly
difficult problems. Although the subject may be considered as old as mathematics

2.4. Applications, why use a PiNN? 5

itself (Fowler and Robson, 1998), the field itself has found paramount importance
in computational science. Naturally, a large suite of numerical methods has been
developed. Techniques such as Finite Element Methods, Runge-Kutta, and Iterative
Methods are mature, optimized methods with a long history of applications within
scientific computing.

Although numerical methods may be applied to any sort of equation problem, par-
ticular concern may be given toward the task of solving differential equations. When
attempting to model natural phenomena, physical laws are often invoked and these
laws tend to involve rates of change (Agarwal and O’Regan, 2009). Rates of change as
known corresponds to derivatives of functions, and by constructing equations relat-
ing unknowns of functions and derivatives, one obtains a differential equation. Solv-
ing a differential equation (or a system of differential equations), generally means
finding a function which by taking and combining derivatives satisfies a particular
equation. Finding such solutions however, largely depend on the type of equation,
and many problems may be considered difficult to solve by traditional means.

In the field of scientific computing, particular weight is given to the problem of solv-
ing non-linear problems. The reason being, that often, there is no feasible way of
calculating solutions to these equations analytically. The techniques of numerical
methods are then often the remedy in these situations, were solutions and approx-
imations to solutions are computed using these techniques. Still, there exists par-
ticularly pathological problems, which are considered to be hard to solve even with
standard numerical methods. In particular, highly non-linear PDE’s, including ef-
fects of shocks in fluid equations, and convection dominance in equations of heat
transfer, are examples of problems which may be difficult to solve with traditional
numeric methods (Cuomo et al., 2022).

2.4 Applications, why use a PiNN?

From a mathematical modelling point of view, PiNN may be considered as a bridge
between the techniques and methods found in the field of machine learning and nu-
merical methods. From the standpoint of numerical computing, PiNN as a method-
ology is proving to become a flexible tool capable of solving non-linear differential
equations, with added benefits from the flexibility of the ML-basis. In addition as
pointed out by Karniadakis et al., 2021, PiNN is collectively demonstrated to be par-
ticularly effective in solving ill-posed and inverse problems (see section 3.7). In addi-
tion, as stated in Cuomo et al., 2022, PiNNs have been shown to perform better than
conventional numerical methods in several cases. A benefit of PiNN as opposed
to numeric methods such as finite and spectral methods is that PiNNs’ computa-
tional costs are independent of number of grid points. In addition, PiNN methods
trained on a grid of a particular resolution may easily utilized to predict over a finer
or coarser grid. However, As stated in M. Raissi, P. Perdikaris, and G. Karniadakis,
2019, the originator of the term PiNN, the methodology is by no means meant to
replace or surpass the already established numerical methods. In addition, for most
ordinary problems as stated by Krishnapriyan et al., 2021, traditional numeric meth-
ods will perform better in general.

PiNNs may also be useful from a machine learning perspective. In machine learning
models are created to extract relational structures hidden within large sets of data.
ML models can largely be treated as black boxes, where interpretable information of
the underlying structures remain hidden. As Karniadakis et al., 2021 writes, purely

6 Chapter 2. Background

data driven models may fit the data well, but predictions may be physically incon-
sistent or implausible, which may lead to poor generalization performance. From
the machine learning standpoint PiNN can be a way to manage the black box nature
of machine learning models incorporating prior information in the form of differ-
ential equation. This in turn allows for models which may to a greater extent be
interpretable, and find solutions to systems with ML models constrained to satisfy
physical laws.

7

Chapter 3

Theory

3.1 Regression analysis

The Method of PiNN as it is realized in this thesis, builds upon the theory of Artifi-
cial Neural Networks (ANN) in the context of function regression. Regression anal-
ysis, is a form of statistical modeling, where the main concern is finding a function
which describes the relationship between a dependent variable and an independent
variable. Note however as regression analysis may also entice qualitative analysis of
the describing functions. Terms dictating the effect of any independent variable in
the optimal function may indicate the degree of causal relationships. As described,
a neural network is often seen as a black box meaning that this type of analysis is
difficult to perform when utilizing a neural network. However, the techniques of
the field of regression analysis with regard to finding the optimal function which
describes a set of data (dependent and independent variables) is to a large degree
applicable to neural networks.

In order to fully understand how a neural network can be used as a regression model,
first consider the general regression task. The main concern of regression analysis is
to find some model which describes a set of data. Suppose a process which can be
accurately described by a function:

f (x; β), (3.1)

Where x = [x1, x2, x..., xq] are the function inputs (independent variables) and β =
[β1, β2, ..., βω]T is a set of function parameters. Now, suppose there is available sam-
ple data X, y. Where

X =

x1
x2
...

xq

1

,

x1
x2
...

xq

2

, ...,

x1
x2
...

xq

n

, (3.2)

y =

y1
y2
...

yn

 , (3.3)

8 Chapter 3. Theory

Meaning there are n samples of independent variables (xn
i) and dependent variable

(yn). The goal is now to find a function f̂ (x; β̂) which estimates function 3.1. Suppose
one such function is proposed, and let ŷi denote the output of f̂ for sample data-
points i. In order to judge how close this approximation is to the actual function f , a
loss function (error/cost -function) C(ŷ, y), is applied. Often, this loss function is the
mean squared error (MSE). The MSE can be calculated as:

MSE =
1
n

n

∑
i
(yi − ŷi)

2, (3.4)

The goal of the regression is to find the parameters β̂ of the function f̂ so that equa-
tion 3.4 is minimized.

3.2 The multilayer perceptron model

FIGURE 3.1: Single Neuron

The multilayer perception (MLP) model is the theoretic model behind artificial neu-
ral networks, serving as the foundation of neural networks a computational models.
The MLP model dates to Rosenblatt, 1958, which proposed the perception as model
capable of describing the way neurons in the brains of animal and humans processes
and store information. At the time, the computational power needed in order de-
velop a realization of the model in a computational form was yet to be readily avail-
able. As a result the model as a form of viable (and powerful) regression model, was
not realized, and the model remained relatively obscure until the late 1980, notably
with the work of Hornik, Stinchcombe, and White, 1989, which proved the universal
approximation property of feed forward neural networks. This innovation marked a
turning point of the method, and in addition the more readily available, ans still in-
creasing computing power resulted in the model seeing wider adaptions. Today the
multi-layer perceptron and feed forward neural network is regarded as the founda-
tion for the technologies and techniques which comprise machine learning and deep
learning; technologies which to this day have an ever-increasing importance in the
modern world.

The model builds upon the concept of neurons (nodes) see figure 3.1. These neu-
rons are modeled as capable of of taking multiple inputs including a bias term, an
activation function, and yielding an output. The type of input and output can be de-
pendent upon use cases, usually real or binary numbers. Further these neurons are
arranged in layers such that a layer of neurons can take some input from a preceding
layer and yield an output for the next 3.2.

3.3. Simple feed forward NN example 9

FIGURE 3.2: Layer of neurons

Between each layer of neurons there is an associated matrix of weights. As the name
suggests, these values dictate the degree to which the output of the preceding layer
is carried on into each neuron in the next layer. In addition, the output of the pre-
ceding layer, a bias term may act as part of the input to any neuron. With its own
weighting, the bias term can be realized as a constant neuron added to each layer.
An important element of the model is known as the activation function. Principally,
this function introduces non-linearities between the layers, which in essence grants
the neural network its general ability to approximate functions. Traditionally, this
function has been the sigmoid shaped logistic function which maps any of the real
numbers to the range (0, 1). In order to compute the value of a particular node in
a layer, first start by multiplying the values of the previous layer with the weights
associated with the neuron. This is simply some linear combination of the values of
nodes in the preceding layer. Then the activation function is applied to this linear
combination, and this results in what is considered the node-value.

Neural network models are fairly flexible and has been applied in numerous con-
texts. The principal structure has been carried over to more specialized models such
as image recognizing models which often use convolutional neural networks, or
large scale models such as BERT (Devlin et al., 2018) which is used in natural lan-
guage processing (NLP).

3.3 Simple feed forward NN example

To illustrate how a neural network computes a prediction figure 3.3 depicts a simple
two-layer network. In this figure, there is a two-dimensional input layer consisting
of input x1 and x2 with three layers of weights w1, w2 and w3. Further, a sigmoid
logistic function is chosen as the activation function for each node. A prediction also
known as a forward pass is calculated by passing along the input over these layers.

σ (x) =
1

1 + e−x , (3.5)

NN(x) = σ(w3 · σ (w2 · σ (w1 · x))), (3.6)

10 Chapter 3. Theory

FIGURE 3.3: Simple two-layer NN structure

The universal approximation theorem as stated by Hornik, Stinchcombe, and White,
1989 implies that any continuous function f : Rn → Rm can be approximated with
arbitrary accuracy by a one-layer feed forward neural network.

To further illustrate how these networks can be setup up to approximate a function,
one can consider the case of approximating the XOR (exclusive or function), a non-
elementary Boolean function. Table 3.1 summarizes the inputs and corresponding
output of this function:

Input Output
A B A XOR B
0 0 0
0 1 1
1 0 1
1 1 0

TABLE 3.1: XOR output

First, consider figure 3.4, illustrating a one neuron net which models an AND func-
tion.

FIGURE 3.4: AND configuration of neurons

The output of this network is given as:

N (x) = σ (−30 + 20x1 + 20x2) . (3.7)

3.3. Simple feed forward NN example 11

With the same activation function as before, this function approximates the AND
function:

Input Output
A B A AND B N(A,B)
0 0 0 σ(−30) ≈ 0
0 1 0 σ(−10) ≈ 0
1 0 0 σ(−10) ≈ 0
1 1 1 σ(10) ≈ 1

TABLE 3.2: AND function

Similarly, a NOT function is given as in figure 3.5

FIGURE 3.5: NOT function NN

With the output
N(x) = σ(10 − 20x1), (3.8)

Input Output
X NOT X N(X)
0 1 ≈ 1
1 0 ≈ 0

TABLE 3.3: NOT function

Consider the again the simple two-layer structure, but now with the weights given
as in figure 3.6. The forward pass computed values for this network is summarized
in table 3.4, and notice that this structure indeed approximates the XOR function.

12 Chapter 3. Theory

FIGURE 3.6: XOR function NN

Input Hidden Layers Output
x1 x2 a1 a2 N(X)
0 0 0 1 ≈ 0
1 0 0 0 ≈ 1
0 1 0 0 ≈ 1
1 1 1 0 ≈ 0

TABLE 3.4: XOR function

The approximation of the XOR function illustrates how such neural structures can
be configured to approximate functions. In particular, one can see that a small set of
these artificial neurons can approximate simple logical functions, which in conjunc-
tion amounts to a function of higher order.

3.4 Training a Neural Network

3.4.1 Gradient decent regression

Recall from section 3.1, how the goal of regression analysis is to find an approximate
function f̂ (x; β̂) which minimizes an error function over data. An artificial neural
network can be proposed as an approximation function, where the network weights
ω are the function parameters. The gradient decent algorithm (Theodoridis, 2020) is
an algorithm which can be used to update these weights so that the error function
minimizes.

Algorithm

Gradient decent is best described as an example: Suppose available data X, y, from a
true distribution with random normal noise. That is the true, distribution of y given
x is:

y = β1x1
2 + β2x2

2 + β3x1 + β4eβ5x2 + β0 + N (0, σ) . (3.9)

3.4. Training a Neural Network 13

Where N denotes a Gaussian distribution of the random noise and the beta parame-
ters are unknown. Note that this choice of function is arbitrary, but non-linear in its
parameters. The goal of the regression analysis is then to estimate these beta param-
eters from the given data. Fix a constant learning rate parameter lr. The stochastic
gradient decent algorithm in its simplest form works by the following steps:

1. Initialize function f̂ (x; β̂) to be fit, with randomly chosen parameters β̂ =
Randn.

2. For a data-point (yi, xi) compute loss-value: C = 1
2 (yi − f̂ (xi; β̂))

2
.

3. Compute the gradient of the loss µ = ∇xC.

4. Update the beta values with gradient value times a predetermined learning
rate: β → β + lr µ.

5. Repeat 2-4 over data points until some accuracy criteria is met.

This approach utilizes the fact that a gradient points towards the direction of steepest
curvature. For the loss function this indicates the direction which minimizes the loss.
By updating the parameters with this value, the function will move towards a local
minimum. In some cases, this is can be sufficient, but in general the goal is to find a
global minimum. The details of finding such a minimum is often more complicated,
but in a general sense the method described here applies.

3.4.2 The backpropagation algorithm

Although there are various methods for training a neural network, the gradient de-
cent algorithm is often used to fit neural networks to data. This description of this
method also illustrates well the strategy of how to fit the potentially vast amounts
of parameters of the neural network to a set of data. The gradient decent algorithm
over a neural network works by computing what is known as s forward and a back-
wards pass. The forward pass is simply taking input and propagating the values
until an output value is computed. The backwards pass is in essence computing the
gradient of the model with respect to the parameters of the model as is described in
step three of the gradient decent algorithm. Due to the potentially large number of
parameters and the topology of the neural network, the computation of this gradi-
ent can be more complicated. As an initial example, consider the one-layer neural
network as depicted in figure 3.7:

14 Chapter 3. Theory

FIGURE 3.7: One-layer neural network

The output of this one-layer model can be calculated as

NN (x) = ωL2 · f
(

ωL1 · x
)

. (3.10)

When training a neural network, computing the output and storing the intermittent
values for each node in the network is known as a forward pass. Here the first layer
weights, are given by

ωL1 =

ωL1

01 ωL1
11 ωL1

21
ωL1

02 ωL1
12 ωL1

22
ωL1

03 ωL1
13 ωL1

23
ωL1

04 ωL1
14 ωL1

24

 . (3.11)

In this scheme, for any given weight, the superscript denotes the layer instance, the
subscripts denote the incoming node in first position and outgoing node in the sec-
ond. Additionally, weights with index zero in the first position denotes the weight
from the bias node. Hence, it is important to note the vector matrix transformation:

z = ωL1 · x = ωL1 ·

 1
x1
x2

 . (3.12)

That is an operation on the augmented vector x where the bias unit is injected as the
first element. This scheme is convenient for expressing operations on the network
including the bias term. Also, the intermittent vector z is defined to be the weighted

3.4. Training a Neural Network 15

transform of the input values prior to applying the activation function. Similarly,
the second weight layer can be expressed as:

ωL2 =
(

ωL2
0 ωL2

1 ωL2
2 ωL2

3 ωL2
4

)
. (3.13)

Since in this case there is only one output, there is no need for a second subscript
index. Further aL1 also known as a hidden layer, is defined to be the vector of node
values after the activation function is applied appended with the layer bias value.
That is:

aL1 =

1

f (z1)
f (z2)
f (z3),
f (z4)

 . (3.14)

In this instance, there is one hidden layer, which means there is one layer of hidden
units and two layers of weights. a one-layer neural network with enough nodes can
approximate any function. Using the quadratic error C = 1

2 (y− f (x))2. The gradient
of the neural net with respect to weight parameters can be found by employing the
chain rule (Goodfellow, Bengio, and Courville, 2016). For convenience consider first
the total derivative, which is the generalization of the derivative. This derivative is
defined as the linear equation which approximates the vector valued function at a
particular point x. In essence, this derivative can be regarded as the Jacobian matrix
of the function. Symbolically this derivative can be expressed as

dC
dx

=
dC

daL1
⊙ daL1

dzL1
· dzL1

dx
. (3.15)

Where the symbol ⊙ is employed to denote the Hadamard product, which is the
element wise product of matrices. This equation evaluates to:

dC
dx

=
dC

daL1
⊙ f ′(zL1) · ωL1 . (3.16)

This total derivative evaluates to a row vector (covector), and by taking the transpose
one obtains the gradient.

∇xC = (ωL1)T · f ′(zL1)⊙∇aL1 C. (3.17)

A more verbose way to see that equation 3.17 is valid is by considering the partial
derivatives of the network with respect to network parameters. In order to express
this symbolically, begin by defining δLi

j as a mediate value so that:

δLi
j =

∂C

∂zLi
j

. (3.18)

16 Chapter 3. Theory

That is, the partial derivative of the cost function C with respect to z-component j
in layer Li Since this examples consists of two layers L1, L2 where L2 constitutes the
output layer, one can write out the δL2

j as:

δL2
j =

nL2

∑
k

∂C
∂aL2

k

∂aL2
k

∂zL2
j

. (3.19)

Recall that the aLi
k are simply the activation function f applied to zLi

k , which means
that that the rightmost partial derivative in equation only evaluates to a nonzero
value when k = j. The expression then becomes

δL2
j =

∂C
∂aL2

j

∂aL2

∂zL2
j

, (3.20)

=
∂C

∂aL2
j

f ′(zL2
j). (3.21)

Now since, the gradient is a vector of partial derivatives, one can see that evaluating
equation 3.21 over all j in L2 y can be denoted as:

δL2 = ∇aL2 C ⊙ f ′(zL2). (3.22)

The vector δLi is usually referred to as the error of layer i. Notice that this is only half
of equation 3.17. In the same manner as for a component of L2 error δL2

j , one can
derive component i for the error of the next layer L1. First, consider the formula in
the case for a general network with potentially more than two layers. Suppose that
the error δl+1 is known and one wishes to express the error of the preceding (next)
layer l:

δl
j =

∂C
∂zl

j
, (3.23)

= ∑
k

∂C
∂zl+1

k

∂zl+1
k

∂zl
j

, (3.24)

= ∑
k

δl+1
k

∂zl+1
k

∂zl
j

. (3.25)

Following the calculation of z values in equation 3.12, in a forward pass the zl+1

values were calculated as ωl+1al . For a single zk component in layer l + 1 this is
expressed as:

3.4. Training a Neural Network 17

zl+1
k = ∑

j
ωl+1

kj al
j + bl+1

k , (3.26)

= ∑
j

ωl+1
kj f (zl

j) + bl+1
k . (3.27)

Where the bl+1
k denotes the bias term. The derivative of this yields:

∂zl+1
k

∂zl+1
j

= ωl+1
kj f ′(zl

j). (3.28)

Hence

δl
j = ∑

k
ωl+1

kj δl+1
k f ′(zl

j), (3.29)

→ δl = ((ωl+1)Tδl+1 ⊙ f ′(zl). (3.30)

A similar chain of arguments can be applied to demonstrate the following two prop-
erties.

∂C
∂bl

j
= δl

j , (3.31)

∂C
∂wl

jk
= al−1

k δl
j . (3.32)

Now, recall that the example was a simpler two-layer structure. For this example
this means that zL1 = x (and f ′(x) = 1, since the activation function was not applied
directly to x). Inserting 3.22 into 3.30 yields:

δx = ∇xC = ((ωl+1)T∇aL2 C ⊙ f ′(zL2). (3.33)

Which is equivalent to equation 3.17. The gradient values for weight parameters
can be obtained from the layer errors and equation 3.32. For the given example this
equates to:

∇ωL2 C = δL2 ⊗ (aL1)T, (3.34)

∇ωL1 C = δL1 ⊗ (x)T. (3.35)

Where ⊗ signifies the vector outer product. Recall from section 3.4.1, that these
gradients can be used to update the parameters, when training the network. Now,
this method is illustrated for a one-hidden-layer neural net example. For a general
n-hidden-layer network, this process of calculating weight gradients amounts to the
following:

18 Chapter 3. Theory

• Suppose network with hidden-layers L1, L2, ...Ln.

• Calculate first delta value δLn = f ′(zLn)⊙∇aLN C.

• Propagate and calculate deltas for all layers: δLi−1 = f ′(zLi−1) · (ωLi)Tδi.

• Calculate gradients ∇ωLi C = δi ⊗ (ai−1)T.

Typically, to limit number of computations, the intermittent values such as the Z-
values are computed during the forward pass, and stored until called upon in the
backwards pass. Now, with the sum total of the methodologies described give a
general overview of how a neural network algorithm works. Note also, that the for-
ward and backwards pass algorithm allows for finding the derivative of the neural
network with respect to the input, which will be important later one when the PiNN
methodology is described.

3.4.3 Considerations for neural network training

There are a number details to keep in mind when applying and training a neural net-
work. Not necessarily particular to neural network models, but regression models
in general is the "cleanliness" of the data. That is, a machine learning model is only
as good as the data it is fed. As such, a number of precautions should be considered
in particular of the appropriateness of the data being trained upon. Normalization is
the act of re-scaling the data withing some range, typically so that the maximum oc-
curring value maps to one, and conversely the minimum maps to zero (another com-
mon mapping is [1,−1]). The necessity of normalization varies (Baeldung, 2020). In
some cases it might not be necessary at all. As an example where it may be necessary
to normalize is when one has a (regression) network of one-dimensional output, or
if all outputs are in the same range.

The size of the network may also be important. Even though the universal approxi-
mation theorem states that a single layer neural network is capable of approximating
any function, it is important to note that one may achieve better result by regulating
the size and amount of layers. Recall that one can describe network layers as a series
of linear weight and nodes and a nonlinear activation function. For the flexibility of
the network one may find better results by limiting the size of layers and increasing
amount (Simard, Steinkraus, and Platt, 2003)

3.4.4 Feature space and activation functions

A central component of Neural Network models is the activation function. This
function acts as the non-linear component of a network model. That is, a chain of
linear mappings between layers of neurons, in itself results in another linear map. By
introducing an activation function between the layers, the mappings become non-
linear and cannot be reduced to one linear map. The benefit of this is the increased
flexibility of the solution space. Illustratively, a simple neural network classifier may
assign labels to points belonging to a particular group (Note that a neural net clas-
sifier is not the same thing as a neural net regression, however the way activation
function behaves are analogous, but easier to explain for the classifier). These points
exist in a space called the feature space. A linear classifier essentially constructs hyper-
planes separating these points in feature space so that the group of points is sepa-
rated by this hyperplane, and can hence be assigned it’s appropriate label. However,
most often these features are not necessarily linearly separable, meaning that a flat
hyperplane will not suffice. Adding activation functions and hence non-linearity

3.5. Regularization 19

between the layers allows this border more flexibility. With this flexibility a neural
network can adapt to data with more complex feature distribution.

The type of activation function utilized may vary upon the training task, examples
of which can range from classification, regression, and image recognition. In partic-
ular for the regression case, common examples include activation functions such as:
Linear, ReLu, Logistic (sigmoid), and Hyperbolic Tangent.

3.4.5 Optimizer algorithms

As described in section 3.4.2, gradient decent is perhaps the simplest way to train/fit
a neural network. The algorithm which dictates the strategy of changing parameters
of models in order to minimize or maximize some value is known as an optimizer al-
gorithm. In the neural network context, there are several optimizers, with different
benefits and drawbacks. Of these optimizers, the ADAM (Doshi, 2019) algorithm
is generally understood to be the most generally efficient for simple learning tasks.
Another algorithm which has seen much use in the context of PiNN is the LBFGS-
(Limited Memory Broyden Fletcher Goldfarb Shanno) algorithm. In particular, the
LBFGS algorithm has been a favourite in PiNN research, as seen early on in the de-
velopments by Lagaris, Likas, and Fotiadis, 1998. As Cuomo et al., 2022 writes, even
though the research is not settled, the most commonly used optimizer algorithms is
ADAM and LBFGS, where generally the difference between the performance of the
two algorithms is dependent upon neural network model size. ADAM seems to be
more effective for for larger size models, whilst LBFGS is more efficient for smaller
models.

3.5 Regularization

A prevalent issue in mathematical modelling is the problem of over-fitting. Over-
fitting as the name suggest is when the model is fit to noise or disturbances in the
data which does not principally originate from the process which the model is meant
to regress to. In other word, the model picks up on too particular instances in the
data, following a solution curve which is less generalized, and fits the given data
too well and will yield worse predicting results on unseen data (Theodoridis, 2020).
This issue is of large concern in principle all form of regression analysis, including
the field of machine learning. Typically this occurs when a model is over parame-
terized, meaning it has to more trainable parameters than true parameters dictating
the underlying process. There are various ways to remedy this, some dependent
upon the type of model utilized, while others are more general. Regularization is
one of the more general techniques, which can be applied to most machine learn-
ing algorithms. As Theodoridis, 2020 writes, regularization is a mathematical tool
applied as to impose a priori information on the structure of a model solution. In
essence, regularization is a method which restricts the model in some way, hindering
over-fitting.

3.6 Runge-Kutta schemes

The realization of the PiNN methodology further on in this thesis is partly depen-
dent on discrete time iterative methods. This is due to two reasons, the first being
that in order to test the methodologies, simulated data was generated using princi-
ples dependent on these techniques. The other reason is the specific PiNN technique

20 Chapter 3. Theory

referred to as Discrete Time PiNN 3.8.3, builds upon the principles which underlines
a general Runge Kutta scheme. Runge Kutta is considered as a family of numeric
methods consisting of iterative calculation of discrete approximations to solutions
to non-linear equations. As described in Iserles, 2008a, general explicit- and then
implicit-scheme Runge-Kutta schemes can be described as follows. First suppose
any non-linear differential equation given as:

dy
dt

= f (t, y), (3.36)

y(t0) = y0. (3.37)

Suppose one wishes to find the solution y of this system. First, consider a quadrature
which is a method of replacing an integral with a finite sum. Let ω be a weight
function, which is a positive function on [a, b] such that

0 <
∫ b

a
ω(τ)dτ < ∞, (3.38)

|
∫ b

a
τ jω(τ)dτ| < ∞, j = 1, 2, ... (3.39)

A weighted integral of a function g(t) can then be approximated as:∫ b

a
g(τ)ω(τ)dτ ≈

v

∑
j=1

bjg(cj). (3.40)

b1, b2, ..., bv denote the quadrature weights, and c1, c2, ..., cv is the nodes, which are
dependent upon ω a and b and independent of g(t) A quadrature can be applied to
the differential equation system 3.36-3.37. First consider the time stepping scheme,
integrating from tn to tn+1 = tn + h

yn+1 = yn +
∫ tn+1

tn

f (τ, y(τ))dτ = yn +
∫ 1

0
f (tn + hτ, y(tn + hτ))dτ. (3.41)

The latter integral can be replaced by a quadrature.

yn+1 = yn + h
v

∑
j=1

bi f (tn + cjh, y(tn + cjh)). (3.42)

3.6.1 Explicit RK

One may notice that equation 3.42 is dependent upon unknown values. Namely
y(tn + cjh), for c1, c2, ..., cv. These values must be approximated. Let each approx-
imation of y(tn + cjh) be denoted as ξ j for j = 1, 2, ..., v An explicit Runge-Kutta
method is the process of approximating each xij. Let c1 = 0, then ξ1 = yn. A chain
of approximations can be set up, and the value of yn is updated.

3.6. Runge-Kutta schemes 21

ξ1 = yn, (3.43)
ξ2 = yn + ha2,1 f (tn, ξ1), (3.44)
ξ3 = yn + ha3,1 f (tnξ1) + ha3,2 f (tn + c2h, ξ2) (3.45)

... (3.46)

ξv = y + h
v−1

∑
I=1

av,i f (tn + cih, ξi), (3.47)

yn+1 = yn + h
v

∑
j=1

bj f (tn + cjh, ξ j). (3.48)

The matrix A = (aj,i)j,i=1,2,...,v where missing values are set to zero (hence lower
triangular), is known as the Runge-Kutta (RK) matrix, while bi and ci are still known
as weights and nodes. Also, v is known as the number of stages. A, b, c are usually
summarized in a butcher table (RK tableaux).

c A
bT

TABLE 3.5: General butcher table

3.6.2 Implicit RK

The method of implicit Runge-Kutta is defined similarly to the explicit methods. In
the explicit scheme, each xii is estimated from the preceding xii−1. In an implicit
scheme, each ξi approximation depends on all of the other ξ j. In more detail, con-
sider:

ξi = yn + h
v

∑
i=1

aj,i f (tn + cih, ξi), j = 1, 2, ..., v, (3.49)

yn+1 = yn + h
v

∑
j=1

bj f (tn + cjh, ξ j). (3.50)

In this scheme the A matrix is arbitrary, with the requirement

v

∑
I=1

aj,i = cj, j = 1, 2, ..., v. (3.51)

Now, instead of a recursive chain of approximations, the expressions 3.49-3.50 con-
stitutes a system of vd equations, for y ∈ Rd. These systems of equations are more
computationally expensive to solve compared to the explicit methods, but an im-
plicit scheme can have advantages such as superior stability, and performance over
stiff equations (Iserles, 2008b). There are various strategies for solving the system of
equations yielded from an implicit scheme, as an example one can utilize iterative
methods to recursively update the equations.

22 Chapter 3. Theory

3.7 Inverse problems

Inverse problems is the concept of determining the factors necessarily involved in
creating a state of a system. As, the name suggest, it is the task of: Given a state of a
system, determined the determining factors involved in the process which produced
that state. Generally, the inverse problem task is considered a difficult problem,
where finding true solutions may require sophisticated algorithms. As described by
Theodoridis, 2020, most tasks in machine learning can be considered inverse prob-
lems. Further, most inverse problems are typically ill-posed, as opposed to well-
posed. Well-posed means that a problem has the properties:

1. A solution exists

2. The solution is unique

3. The solution is stable with regards to the initial conditions.

3.8 Physics informed neural networks

M. Raissi, P. Perdikaris, and G. Karniadakis, 2019 coined the term "Physics informed
neural networks" (PINN). Their description of the method and applications has set
the foundation for the recent developments for the combined use of neural networks
and differential equations. The techniques main feature is performing regression
and model estimation utilizing the properties of differential equations and neural
networks. Often, in the contexts of physical modelling, the dynamics of the system
is understood to follow some set of differential equations. The main idea behind
physics informed neural networks is to leverage the required properties of a solution
of the differential equation as information on which to, in some sense, regularize a
neural network model. Recall from section 3.5 regularization in regression modeling
is the act of limiting some characteristic of the model parameters such as amount or
size, typically to prevent overfitting. This is usually achieved by adding parameter
cost functions to the regression model. The reason for doing this varies, and notably
it introduces some bias to models which normally would have been unbiased. In the
physics informed approach, the differential equation acts as the regularization cost
of the parameters of the model.

For the purposes of this thesis, a distinction is made. Although the term Physics
Informed Neural Networks (PiNN) has been widely adopted as the catch all name
for utilizing loss from differential equations in a machine learning context (Cuomo
et al., 2022), onward through the rest of this thesis, PiNN will refer to the specific
framework set by M. Raissi, P. Perdikaris, and G. Karniadakis, 2019. Further, the use
of a machine learning model purely trained to satisfy a differential equation will be
referred to as a Neural Solver.

3.8.1 Neural networks as solution models of differential equations

An early development by Lagaris, Likas, and Fotiadis, 1998, describes how shal-
low neural networks can be applied as components of trial solutions to differential
equations, which can be fitted in such a way that the trial solution satisfies the dif-
ferential equation. M. Raissi, P. Perdikaris, and G. Karniadakis, 2019 further devel-
ops a similar methodology as their coined PINN methodology, leveraging modern
computational capabilities. To gain an understanding of the main idea behind the

3.8. Physics informed neural networks 23

PINN methodology one may first consider the neural solver process used by (La-
garis, Likas, and Fotiadis, 1998)

Suppose one wishes to model a system governed by a differential equation of the
general form:

G(x, Ψ(x),∇Ψ(x),∇2Ψ(x)) = 0. (3.52)

x ∈ D

Where x = (x1, x2, ..., xn), D ⊂ RN is the definition domain and Ψ(x) is the sought
solution to the differential equation.

The method of collocation is adopted, that is, discretization of the domain D and its
boundary S into sets of points D̂, Ŝ. Suppose a trial solution Ψt(x) taking the square
error of the differential equation, the task becomes to minimize:

LDE = ∑
||xi∈D̂

G(xi, Ψ(xi),∇Ψ(xi),∇2Ψ(xi))||2. (3.53)

The trick to this method is to employ the neural network in the trial solution. Depen-
dent on the differential equations and boundary conditions, one can design a trial
solution Ψt which satisfies boundary conditions and incorporates a neural network.
Case in point one

Ψt(x) = A(x) + F(x, N(x, ω)). (3.54)

As shown in section 3.4.2 derivatives of general neural nets can be obtained. The
realisation of this technique can be adapted in a traditional neural network training
implementation. The network is trained by taking predictions of Ψt(xi) for xi ∈ D̂.
Correspondingly, derivatives of trial solution must also be calculated. Then calculate
loss value from equation 3.53, and compute gradients with respect to the neural
network. These gradients can the be used to update the network as described in the
gradient decent algorithm (section 3.4.1). By constructing the trial solution in such
a way that the boundary conditions are satisfied, this algorithm may find a solution
of the differential equation.

3.8.2 The PiNN methodology

Continuous time

Similarly, the PiNN methodology set by M. Raissi, P. Perdikaris, and G. Karniadakis,
2019 also utilizes the neural network as a solution to the relevant differential equa-
tion. The main difference being the approach of this methodology is to compute a
data-driven solution. In particular, given a situation where the goal is to find a model
which incorporates some given data, and satisfies partial differential equation of the
general form:

ut +N [u] = 0, x ∈ Ω, t ∈ [0, T]. (3.55)

24 Chapter 3. Theory

Where in this description, the convention of subscripts denoting derivatives is uti-
lized. Hence, ut denotes the t derivative of u(t, x) which denotes the hidden/latent
solution to the equation. Ω denotes a subset of RD. N (not to be confused as to
denote neural network) is a non-linear differential operator, which in essence, can
be equated with the "x-derivative" components of the differential equation. Further,
f is defined to be the left hand side of the equation f = ut +N [u]. One can then
define the solution which satisfies u and f over the data as two neural networks
with shared parameters. In principle this yields what is coined as a Physics Informed
Neural Network (PiNN). The loss function over data for this network can be realized
as the combined mean square error loss:

MSEpinn = MSEu + MSE f . (3.56)

Where

MSEu =
1

Nu

Nu

∑
i=1

|u(ti
u, xi

u)− ui|2. (3.57)

And

MSE f =
1

N f

N f

∑
i=1

| f (ti
f , xi

f)|2. (3.58)

Where the sets {ti
u, xi

u, ui}Nu
i=1 and {ti

f , xi
f }

N f
i=1 respectively denote the training data

on u and f . Additionally, boundary- and initial conditions may be added as addi-
tional loss terms in the overall loss-value, in order to make sure these conditions are
satisfied in the solution. Although these two methodologies are similar, the PiNN
framework differs in the sense that is data-driven. meaning that the method itself
depends on some sets of data. In a sense, the goal is to perform a machine learning
task over data sampled from a process with known/supposed governing equations.
In this process the equations themselves are added to serve as a realization mecha-
nism, which ideally improves upon the learning task. On the other hand, the process
described by Lagaris, Likas, and Fotiadis, 1998 (section 3.8.1) corresponds to method
of using neural networks as pure equation solvers, and hence can be referred to as a
neural solver method.

3.8.3 Discrete time PiNN

An additional methodology set by M. Raissi, P. Perdikaris, and G. Karniadakis, 2019,
denoted as discrete time Physics informed Neural Networks, can also be considered.
This methodology builds upon a generalization of implicit Runge-Kutta schemes.
First Let u(t, x) denote the sought solution to a differential equation of the general
form 3.55. Then consider applying the implicit form RK approximation scheme 3.49,
3.50. Recall that ξi = y(tn + cjh) is the ith stage approximation for the solution
of a differential equation under the RK scheme . Let ξn

i denote the approximation
of u(n + ci, x) at stage i and time-step n. Additionally set un+1 to denote the end
stage n + 1 approximation. The general-form (arbitrary butcher table) Runge-Kutta
scheme for this set-up can then be denoted as:

3.8. Physics informed neural networks 25

ξn
i = un − h

v

∑
j=1

ai,jN [ξn
j], i = 1, ..., q, (3.59)

un+1 = un − h
q

∑
j=1

bjN [ξn
j]. (3.60)

These two equations can be rearranged. Let un
i denote the ith stage approximation

of un

un
i = ξn

i + h
v

∑
j=1

ai,jN[ξn
i], i = 1, ..., v, (3.61)

un
v+1 = un+1 + h

v

∑
j=1

bjN[ξn
j], (3.62)

A neural network can be used to predict the ξn
i stages and the end-stage approxima-

tion un+1

NN(x, n) = [ξn
1 (x), ξn

2 (x), ..., ξn
v (x), un+1(x)]. (3.63)

Using an appropriate butcher table and equations 3.61, 3.62, these values are used to
calculate [un

1(x), ..., un
v(x), un

v+1(x)] as the final output. Loss values can be computed
using sample data xn

sample, un
sample.

Loss =
1
n2 SSEn +

1
n2

b
SSEb. (3.64)

With, {xn,i, un,i}Nn
i=1 ∈ [xn

sample, un
sample]:

SSEN =
v+1

∑
j=1

Nn

∑
i=1

|un
j (xn,j)− un,i|2. (3.65)

And SSEb, correspond to square error from points on the boundary, and boundary
condition specified for the differential equation. Optimizing over this loss yields a
Discrete Time Physics Informed Nerual Network.

3.8.4 Parameter discovery

An aspect of numeric modelling is estimating appropriate governing parameters
of the differential equations. This problem is realized as an instance of an inverse
problem, meaning that one wishes to learn the parameters of a physical model which
has driven forth a realization of this model in the form of recorded data.

Continuous time PiNN

By adding parameters as trainable variables in the PiNN methodology, they can
be estimated from an optimal fit. In more detail, consider the PiNN methodol-
ogy as a model constructed as a neural network model with additional parameters

26 Chapter 3. Theory

λ1, λ2, ..., λτ = λ:
PiNN(x) = f (NN(x), λ). (3.66)

Suppose data consistent with a differential equation with parameters

λtrue = λtrue
1 , λtrue

2 , ..., λtrue
τ . (3.67)

Optimizing a PiNN model over the dual loss from the differential equation and data-
points, will yield the model

PiNN f itted(x) = f (NN(x), ˆ̂λ). (3.68)

The converged parameters of the model will then be estimations of the parameters
governing the underlying data.

Discrete time PiNN

Discrete PiNN can also be adapted for parameter discovery. Consider again a dif-
ferential equation of the from ut +N [u, λ], λ = λ1, .., λτ. Apply the general form
Runge Kutta and obtain the following schemes:

un = ξn
i + h

v

∑
j=1

ai,jN[ξn
i , λ], i = 1, ..., v, (3.69)

un+1 = ξn
i + h

v

∑
j=1

(aij − bj)N[ξn
j , λ], i = 1, .., v. (3.70)

Again, a neural network is placed to predict the RK stages

NN(x, n) = [ξn
1 (x), ξn

2 (x), ..., ξn
v (x)]. (3.71)

The main difference in this scheme is the provision of two sets of sampled data-
points: un

sample, un+1
sample. Using equations 3.69, 3.70, the output is the two vectors:

[un
1(x), .., un

v(x), un
v+1], (3.72)

[un+1
1 (x), .., un+1

v (x), un+1
v+1]. (3.73)

The neural network with the added parameters λ can be trained by minimizing
means/sum of square errors.

Loss = SSEn + SSEn+1. (3.74)

Where SSE is calculated as in 3.65.

3.9. Compartment models 27

3.9 Compartment models

Compartment models is a general class of mathematical models, which generally
consists of modelling the transmission of properties between compartments. Typ-
ically, these models can be applied in order to describe physical processes such as
disease spread in a population, fluid flow systems, or system of traffic. Compart-
ment models as a way do discrete and solve problem which otherwise would be
much harder to solve. The SIR model (BlackwoodJulie and Childs, 2018) is a typi-
cal example of a simple compartment model, which describes an infectious disease
scenario. SIR , an abbreviation for susceptible, infectious and recovered, and these
groups acts as the compartments subdividing a population. Disease spread and re-
covery is then modelled as simple differential equations dependent on respective
compartment’s population sizes. In detail, one can state the SIR model as:

dS
dt

= −βIS
N

, (3.75)

dI
dt

=
βIS
N

− γI, (3.76)

dR
dt

= γI. (3.77)

Where parameters β and γ denote infection rate and recovery rate, and N denotes
population size. This model is a non-linear differential model. Although there are
methods of analytically solving special cases of these equations (Kröger and Schlick-
eiser, 2020), in practice numeric methods in order to solve the model. In infectious
disease modelling, this model is usually expanded by the addition of compartments.
One might augment the SIR model with compartments such as: dead (D), vaccinated
(V), exposed (E), etc. The addition of compartments then can be modelled with dif-
ferent transition dynamics between compartments, such as population within the
vaccinated (V) compartment have a greatly reduced chance of transitioning into the
infectious (I) compartment (λV→I << βS→I). The same methodology is not limited
to disease spread however, other examples may include discretized flow systems,
modelling of the circulatory system, and modelling predator-prey population dy-
namics (Thompson and Freedman, 1982). As in the case for circulatory system, con-
tinuous diffusion systems, usually modelled as partial differential equations (PDE),
can be discretized using the finite difference method (LeVeque, 2007). The discrete
version of these models can be realized as a variant of compartment models.

3.9.1 General multi-compartment models

Illustratively, one can describe a general multi-compartment model as follows. Sup-
pose a system of n compartments, which contain some intrinsic property xi. Suppose
that this property varies dependent over time t and values for connected compart-
ments with some parameters λxi→xj , so that one has:

dxi

dt
=

n

∑
j=1

(λxj→xi f (xi, xj)− λxi→xj g(xi, xj)). (3.78)

28 Chapter 3. Theory

Which in informal terms states: The change in xi is the sum of property flowing in
and property flowing out. The functions f and g denote combinations of compart-
ment values. As an example, in the SIR model, equation 3.75, f (S, I) = S·I

N

FIGURE 3.8: A compartment structure

An arbitrary example is given in 3.8. Symbolically this case can be described as

dx1

dt
= −Lx1→x2 · x1, (3.79)

dx2

dt
= Lx1→x2 · x1 − Lx2→x3 · x2 − Lx2→x5 · x2, (3.80)

dx3

dt
= Lx2→x3 + x2 · x1 − Lx3→x4 · x3, (3.81)

dx4

dt
= Lx3→x4 · x3 − Lx4→x5 · x4, (3.82)

dx5

dt
= Lx2→x5 · x2 + Lx4→x5 · x4. (3.83)

3.9.2 Numerical solutions to compartment differential equations

Compartment models can easily be solved with numerical methods such as time
stepping schemes, an example of which would be the Runge-Kutta methods 3.6. A
simple variant of RK schemes is the Euler method which corresponds to a 1-step
RK-method, which can be realized both explicitly and implicitly. Illustratively the
simplest case of an explicit Euler method solution can be given. Suppose the above
compartment model system 3.79 -3.83. Suppose also an initial condition IC = x0 =
[x1

0, x2
0, x3

0, x4
0, x5

0]
T (Now superscript denotes variable and subscript denotes time-

step.). Further, suppose a step size h. The Euler scheme is realized as:

yn+1 = yn + h f (tn, yn). (3.84)

f (tn, yn) will in this case correspond to the right hand side of equations 3.79 -3.83.
Hence

3.9. Compartment models 29

x1
1 = x1

0 + h(−L1 · x1
0), (3.85)

x2
1 = x2

0 + h(L1 · x1
0 − L2 · x2

0 − L3 · x2
0), (3.86)

x3
1 = x3

0 + h(L2 · x2
0 · x1

0 − L4 · x3
0), (3.87)

x4
1 = x4

0 + h(L4 · x3
0 − L5 · x4

0), (3.88)

x5
1 = x5

0 + h(L3 · x2
0 + L5 · x4

0). (3.89)

The x1 can be used to calculate the next step. This is repeated until a solution is
found.

31

Chapter 4

Implementation and Case studies

This chapter concerns the realization and use cases for PiNN through four case prob-
lems. These cases are presented with distinct problem formulations, and a solution
to these cases are found by means of implementing the PiNN methodology. Overall
the goal of these case studies is to obtain an understanding of the methodology and
how it can be adapted to specific case problems which were found to be of interest.
These cases were selected in a way as to investigate the utility of the method, and
to prepare an overall methodology which could be adapted into a real-world case
problem. The realized case problems range in size and scope.

Case one, Neural Solver The first case is as a simple demonstration on how to re-
alize the main idea behind PiNNs, training a neural network to satisfy a differ-
ential equation

Case Two, Lotka Votlerra PiNN Case two is also a demonstration, realizing both
the continuous- and discrete-time PiNN methodologies highlighting the regu-
larization capabilities of the former.

Case three, PiNN-SIR This case further builds upon the demonstrated methodol-
ogy, developing and performing tests in order to scope out a larger framework
which ultimately was to be applied in case four. Specifically this framework
applies PiNN to the SIR compartment model. Subsequently, in order to gauge
the overall performance of the parameter discovery and regularization prop-
erties, the PiNN methodology is tested over simulated SIR models of varying
underlying parameters.

Case four, PiNN bolus simulation Case four is realized as the culmination of the
knowledge developed throughout the thesis, adapting adapting the refined
framework in a real-world biomedical case-problem. This case problem builds
upon a base compartment method used to predict the cardiac output (CO) of
a patient, given some small set of patient data including height weight and
gender. This model is augmented using the PiNN methodology, adapted with
the compartment model realization from case three. In addition, an attempt at
further augmenting the methodology is proposed. By introducing additional
parameters into the original model and utilizing the PiNN methodology’s pa-
rameter discovery property, it is posited that the method may find a better
solution, and perhaps the learned parameters would yield qualitative predic-
tions.

32 Chapter 4. Implementation and Case studies

4.1 Coding and frameworks

Throughout the course of the thesis project, various implementations of the PiNN
methodology were created in python for several problems which was of interest
to investigate, culminating into the four case-problems. Although inspiration was
found in already established implementations, all of the realized implementations
for the presented case problems were constructed from the bottom up in Python
utilizing the PyTorch framework for neural computations. Although there are ex-
isting python packages tailored for PiNNs such as Deepxde and SciAnn (Cuomo
et al., 2022), a more bottom up implementation was found to be more flexible and
better serving to the goal of developing an understanding of PiNN. Tensorflow and
Pytorch are known as excellent deep learning tool-kits, and these packages both
support automatic differentiation capabilities for computing gradients as well as in-
tegrated functionality for setting up and training neural networks. After several
revisions of implementations, PyTorch was ultimately the framework in which the
final revisions were created in. Consequently, the specifics of the methodology is
constructed under the structure of this framework. However, the overall techniques
utilized can be transferred between these frameworks without significant difference
in structure and function of the code.1

4.2 Overall PiNN implementation structure

The general shared structure of PINN implementations, are similar to the structure
of typical neural network training methods, and can be summarized as follows:

Define Neural Network Architecture Using any deep learning framework one de-
fines the network model and sets the layer parameters and activation func-
tions.

Construct a loss function A loss function which takes outputs and derivatives (up
to highest degree in D.E.) from the network model, and yields the loss. The loss
shall correspond to a difference between the network outputs and a function
which satisfies the D.E. In the case where one also wishes to incorporate data,
the loss function can be adapted to include loss from predictions over data.

Train the network Using an optimizer algorithm also provided in the framework,
the network can be trained to minimize the loss function.

4.3 Case one PiNN as neural solver

4.3.1 Problem statement

Recall that the essential idea behind PiNN, is to construct a loss term for a neural
network training loop in such a way that reducing this loss function results in a neu-
ral network which satisfies a given differential equation. The best way to illustrate
the specific implementation is to present a basic case problem, and correspondingly
show the specific components of the implementation. As a simple example, consider
the first example case in Lagaris, Likas, and Fotiadis, 1998, with the one variable dif-
ferential equation:

1Code for case-problems can be found at: https://github.com/lukerlars/PiNN_masterthesis

https://github.com/lukerlars/PiNN_masterthesis

4.3. Case one PiNN as neural solver 33

d
dx

Ψ + (x +
1 + 3x2

1 + x + x3 Ψ) = x3 + 2x + x2 1 + 3x2

1 + x + x3 . (4.1)

This differential equation has an analytic solution:

Ψa = x2 +
e
−x2

2

1 + x + x3 . (4.2)

The solution to this differential equation can be found by fitting a neural network.

4.3.2 Case 1 Solution

The goal is then to fit a neural network over the differential equation 4.1, and the net
should then become an approximation of 4.2. As stated, one can begin by defining
the neural network architecture.

class Neural_net(torch.nn.Module):
def __init__(self):

super(Neural_net , self).__init__ ()

self.layer1 = torch.nn.Linear(1,20)
self.tanh = torch.nn.Tanh()
self.layer2 = torch.nn.Linear(20 ,1)

def forward(self , x):
x = self.layer1(x)
x = self.tanh(x)
x = self.layer2(x)
return x

Here a small neural net is defined as as subclass of the torch module class. In the
initializing method two layers of 20 neurons are created, along with the activation
function which in this case is the hyperbolic tangent function. Next, the functionality
of the PINN is realized:

class case1_pinn ():
def __init__(self , epochs):

self.model = Neural_net ()

self.domain =
torch.linspace(0,1,100 ,requires_grad=True)
.reshape(-1,1)

self.optimizer = torch.optim.LBFGS(params =
self.model.parameters (),

lr =0.001 , max_iter=200)

self.c0 = 1.0
self.epochs = epochs

def de_loss(self):
def coef(x):

return (x + (1+3*x **2)/(1+x+x** 3))
def expr(x):

return x ** 3 + 2*x +
x** 2*((1+3*x **2)/(1+x+x** 3))

34 Chapter 4. Implementation and Case studies

pred = self.model(self.domain)
dpred = torch.autograd.grad(

pred , self.domain ,
grad_outputs=

torch.ones_like(self.domain),
retain_graph=True ,
create_graph=True

)[0]

z0 = torch.mean((dpred + coef(self.domain)*pred -
expr(self.domain))**2)

ic = (self.c0 - pred[0])** 2

return z0 + ic

def train(self):
self.model.train()
for epoch in range(self.epochs):

def closure ():
self.optimizer.zero_grad ()
loss = self.de_loss ()
loss.backward ()
return loss

self.optimizer.step(closure=closure)
print(self.de_loss ())

This class consist of the main functionality for an instance of a PINN model. In
the initializing method, a neural network model is created, along with the function
domain, a torch optimizer and some constants. The de_loss method (differential
equation loss) constitutes the loss function between the neural model and the differ-
ential equation. In this method, the "pred" variable constitutes the prediction output
over the function domain variable, and correspondingly "dpred" is the differential
of this output with respect to domain input, obtained using the auto-differentiation
functionality provided by Pytorch. Ultimately, the method returns "z0" and "ic",
which respectively denote the calculated loss from the differential equation, and a
loss value from the initial condition.

A training instance can be run by

c 1 _ i n s t = case1_pinn (epochs = 30)
c 1 _ i n s t . t r a i n ()

In this case, the function domain is set to x ∈ [0, 1]. Running the model over 30
epochs and making a prediction yields

4.4. Case two Lotka Volterra equations 35

FIGURE 4.1: Case one output and error

From figure 4.1, one can surmise that a relatively accurate solution was found within
the training domain. This demonstrates that the methodology of a neural solver
works, in a somewhat simple case.

4.4 Case two Lotka Volterra equations

This case demonstrates the regularization property of PiNN when the underlying
parameters are known. In addition the discrete time PiNN methodology is demon-
strated.

The Lotka Volterra equations (Knolle, 1976), also known as the predator prey model,
is a pair of first order differential equations modelling dynamics of biological sys-
tems. As the name suggests, these equations model the relationship of two popula-
tions in which one population acts as a predator upon the other which acts as prey.
This model can generally also be considered as a type of compartment model. The
definition of the Lotka Volterra equation can be stated as:

dx
dt

= αx − βxy, (4.3)

dy
dt

= δxy − γy. (4.4)

Suppose, fixed parameter values: α = 0.25, β = 0.0, δ = 0.25, γ = 2 The solution
to the LV-system will then have a solution in the shape as depicted in figure 4.2.
Consider consider the LV case when there is a small sample from a population dis-
tribution where parameters are known.

36 Chapter 4. Implementation and Case studies

FIGURE 4.2: LV-system true solution

Training a regular neural network over sparse data from this population may yield
a fit as depicted in figure 4.3

FIGURE 4.3: Predator Prey model, 10 data-points only neural net

By incorporating a PiNN with fixed parameters as a regularizing mechanism, a bet-
ter fitting model may be found. The same implementation methodology can be used
as in case 2, the difference being to keep the underlying parameters fixed. Figure 4.4
show such a solution. The specific implementation used to obtain this solution is
presented in case three. This model is trained so that it is trained over a combined
loss function. By taking sampled data as input, computing loss in relation to this
data, one would perhaps obtain a solution akin to figure 4.3. By additionally con-
structing a loss function which as described in case one and combining this with the
loss from the data, results in the plot seen in figure 4.4

4.4. Case two Lotka Volterra equations 37

FIGURE 4.4: Predator Prey model PiNN,10 data-points, fixed param-
eters

This demonstrates the ability of PiNN to act as a regularization mechanism. The
output of the PiNN model has higher accuracy with fewer data-points, leveraging
the a priori information in the form of a differential equation.

4.4.1 LV discrete time PiNN

Additionally, the same LV model can be realized as a discrete time physics informed
neural network. Recall the methodology described in section 3.8.3. This methodology
can be realized as follows.

Implementation

As described in M. Raissi, P. Perdikaris, and G. Karniadakis, 2019, keeping specific
details from their implementation aside, their solution for the discrete time PiNN
methodology is performed upon a differential equation where the solution is a two-
variable function u(x, t). The solution is found by sampling random points along
the x variable, and calculating each time step approximation un

i (x), un
v+1(x) for these

points. The LV-system is a simpler case, as the solution space is not isomorphic to
the plane but rather two one-dimensional curves. The implementation can then be
adapted as follows. Sample the simulated solution at random t-points ti

0, use then
the discrete time PiNN methodology to predict the output point at the next time
steps t1

1.

Consider the following initialization method.

class rk_pp_pinn:
def __init__(self , dt , xdata ,t_dat , q = 100):

self.model = Duo_net(n_in=2,n_out=q+1)
self.adam_optimizer = torch.optim.Adam(params = self.model.

parameters (), lr = 0.001)
butcher_file = np.float32(np.loadtxt(’Butcher_IRK100.txt’,

ndmin = 2))

self.IRK_weights = torch.Tensor(np.reshape(butcher_file[0:q**2+
q], (q+1,q)))

x0s ,x1s = xdata

38 Chapter 4. Implementation and Case studies

self.x0s = torch.Tensor(x0s)
self.x1s = torch.Tensor(x1s)
self.t_dat = t_dat
self.dt = dt
self.epochs = 10

self.alpha = 0.25
self.beta = 0.02
self.delta = 0.25
self.gamma = 2

Here, the IRK_weights denote the RK-weights from a butcher-table, in this case a
100 stage method is used. The neural network model component is the same as pre-
viously depicted, only that this network model consists of two separate networks.
This allows for the model to output a solution for both x and y for one t value input.
The loss function can be realized as:

def loss(self):
x1 , y1 = self.model(self.x1s)
x = x1[:,:-1]
y = y1[:,:-1]

F0 = self.alpha*x -self.beta*x*y
F1 = self.delta*x*y -y*self.gamma

x0 = x1 - self.dt*torch.matmul(F0 ,self.IRK_weights.T)
y0 = y1 - self.dt*torch.matmul(F1 ,self.IRK_weights.T)

l0 = torch.mean((self.x0s[:,0].reshape(-1,1) - x0)** 2)
l1 = torch.mean((self.x0s[:,1].reshape(-1,1) - y0)** 2)

return l0 + l1

Training this model, results in a discrete time PiNN. Figure 4.5, depicts the ti
1 predic-

tions of a time step dt = 4.

FIGURE 4.5: Discrete Pinn

4.5. Case three the SIR model 39

As seen in figure 4.5, this demonstrates the solution found by the discrete-time PiNN
methodology is able to find an accurate approximation to the real solution of the LV-
system as depicted in 4.2.

4.5 Case three the SIR model

The field of infectious disease modelling gained an increase in interest following
the COVID-19 epidemic. Naturally, there has been some research in applying the
PiNN methodology to the SIR and its derived models. Notably, Shaier, Maziar
Raissi, and Seshaiyer, 2021 carried over the PiNN methodology and investigated
how PiNN’s can be utilized for parameter discovery in the infectious disease con-
text. In their analysis, the SIDR and higher order compartment models was adopted.
Using simulated data modelling several infectious diseases, the PiNN methodol-
ogy was used to fit a neural model, coined as a Disease Informed Neural Network
(DINN). The study demonstrates the methodology’s ability to learn model param-
eters over cases ranging in number of compartments, and parameter features. The
methodology was found to easily find parameters in cases of low dimension and
with few parameters, with more difficulty for the over data with many sharp oscilla-
tions. Further Schiassi et al., 2021, adapts a variant of the PiNN methodology coined
as PINN-TFC (PiNN - Theory of Functional Connections), leveraging the approach
of extreme-machine learning, and alternative to the traditional method of training
neural networks. This methodology was found to be of high accuracy, in the problem
of parameter-discovery applied to SIR, and the higher order variants Susceptible-
Exposed-Infectious-Recovered (SEIR) and SEIR-Susceptible (SEIRS). The method-
ology of Shaier, Maziar Raissi, and Seshaiyer, 2021 can be regarded as a straight
forward adaption of the PiNN methodology (M. Raissi, P. Perdikaris, and G. Karni-
adakis, 2019) for infectious compartment models. From this, the methodology can
be adapted into a case study, attempting to recreate the findings of Shaier, Maziar
Raissi, and Seshaiyer, 2021, for the smaller SIR model.

4.5.1 Problem statement

In this case the main goal two-fold. The first goal is to estimate a solution to the SIR
model using the PiNN methodology and simulated data. The model shall include β
and γ as variables, which will be estimated from the data. The effectiveness of PiNN
as an inverse-problem parameter discovery system will be investigated. Secondly,
PiNN as a regularization mechanism will be considered. That is, in context where
sample sizes of underlying data is low, will the addition of the differential equation
loss aid the model’s accuracy, and/or prevent over-fitting?.

4.5.2 PyTorch implementation

The case with the SIR model requires a neural network taking input of dimen-
sion one corresponding to time, and three dimensional output (S,I,R). Adapting a
methodology similar to the one used in Shaier, Maziar Raissi, and Seshaiyer, 2021
the data-driven solution to the SIR case can be realized. What follows is a suggested
outline for performing one such implementation. In this case as well, in order to ex-
emplify how the method can be realized, code snippets of the method implemented
with PyTorch is given.

40 Chapter 4. Implementation and Case studies

Note that in this case, a four-layer network was adapted, with hyperbolic tangent
as activation function. All layers incorporate 20 neurons. This network structure
is not necessarily the canonical optimal structure, meaning that aspects of size and
activation function may be subject to discussion.

Consider the PiNN class. with the following initialization method.
class sir_pinn:

def __init__(self , epochs , data):
self.epochs = epochs
self.model = Neural_net(n_out=3)
self.domain = torch.linspace(0,int(max(data[0])),100 ,

requires_grad=True).reshape
(-1,1)

self.beta_unconstr = torch.nn.Parameter(torch.randn(1))
self.gamma_unconstr = torch.nn.Parameter(torch.randn(1))

Adding gamma and alpha to model trainable variables
self.model.register_parameter(name=’beta’, param = self.

beta_unconstr)
self.model.register_parameter(name=’gamma’, param = self.

gamma_unconstr)
Configuring optimizers
self.lbfgs_optimizer = torch.optim.LBFGS(params = self.model.

parameters (), lr = 0.001 ,
max_iter = 500)

self.adam_optimizer = torch.optim.Adam(params = self.model.
parameters (), lr = 0.0001)

self.t_dat = torch.Tensor(data[0]).reshape(-1,1)
self.S_dat = torch.Tensor(data[1])
self.I_dat = torch.Tensor(data[2])
self.R_dat = torch.Tensor(data[3])

#find values for normalization

self.maxes = {}
self.mins = {}

for id,d in enumerate ((self.S_dat , self.I_dat , self.R_dat)):
self.maxes[id] = max(d)
self.mins[id] = min(d)

self.N = self.maxes[0]

#normalize
self.S_norm = self.normalize(0, self.S_dat)
self.I_norm = self.normalize(1, self.I_dat)
self.R_norm = self.normalize(2, self.R_dat)

self.c0 = torch.tensor([max(self.S_norm), min(self.I_norm), min
(self.R_norm)])

This initialization method is set up as to incorporate both data and differential equa-
tion loss. As previously defined, a neural network model is set output with one
input dimension for time domain, and 3 outputs corresponding to each of the three
values considered in the SIR model. The time domain is set to 100 points between
0 and max(tdata). β and γ parameters are added to the torch-model trainable vari-
ables. Two optimizer instances are configured, one using the LBFGS algorithm and
another using ADAM. Maximum and minimum values from data is collected and

4.5. Case three the SIR model 41

used to normalize the the data. The opted-for normalization strategy is the naive-
[0, 1] map, achieved by applying: norm(x) = (x − xmin)/(xmax − xmin). Recall, that
in a multi output case such as this, normalization is applied with the intent of stabi-
lizing gradients.

β and γ parameters can be restricted to a specified range utilizing the python prop-
erty decorator. The decorator ensures each time the parameters are called, torch tanh
function is called over the beta and gamma parameters. this restricts these parame-
ters to the range of [−1, 1]:

@property
def beta(self):

return torch.tanh(self.beta_unconstr)

@property
def gamma(self):

return torch.tanh(self.gamma_unconstr)

In order to be conveniently able to get the derivative of the neural network output
with respect to the input, the automatic-gradient functionality in PyTorch can be
wrapped as the following function:

def __wrap_grad(self , f,x):
return torch.autograd.grad(f,x,
grad_outputs=torch.ones_like(x),
retain_graph=True ,
create_graph=True)[0]

The loss value from the differential equation component follows as:

def de_loss(self):
S, I, R = (x.reshape(-1,1) for x in

torch.unbind(self.model(self.domain), dim =1))

dsir_dict ={}
for id, val in zip((’dS’, ’dI’, ’dR’) ,(S, I, R)):

dsir_dict[id] =
self.__wrap_grad(val.reshape(-1,1),

self.domain)

dS , dI , dR = dsir_dict.values ()

S = self.S_min + (self.S_max - self.S_min) * S
I = self.I_min + (self.I_max - self.I_min) * I
R = self.R_min + (self.R_max - self.R_min) * R

z1 = dS + ((self.beta / self.N) * S * I) /
(self.S_max - self.S_min)

z2 = dI - ((self.beta / self.N) * S * I -
self.gamma * I) / (self.I_max - self.I_min)

z3 = dR - (self.gamma * I) /
(self.R_max - self.R_min)

return torch.mean(z1 **2) + torch.mean(z2 **2)
+ torch.mean(z3 **2)

This method begins by calling model over the function domain. Calling the model
results in an array output of dimensions (range(t), 3), in which each column corre-
spond to the normalized output of the SIR model. Columns are retrieved from this
output, and the derivatives of these values are obtained using the gradient wrapper

42 Chapter 4. Implementation and Case studies

function. In order to calculate the correct differential value, the output values are
unnormalized using the maximum and minimum values collected during initializa-
tion. The differential loss for each component is then calculated as the zn values.
Note that the values that correspond to the right hand side of the differential equa-
tions are again scaled by the normalizing constants. This is due to the fact that the
values dS, dI, dR in the code correspond to the derivative of the normalized values. Set
S̃ as the normalized S, the derivative of this value d

ds S̃ = d
dS (Smin + S(Smax − Smin)) =

Smax − Smin. Since the neural network is to predict over normalized values, the error
must correspond accordingly. Hence dS = β SI

N → dS̃ = (Smax − Smin)
−1β SI

N . Finally,
the mean square error for all three compartments are yielded.

Next, loss from data is defined rather straight-forwardly:
def data_loss(self):

S, I, R = torch.unbind(self.model(self.t_dat), dim =1)
z1 = torch.mean((self.S_hat - S)**2)
z2 = torch.mean((self.I_hat - I)**2)
z3 = torch.mean((self.R_hat - R)**2)

return z1 + z2 + z3

def combined_loss(self):
return self.de_loss () + self.data_loss ()

Note that all of these methods are defined within the PiNN class. With these meth-
ods defined, its possible to train the SIR model as a Physics Informed Neural Net-
work. Figure 4.6, illustrates the output of the method for 10 sampled simulation
data-points. In this plot, the random sample of simulation data occurs as the scat-
tered dots, and the prediction output of the model is depicted as the connected line
plots.

10 Random Sampled Data-Points, 100 Domain Points

FIGURE 4.6: Results 10 random sampled data-point

4.5.3 Performance testing scheme

In order to gauge the performance of the implemented methodology, a testing scheme
was devised. Simple tests can be run over simulated data-points. In python, the

4.5. Case three the SIR model 43

ODE solver from Scipy, utilizing the LSODA algorithm (Petzold, 1983) can be used
to generate numerical solutions to the system of equations. These generated points
can then be sampled and used in the PiNN model in lieu of real-world data. Case
in point, data for different values of gamma and beta parameter can be generated.
Tests are run with intent of illustrating how the two loss components from sampled
simulation data and differential equation domain-points, affect the overall model
performance. The following testing scheme was employed.

Created simulation data-sets

• 5 Noise free simulation data-sets with varying parameters

• 2 Noisy data-sets with different levels of noise

Table 4.1 denotes the noise free simulated data sets. These sets were created with
the intention of investigating the methods robustness for varying parameter in the
underlying data. Table 4.2 denotes the generated data sets for noisy data.

Set-Name Parameters
b005g002i001 β = 0.05, γ = 0.02, S0 = 0.99, I0 = 0.01
b005g002i050 β = 0.05, γ = 0.02, S0 = 0.50, I0 = 0.50
b050g005i050 β = 0.50, γ = 0.05, S0 = 0.50, I0 = 0.50
b070g016i001 β = 0.70, γ = 0.16, S0 = 0.99, I0 = 0.01
b070g016i020 β = 0.70, γ = 0.16, S0 = 0.80, I0 = 0.20

TABLE 4.1: Noise free data-sets with varying parameters

Set name Parameters
b020-g005-i020-n070 β = 0.2, γ = 0.05, I0 = 0.20, S0 = 0.80, Noise = 0.7σ
b020-g005-i020-n149 β = 0.2, γ = 0.05, I0 = 0.20, S0 = 0.80, Noise = 1.4σ

TABLE 4.2: Noisy sets

For this test there are two qualities of interest to be tested. One is the reverse prob-
lem of parameter discovery. How well the method fits to the underlying data, and to
what degree does the method retrieves the correct parameters. The second aspect
is regularization, in particular, does the inclusion of differential information aid the
models predictive power? From these qualities, four types of models were tested.
Each generated set represents a round of testing. For rounds 1-5, the interest was
to see the performance of the methods over perfect data, and if the performance
varies over the underlying parameters. The second sets consist of data with added
noise. These test are to investigate the parameter-discovery performance over more
realistic data.

44 Chapter 4. Implementation and Case studies

Model Name Properties

100DA100DE
Model with 100 simulated data-points,
and 100 domain-points for
calculating differential equation loss.

010DA100DE
Model with 10 simulated data-points,
and 100 equation domain points.

010DA000DE
Model with only given 10 data points
corresponds to a normal neural net with
scarce data.

000DA100DE
Model with 100 domain-points only, and
fixed parameters. Corresponds to a
neural solver

010DA1000DE
Model with 10 data points and 1000 domain-points.
Used only in noisy data test

TABLE 4.3: Test models, name and description

To get a semblance on how the models improve over training, the results are re-
ported twofold. First, the models are run over 10 epochs of 1000 training steps,
with and ADAM optimizer of PyTorch default parameters with learning rate set to
0.0001. Then a second category Train Until Satisfied (TUS) is reported. What this en-
tails is the models are run until the metrics have converged, and there is not much
improvement of loss values. Each test report the metrics summarized in table 4.4

Metric Explanation

10 Ep Training MSE
Training loss-value
at end of 10th epoch

10 Ep Test MSE
MSE measure from trained model
and test set after 10 epochs of
training

10 Ep Beta
Estimated β value after
10 epochs of training

10 Ep Gamma
Estimated γ value
after 10 epochs of training

TUS Train MSE
Training loss-value at last TUS
epoch

TUS Test MSE
MSE measure form trained model
and test set after last TUS epoch

TUS Beta
Estimated β after last TUS
epoch

TUS Gamma
Estimated γ after last
TUS epoch

TABLE 4.4: Test metrics

4.5.4 Performance Testing Results

This section reports and summarizes the results and findings of the testing rounds.
Results form rounds 1,2 and 6 are summarized in tables 4.5 4.6, 4.7, and correspond-
ing plots are given in figures 4.7, 4.8 and 4.9. For each of these listed rounds, the
performance of each tested model is reported. Due to coincidence in the overall

4.5. Case three the SIR model 45

qualitative conclusions from each test, the reports from rounds 3-5 are given concur-
rently, while considerations from round 7 is given along with the report for round 6.
For convenience, the models are referred to by reference names as given in table 4.3.

Round 1

Round 1. N = 1, I0 = 0.01, S0 =0.99, beta = 0.05, gamma = 0.02
Model Type 10 Ep Train MSE 10 Ep Test MSE 10 Ep Beta 10 Ep Gamma

100DA100DE 0,0093 5,8371E-04 -0,4163 -0,1712
010DA100DE 0,0124 2,9255E-03 -0,4091 -0,1899
010DA000DE 4,96E-05 0,0234 NA NA
000DA100DE 9,52E-07 0,7304 NA NA

Test Name TUS Train MSE TUS Test MSE TUS Beta TUS Gamma
100DA100DE 4,28E-06 4,1211E-06 0,0493 0,0199
010DA100DE 2,99E-06 1,7839E-04 0,0473 0,0200
010DA000DE 5,76E-06 0,0023 NA NA
000DA100DE 6,55E-07 0,7568 NA NA

TABLE 4.5: Round 1 results

The results from round one is summarized in table 4.5, plots of the estimated solu-
tions are illustrated in 4.7.

100DA100DE The model consisting of 100 data and 100 differential domain points
performs somewhat well as can be seen in the plots, and observed from the test
MSE. Notice that the discovered parameter is relatively close to actual value,
with a relative error of 1.4% for β and 0.5% for γ at TUS. Also its worth noting
that the first 10 epochs fails to discover appropriate parameters even though
the model can be considered accurate relative to the underlying sample model
as can be seen from the test MSE score. Test error score is also the lowest for
all of the models at TUS.

010DA100DE The model with fewer sampled data-points performs similarly to the
larger model when it comes to parameter discovery. In the same manner, it fails
to predict accurate parameters after 10 epochs, but comes reasonably close at
TUS with a relative error for β at 5%, and 0% for γ. This model also suffers
a lower test accuracy, than the larger, both at 10 epochs and at TUS. There
are noticeable artefacts of instability around the initial conditions as is visible
from observing the plots in 4.7. These instabilities seemingly gets better with
training as evident from the TUS run on the same model, however the effect is
still present.

010DA000DE As hypothesized, the predictive properties of the pure data model
performed worse than the models including differential loss. In detail, scoring
a lower higher (lower is better) test-set MSE score than both preceding models.
This model performs seemingly well, with some evident instabilities in the
initial condition. Also worthy of note is the test set MSE score for the 10 data-
points-only model and the 10-data-points-100-DE-points model at TUS which
is the same score as 010DA100DE, the few-data-points with differential loss
model. This suggest in this case that whatever regularization may be present,
it has small effect on a random sample test.

46 Chapter 4. Implementation and Case studies

000DA100DE Lastly, one can observe that the neural solver model was not able to
find an appropriate solution. Observe from the plots in figure 4.7, the solution
found for the model seems to have set the prediction for I and R straight to
a constant value of zero, for almost all equation domain points. Hence, the
solution technically satisfies the SIR equation system 3.75 - 3.9.

100DA100DE 10 Epochs 100DA100DE TUS

DA010DE100 10 Epochs 010DA100DE TUS

010DA000DE 10 Epochs 010DA000DE TUS

000DA100DE 10 Epochs 000DA100DE TUS

FIGURE 4.7: Round 1 Plots

4.5. Case three the SIR model 47

Round 2

The results from round 2 is summarized in table 4.6, and with plots found in figure
4.7. For this round, the parameters for the underlying simulation data is the same as
in round 1, the difference being the initial conditions whereas in round 1 I0 = 0.01 ,
while in round 2 I0 = 0.5 (N = 1 for all tests).

Round 2. N = 1, I0 = 0.5, S0 =0.5, beta = 0.05, gamma = 0.02
Model Type 10 Ep Train MSE 10 Ep Test MSE 10 Ep Beta 10 Ep Gamma

100DA100DE 5,9907e-06 3,5543e-06 0,2166 0,0199
010DA100DE 5007,13 361,52 0,0005 0,0157
010DA000DE 1,090e-05 536,449 NA NA
000DA100DE 6,7332-05 0,4522 NA NA

TUS Train MSE TUS Test MSE TUS Beta TUS Gamma
100DA100DE 4,9905E-07 4,2878E-07 0,2241 0,0200
010DA100DE 555,27 46,7371 5,6652e-06 0,0234
010DA000DE 6,9807e-07 534,72 NA NA
000DA100DE 4,7870-08 0,0421 NA NA

TABLE 4.6: Round 2 results

100DA100DE The 100 data-points 100 differential domain points model performs
worse than in the previous case when it comes to parameter discovery. As evi-
dent in table 4.6, although the learned γ parameter is precise for both 10 epochs
and TUS, the discovered β parameter deviate largely from the true underlying
values of the simulation data, with a relative error of 348% at TUS, which is
safe to say, is far form the optimal value. Notice also, this prediction slightly
worsens upon more epochs of training as the TUS values if farther away from
the true β. By observing the plots 4.8, more can be said about the performances
of the models. The 100DA100DE model follows the solution exactly, which is
good to keep in mind while considering the other plots.

010DA100DE Naturally the model with 10 data-points and 100 domain points also
struggle to find the correct parameters, where in this particular case the esti-
mated β parameter approaches 0 upon further training. Again, the pure data
models test-set scores at TUS are the same as for the 10 data-point model in-
cluding differential loss. As with round 1, there is evidence of irregularities in
the D010DE100 model. Notice that this model sharply overshoots the peak I
value right after t0. Also notice, the fairly irregular shape of the output. This
irregular shape may be due to the model setting the β parameter to zero. This
will effectively free up the differential loss component associated with this pa-
rameter, and will not inhibit the irregular output shape. One thing about this
test to be noted is the sensitivity to the sampled underlying data. Running
the same test with a different samples set may in some cases perform better,
and (some cases worse). This is especially affected by the degree of sample
points falling within critical areas of the true underlying solution. The model
defining areas being the areas of rapid increase and then decrease occurring at
about time step t ∈ [0, 20]. A small random sample such as 10 data-points is
unlikely to fall within this critical area such as the overall shape of the under-
lying model is clearly defined.

48 Chapter 4. Implementation and Case studies

010DA000DE Although in this test, the PiNN models seem to experience some
problem, a pure data model would fare worse as evident from the test-set MSE.
Even though from the plots this model seems not to be a bad fit, it scores rel-
atively high on the test set indicating a less than stellar fit. Since this pure
data model (of few points) is trained upon the same set as the 010DA100DE
model, this supports the theory of the few-data-point PiNN model model be-
ing sensitive to sample locations. Also, since both these models are arguably
inaccurate, how come the 010DA100DE model fair a bit better on the test met-
rics (especially at TUS)? Observe again the plots of the model, and regard the
100DA100DE as the closest to the true plot. 010DA000DE, that is a pure data
model does not satisfy the initial conditions. Even though 010DA100DE seems
rather inaccurate, it seems closer to satisfy the IC.

000DA100DE In this round model 000DA100DE (neural solver) Is able to find a so-
lution. By judging the plots 4.8, the overall shape of the solution is not perfect.
By this, consider the shape outlined by the 100DA100DE model as the true so-
lution. Notice that the neural solver undershoots the peak in the prediction of
I, and turns less sharp in I and R than the true solution. This solution found
at TUS also does not seem to improve by applying even more training steps.
However, still the test MSE yields a score of 0.0421 at TUS, which is the second
best score of this round.

4.5. Case three the SIR model 49

100DA100DE 10 Epochs 100DA100DE TUS

010DA100DE 10 Epochs 010DA100DE TUS

010DA000DE 10 Epochs 010DA000DE TUS

000DA100DE 10 Epochs 000DA100DE TUS

FIGURE 4.8: Round 2 Plots

Rounds 3 - 5

Refer to appendix A for the plots and result tables of tests 3-5. The results for rounds
3-5 are reported in tables A.1 - A.3. The performance of the models can be summa-
rized accordingly.

100DA100DE When it comes to this model, the main focus is the performance of
parameter estimation, overall seem to perform surprisingly poor. For tests 3-5

50 Chapter 4. Implementation and Case studies

the model most accurate when it comes to finding the γ parameter. With em-
phasis on the TUS values which ideally should have converged to the correct
parameter, the model seems sporadic in it’s predictions. The model seems to be
having particular issue finding the correct beta parameter. The closest in this
case is in round 4, where the correct beta parameter was 0.7, and the predicted
beta at TUS was found to be 0.588. The largest deviation was in the following
round 5 with the same underlying beta and a prediction of 0.298. The gamma
prediction is more accurate but still some degrees of as is the case in round 5
with γtrue = 0.16

010DA100DE Since this model is trained on significantly fewer data-points than the
previous which had difficulty finding the correct underlying parameters, it’s
natural for this model to also struggle at the same task. Incidentally, this turns
out to be the case for all of the tests. Overall the model struggles to learn the
correct β parameters, but generally gets reasonably close to the correct γ pa-
rameters, not lagging much behind the 100DA100DE model at TUS. The regu-
larization property seems to be present and yield some increase in generality
of the output.

010DA00DE Performance for this model is mainly judged by test-set MSE. Consid-
ering this metric over rounds 3-5 large variations are observable. In round 3,
the model performs on par with the 010DA100DE model, while round 4,5 per-
formance is lower. Note that this model generally has the highest test-MSE
scores all around, indicating that there indeed is a beneficial regularization ef-
fect present for the 010DE100DA model.

000DA100DE Since this model corresponds to a neural solver, it’s accuracy largely
depend upon it being able to solve the compartment system. Observing the
test MSE from round 3-5, it seems as the method was able to find a solution
for round 3 and 5, since these score range < 1 at TUS. Still, tests 3,5 shows the
solution not reaching the same accuracy levels as the other models, indicating
the same case as in round 2, as this model reaching some solution resembling
the true solution but falling short in magnitude. In particular, this model strug-
gles for the test where the relative magnitude of the initial condition I0 value
is small.

Rounds 6 and 7 noisy data

Table 4.7 shows results tables for rounds 6, while figure 4.9 depict the plots. Values
an plots for round 7 can be found in appendix A. These tests utilize noisy data,
having the same underlying simulated data with different levels of noise. Round 6
incorporates 0.7σnoise free and round 7 1.4σ. Figure 4.9 depicts the output plots for
round 6.

4.5. Case three the SIR model 51

Round 6,N = 1, I0 = 0.20, S0 = 0.80, β = 0.20, γ = 0.05, Noise = 0.7σ

Model Type 10 Ep Train MSE 10 Ep Test MSE 10 Ep Beta 10 Ep Gamma
100DA100DE 0,00682 0,00681 -0,0524 -0,0178
010DA100DE 0,01265 0,05119 0,3996 0,295
010DE1000DE 0,00331 0,01757 0,084 0,0379

TUS Train MSE TUS Test MSE TUS Beta TUS Gamma
100DA100DE 0,00559 0,0061 0,1356 0,0431
010DA100DE 0,00293 0,02292 0,0717 0,0404
010DE1000DE 0,00296 0,02078 0,0841 0,0383

TABLE 4.7: Round 6 results

100DA100DE As discussed for the previous rounds, the parameter discovery per-
formance was found to be surprisingly disappointing even for a model trained
over noise free data. Then as expected, adding noise to the simulation data fur-
ther inhibits the models parameter discovery capacity. The test also show that
amount of added noise can worsen this effect. Consider the TUS run discov-
ered parameters for test 6 and 7. In round 6, a case can be made for the model
learning somewhat close to the real parameters, predicting both γ and β with
a respective error ratio of 32% and 14%. In round 7 the parameter prediction
accuracy i severely reduced for the β parameter with a relative error ratio of
56%, and for γ 37%.

010DA100DE The parameter discovery ability for the few data-points model can
be said to be sensitive to noise. This is most seen in the β parameter, where
the model preforms worse than the model trained over 100 noisy data-points.
However, when considering the evidently poor parameter discovery proper-
ties of this model on perfect data as given in rounds 1-5, it was not expected to
do well in this test. From the plots, it actually looks as if more training steps
has a detrimental effect as the 10 epochs run looks like a better generalized fit
over the TUS run.

010DE1000DE This model is only used in these test-rounds 6-7, in order to see if
increasing the domain-points on which differential equation loss is calculated
has an effect on the model accuracy in the case with noisy data. As can be
seen from the tables and the plots, this does not seem to be the case. Although
from considering the plots, especially the 10 epochs run seems like a better
generalized fit than its 100DE-points counterpart, however, at TUS run the plot
is virtually identical, meaning that this addition of DE points had in this case
no apparent benefit.

52 Chapter 4. Implementation and Case studies

100DA100DE 10 Epochs 100DA100DE TUS

010DA100DE 10 Epochs 010DA100DE TUS

010DA1000DE 10 Epochs 010DA1000DE TUS

FIGURE 4.9: Round 6 Plots

4.5.5 Case 2 testing discussion

The testing seems to show variable performance results. In particular, the findings
of accuracy in regards to parameter discovery seem less optimal as the results found
by Shaier, Maziar Raissi, and Seshaiyer, 2021. In particular considering the latter’s
use of admittedly more advanced models, the results from the tests seem spurious.
Overall the performance of the tests indicate the following. The parameter discovery
component of the methodology works when conditions are ideal and when there is
ample sampled data points. This seem to be the case when considering the results
of round 1, however the convergence towards the true parameters seems somewhat
lackluster. When there is less data available, the PiNN models struggle more to
find the correct parameters, but does not lag too far behind the model instance were
more sampled point are available. Also, in the sparse data case the performance
in regards to regularization can be noted. The tests indicate that there are present
regularization effects, which gives some benefit to test score over a naively trained
model. Logically, this effect also seem to work better if the learned parameters are
closer to the actual values.

4.5. Case three the SIR model 53

As the main goal in part was to gauge the overall performance of the methodology, it
is important to note potential factors, independent of the methodology, originating
from the specific implementation, which may have influenced the results. Case in
point, The size of the neural net opted for in the model may have an impact of the
overall accuracy. However testing of the implementations, during their construc-
tion, indicated that overall network size and shape seemed to have little impact on
accuracy. It may also seem superfluous to note the potential of human error, how-
ever, this is an ever-present source of error for most things in general. Indeed, as
this thesis is written, errors in the specific implementation has been found and cor-
rected. As it stands however, the results seem to reflect the overall performance of
the methodology to the degree of which the author has understood it. Meaning that
what is reported here, is judged to be representative.

Some criticism may also be directed towards the testing method which was opted
for. In part, one may make the argument that the test type of TUS (Train Until Satis-
fied) is not an entirely rigorous concept, and may be a source of error. The reasoning
for defining this as a test was the observation that the models converged towards
values (minimum training loss, learned parameters) at different rates. When train-
ing machine learning models one can incorporate a callback function which tracks
the training loss, and halt the training if either the loss value does not improve after
a set of epochs or if it reaches a certain level of accuracy. However, the practicality
of such an approach did not seem appropriator in this setting. Also, with the goal of
gauging the general performance of the methodology, the evident inaccuracies the
TUS testing concept would introduce was deemed as negligible. Finally, an addi-
tional relevant critique is the fact that the purely data trained models have not had
any standard regularization technique applied to them. This means that overall the
regularization effects of the PiNN model is compared against a naive model rather
than a regularized model.

SIR neural solver difficulties

The neural solver component of the implementation is an aspect not addressed else-
where. As can be observed from test-round 1, and as have been noted over the
implementation process, a neural solver implementation of the SIR model seem par-
ticularity difficult to implement. An observation has been that in some cases a neural
solver implementation utilizing only the DE-loss component with boundary condi-
tions sometimes finds a solution which is seemingly close to the real solution, while
other times, the model sets the I component of the model as a constant 0. A sug-
gested reason for this effect is as follows. Recall the SIR model differential compo-
nents as described in 3.75 -3.9, one may notice that the I term is present in all of
the differential components. From the perspective of an optimizer algorithm, this
becomes an opportunity. Figuratively, it wants the quickest way to set the loss value
as close to zero as possible. When the neural solver implementation calculates the
loss value for the SIR model the following occurs: The neural net yields a predic-
tion of the compartment values S,I and R, as well as their derivatives dS, dI, dR with
respect to the time domain input (t). For each compartment, the loss value is cal-
culated as the difference between the yielded derivative and the right hand side of
equations 3.75 -3.9. As an example LossS = dS − βSI

N . Additionally, the initial condi-
tion (boundary condition) can be added to the loss function as the squared difference
between the neural net output at t0, and [S0, I0, R0]. In some cases this is sufficient
for the neural solver to be able to find a solution. In other cases, the optimizer opts

54 Chapter 4. Implementation and Case studies

for setting the I component to a constant of zero. Since the I component is a constant
zero it means that all of the right hand side expression of 3.75-3.9 also becomes zero.
In the perspective of the optimizer, this is a valid solution. The resulting output may
then look like what is depicted in figure 4.10

FIGURE 4.10: Neural solver SIR difficulties

Note this may results in large jumps in the output the next domain-point after the
initial condition. This value will be nonzero and added to the loss. However, then
the training steps has reached this point it is already to late. One way to attempt to
mitigate this effect is to add more points to the initial condition. In some cases this
works, as an example, the neural solver implementation in round 2, has the first two
domain points assigned as IC, and is able to come up with a solution. Having only
one point in this case results something more like what is depicted in figure 4.10.
Also, as illustrated in round 1, this solver also has additional IC points, but since the
initial condition is such a low relative value in I (1% of N), the addition of more IC
point has less impact and the solver still resorts to reducing I to zero.

4.6 Biomedical compartment model: test bolus injection

In a biomedical context, the circulatory system may be modeled as a more or less
complex compartment model. With this in mind, an observation was made in a
project relating to modelling this system and adjoining data: A pure data-driven
model performed worse than a first principles simulated model for prediction of a
certain characteristic. Notably as well, a metric which was to be estimated seemed
to lie somewhere in-between a pure data driven estimate and the simulated model.
The question then which naturally arose was if a physics informed neural network
would fare any better than the two methods?

4.6.1 Circulatory compartment models

Perhaps a more detailed description of the simulated model is needed. Adapting the
methods outlined in Hiorth, 2022, and Bae, Heiken, and Brink, 1998, consider figure
4.11 illustrating the circulatory system on the left and a compartment model scheme
on the right. In this illustration the compartments represent different components
connected by the circulatory system. A compartment model of this kind models the

4.6. Biomedical compartment model: test bolus injection 55

system as a a flow system, where the mass conservation law is upheld for in-flowing
and out-flowing fluid.In its simplest form with a presupposed constant volumetric
flow-rate Q over a set of compartments, the input and output flow velocity is only
dependent on compartment volume. In radiology, bolus injection is a technique to
investigate the diffusion of contrast agent within blood-flow. The procedure consist
of injecting contrast agent at an initial inlet in the system, and the enhancement HU
(concentration of contrast agent) is recorded at following terminals in the system.

Blood flow can be modelled as a compartment model, where each compartment
represents a component of the circulatory system with varying volume. Let ci denote
contrast concentration in compartment i. The concentration of contrast liquid for this
compartment can then be modelled as:

dci

dt
=

Qinci−1 − Qoutci

vi]
=

Q(ci−1 − ci)

vi
. (4.5)

Figure 4.11 (Kyongtae, 2010) illustrates a reference representation of the circulatory
system (left) as a large compartment model (right)

FIGURE 4.11: Circulatory system and compartment model

4.6.2 Model subsystem

FIGURE 4.12: Circulatory Subsystem

Consider the subsystem 4.12, of the larger circulatory system as given in 4.11. This
subsystem models the blood-flow path between the heart and the lungs, with a con-
trast agent injection at the inlet of the Vena cava before the right-half of the heart.

56 Chapter 4. Implementation and Case studies

The subsystem is modeled as 8 compartments including the lungs and the heart. A
procedure of contrast injection was performed on a set of patients. In this test, 20
mL of contrast agent (350 mg/L) was injected at an injection rate of 6 mL/s, and the
contrast enhancement (HU) at the Aorta was recorded with MR and CT scans. In
addition, the patients cardiac output CO was also recorded.

4.6.3 Test bolus simulation

With the intent of determining a patients CO from predetermining factors: weight,
height and gender, a simulation for this subsystem can be performed. In particular,
the test injection protocol can be simulated over a reference model so that one has a
reference prediction of enhancement in the last compartment. The reference model
is given as in Hiorth, 2022 and (Bae, Heiken, and Brink, 1998), and figure 4.11, which
models a 70 kg male, with approximately 5 liters of blood. In this reference model,
CO is set to 6500 l/min, and the volume of compartments are given as in figure 4.12.
For a particular patient, the reference model can be adjusted according to patients
blood-volume. Provided a patients height, weight, and sex, blood volume can be
estimated with the following formulas:

BVmale = 665.13H0.725W0.4245 − 1229, (4.6)

BVf emale = 698.95H0.725W0.4245 − 1954. (4.7)

Once a patients blood volume is found, the relative volume of compartments can be
adjusted from the reference model. The CO can be determined by a value matching
scheme. Suppose one have the recorded patient enhancement findings in the last
compartment, and in particular the peak enhancement. By simulating the test bolus
injection of a patient-adjusted model, and varying the CO in the simulation, the CO
should be determined by matching the time-of-peak in contrast agent enhancement
in the simulation with the patient record. In more detail, the simulation can be con-
structed as follows. Suppose 8 compartments with volumes V1, ..., V8. An injection
is given of 20 ml of contrast agent at 350 mg/L at a rate of 6ml/s, for 4 seconds, with
a saline chaser for 8 seconds. See figure 4.13, illustrating the injection signature over
a simulation time of 100 seconds (note that this is not to scale).

FIGURE 4.13: Injection of contrast agent and saline chaser 100 seconds
(not to scale)

4.6. Biomedical compartment model: test bolus injection 57

Set a constant CO as Q. Set cca(t) to denote the amount of contrast agent in the
initial injection (with signature as in figure 4.13), Qinj as the injection flow, ccr(t)
as the concentration of saline chaser (also with time signature as in figure 4.13), PS
as a diffusion constant between the two lung compartments, and lastly ci as the
concentration of contrast agent in compartment i. The flow of contrast agent through
the system can now be modelled, with the differential equation system:

dc1

dt
=

cca − (Qinj + ccr)c1

v1
, (4.8)

dc2

dt
=

(Qinj + ccr)c1 − QC3

v2
, (4.9)

dc3

dt
=

Q(c2 − c3)

v3
, (4.10)

dc4

dt
=

Q(c3 − c4 − PS(c4 − c5))

v4
, (4.11)

dc5

dt
=

PS · Q(c4 − c5)

v5
, (4.12)

dc6

dt
=

Q(c4 − c6)

v6
, (4.13)

dc7

dt
=

Q(c6 − c7)

v7
, (4.14)

dc7

dt
=

Q(c7 − c8)

v8
. (4.15)

A plot of the reference solution to this system is given in figure 4.14 (excluding the
injection compartment c1).

FIGURE 4.14: Reference enhancement c2, ..., c8 (c1 injection compart-
ment not shown)

58 Chapter 4. Implementation and Case studies

Now, varying Q will mainly change the time to peak TTP. By matching the TTP
of c8 with data, one will obtain an estimate of the the cardiac output CO. Figure
4.15 depicts how this fit typically looks with patient data (with hidden figures as to
protect patient information).

FIGURE 4.15: Two examples of typical TTP fit, (hidden numbers)

4.6.4 Gamma variate

A second methodology outlined in Hiorth, 2022 is the fitting over a gamma variate
function, on patient data. Madsen, 1992 Shows that a tracer dilution curve can be
modelled as a gamma variate function.

f (t; α, β) =
tαe−

t
β

βα+1Γ(α + 1)
. (4.16)

Where the Γ function:
Γ(α + 1) =

∫ ∞

0
xαe−xdx. (4.17)

The patient CO can be estimated as the area under the tracer dilution curve. Where a
dilution curve follows some scaled gamma variate A · f (t; α, β). Since the non-scaled
gamma variate is a probability distribution (integrates to 1), this area will be A

4.6.5 Problem formulation

The test bolus simulation scheme turn out to not have optimal predictive power.
As illustrated in figures 4.15, the fitted solution does not necessarily overlap neatly
with patient data. The simulation predicted CO is reported to be lacking in accuracy.
Sidestepping from the necessary critique of the method itself, one might consider
various ways to improve upon the method. Due to the physical modelling nature
of the methodology one can ask the question if there is some way to us PiNN to
improve upon the model? Specifically there is two measurable goals. The first goal
is to adopt the test bolus simulation model and PiNN in order to find an improved
estimate of patient cardiac output CO (Q). The second goal is to see if the same
model can be adapted to better predict the enhancement signature for a patient.

4.6. Biomedical compartment model: test bolus injection 59

How to apply PiNN?

To be able improve upon the test bolus compartment model using PiNN, facets of
the method in which PiNN can be applied and necessarily have a correctional influ-
ence. If the case is that the differential model is not appropriate or under specified
in regard to the underlying process, then applying a PiNN will not have a beneficial
effect. With this in mind consider again the bolus simulation compartment model.
By varying the Q values, the effect on the output is mostly translation of TTP, where
an increase in Q means a leftward translation of the curve. This means that in order
to have a better prediction of Q the TTP of the improved model must shift away
from the peak in patient data, which the original model is aligned to. Additionally,
as can be seen in figure 4.15, typically the patient data distribution tend to be higher
and narrower than the output of the original model. With these two problem to
be solved, a hypothesized mending strategy is to add parameters λ to the original
model, which can adjust the shape and position of the output. By adding these pa-
rameters strategically (well-posed), hopefully, the parameter fitting property of the
PiNN methodology can find parameter values which improve upon either or both
of the CO and output signature.

4.6.6 Strategies and implementation

Strategy 1

Two strategies are posited. The first strategy is to mirror SIR case and place a
PiNN over all of the compartments of model 4.8 -4.8. As discussed, parameters
λ will be added to the model in order to shape output. First consider the method
without added parameters. Consider a neural solver solution to the equation sys-
tem 4.8 - 4.15. A neural solver solution would work by means of a trial solution
NN(t) = Ψ(t) → R8 which initially is a random continuous mapping t → R8. The
loss value for this trial solution is computed from the degree of which Ψ(t) satisfies
the equation system. Now, an important aspect of the loss calculation must be con-
sidered. This model is sequential meaning that the way it would converge towards
the correct solution ideally, is to first fit the first compartment, then use this solution
to fit the next, and so on. Figure 3.4 illustrates an attempt of a pure neural solver over
essentially seven free compartments. The solution seems correct for compartments
1 − 3, and the following compartments, not so much.

60 Chapter 4. Implementation and Case studies

FIGURE 4.16: 8 compartments neural solver attempt

Recall that patient data should correspond with the output of compartment 8. Figure
4.17 illustrates the resulting fit by incorporating loss from patient data.

FIGURE 4.17: With data loss from compartment 8

As is obvious from observing the plots, the solution found by the method is also
not correct. However, some interesting result can be gleaned. Notably observe that
the enhancement peaks for the compartments are now seemingly closer to that of
the simulated model (figure 4.14). The problem here might not necessarily lie in the
methodology but rather the shape and scarcity of patient data. As an attempt to
mend this, an adjustment to the method is suggested. As described in section 4.6.4,
the enhancement curve can be modeled as a scaled gamma variate function. Utiliz-
ing this fact the idea is a follows: Fit a gamma-variate curve to the sparse patient
data, and then using this curve as the loss component for the last compartment. The
resulting curve from an experiment with this method is illustrated in figure 4.18.

4.6. Biomedical compartment model: test bolus injection 61

FIGURE 4.18: 8 Compartments With Gamma Variate c8 loss

Shape-wise, this looks more promising. However, note that the fit is still far from
perfect. Interestingly, in this plot compartment c2 and c3 does not converge towards
zero. This might be an indication of in-fighting in the model. That is, this scheme
can be thought of as squeezing out the solution from two sides: One from satisfying
the differential equation, and another from satisfying the gamma variate data. If the
two criteria does not coincide into a coherent solution, it is reasonable to assume
there is bound to be some artifacts in the fitted model.

Now with somewhat convergent model without variable parameters, the task be-
comes to see if there is a possibility of adding model variables in such a way that the
fit becomes more accurate and also yields a better estimate of cardiac output (CO).
Recall that the optimal fit in the solution to the numeric model, the optimal Q is
found by matching the TTP of the last compartment to the TTP found in patient
data. Additionally, the patients relative blood-volume, dictates the relative scaling
of compartment volumes to the reference model. Therefore there are two suggested
parameters sq, sv. These parameters can be employed as scaling factors for Q and
[v1, ..., v2], in the differential loss function of the PiNN implementation.

Strategy 2

Strategy 2 builds upon the approach used in the SIR case, an adoption of the method
used by Shaier, Maziar Raissi, and Seshaiyer, 2021, which presupposes underlying
data, either simulated or sampled. Recall that in strategy 1, the PiNN method was
implemented to solve for all 8 compartments, whilst sample data was only pro-
vided for compartment 8. For this strategy, simulation data is pre-generated from
the original simulation model. Further in this specific case the methodology can be
simplified. Mainly, suppose that one can base a solution upon the 8-compartment
simulation data. The strategy involves only utilizing the simulation data from com-
partment 7, and using a PiNN to predict compartment 8. In essence, one takes the
simulation data generated by the original model which was to some degree not op-
timal, and correcting using PiNN with added parameters. The main reason for this
strategy is to attempt to reduce the degrees of freedom which occurs in strategy 1.
In this case there are three suggested parameters, sv, sq, sc7 where sv, sq scales Q and
compartment volumes v as in strategy 2, and sc7 correspond to a scaling of the en-
hancement value of compartment 7 (c7).

62 Chapter 4. Implementation and Case studies

4.6.7 Testing Schemes

Testing schemes are set up for both strategies. Six records of patient data is provided.
For the discussed strategies, interest lies in investigating if adding parameters, and
interactions between these parameters can be beneficial to the prediction accuracy.
In principle, if the parameters converge towards reasonable values, it can then be
reasoned that the found parameter have a qualitative explanation. 2x4 models are
constructed and trained for strategy 1, and 2x6 for strategy 2. The models are con-
structed to incorporate scaling of Q, v, both, or none for strategy 1, and trained using
pure data as well as to a fitted gamma variate function.

Model
Sq and Sv
Sv
Sq
No Params
Sq, Sv Gamma
Sv Gamma
Sq Gamma
No Params Gamma

TABLE 4.8: Strategy 1 models

Table 4.8 denote the trial models. In order to see if there is a present interaction effect
between the parameters, models are constructed for each element of the power-set of
parameters. The testing scheme for strategy 2 is similar. However, due to one more
additional parameter, there are twice the amount of models that can be constructed.

Models
Sq, Sv, Sc γ/data
Sq, Sv γ/data
Sq, Sc γ/data
Sq γ/data
Sv, Sc γ/data
Sc γ/data
Sv γ/data
No Params γ/data

TABLE 4.9: Strategy 2 models

Due to the large number of models, and relatively similar data between patients,
strategy 2 will first only be run over data from one patient. The reasoning for this is
that most of the models are likely to be sporadic and not accurate. If however, some
of the models seem promising they can be carried over and tested on more than one
patient.

4.6.8 Results

Each of the two strategies were tested in order to see if any of the added param-
eters converged towards reasonable values. Reasonable in this case would mean
relatively small changes, as the parameters themselves scale values from a reference
model.

4.6. Biomedical compartment model: test bolus injection 63

Strategy 1

Model Train Loss Sq Estm Sv Estm Q Estm
Sq, Sv 0,00122 0.6966 1,9292 2938.9
Sv 0,00030 NA 1,9033 NA
Sq 0,00051 0.5897 NA 2457,8
No Params 0,00079 NA NA NA

Sq, Sv γ 0.00027 0.5024 1,9984 2119,4
Sv γ 0,00041 NA 1,9994 NA
Sq γ 7.54e-05 0,5661 NA 2388
No Params γ 0,00028 NA NA NA

TABLE 4.10: Strategy 1 performance

Results from strategy 1 reported for one patient in table 4.10. Learned parameters,
training loss value, as well as scaled Q for model including the Sq term is reported.
Overall, the results for table 4.10 indicates that strategy 1 does not work. Note that
although results for only one patient is reported in this table, the results are similar
for all patients. The results can be broken down for each term.

Sq It may seem as though the Sq values converged toward reasonable answers.
However, for this parameter 0.5 was set as the minimum value. This indicates
that the variable is likely converging towards 0. Although the true patient CO
cannot be directly stated, it is safe to say that the estimated Q fro this strategy
by far under-shoots the true Q value, in all models which include the Sq term.

Sv In strategy 1, all models including the Sv term tend towards 2, which is the set
max value for this term in the implementation. This means overall that the Sv
has not seemed to converge towards a reasonable answer, but rather increases
indefinitely.

FIGURE 4.19: Strategy 1, No-parameter-model, trained on patient
data

64 Chapter 4. Implementation and Case studies

Notice figures 4.19 - 4.20. These plots show a prediction output of the parameter
free model of strategy. Also noted on the plots, is the peak values from the numeric
solution. Also note the relative proximity of the predicted peak values to the true
values. In the pure data case this prediction does seems relatively inaccurate, how-
ever using the gamma variate end fit, the TTP points seems relatively close to that
of the simulated solution.

FIGURE 4.20: Strategy 1, No-parameter-model, trained on gamma
variate end data

Strategy 2

Table 4.11 summarizes the performance of the parameter models of strategy 2, trained
for one patient.

4.6. Biomedical compartment model: test bolus injection 65

Model Train Loss Sq estm Sv estm sc7 estm Q
Sq, Sc, Sv 0,00059 0,82933 2,09613 0,51898 3498,6
Sq, Sv 0,00119 0,65260 2,40454 NA 2753,1
Sq, Sc 0,00181 0,29984 NA 0,39214 1264,9
Sq 0,00125 0,22125 NA NA 933,4
Sv, Sc 0,00457 NA 5,91283 0,94582 NA
Sc 0,00203 NA NA 0,62808 NA
Sv 0,00222 NA 7,99795 NA NA
No Params 0,00774 NA NA NA NA

Sq, Sc, Sv γ 0,00144 0,20500 2,26449 1,00000 864,8
Sq, Sv γ 0,00134 0,22289 2,56976 NA 940,3
Sq, Sc γ 0,00131 0,15377 NA 0,78783 648,7
Sq γ 0,00137 0,08539 NA NA 360,2
Sv, Sc γ 0,00135 NA 6,25703 0,78874 NA
Sc γ 0,00339 NA NA 0,72594 NA
Sv γ 0,00135 NA 9,33360 NA NA
No Params γ 0,00748 NA NA NA NA

TABLE 4.11: Strategy 2, one patient results

Again consider the parameters individually.

Sv As can be observed in table 4.11, the models which have the Sq term tend to yield
low estimates of the parameter. This is most evident by observing the model
which only incorporates Sq, which settles on the lowest value in both the pure
data and gamma variate training instances.

Sq Likewise with Sq, this parameter also does not seem to converge towards any
value but decreases indefinitely.

Sc7 This parameter actually seems to converge to a value around 0.62 in the straight
data model, and 0.725, in the gamma variate training model.

Plots

Some plots are given to illustrate how the attempted variants in strategy 2 affect the
solution curve. Figure 4.21 depicts the shape of a neural network without any form
of differential equation loss fit, naively trained over patient data.

FIGURE 4.21: Pure data, only neural network model

66 Chapter 4. Implementation and Case studies

The output all models which are trained upon a gamma fit of patient data follow the
gamma curve exactly, see figure 4.22

FIGURE 4.22: Sq, Sc model, gamma fit (hidden numbers)

Figure 4.23, depicts, the output of the strategy 1 model trained on patient data. Ob-
serve that there are some regularization effects present. Compared to a naive neural
net fit, most of the models perform similarly. An argument can be made toward
evidence of some regularization effects seen in the most of the models.

4.6. Biomedical compartment model: test bolus injection 67

Sc-model No-parameter-model

Sq-model Sq, Sc-model

Sq, Sc, Svmodel Sq, Sv-model

Sv-model Sv, Sc-model

FIGURE 4.23: Strategy 2 plots, (hidden numbers)

As can be seen from the plots in figure 4.23, the plots are fairly varied. Recall figure
4.21, which corresponds to the naive data fit. Since the numbers are hidden from
the plot in order to protect patient data, interpreting the plots may be somewhat
challenging. However, there are still noticeable effects. Note that the first data-
point corresponds to a zero value. Present in most of the fitted model, and the naive
data fit is a downward spike below the first data-point corresponding to negative

68 Chapter 4. Implementation and Case studies

value output. Recall that since the compartment model in this case is supposed to
model enhancement, a measure of concentration, negative values are meaningless.
Shape-wise the no-parameter model and interestingly the Sq, Sv model seems the
most promising. Note that this seems as fulfilling the goal of producing a model
which better fits the data. However, even with the over-arching PiNN functionalities
of the strategies, the models seems prone to over-fitting. In addition, this does not
yield any reasonable prediction of patient CO, which was the other overall goal.

4.6.9 Case four summary and discussion

Two strategies have been proposed as potential realization of the PiNN methodol-
ogy applied to a compartment model simulating the contrast agent enhancement
signature of a test bolus injection. The original methodology was adapted in such a
way that the PiNN methodology could build upon the original simulated model and
incorporate real-world patient data. The results were varied but overall, a clear way
to adapt the PiNN methodology, the original simulation model, and the patient data
in an ultimately cohesive model was not achieved. However there were some inter-
esting results. In particular, the PiNN applied to the compartment model of eight
compartments, came close to matching the time of peak (TTP) values of the simu-
lated model, giving some retribution to the methodology. An attempt to augment
the methodology, was made i two strategies which involved attaching parameters
to the original compartment model differential equation. Based upon the findings
of Shaier, Maziar Raissi, and Seshaiyer, 2021 and the results of case three, demon-
strating the parameter discovery property of the PiNN methodology, the goal was
to see if these parameters as means to scale the underlying parameters of the origi-
nal model would converge towards realistic predictions of the parameters they were
meant to scale. Admittedly, it may have been naive to construct an artificial method
by attaching arbitrary parameters to a model. Although it should be noted that it
was not unforeseen that the proposed methodology would not work, what lacks in
substantial predictive results feeds into a more general pitfall to consider when con-
structing a model of this kind. What seems to be a contributing factor to why this
methodology will not work can be best realized by considering the main goal of the
optimization. That is, reduce the loss function as close to zero as possible. The way
these parameters are placed in the differential loss function makes this entire loss
component proportional to the parameter: Loss = λ · f (x, ..). Then the simplest way
to reduce the loss can be to just set λ = 0.

Methodology vs implementation

Recall that the problem statement of this case was to see if one could improve an
established simulation model by applying PiNN. In case four, it is possible to use
PiNN as a neural solver, only, that the methodology seems to find useful results until
about the three first compartments, and the rest being sporadic. Recall also how the
original simulated model worked in relations to data: Set up reference compartment
model in regards to blood volume, increment Q and solve the differential compart-
ment model with a numeric method. The Q value which matches the TTP of the
solution with the one found in data is the estimated CO. Then ideally, by applying
the PiNN methodology and utilizing the parameter discovery property, one would
obtain an estimate of patient CO. This may work when having a clearly defined
situation, with available data generated by a process with known physics, which is
true for the SIR model of case three. In case four, there was no clearly discernible

4.6. Biomedical compartment model: test bolus injection 69

way to augment the original model in such a way that PiNN was appropriate as a
method. An attempt to rectify this was provided by naively attaching parameters
to the underlying differential model in hopes that the parameter discovery quality
of the method as demonstrated in Shaier, Maziar Raissi, and Seshaiyer, 2021 Fur-
ther, in order for this proposed methodology to work, there should be a reasonable
way to augment this model in such a way that applying PiNN would yield a model
better suited to the underlying problem. At first glance it may have seem that this
was the case, only this introduces the problem that by adding a parameter, it alters
the underlying differential model. This approach fails to incorporate and important
distinction described by Karniadakis et al., 2021, as no model can be constructed
without assumptions, its important for those assumption to append to the situation
at hand. By introducing additional parameters to the model it may impose a bias,
which then may cause incoherent results. Hence, care must be taken when introduc-
ing variables as to not introduce biases, or allow for the model loss function to be
reducible to a zero-product.

71

Chapter 5

Conclusion

5.1 Case-problems

In this thesis four case problems has been presented with specific goals involving
the use of Physics Informed Neural Networks. These cases were targeted towards
the two larger goals of first gaining and understanding of the method, and ulti-
mately see if the method can be applied in a real-world case. Case one, is a simple
demonstration on how a neural network can be utilized to find solutions to differ-
ential equations. As such, the neural solver is demonstrated to be able to find an
accurate solution within the interval on which it is trained. Case two was also a
simple demonstration of the methodology working as a regularization mechanism.
Case three was the application of PiNN to the SIR compartment model. Utilizing
the methodology developed by M. Raissi, P. Perdikaris, and G. Karniadakis, 2019
and Shaier, Maziar Raissi, and Seshaiyer, 2021, the case task was to investigate the
properties and benefits of the PiNN methodology. In more detail, in the specific case
of a SIR model, the methodology’s ability to estimate model parameters, and regu-
larize neural network models was explored. With this goal in mind, seven rounds
of tests were performed over simulation data sets of varying parameters where the
last two tests had added noise. The results from these tests were varying. Over-
all, some of the same findings as Shaier, Maziar Raissi, and Seshaiyer, 2021, were
found. However, the specific realization of the methodology fails to gain confident
results. In part, the parameter discovery property was demonstrated, although the
overall accuracy can be deemed unsatisfactory. Case four was realized as an attempt
to apply the PiNN methodology in a real world compartment model case. The main
goals of this case was to see if an established physical model could be improved by
applying PiNN. Although the tests were inconclusive some interesting results were
discovered. In part, the PiNN model was found to be able to nearly approximate the
time to peak found in the simulated model

5.1.1 When is PiNN most sensible?

It may be fair to note the fact that the chosen case problems perhaps fall short in
show-casing the advantages of PiNN. All of the case problems are not only to an
extent solvable with traditional numeric methods, but also depend on solutions
achieved by these means in order to demonstrate the PiNN methodology. A benefit
of PiNN is the ability to adapt the flexibility achievable with a neural network in or-
der to solve hard (non-linear) differential equations. Another benefit it the ability of
leveraging of prior information as a differential equation in order to regularize what
would otherwise have been an under-performing machine learning model. Utiliz-
ing the PiNN methodology of M. Raissi, P. Perdikaris, and G. Karniadakis, 2019,

72 Chapter 5. Conclusion

where the model incorporates both underlying data and a differential model, the
validity of the applied differential equation is assumed. Hence consideration of the
appropriateness of the utilized differential equation, to the sampled data becomes
important. As an example, in case four, it can be argued that the differential equa-
tion which was applied was invalidly specified. In this case, a PiNN model training
instance compels the model to satisfy a set of data and a differential equation which
to some degree fights against each other. The failure of this case-problem serves an
important distinction. The PiNN methodology makes most sense when there is an
appropriate differential equations directly relevant to the data.

5.2 Conclusion

Physics Informed Neural Networks has proven to be an exiting methodology linking
together and mending problems from the fields of machine learning and numerical
computing. The methodology has found various adaptions, improving upon ma-
chine learning modes by incorporating prior information in the form of differential
equations as means to regularize machine learning models. In the same vein, the
methodology is also able to leverage the high flexibility and adaptability befitted a
ML model for solving difficult non-linear differential equations. With the potential
of this methodology, the main goal of this thesis was to gain an understanding of the
methodology trough case problems, and ultimately attempting to adapt the method-
ology in real world biomedical setting. With this goal in mind, several aspects and
difficulties surrounding the methodology was unearthed. Applications of PiNN are
demonstrated and the realizations demonstrate how to apply the methodology in
order to utilize its regularization benefits and parameter discovery properties.

The literature suggests there are selected cases where clear benefits of PiNN over
traditional methods become apparent in regards to computational resources and ac-
curacy (Cuomo et al., 2022), (Karniadakis et al., 2021). Arguably, the case-problems
of this thesis does not demonstrate clear benefits of the PiNN methodology over tra-
ditional methods. However, what the case-problems does demonstrate, are overall
indications of the methodology working provided a well-conditioned problem. As
is demonstrated in the second and third case problems, the methodology does con-
dition a model to fit closer to a function satisfying a differential equation than an
overall naively data-trained model. As in case three where the model fits additional
parameters, this effect and benefit is seen when the model is able to learn the correct
parameters. That being said, as case three further demonstrates and supported in
the literature (Shaier, Maziar Raissi, and Seshaiyer, 2021), provided enough sampled
data points the PiNN methodology is able to learn the correct parameters. Testing
indicates that this property is sensitive to the underlying parameters and noise. Fur-
ther, the case problems reveals details in regards to implementation and practices
as well as some of the criteria necessary for the PiNN model to work optimally. In
addition, PiNN as a neural solver, that is as a neural network model over a loss func-
tion valuing only degree of fit for a differential equation, was demonstrated to find
solutions to differential equations. The shortcomings of this as means of solving a
compartment model was also discussed, where in particular the initial conditions
were identified as important factors in determining the models ability to find a so-
lution. Overall, the cases does demonstrate that the methodology works, and that it
can be leveraged as to learn parameters, and find solutions to differential equations.
In addition it has shed light upon necessary considerations to make when applying

5.2. Conclusion 73

the methodology. As the fourth case-problem demonstrates, the biases of the un-
derlying differential equation employed must be considered. All case problems also
highlight important details in regards to implementation, as all of these cases were
realized from a bottom up approach in python utilizing PyTorch.

Hopefully, the overall takeaway from this thesis is an understanding on how to ap-
ply PiNN, in the specific sense by means of calculating differential equation loss in
order to train a neural network, and in the more general sense by considering how a
model should be set up so that the methodology works in a sensible manner. Impor-
tant properties and implementation details have been unearthed, exposing partly
the potential benefit of the method and perhaps illuminating a path for future adap-
tions.

75

Bibliography

Agarwal, Ravi P. and Donal O’Regan (2009). Ordinary and Partial Differential Equa-
tions. With Special Functions, Fourier Series, and Boundary Value Problems. Springer
New York, NY. ISBN: 978-0-387-79146-3. DOI: https://doi.org/10.1007/978-
0-387-79146-3.

Bae, KT, JP Heiken, and JA Brink (1998). “Aortic and hepatic contrast medium en-
hancement at CT. Part I. Prediction with a computer model”. In: DOI: 10.1148/
radiology.207.3.9609886.

Baeldung (2020). Normalizing Inputs for an Artificial Neural Network. URL: https://
www.baeldung.com/cs/normalizing- inputs- artificial- neural- network
(visited on 10/05/2022).

BlackwoodJulie and Lauren Childs (2018). “An introduction to compartmental mod-
eling for the budding infectious disease modeler”. In: Letters in Biomathematics
5.1, pp. 195–221. DOI: 10.30707/LiB5.1Blackwood. URL: https://lettersinbiomath.
journals.publicknowledgeproject.org/index.php/lib/article/view/81.

Cuomo, Salvatore et al. (2022). “Scientific Machine Learning through Physics-Informed
Neural Networks: Where we are and What’s next”. In: CoRR abs/2201.05624.
arXiv: 2201.05624. URL: https://arxiv.org/abs/2201.05624.

Devlin, Jacob et al. (2018). BERT: Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding. DOI: 10.48550/ARXIV.1810.04805. URL: https://arxiv.
org/abs/1810.04805.

Doshi, Sanket (2019). Various Optimization Algorithms For Training Neural Network.
URL: https://towardsdatascience.com/optimizers-for-training-neural-
network-59450d71caf6 (visited on 01/13/2019).

Fowler, David and Eleanor Robson (1998). “Square Root Approximations in Old
Babylonian Mathematics: YBC 7289 in Context”. In: Historia Mathematica 25.4,
pp. 366–378. ISSN: 0315-0860. DOI: https://doi.org/10.1006/hmat.1998.2209.
URL: https://www.sciencedirect.com/science/article/pii/S0315086098922091.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. http:
//www.deeplearningbook.org. MIT Press.

Hiorth, Aksel (2022). A Model for Predicting Test Bolus Geometry and Time to Peak.
Hornik, Kurt, Maxwell Stinchcombe, and Halbert White (1989). “Multilayer feedfor-

ward networks are universal approximators”. In: Neural Networks 2.5, pp. 359–
366. ISSN: 0893-6080. DOI: https://doi.org/10.1016/0893-6080(89)90020-8.
URL: https://www.sciencedirect.com/science/article/pii/0893608089900208.

Iserles, Arieh (2008a). A First Course in the Numerical Analysis of Differential Equations.
2nd. USA: Cambridge University Press. ISBN: 0521734908.

— (2008b). A First Course in the Numerical Analysis of Differential Equations. 2nd ed.
Cambridge Texts in Applied Mathematics. Cambridge University Press. DOI: 10.
1017/CBO9780511995569.

Karniadakis et al. (2021). “Physics-informed machine learning. Nat Rev Phys 3, 422–440
(2021).” In: Nature Reviews Physics. DOI: https://doi.org/10.1038/s42254-
021-00314-5.

https://doi.org/https://doi.org/10.1007/978-0-387-79146-3
https://doi.org/https://doi.org/10.1007/978-0-387-79146-3
https://doi.org/10.1148/radiology.207.3.9609886
https://doi.org/10.1148/radiology.207.3.9609886
https://www.baeldung.com/cs/normalizing-inputs-artificial-neural-network
https://www.baeldung.com/cs/normalizing-inputs-artificial-neural-network
https://doi.org/10.30707/LiB5.1Blackwood
https://lettersinbiomath.journals.publicknowledgeproject.org/index.php/lib/article/view/81
https://lettersinbiomath.journals.publicknowledgeproject.org/index.php/lib/article/view/81
https://arxiv.org/abs/2201.05624
https://arxiv.org/abs/2201.05624
https://doi.org/10.48550/ARXIV.1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://towardsdatascience.com/optimizers-for-training-neural-network-59450d71caf6
https://towardsdatascience.com/optimizers-for-training-neural-network-59450d71caf6
https://doi.org/https://doi.org/10.1006/hmat.1998.2209
https://www.sciencedirect.com/science/article/pii/S0315086098922091
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://doi.org/10.1017/CBO9780511995569
https://doi.org/10.1017/CBO9780511995569
https://doi.org/https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/https://doi.org/10.1038/s42254-021-00314-5

76 Bibliography

Knolle, Helmut (1976). “Lotka-volterra equations with time delay and periodic forc-
ing term”. In: Mathematical Biosciences 31.3, pp. 351–375. ISSN: 0025-5564. DOI:
https://doi.org/10.1016/0025- 5564(76)90090- 0. URL: https://www.
sciencedirect.com/science/article/pii/0025556476900900.

Krishnapriyan, Aditi S. et al. (2021). “Characterizing possible failure modes in physics-
informed neural networks”. In: DOI: 10.48550/ARXIV.2109.01050. URL: https:
//arxiv.org/abs/2109.01050.

Kröger, M and R Schlickeiser (2020). “Analytical solution of the SIR-model for the
temporal evolution of epidemics. Part A: time-independent reproduction factor”.
In: Journal of Physics A: Mathematical and Theoretical 53.50, p. 505601. DOI: 10.
1088/1751-8121/abc65d. URL: https://doi.org/10.1088/1751-8121/abc65d.

Kyongtae, Bae T. (2010). “Intravenous contrast medium administration and scan
timing at CT: considerations and approaches.” In: DOI: doi:10.1148/radiol.
10090908.

Lagaris, I.E., A. Likas, and D.I. Fotiadis (1998). “Artificial neural networks for solv-
ing ordinary and partial differential equations”. In: IEEE Transactions on Neural
Networks 9.5, pp. 987–1000. ISSN: 1045-9227. DOI: 10.1109/72.712178. URL: http:
//dx.doi.org/10.1109/72.712178.

LeVeque, Randall J. (2007). Finite Difference Methods for Ordinary and Partial Differen-
tial Equations. Society for Industrial and Applied Mathematics (SIAM), Philadel-
phia. ISBN: 978-0-898716-29-0.

Madsen, M T (1992). “A simplified formulation of the gamma variate function”. In:
Physics in Medicine and Biology 37.7, pp. 1597–1600. DOI: 10.1088/0031-9155/37/
7/010. URL: https://doi.org/10.1088/0031-9155/37/7/010.

Pang, Guofei, Lu Lu, and George Em Karniadakis (2019). “fPINNs: Fractional Physics-
Informed Neural Networks”. In: SIAM Journal on Scientific Computing 41.4, A2603–
A2626. DOI: 10 . 1137 / 18m1229845. URL: https : / / doi . org / 10 . 1137 % 5C %
2F18m1229845.

Petzold, Linda (Mar. 1983). “Automatic Selection of Methods for Solving Stiff and
Nonstiff Systems of Ordinary Differential Equations”. In: SIAM Journal on Scien-
tific and Statistical Computing 4. DOI: 10.1137/0904010.

Raissi, M., P. Perdikaris, and G.E. Karniadakis (2019). “Physics-informed neural net-
works: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations”. In: Journal of Computational
Physics 378, pp. 686–707. ISSN: 0021-9991. DOI: https://doi.org/10.1016/j.
jcp.2018.10.045. URL: https://www.sciencedirect.com/science/article/
pii/S0021999118307125.

Raissi, Maziar, Paris Perdikaris, and George Em Karniadakis (2017). Physics Informed
Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equa-
tions. arXiv: 1711.10561 [cs.AI].

Rosenblatt, Frank (1958). “The perceptron: a probabilistic model for information
storage and organization in the brain.” In: Psychological review 65 6, pp. 386–408.

Schiassi, Enrico et al. (2021). “Physics-Informed Neural Networks and Functional In-
terpolation for Data-Driven Parameters Discovery of Epidemiological Compart-
mental Models”. In: Mathematics 9.17. ISSN: 2227-7390. DOI: 10.3390/math9172069.
URL: https://www.mdpi.com/2227-7390/9/17/2069.

Shaier, Sagi, Maziar Raissi, and Padmanabhan Seshaiyer (2021). Data-driven approaches
for predicting spread of infectious diseases through DINNs: Disease Informed Neural
Networks. DOI: 10.48550/ARXIV.2110.05445. URL: https://arxiv.org/abs/
2110.05445.

https://doi.org/https://doi.org/10.1016/0025-5564(76)90090-0
https://www.sciencedirect.com/science/article/pii/0025556476900900
https://www.sciencedirect.com/science/article/pii/0025556476900900
https://doi.org/10.48550/ARXIV.2109.01050
https://arxiv.org/abs/2109.01050
https://arxiv.org/abs/2109.01050
https://doi.org/10.1088/1751-8121/abc65d
https://doi.org/10.1088/1751-8121/abc65d
https://doi.org/10.1088/1751-8121/abc65d
https://doi.org/doi:10.1148/radiol.10090908
https://doi.org/doi:10.1148/radiol.10090908
https://doi.org/10.1109/72.712178
http://dx.doi.org/10.1109/72.712178
http://dx.doi.org/10.1109/72.712178
https://doi.org/10.1088/0031-9155/37/7/010
https://doi.org/10.1088/0031-9155/37/7/010
https://doi.org/10.1088/0031-9155/37/7/010
https://doi.org/10.1137/18m1229845
https://doi.org/10.1137%5C%2F18m1229845
https://doi.org/10.1137%5C%2F18m1229845
https://doi.org/10.1137/0904010
https://doi.org/https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/https://doi.org/10.1016/j.jcp.2018.10.045
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://arxiv.org/abs/1711.10561
https://doi.org/10.3390/math9172069
https://www.mdpi.com/2227-7390/9/17/2069
https://doi.org/10.48550/ARXIV.2110.05445
https://arxiv.org/abs/2110.05445
https://arxiv.org/abs/2110.05445

Bibliography 77

Simard, Patrice, Dave Steinkraus, and John Platt (Sept. 2003). “Best Practices for Con-
volutional Neural Networks”. In.

Stiasny, Jochen, Samuel Chevalier, and Spyros Chatzivasileiadis (2021). Learning with-
out Data: Physics-Informed Neural Networks for Fast Time-Domain Simulation. DOI:
10.48550/ARXIV.2106.15987. URL: https://arxiv.org/abs/2106.15987.

Theodoridis, Sergios (2020). Machine Learning A Bayesian and Optimization Perspective
(Second Edition). Ed. by Sergios Theodoridis. Second Edition. Academic Press.
ISBN: 978-0-12-818803-3. DOI: https://doi.org/10.1016/C2019-0-03772-7.

Thompson, Maynard and H. I. Freedman (1982). “Deterministic Mathematical Mod-
els in Population Ecology.” In: American Mathematical Monthly 89, p. 798.

https://doi.org/10.48550/ARXIV.2106.15987
https://arxiv.org/abs/2106.15987
https://doi.org/https://doi.org/10.1016/C2019-0-03772-7

79

Appendix A

SIR Test rounds plots and tables
3-5, 7

Round 3. N = 1, I0 = 0.50, S0 =0.50, beta = 0.50, gamma = 0.05
Model Type 10 Ep Train MSE 10 Ep Test MSE 10 Ep Beta 10 Ep Gamma

100DA100DE 4,54E-05 2,44E-06 0,0925 0,0461
010DA100DE 1,95E-05 5,82E-06 0,2762 0,0478
010DA000DE 2,76E-06 4,79E-05 NA NA
000DA100DE 6,19E-05 0,58844 NA NA

TUS Train MSE TUS Test MSE TUS Beta TUS Gamma
100DA100DE 2,66E-07 2,26E-07 0,1125 0,0500
010DA100DE 4,95E-08 8,74E-08 0,2506 0,0500
010DA000DE 1,00E-07 8.77e-08 NA NA
000DA100DE 9,43E-07 0,06973 NA NA

TABLE A.1: Round 3 Results

Round 4. N = 1, I0 = 0.01, S0 =0.99, beta = 0.70, gamma = 0.16
Model Type 10 Ep Train MSE 10 Ep Test MSE 10 Ep Beta 10 Ep Gamma
100DA100DE 1,52E-03 4,14E-03 -0,0196 0,0152
010DA100DE 2,22E-02 2,43E-01 0,1148 0,7243
010DA000DE 4,08E-05 1,7506 NA NA
000DA100DE 7,31E-06 1,7195 NA NA

TUS Train MSE TUS Test MSE TUS Beta TUS Gamma
100DA100DE 1,84E-05 3,08E-04 0,5884 0,1512
010DA100DE 2,45E-05 5,15E-03 0,0522 0,1536
010DA000DE 1,46E-07 0,0051 NA NA
000DA100DE 2,63E-06 1,97311 NA NA

TABLE A.2: Round 4 Results Table

80 Appendix A. SIR Test rounds plots and tables 3-5, 7

Round 5. N = 1, I0 = 0.20, S0 =0.80, beta = 0.70, gamma = 0.16
Model Type 10 Ep Train MSE 10 Ep Test MSE 10 Ep Beta 10 Ep Gamma

100DA100DE 1,01E-05 2,81E-05 0,2791 0,1555
010DA100DE 7,62E+02 2,0768 0,8728 0,7341
010DA000DE 1,22E-05 15,5285 NA NA
000DA100DE 1,87E-05 0,0099 NA NA

TUS Train MSE TUS Test MSE TUS Beta TUS Gamma
100DA100DE 4,51E-08 2,98E-07 0,2982 0,1598
010DA100DE 1,14E-03 1,67E+01 0,0207 0,1965
010DA000DE 5,02E-06 16,7363 NA NA
000DA100DE 1,35E-07 0,00865 NA NA

TABLE A.3: Round 5 Results Table

Round 7, N = 1, I0 = 0.20, S0 = 0.80, β = 0.20, γ = 0.05, Noise = 1.4σ

Model Type 10 Ep Train MSE 10 Ep Test MSE 10 Ep Beta 10 Ep Gamma
100DA100DE 0,02157 0,01882 0,3797 0,1178
010DA100DE 0,11412 0,1462 0,0278 0,0404
010DE1000DE 0,10813 0,18638 0,0256 0,0402

TUS Train MSE TUS Test MSE TUS Beta TUS Gamma
100DA100DE 0,01864 0,01892 0,0879 0,0317
010DA100DE 0,02763 0,56877 0,0147 0,0277
010DE1000DE 0,03191 0,60218 0,0257 0,0395

TABLE A.4: Round 7 results

Appendix A. SIR Test rounds plots and tables 3-5, 7 81

100DA100DE 10 Epochs 100DA100DE TUS

010DA100DE 10 Epochs 010DA100DE TUS

010DA000DE 10 Epochs 010DA000DE TUS

000DA100DE 10 Epochs 000DA100DE TUS

FIGURE A.1: Round 3 Plots

82 Appendix A. SIR Test rounds plots and tables 3-5, 7

100DA100DE 10 Epochs 100DA100DE TUS

010DA100DE 10 Epochs 010DA100DE TUS

010DA000DE 10 Epochs 010DA000DE TUS

000DA100DE 10 Epochs 000DA100DE TUS

FIGURE A.2: Round 4 Plots

Appendix A. SIR Test rounds plots and tables 3-5, 7 83

100DA100DE 10 Epochs 100DA100DE TUS

010DA100DE 10 Epochs 010DA100DE TUS

010DA000DE 10 Epochs 010DA000DE TUS

000DA100DE 10 Epochs 000DA100DE TUS

FIGURE A.3: Round 5 Plots

84 Appendix A. SIR Test rounds plots and tables 3-5, 7

100DA100DE 10 Epochs 100DA100DE TUS

010DA100DE 10 Epochs 010DA100DE TUS

010DA1000DE 10 Epochs 010DA1000DE TUS

FIGURE A.4: Round 7 Plots

85

Appendix B

Python Code

Note, code is also available from:

https://github.com/lukerlars/PiNN_masterthesis

https://github.com/lukerlars/PiNN_masterthesis

In []: import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt

import torch
from torch.autograd import grad
import torch.nn as nn
from numpy import genfromtxt
import torch.optim as optim
import matplotlib.pyplot as plt
import torch.nn.functional as F

In []: class Neural_net(torch.nn.Module):
 def __init__(self, n_in = 1, n_out =1):
 super(Neural_net, self).__init__()

 self.tanh = torch.nn.Tanh()

 self.layer1 = torch.nn.Linear(n_in,20)
 self.layer2 = torch.nn.Linear(20,20)
 self.layer3 = torch.nn.Linear(20,20)
 self.layer_out = torch.nn.Linear(20,n_out)

 def forward(self, x):
 x = self.layer1(x)
 x = self.tanh(x)
 x = self.layer2(x)
 x = self.tanh(x)
 x = self.layer3(x)
 x = self.tanh(x)
 x = self.layer_out(x)

 return x

In []: class predprey_pinn:

 def __init__(self, epochs, data, c0):
 self.epochs = epochs
 self.model = Neural_net(n_out=2)
 self.domain = torch.linspace(0,int(max(data[0])),100, requires_grad=True).reshape(-1,1)

 self.lbfgs_optimizer = torch.optim.LBFGS(params = self.model.parameters(), lr = 0.001,max_iter = 500)
 self.adam_optimizer = torch.optim.Adam(params = self.model.parameters(), lr = 0.0001)

 self.alpha = 0.25
 self.beta = 0.02
 self.delta = 0.25
 self.gamma = 2

 self.t_dat = torch.tensor(data[0], dtype=torch.float).reshape(-1,1)
 self.x_dat = torch.tensor(data[1],dtype=torch.float)
 self.y_dat = torch.tensor(data[2], dtype=torch.float)

 self.maxes = {}
 self.mins = {}

 for id,d in enumerate((self.x_dat, self.y_dat)):
 self.maxes[id] = max(d)
 self.mins[id] = min(d)

 self.x_norm = self.normalize(0, self.x_dat)
 self.y_norm = self.normalize(1, self.y_dat)

 x0 = self.normalize(0,c0[0])
 y0 = self.normalize(1,c0[1])
 self.c0 = torch.tensor([x0,y0], dtype = torch.float)

 def normalize(self, id, unnormed):
 return (unnormed - self.mins[id])/(self.maxes[id]- self.mins[id])

 def un_normalize(self, id, normed):
 return normed*(self.maxes[id] -self.mins[id])+ self.mins[id]

 def wrap_grad(self, f,x):
 return torch.autograd.grad(f,x,
 grad_outputs=torch.ones_like(x),
 retain_graph=True,
 create_graph=True)[0]

 def de_loss(self):
 pred = self.model(self.domain)
 x,y = (d.reshape(-1,1) for d in torch.unbind(pred, dim =1))

 dx = self.wrap_grad(x, self.domain)
 dy = self.wrap_grad(y, self.domain)

 x = self.un_normalize(0,x)
 y = self.un_normalize(1,y)

 ls0 = torch.mean((dx - (self.alpha*x -self.beta*x*y)/(self.maxes[0]-self.mins[0]))**2)
 ls1 = torch.mean((dy -(self.delta*x*y - y*self.gamma)/(self.maxes[1]-self.mins[1]))**2)
 ic = torch.mean((self.c0-pred[0])**2)

 return ls0 + ls1 + ic

 def data_loss(self):
 x,y = torch.unbind(self.model(self.t_dat), dim = 1)
 z1 = torch.mean((x - self.x_norm)**2)
 z2 = torch.mean((y- self.y_norm)**2)
 return z1 + z2

 def combined_loss(self):
 return self.de_loss() + self.data_loss()

 def plot_preds(self):
 x,y = torch.unbind(self.model(self.domain), dim = 1)
 x = self.un_normalize(0,x)
 y = self.un_normalize(1,y)
 plt.plot(self.domain.detach(), x.detach(), label = 'x pred')
 plt.plot(self.domain.detach(), y.detach(), label = 'y pred')

 plt.scatter(self.t_dat.detach(), self.x_dat, label = 'x data')
 plt.scatter(self.t_dat.detach(),self.y_dat, label = 'y data')
 plt.legend()

 def lbfgs_train(self):
 self.model.train()
 for epoch in range(self.epochs):
 def closure():
 self.lbfgs_optimizer.zero_grad()
 loss = self.combined_loss()
 loss.backward()
 return loss
 self.lbfgs_optimizer.step(closure=closure)
 print(f'Epoch {epoch}, loss: {self.combined_loss()}, beta_param: {self.beta}, gamma_param: {self.gamma}')
 self.plot_preds()

86 Appendix B. Python Code

(3, 100)

Running adam train once:

Epoch 0, loss: 0.23603315651416779, beta_param: 0.02, gamma_param: 2
Epoch 1, loss: 0.2267903834581375, beta_param: 0.02, gamma_param: 2
Epoch 2, loss: 0.2195354700088501, beta_param: 0.02, gamma_param: 2
Epoch 3, loss: 0.2114081084728241, beta_param: 0.02, gamma_param: 2
Epoch 4, loss: 0.20379692316055298, beta_param: 0.02, gamma_param: 2
Epoch 5, loss: 0.19838380813598633, beta_param: 0.02, gamma_param: 2
Epoch 6, loss: 0.19548077881336212, beta_param: 0.02, gamma_param: 2
Epoch 7, loss: 0.19437432289123535, beta_param: 0.02, gamma_param: 2
Epoch 8, loss: 0.1907251477241516, beta_param: 0.02, gamma_param: 2
Epoch 9, loss: 0.1887803077697754, beta_param: 0.02, gamma_param: 2

After several runs

Epoch 0, loss: 0.0005453241756185889, beta_param: 0.02, gamma_param: 2
Epoch 1, loss: 0.0001740516017889604, beta_param: 0.02, gamma_param: 2
Epoch 2, loss: 7.50718972994946e-05, beta_param: 0.02, gamma_param: 2
Epoch 3, loss: 5.512431380338967e-05, beta_param: 0.02, gamma_param: 2
Epoch 4, loss: 4.5014898205408826e-05, beta_param: 0.02, gamma_param: 2
Epoch 5, loss: 3.80473502445966e-05, beta_param: 0.02, gamma_param: 2
Epoch 6, loss: 3.25711807818152e-05, beta_param: 0.02, gamma_param: 2
Epoch 7, loss: 2.981994293804746e-05, beta_param: 0.02, gamma_param: 2
Epoch 8, loss: 2.495665285096038e-05, beta_param: 0.02, gamma_param: 2
Epoch 9, loss: 2.4334365662070923e-05, beta_param: 0.02, gamma_param: 2

Note: This converges much slower than just running on the data

Test with fewer datapoints:

 def adam_train(self):
 steps = 1000
 self.model.train()
 for epoch in range(self.epochs):
 for step in range(steps):
 def closure():
 self.adam_optimizer.zero_grad()
 loss = self.combined_loss()
 loss.backward()
 return loss
 self.adam_optimizer.step(closure=closure)
 print(f'Epoch {epoch}, loss: {self.combined_loss()}, beta_param: {self.beta}, gamma_param: {self.gamma}')
 self.plot_preds()

In []: alpha = 0.25
beta = 0.02
delta = 0.25
gamma = 2

def pp_ode(state, t):
 x,y = state
 dx = alpha*x -beta*x*y
 dy = delta*x*y - y*gamma
 return [dx, dy]

t = np.linspace(0,40,100)
sol = odeint(pp_ode,y0 =[10,5], t=t)

plt.plot(t, sol[:,0])
plt.plot(t, sol[:,1])

inp_dat = np.array([t, sol[:,0], sol[:,1]])

In []: test_inst = predprey_pinn(epochs=10, data= inp_dat, c0 =[10,5])

In []: inp_dat.shape

Out[]:

In []: test_inst.adam_train()

In []: test_inst.adam_train()

In []: ids = np.random.choice(range(inp_dat.shape[1]), size = 10)
sample_data = inp_dat[:,ids]

In []: test_inst2 = predprey_pinn(epochs=10, data = sample_data, c0 =[10,5])

In []: test_inst2.adam_train()

Appendix B. Python Code 87

Epoch 0, loss: 1.4953633353798068e-06, beta_param: 0.02, gamma_param: 2
Epoch 1, loss: 1.4808708783675684e-06, beta_param: 0.02, gamma_param: 2
Epoch 2, loss: 8.252820407506078e-06, beta_param: 0.02, gamma_param: 2
Epoch 3, loss: 1.4049605852051172e-06, beta_param: 0.02, gamma_param: 2
Epoch 4, loss: 1.4179156551108463e-06, beta_param: 0.02, gamma_param: 2
Epoch 5, loss: 3.3056655865948414e-06, beta_param: 0.02, gamma_param: 2
Epoch 6, loss: 1.3165924883651314e-06, beta_param: 0.02, gamma_param: 2
Epoch 7, loss: 1.2926308272653841e-06, beta_param: 0.02, gamma_param: 2
Epoch 8, loss: 1.2641256716960925e-06, beta_param: 0.02, gamma_param: 2
Epoch 9, loss: 1.3426794112092466e-06, beta_param: 0.02, gamma_param: 2

Copying the data generation code again

In []: class Duo_net(torch.nn.Module):
 def __init__(self, n_in = 1, n_out =1):
 super(Duo_net, self).__init__()

 self.tanh = torch.nn.Tanh()

 self.layer10 = torch.nn.Linear(n_in,20)
 self.layer11 = torch.nn.Linear(n_in,20)

 self.layer20 = torch.nn.Linear(20,20)
 self.layer21 = torch.nn.Linear(20,20)

 self.layer_out0 = torch.nn.Linear(20,n_out)
 self.layer_out1 = torch.nn.Linear(20,n_out)

 def forward(self, x):
 x0 = self.layer10(x)
 x0 = self.tanh(x0)
 x0 = self.layer20(x0)
 x0 = self.tanh(x0)
 x0 = self.layer_out0(x0)

 x1 = self.layer11(x)
 x1 = self.tanh(x1)
 x1 = self.layer20(x1)
 x1 = self.tanh(x1)
 x1 = self.layer_out0(x1)

 return x0, x1

In []: class rk_pp_pinn:
 """ Instance of Runge kutta scheme PINN
 for predator prey model
 """

 def __init__(self, dt, xdata,t_dat, q = 100):
 self.model = Duo_net(n_in=2,n_out=q+1)
 self.adam_optimizer = torch.optim.Adam(params = self.model.parameters(), lr = 0.001)
 butcher_file = np.float32(np.loadtxt('Butcher_IRK100.txt', ndmin = 2))

 self.IRK_weights = torch.Tensor(np.reshape(butcher_file[0:q**2+q], (q+1,q)))
 self.IRK_times = torch.Tensor(butcher_file[q**2+q:])

 x0s,x1s = xdata
 self.x0s = torch.Tensor(x0s)
 self.x1s = torch.Tensor(x1s)
 self.t_dat = t_dat
 self.dt = dt
 self.epochs = 10

 self.alpha = 0.25
 self.beta = 0.02
 self.delta = 0.25
 self.gamma = 2

 def wrap_grad(self, f,x):
 return torch.autograd.grad(f,x,
 grad_outputs=torch.ones_like(x),
 retain_graph=True,
 create_graph=True)[0]

 def test(self):
 x,y = self.model(self.x0s)
 print(x.shape)

 def loss(self):
 x1, y1 = self.model(self.x1s)
 x = x1[:,:-1]
 y = y1[:,:-1]

 F0 = self.alpha*x -self.beta*x*y
 F1 = self.delta*x*y -y*self.gamma

 x0 = x1 - self.dt*torch.matmul(F0,self.IRK_weights.T)
 y0 = y1 - self.dt*torch.matmul(F1,self.IRK_weights.T)

 l0 = torch.mean((self.x0s[:,0].reshape(-1,1) - x0)**2)
 l1 = torch.mean((self.x0s[:,1].reshape(-1,1) - y0)**2)

 return l0 + l1

 def plot_preds(self):
 xs, ys = self.model(self.x1s)
 # plt.scatter(self.x0s[:,0].detach() , xs[:,-1].detach(), label = 'x_pred')
 # plt.scatter(self.x0s[:,1].detach() , ys[:,-1].detach(), label = 'y_pred')
 plt.scatter(self.t_dat, xs[:,-1].detach(), label = 'x_pred')
 plt.scatter(self.t_dat, ys[:,-1].detach(), label = 'y_pred')
 plt.legend()

 def adam_train(self):
 steps = 1000
 self.model.train()
 for epoch in range(self.epochs):
 for step in range(steps):
 def closure():
 self.adam_optimizer.zero_grad()
 loss = self.loss()
 loss.backward()
 return loss
 self.adam_optimizer.step(closure=closure)
 print(f'Epoch {epoch}, loss: {self.loss()}, beta_param: {self.beta}, gamma_param: {self.gamma}')
 self.plot_preds()

88 Appendix B. Python Code

Epoch 0, loss: 0.0422130711376667, beta_param: 0.02, gamma_param: 2
Epoch 1, loss: 0.038544364273548126, beta_param: 0.02, gamma_param: 2
Epoch 2, loss: 0.04269007220864296, beta_param: 0.02, gamma_param: 2
Epoch 3, loss: 0.10343065857887268, beta_param: 0.02, gamma_param: 2
Epoch 4, loss: 0.0331563726067543, beta_param: 0.02, gamma_param: 2
Epoch 5, loss: 0.032884035259485245, beta_param: 0.02, gamma_param: 2
Epoch 6, loss: 0.03010696917772293, beta_param: 0.02, gamma_param: 2
Epoch 7, loss: 0.028697315603494644, beta_param: 0.02, gamma_param: 2
Epoch 8, loss: 0.027399497106671333, beta_param: 0.02, gamma_param: 2
Epoch 9, loss: 0.026172582060098648, beta_param: 0.02, gamma_param: 2

4.000400040004003

In []: alpha = 0.25
beta = 0.02
delta = 0.25
gamma = 2

N = 200

def pp_ode(state, t):
 x,y = state
 dx = alpha*x -beta*x*y
 dy = delta*x*y - y*gamma
 return [dx, dy]

t = np.linspace(0,40,10000)
sol = odeint(pp_ode,y0 =[10,5], t=t)
data_rk = np.array([sol[:,0], sol[:,1]]).T

idx_t0 = 20
idx_t1 = 180
dt = t[idx_t1] - t[idx_t0]

d_id = 1000
ids0 = np.random.choice(len(t)-d_id, N)
ids1 = ids0 + d_id

dt = t[ids1[0]] - t[ids0[0]]
t0s = t[ids0]
#t1s = t[ids1]

x1s = data_rk[ids1]
x0s = data_rk[ids0]
rk_samples = [x0s,x1s]

In []: rk_test = rk_pp_pinn(dt, rk_samples, t_dat=t0s, q = 100)

In []: rk_test.adam_train()

In []:

In []: dt

Out[]:

In []:

Appendix B. Python Code 89

Disease Informed Neural Networks Tests
In []: import numpy as np

from scipy.integrate import odeint
import matplotlib.pyplot as plt

import torch
from torch.autograd import grad
import torch.nn as nn
from numpy import genfromtxt
import torch.optim as optim
import matplotlib.pyplot as plt
import torch.nn.functional as F
import time

In []: class Neural_net(torch.nn.Module):
 def __init__(self, n_in = 1, n_out =1):
 super(Neural_net, self).__init__()

 self.tanh = torch.nn.Tanh()

 self.layer1 = torch.nn.Linear(n_in,20)
 self.layer2 = torch.nn.Linear(20,20)
 self.layer3 = torch.nn.Linear(20,20)
 self.layer_out = torch.nn.Linear(20,n_out)

 def forward(self, x):
 x = self.layer1(x)
 x = self.tanh(x)
 x = self.layer2(x)
 x = self.tanh(x)
 x = self.layer3(x)
 x = self.tanh(x)
 x = self.layer_out(x)

 return x

In []: class sir_pinn:
 def __init__(self, epochs, data, c0, nde = 100):
 self.epochs = epochs
 self.model = Neural_net(n_out=3)
 self.domain = torch.linspace(0,int(max(data[0])),nde, requires_grad=True).reshape(-1,1)

 # self.beta_unconstr = torch.nn.Parameter(torch.randn(1))
 # self.gamma_unconstr = torch.nn.Parameter(torch.randn(1))

 self.beta_unconstr = torch.nn.Parameter(torch.tensor([0.1], dtype=torch.float))
 self.gamma_unconstr = torch.nn.Parameter(torch.tensor([0.1], dtype=torch.float))

 # Adding gamma and alpha to model trainable variables
 self.model.register_parameter(name='beta', param = self.beta_unconstr)
 self.model.register_parameter(name='gamma', param = self.gamma_unconstr)
 self.lbfgs_optimizer = torch.optim.LBFGS(params = self.model.parameters(), lr = 0.001,max_iter = 500)
 self.adam_optimizer = torch.optim.Adam(params = self.model.parameters(), lr = 0.0001)

 self.t_dat = torch.Tensor(data[0]).reshape(-1,1)
 self.S_dat = torch.Tensor(data[1])
 self.I_dat = torch.Tensor(data[2])
 self.R_dat = torch.Tensor(data[3])

 #find values for normalization

 self.maxes = {}
 self.mins = {}

 for id,d in enumerate((self.S_dat, self.I_dat, self.R_dat)):
 self.maxes[id] = max(d)
 self.mins[id] = min(d)

 self.N = self.maxes[0]

 #normalize
 self.S_norm = self.normalize(0, self.S_dat)
 self.I_norm = self.normalize(1, self.I_dat)
 self.R_norm = self.normalize(2, self.R_dat)

 #self.c0 = torch.tensor([max(self.S_norm), min(self.I_norm), min(self.R_norm)])
 self.c0 = torch.tensor([self.normalize(0, c0[0]), self.normalize(1, c0[1]), self.normalize(2,c0[2])])

 #Constrain parameters to be in range
 @property
 def beta(self):
 return torch.tanh(self.beta_unconstr)

 @property
 def gamma(self):
 return torch.tanh(self.gamma_unconstr)

 def wrap_grad(self, f,x):
 return torch.autograd.grad(f,x,
 grad_outputs=torch.ones_like(x),
 retain_graph=True,
 create_graph=True)[0]

 def normalize(self, id, unnormed):
 return (unnormed - self.mins[id])/(self.maxes[id]- self.mins[id])

 def un_normalize(self, id, normed):
 return normed*(self.maxes[id] -self.mins[id])+ self.mins[id]

 def de_loss(self):
 pred = self.model(self.domain)
 S, I, R = (x.reshape(-1,1) for x in torch.unbind(pred, dim =1))

 dsir_dict ={}
 for id, val in zip(('dS', 'dI', 'dR'),(S, I, R)):
 dsir_dict[id] = self.wrap_grad(val.reshape(-1,1), self.domain)

 dS, dI, dR = dsir_dict.values()

 ic = torch.mean((pred[0] - self.c0)**2)
 S = self.un_normalize(0, S) # un-normalizing, necessary for calcuclating derivative
 I = self.un_normalize(1, I)
 R = self.un_normalize(2, R)

 z1 = dS + ((self.beta / self.N) * S * I) / (self.maxes[0] - self.mins[0]) # Rescaling derivatives want d(norm(s))
 z2 = dI - ((self.beta / self.N) * S * I - self.gamma * I) / (self.maxes[1] - self.mins[1])
 z3 = dR - (self.gamma * I) / (self.maxes[2] - self.mins[2])

 return torch.mean(z1**2) + torch.mean(z2**2) +torch.mean(z3**2) + ic

 def data_loss(self):
 S, I, R = torch.unbind(self.model(self.t_dat), dim =1)
 z1 = torch.mean((self.S_norm - S)**2)
 z2 = torch.mean((self.I_norm - I)**2)
 z3 = torch.mean((self.R_norm - R)**2)
 return z1 + z2 + z3

90 Appendix B. Python Code

 def combined_loss(self):
 return self.de_loss() + self.data_loss()

 def model_call(self):
 return self.model(self.domain)

 def plot_preds(self):
 S,I,R = torch.unbind(self.model(self.domain), dim =1)
 S = self.un_normalize(0, S)
 I = self.un_normalize(1, I)
 R = self.un_normalize(2, R)
 plt.plot(self.domain.detach(), S.detach(), label = 's_pred')
 plt.plot(self.domain.detach(), I.detach(), label = 'i_pred')
 plt.plot(self.domain.detach(), R.detach(), label = 'r_pred')
 plt.scatter(self.t_dat, self.S_dat, label = 's_true')
 plt.scatter(self.t_dat, self.I_dat, label ='i_true')
 plt.scatter(self.t_dat, self.R_dat, label ='r_true')
 plt.grid()
 plt.legend()

 def lbfgs_train(self):
 self.model.train()
 for epoch in range(self.epochs):
 def closure():
 self.lbfgs_optimizer.zero_grad()
 loss = self.combined_loss()
 loss.backward()
 return loss
 self.lbfgs_optimizer.step(closure=closure)
 print(f'Epoch {epoch}, training loss: {self.combined_loss()}, beta_param: {self.beta}, gamma_param: {self.gamma}')
 self.plot_preds()

 def adam_train(self):
 steps = 1000
 self.model.train()
 for epoch in range(self.epochs):
 for step in range(steps):
 def closure():
 self.adam_optimizer.zero_grad()
 loss = self.combined_loss()
 loss.backward()
 return loss
 self.adam_optimizer.step(closure=closure)
 print(f'Epoch {epoch}, training loss: {self.combined_loss()}, beta_param: {self.beta}, gamma_param: {self.gamma}')
 self.plot_preds()

In []: class sir_pinn_fixed_p(sir_pinn):
 """ Subclass of SIR pinn to solve without data.
 """
 def __init__(self, epochs, data, c0, beta, gamma):
 super().__init__(epochs, data, c0)

 self.beta_fixed = beta
 self.gamma_fixed = gamma

 def de_loss(self):
 pred = self.model(self.domain)
 S, I, R = (x.reshape(-1,1) for x in torch.unbind(pred, dim =1))

 dsir_dict ={}
 for id, val in zip(('dS', 'dI', 'dR'),(S, I, R)):
 dsir_dict[id] = self.wrap_grad(val.reshape(-1,1), self.domain)

 dS, dI, dR = dsir_dict.values()

 ic = torch.mean((pred[:2] - self.c0)**2)
 S = self.un_normalize(0, S) # un-normalizing, necessary for calcuclating derivative
 I = self.un_normalize(1, I)
 R = self.un_normalize(2, R)

 z1 = dS + ((self.beta_fixed / self.N) * S * I) / (self.maxes[0] - self.mins[0]) # Rescaling derivatives want d(norm(s))
 z2 = dI - ((self.beta_fixed / self.N) * S * I - self.gamma_fixed * I) / (self.maxes[1] - self.mins[1])
 z3 = dR - (self.gamma_fixed * I) / (self.maxes[2] - self.mins[2])

 return torch.mean(z1**2) + torch.mean(z2**2) +torch.mean(z3**2) + ic

 def combined_loss(self):
 return self.de_loss()

 def plot_preds(self):
 S,I,R = torch.unbind(self.model(self.domain), dim =1)
 S = self.un_normalize(0, S)
 I = self.un_normalize(1, I)
 R = self.un_normalize(2, R)
 plt.plot(self.domain.detach(), S.detach(), label = 's_pred')
 plt.plot(self.domain.detach(), I.detach(), label = 'i_pred')
 plt.plot(self.domain.detach(), R.detach(), label = 'r_pred')
 # plt.scatter(self.t_dat, self.S_dat, label = 's_true')
 # plt.scatter(self.t_dat, self.I_dat, label ='i_true')
 # plt.scatter(self.t_dat, self.R_dat, label ='r_true')
 plt.grid()
 plt.legend()

 def adam_train(self):
 steps = 1000
 self.model.train()
 for epoch in range(self.epochs):
 for step in range(steps):
 def closure():
 self.adam_optimizer.zero_grad()
 loss = self.combined_loss()
 loss.backward()
 return loss
 self.adam_optimizer.step(closure=closure)
 print(f'Epoch {epoch}, training loss: {self.combined_loss()}')
 self.plot_preds()

In []: class sir_neural_net(sir_pinn):
 """ Subclass of SIR pinn to solve without de-loss.
 So as a normal NN model...

 """
 def __init__(self, epochs, data, c0):
 super().__init__(epochs, data, c0)

 def combined_loss(self):
 return self.data_loss()

 def plot_preds(self):
 S,I,R = torch.unbind(self.model(self.domain), dim =1)
 S = self.un_normalize(0, S)
 I = self.un_normalize(1, I)
 R = self.un_normalize(2, R)
 plt.plot(self.domain.detach(), S.detach(), label = 's_pred')
 plt.plot(self.domain.detach(), I.detach(), label = 'i_pred')
 plt.plot(self.domain.detach(), R.detach(), label = 'r_pred')
 plt.scatter(self.t_dat, self.S_dat, label = 's_true')
 plt.scatter(self.t_dat, self.I_dat, label ='i_true')
 plt.scatter(self.t_dat, self.R_dat, label ='r_true')
 plt.grid()
 plt.legend()

 def adam_train(self):

Appendix B. Python Code 91

Retrieving Data

Testing scheme:
Have generated 5 sets of simulation data of varying underlying parameters and varying . always assumed to be zero.

Want to compare the performance of:

~ "Many" datapoints and "many" de-domain points. Hypothesis: Performs well, can be considered best possible model.

~ "Few" datapoints and "many" de-domain points. Hypothesis: Should also perform "well",

~ "Few" datapoints only Hypothesis: Should perform "worse" than the two above

~ "Many" de-domaion points only, and fixed parameters Hypothesis: Should be problematic: difficult to fit properly

(~ maybe also: only "few de-domain points", and fixed params) Hypotheis: Also difficult?

(~ Try "few" data-points "many" domain points for real-world covid data) Hypothesis: Will find some parameter.

(Note: DE-domain: t points used when calculating differential equation loss under training)

For each of these models the following metrics shall be recorded:

10k steps (10 epochs, 1000 steps) training accuracy
10k steps test accuracy: MSE.
Save10k plot

TUS (Train Until Satisfied) - training accuracy MSE
TUS - Test accuracy MSE
Save TUS plot.

Round 1
Parameters: N = 1,

I0 = 0.01,

S0= 0.99

 = 0.05 = 0.02

sir-pinn instance naming scheme, examples:

r1_da100_de100 = Round 1, 100 datapoints, 100 de-domain points.

r1_da010_de100 =Round 1, 10 datapoints, 100 de-domain-points

r1_da010_de000 = you get it

R1 "Many" datapoints and "many" de-domain points.

 steps = 1000
 self.model.train()
 for epoch in range(self.epochs):
 for step in range(steps):
 def closure():
 self.adam_optimizer.zero_grad()
 loss = self.combined_loss()
 loss.backward()
 return loss
 self.adam_optimizer.step(closure=closure)
 print(f'Epoch {epoch}, training loss: {self.combined_loss()}')
 self.plot_preds()

In []: #raisi_data = genfromtxt('../Gitfolder/DINN/COVID_Tutorial.csv', delimiter=',') #in the form of [t,S,I,D,R]

b005_g002_i001 = genfromtxt('Data/SIR_generated/b005_g002_i001', delimiter=',').T #1
b005_g002_i050 = genfromtxt('Data/SIR_generated/b005_g002_i050', delimiter=',').T #2
b050_g005_i050 = genfromtxt('Data/SIR_generated/b050_g005_i050', delimiter=',').T #3
b070_g016_i001 = genfromtxt('Data/SIR_generated/b070_g016_i001', delimiter=',').T #4
b070_g016_i020 = genfromtxt('Data/SIR_generated/b070_g016_i020', delimiter=',').T #5

In []: def sampling(data, size= 200):
 ids = np.random.choice(range(data.shape[1]),size = size)
 sample_data = data[:,ids]
 traind, testd = (sample_data[:,:-sample_data.shape[1]//2], sample_data[:,sample_data.shape[1]//2:])
 return traind, testd

In []: b005_g002_i001_train, b005_g002_i001_test = sampling(b005_g002_i001)
b005_g002_i050_train, b005_g002_i050_test = sampling(b005_g002_i050)
b050_g005_i050_train, b050_g005_i050_test = sampling(b050_g005_i050)
b070_g016_i001_train, b070_g016_i001_test = sampling(b070_g016_i001)
b070_g016_i020_train, b070_g016_i020_test = sampling(b070_g016_i020)

In []: b005_g002_i001_C0 = b005_g002_i001[1:][:,0]
b005_g002_i050_C0 = b005_g002_i050[1:][:,0]
b050_g005_i050_C0 = b050_g005_i050[1:][:,0]
b070_g016_i001_C0 = b070_g016_i001[1:][:,0]
b070_g016_i020_C0 = b070_g016_i020[1:][:,0]

In []: def test_loss(inst, test_data):
 """ computes MSE over test data
 """
 t = torch.Tensor(test_data[0]).reshape(-1,1)
 S = inst.normalize(0,torch.Tensor(test_data[1]))
 I = inst.normalize(1, torch.Tensor(test_data[2]))
 R = inst.normalize(2, torch.Tensor(test_data[3]))

 s_pred, i_pred, r_pred = torch.unbind(inst.model(t), dim =1)

 z0 = torch.mean((S-s_pred)**2)
 z1 = torch.mean((I-i_pred)**2)
 z2 = torch.mean((R-r_pred)**2)

 return z0 + z1 + z2

β, γ (I0,S0) R0

β γ

In []: # Plot of true solution
plt.plot(b005_g002_i001[0], b005_g002_i001[1], label = 'S')
plt.plot(b005_g002_i001[0], b005_g002_i001[2], label = 'I')
plt.plot(b005_g002_i001[0], b005_g002_i001[3], label = 'R')
plt.legend()

In []: r1_da100_de100 = sir_pinn(epochs=10,data= b005_g002_i001_train, c0 = b005_g002_i001_C0)
r1_da010_de100 = sir_pinn(epochs=10,data= b005_g002_i001_train[:,:10], c0 = b005_g002_i001_C0) # _train variabels are randomly selected
r1_da010_de000 = sir_neural_net(epochs=10,data= b005_g002_i001_train[:,:10], c0 = b005_g002_i001_C0)
r1_da000_de100 = sir_pinn_fixed_p(epochs=10, data= b005_g002_i001_train, c0 =b005_g002_i001_C0, beta = 0.05, gamma=0.02)

In []: print('###### r1_da100_de100 10 epochs Run #######')
r1_da100_de100.adam_train()

92 Appendix B. Python Code

R1 "Few" datapoints and "many" de-domain points.

R1 "Few" datapoints only

R1 "Many" de-domain points only, and fixed parameters

Round 2
Parameters: N = 1,

I0 = 0.5, S0= 0.5

 = 0.05 = 0.02

R2 "Many" datapoints and "many" de-domain points.

R2 "Few" datapoints and "many" de-domain points.

R2 "Few" datapoints only

R2 "Many" de-domain points only, and fixed parameters

Round 3
Parameters:

N = 1,

I0 = 0.50,

S0= 0.50

 = 0.50 = 0.05

print(f'Test loss {test_loss(r1_da100_de100,b005_g002_i001_test)}')

In []: # Note, To get TUS values, run cell until satisfied
print('###### r1_da100_de100 TUS Run #######')
r1_da100_de100.adam_train()
print(f'Test loss {test_loss(r1_da100_de100,b005_g002_i001_test)}')

In []: print('###### r1_da010_de100 10 epochs Run #######')
r1_da010_de100.adam_train()
print(f'Test loss {test_loss(r1_da010_de100,b005_g002_i001_test)}')

In []: # To get TUS values, run cell until satisfied
print('###### r1_da010_de100 TUS Run #######')
r1_da010_de100.adam_train()
print(f'Test loss {test_loss(r1_da010_de100,b005_g002_i001_test)}')

In []: print('###### r1_da010_de000 10 epochs Run #######')
r1_da010_de000.adam_train()
print(f'Test loss {test_loss(r1_da010_de000,b005_g002_i001_test)}')

In []: print('###### r1_da010_de000 TUS Run #######')
r1_da010_de000.adam_train()
print(f'Test loss {test_loss(r1_da010_de000,b005_g002_i001_test)}')

In []: print('###### r1_da000_de100 10 epochs Run #######')
r1_da000_de100.adam_train()
print(f'Test loss {test_loss(r1_da000_de100,b005_g002_i001_test)}')

In []: print('###### r1_da000_de100 TUS Run #######')
r1_da000_de100.adam_train()
print(f'Test loss {test_loss(r1_da000_de100,b005_g002_i001_test)}')

β γ

In []: ### True solution plot

plt.plot(b005_g002_i050[0], b005_g002_i050[1])
plt.plot(b005_g002_i050[0], b005_g002_i050[2])
plt.plot(b005_g002_i050[0], b005_g002_i050[3])

In []: r2_da100_de100 = sir_pinn(epochs=10,data= b005_g002_i050_train, c0 = b005_g002_i050_C0)
r2_da010_de100 = sir_pinn(epochs=10,data= b005_g002_i050_train[:,:10], c0 = b005_g002_i050_C0)
r2_da010_de000 = sir_neural_net(epochs=10,data= b005_g002_i050_train[:,:10], c0 = b005_g002_i050_C0)
r2_da000_de100 = sir_pinn_fixed_p(epochs=10, data= b005_g002_i050_train, c0 =b005_g002_i050_C0, beta = 0.05, gamma=0.02)

In []:

In []: print('###### r2_da100_de100 10 epochs Run #######')
r2_da100_de100.adam_train()
print(f'Test loss {test_loss(r2_da100_de100,b005_g002_i050_test)}')

In []: print('###### r2_da100_de100 TUS Run #######')
r2_da100_de100.adam_train()
print(f'Test loss {test_loss(r2_da100_de100,b005_g002_i050_test)}')

In []: print('###### r2_da010_de100 10 epochs Run #######')
r2_da010_de100.adam_train()
print(f'Test loss {test_loss(r2_da010_de100,b005_g002_i050_test)}')

In []: print('###### r2_da010_de100 TUS Run #######')
r2_da010_de100.adam_train()
print(f'Test loss {test_loss(r2_da010_de100,b005_g002_i050_test)}')

In []: print('###### r2_da010_de000 10 epochs Run #######')
r2_da010_de000.adam_train()
print(f'Test loss {test_loss(r2_da010_de000,b005_g002_i050_test)}')

In []: print('###### r2_da010_de000 TUS Run #######')
r2_da010_de000.adam_train()
print(f'Test loss {test_loss(r2_da010_de000,b005_g002_i050_test)}')

In []: print('###### r2_da000_de100 10 epochs Run #######')
r2_da000_de100.adam_train()
print(f'Test loss {test_loss(r2_da000_de100,b005_g002_i050_test)}')

In []: print('###### r2_da000_de100 TUS Run #######')
r2_da000_de100.adam_train()
print(f'Test loss {test_loss(r2_da000_de100,b005_g002_i050_test)}')

β γ

In []: #Plot of true solution
plt.plot(b050_g005_i050[0], b050_g005_i050[1])
plt.plot(b050_g005_i050[0], b050_g005_i050[2])
plt.plot(b050_g005_i050[0], b050_g005_i050[3])

Appendix B. Python Code 93

R3 "Many" datapoints and "many" de-domain points.

R3 "Few" datapoints and "many" de-domain points.

R3 "Few" datapoints only

R3 "Many" de-domain points only, and fixed parameters

Round 4
Parameters:

N = 1,

I0 = 0.01,

S0= 0.99

 = 0.70 = 0.16

R4 "Many" datapoints and "many" de-domain points.

R4 "Few" datapoints and "many" de-domain points.

R4 "Few" datapoints only

R4 "Many" de-domain points only, and fixed parameters

Round 5
Parameters:

N = 1,

I0 = 0.20,

In []: r3_da100_de100 = sir_pinn(epochs=10,data= b005_g002_i050_train, c0 = b050_g005_i050_C0)
r3_da010_de100 = sir_pinn(epochs=10,data= b005_g002_i050_train[:,:10], c0 = b050_g005_i050_C0)
r3_da010_de000 = sir_neural_net(epochs=10,data= b005_g002_i050_train[:,:10], c0 = b050_g005_i050_C0)
r3_da000_de100 = sir_pinn_fixed_p(epochs=10, data= b005_g002_i050_train, c0 =b050_g005_i050_C0, beta = 0.50, gamma=0.05)

In []: print('###### r3_da100_de100 10 epochs Run #######')
r3_da100_de100.adam_train()
print(f'Test loss {test_loss(r3_da100_de100,b050_g005_i050_test)}')

In []: print('###### r3_da100_de100 TUS Run #######')
r3_da100_de100.adam_train()
print(f'Test loss {test_loss(r3_da100_de100,b050_g005_i050_test)}')

In []: print('###### r3_da010_de100 10 epochs Run #######')
r3_da010_de100.adam_train()
print(f'Test loss {test_loss(r3_da010_de100,b050_g005_i050_test)}')

In []: print('###### r3_da010_de100 TUS Run #######')
r3_da010_de100.adam_train()
print(f'Test loss {test_loss(r3_da010_de100,b050_g005_i050_test)}')

In []: print('###### r3_da010_de000 10 epochs Run #######')
r3_da010_de000.adam_train()
print(f'Test loss {test_loss(r3_da010_de000,b050_g005_i050_test)}')

In []: print('###### r3_da010_de000 TUS Run #######')
r3_da010_de000.adam_train()
print(f'Test loss {test_loss(r3_da010_de000,b050_g005_i050_test)}')

In []: print('###### r3_da000_de100 10 epochs Run #######')
r3_da000_de100.adam_train()
print(f'Test loss {test_loss(r3_da000_de100,b050_g005_i050_test)}')

In []: print('###### r3_da000_de100 TUS Run #######')
r3_da000_de100.adam_train()
print(f'Test loss {test_loss(r3_da000_de100,b050_g005_i050_test)}')

β γ

In []: # Plot of true solution

plt.plot(b070_g016_i001[0], b070_g016_i001[1])
plt.plot(b070_g016_i001[0], b070_g016_i001[2])
plt.plot(b070_g016_i001[0], b070_g016_i001[3])

In []: r4_da100_de100 = sir_pinn(epochs=10,data= b070_g016_i001_train, c0 = b070_g016_i001_C0)
r4_da010_de100 = sir_pinn(epochs=10,data= b070_g016_i001_train[:,:10], c0 = b070_g016_i001_C0)
r4_da010_de000 = sir_neural_net(epochs=10,data= b070_g016_i001_train[:,:10], c0 = b070_g016_i001_C0)
r4_da000_de100 = sir_pinn_fixed_p(epochs=10, data= b070_g016_i001_train, c0 =b070_g016_i001_C0, beta = 0.70, gamma=0.16)

In []: print('###### r4_da100_de100 10 epochs Run #######')
r4_da100_de100.adam_train()
print(f'Test loss {test_loss(r4_da100_de100,b070_g016_i001_test)}')

In []: print('###### r4_da100_de100 TUS Run #######')
r4_da100_de100.adam_train()
print(f'Test loss {test_loss(r4_da100_de100,b070_g016_i001_test)}')

In []: print('###### r4_da010_de100 10 epochs Run #######')
r4_da010_de100.adam_train()
print(f'Test loss {test_loss(r4_da010_de100,b070_g016_i001_test)}')

In []: print('###### r4_da010_de100 TUS Run #######')
r4_da010_de100.adam_train()
print(f'Test loss {test_loss(r4_da010_de100,b070_g016_i001_test)}')

In []: print('###### r4_da010_de000 10 epochs Run #######')
r4_da010_de000.adam_train()
print(f'Test loss {test_loss(r4_da010_de000,b070_g016_i001_test)}')

In []: print('###### r4_da010_de000 TUS Run #######')
r4_da010_de000.adam_train()
print(f'Test loss {test_loss(r4_da010_de100,b070_g016_i001_test)}')

In []: print('###### r4_da000_de100 10 epochs Run #######')
r4_da000_de100.adam_train()
print(f'Test loss {test_loss(r4_da000_de100,b070_g016_i001_test)}')

In []: print('###### r4_da000_de100 TUS Run #######')
r4_da000_de100.adam_train()
print(f'Test loss {test_loss(r4_da000_de100,b070_g016_i001_test)}')

94 Appendix B. Python Code

S0= 0.80

 = 0.70 = 0.16

R5 "Many" datapoints and "many" de-domain points.

R5 "Few" datapoints and "many" de-domain points.

R5 "Few" datapoints only

R5 "Many" de-domain points only, and fixed parameters

Parameter discovery on noisy data.

Round 6
 = 0.20

 = 0.05

100 Data-points 100De-points

10 Data-points 100De-points

Round 7
 = 0.20

 = 0.05

β γ

In []: ## True solution plot
plt.plot(b070_g016_i020[0], b070_g016_i020[1])
plt.plot(b070_g016_i020[0], b070_g016_i020[2])
plt.plot(b070_g016_i020[0], b070_g016_i020[3])

In []: r5_da100_de100 = sir_pinn(epochs=10,data= b070_g016_i020_train, c0 = b070_g016_i020_C0)
r5_da010_de100 = sir_pinn(epochs=10,data= b070_g016_i020_train[:,:10], c0 = b070_g016_i001_C0)
r5_da010_de000 = sir_neural_net(epochs=10,data= b070_g016_i020_train[:,:10], c0 = b070_g016_i020_C0)
r5_da000_de100 = sir_pinn_fixed_p(epochs=10, data= b070_g016_i020_train, c0 = b070_g016_i020_C0, beta = 0.70, gamma=0.16)

In []: print('###### r5_da100_de100 10 epochs Run #######')
r5_da100_de100.adam_train()
print(f'Test loss {test_loss(r5_da100_de100,b070_g016_i020_test)}')

In []: print('###### r5_da100_de100 TUS Run #######')
r5_da100_de100.adam_train()
print(f'Test loss {test_loss(r5_da100_de100,b070_g016_i020_test)}')

In []: print('###### r5_da010_de100 10 epochs Run #######')
r5_da010_de100.adam_train()
print(f'Test loss {test_loss(r5_da010_de100,b070_g016_i020_test)}')

In []: print('###### r5_da010_de100 TUS Run #######')
r5_da010_de100.adam_train()
print(f'Test loss {test_loss(r5_da010_de100,b070_g016_i020_test)}')

In []: print('###### r5_da010_de000 10 epochs Run #######')
r5_da010_de000.adam_train()
print(f'Test loss {test_loss(r5_da010_de000,b070_g016_i020_test)}')

In []: print('###### r5_da010_de000 TUS Run #######')
r5_da010_de000.adam_train()
print(f'Test loss {test_loss(r5_da010_de100,b070_g016_i020_test)}')

In []: print('###### r5_da000_de100 10 epochs Run #######')
r5_da000_de100.adam_train()
print(f'Test loss {test_loss(r5_da000_de100,b070_g016_i020_test)}')

In []: print('###### r5_da000_de100 TUS Run #######')
r5_da000_de100.adam_train()
print(f'Test loss {test_loss(r5_da000_de100,b070_g016_i020_test)}')

In []:

In []: b020_g005_i020n070 = genfromtxt('Data/SIR_generated/b020_g005_i020n070', delimiter=',').T
b020_g005_i020n070_train, b020_g005_i020n070_test = sampling(b020_g005_i020n070)
b020_g005_i020n070_C0 = b020_g005_i020n070[1:][:,0]

β

γ

N = 1

S0 = 0.80

I0 = 0.20

noise = 0.7σ

In []: r6_da100_de100 = sir_pinn(epochs=10,data= b020_g005_i020n070_train, c0 =b020_g005_i020n070_C0)
r6_da010_de100 = sir_pinn(epochs=10,data= b020_g005_i020n070_train[:,:10], c0 = b020_g005_i020n070_C0)

In []: print('###### r6_da100_de100 10 epochs Run #######')
r6_da100_de100.adam_train()
print(f'Test loss {test_loss(r6_da100_de100,b020_g005_i020n070_test)}')

In []: print('###### r6_da100_de100 TUS Run #######')
r6_da100_de100.adam_train()
print(f'Test loss {test_loss(r6_da100_de100,b020_g005_i020n070_test)}')

In []: print('###### r6_da100_de100 10 epochs Run #######')
r6_da010_de100.adam_train()
print(f'Test loss {test_loss(r6_da010_de100,b020_g005_i020n070_test)}')

In []: print('###### r6_da010_de100 TUS Run #######')
r6_da010_de100.adam_train()
print(f'Test loss {test_loss(r6_da010_de100,b020_g005_i020n070_test)}')

In []: r6_da010_de1000 = sir_pinn(epochs=10,data= b020_g005_i020n070_train[:,:10], c0 = b020_g005_i020n070_C0, nde= 1000)

In []: print('###### r6_da010_de1000 10 epochs Run #######')
r6_da010_de1000.adam_train()
print(f'Test loss {test_loss(r6_da010_de1000,b020_g005_i020n070_test)}')

In []: print('###### r6_da010_de1000 TUS Run #######')
r6_da010_de1000.adam_train()
print(f'Test loss {test_loss(r6_da010_de1000,b020_g005_i020n070_test)}')

β

γ

Appendix B. Python Code 95

100Da-points 100De-points

10 Da-points 100De-points

10 Da-points 1000De-points

N = 1

S0 = 0.80

I0 = 0.20

noise = 1.4σ

In []: b020_g005_i020n140 = genfromtxt('Data/SIR_generated/b020_g005_i020n140', delimiter=',').T
b020_g005_i020n140_train, b020_g005_i020n140_test = sampling(b020_g005_i020n140)
b020_g005_i020n140_C0 = b020_g005_i020n140[1:][:,0]

In []: r7_da100_de100 = sir_pinn(epochs=10,data= b020_g005_i020n140_train, c0 =b020_g005_i020n140_C0)
r7_da010_de100 = sir_pinn(epochs=10,data= b020_g005_i020n140_train[:,:10], c0 = b020_g005_i020n140_C0)

In []: print('###### r7_da100_de100 10 epochs Run #######')
r7_da100_de100.adam_train()
print(f'Test loss {test_loss(r7_da100_de100,b020_g005_i020n140_test)}')

In []: print('###### r7_da100_de100 TUS Run #######')
r7_da100_de100.adam_train()
print(f'Test loss {test_loss(r7_da100_de100,b020_g005_i020n140_test)}')

In []: print('###### r7_da010_de100 10 epochs Run #######')
r7_da010_de100.adam_train()
print(f'Test loss {test_loss(r7_da010_de100,b020_g005_i020n140_test)}')

In []: print('###### r7_da010_de100 TUS Run #######')
r7_da010_de100.adam_train()
print(f'Test loss {test_loss(r7_da010_de100,b020_g005_i020n140_test)}')

In []: #r7_da100_de1000 = sir_pinn(epochs=10,data= b020_g005_i020n140_train, c0 =b020_g005_i020n140_C0, nde=1000)
r7_da010_de1000 = sir_pinn(epochs=10,data= b020_g005_i020n140_train[:,:10], c0 = b020_g005_i020n140_C0, nde= 1000)

In []: print('###### r7_da010_de1000 10 epochs Run #######')
r7_da010_de1000.adam_train()
print(f'Test loss {test_loss(r7_da010_de1000,b020_g005_i020n140_test)}')

In []: print('###### r7_da010_de1000 TUS Run #######')
r7_da010_de1000.adam_train()
print(f'Test loss {test_loss(r7_da010_de1000,b020_g005_i020n140_test)}')

In []:

96 Appendix B. Python Code

In []: import torch
import matplotlib.pyplot as plt
import numpy as np
from scipy.optimize import curve_fit
from scipy.special import gamma

In []: HU=31.74

patient1 = # Hidden
patient2 = # Hidden
patient3 = # Hidden
patient4 = # Hidden
patient5 = # Hidden
patient6 = # Hidden

In []: p1_sim = np.genfromtxt('Data/blood_generated/p1q4218.69', delimiter=',')
p2_sim = np.genfromtxt('Data/blood_generated/p2q3513.35', delimiter=',')
p3_sim = np.genfromtxt('Data/blood_generated/p3q4310.52', delimiter=',')
p4_sim = np.genfromtxt('Data/blood_generated/p4q4510.85', delimiter=',')
p5_sim = np.genfromtxt('Data/blood_generated/p5q3104.34', delimiter=',')
p6_sim = np.genfromtxt('Data/blood_generated/p6q3905.67', delimiter=',')

In []: vref1 = # Hidden
vref2 = # Hidden
vref3 = # Hidden
vref4 = # Hidden
vref5 = # Hidden
vref6 = # Hidden

In []: qref1 = # Hidden
qref2 = # Hidden
qref3 = # Hidden
qref4 = # Hidden
qref5 = # Hidden
qref6 = # Hidden

In []:

In []: class Neural_net(torch.nn.Module):
 def __init__(self, n_in = 1, n_out =1):
 super(Neural_net, self).__init__()

 self.tanh = torch.nn.Tanh()

 self.layer1 = torch.nn.Linear(n_in,20)
 self.layer2 = torch.nn.Linear(20,20)
 self.layer3 = torch.nn.Linear(20,20)
 self.layer_out = torch.nn.Linear(20,n_out)

 def forward(self, x):
 x = self.layer1(x)
 x = self.tanh(x)
 x = self.layer2(x)
 x = self.tanh(x)
 x = self.layer3(x)
 x = self.tanh(x)
 x = self.layer_out(x)

 return x

In []: class blood_1pinn:
 def __init__(self, epochs, data, nde, params = {}, gamma = None):
 self.epochs = epochs
 self.model = Neural_net(n_out=1)
 self.domain = torch.linspace(0,100, nde, requires_grad=True).reshape(-1,1)

 ### scaling params
 self.params_unconstr ={}
 for prm, init in params.items():
 self.params_unconstr[prm] = torch.nn.Parameter(torch.tensor([init]))
 self.model.register_parameter(name=prm, param = self.params_unconstr[prm])

 self.const = torch.tensor([1.], dtype = torch.float)

 #optimizers
 self.lbfgs_optimizer = torch.optim.LBFGS(params = self.model.parameters(), lr = 0.001,max_iter = 500)
 self.adam_optimizer = torch.optim.Adam(params = self.model.parameters(), lr = 0.001)

 patient_data, sim_data, vref ,qref = data

 self.vref = vref
 self.qc =self.m_inj(np.linspace(0,100,nde))
 self.Q_ref = torch.tensor(qref, dtype=torch.float, requires_grad=False).reshape(-1,1)

 #### Data

 if gamma: ## Using a gamma variate fit of data at end-compartment instead of pure data-points
 popt, pcov = curve_fit(self.scaled_gamma, patient_data[0], patient_data[1], bounds = ((1000,1,1),(10000,10,10)))
 self.c_patient = torch.tensor(self.scaled_gamma(np.linspace(0,100,100),popt[0],popt[1], popt[2]), dtype=torch.float).reshape(-1,1)
 self.t_patient = torch.linspace(0,100,100).reshape(-1,1)

 else:
 self.c_patient = torch.tensor(patient_data[1], dtype = torch.float).reshape(-1,1)
 self.t_patient = torch.tensor(patient_data[0], dtype=torch.float).reshape(-1,1)

 sample_ids = np.arange(start=0, stop=len(sim_data[7]), step=len(sim_data[7])//nde)
 self.c7 = torch.tensor(sim_data[7][sample_ids], dtype=torch.float).reshape(-1,1)

 self.patient_data = patient_data

 self.cp_max = max(self.c_patient)
 self.cp_min = min(self.c_patient)
 self.c_patient_norm = (self.c_patient - self.cp_min)/(self.cp_max-self.cp_min)

 #Constrain parameters to be in range

 @property
 def sq_param(self):
 if 'sq' in self.params_unconstr:
 return self.params_unconstr['sq']
 else:
 return self.const

 @property
 def sv_param(self):
 if 'sv' in self.params_unconstr:
 return self.params_unconstr['sv']
 else:
 return self.const

 @property
 def sc_param(self):
 if 'sc' in self.params_unconstr:
 return self.params_unconstr['sc']
 else:
 return self.const

Appendix B. Python Code 97

Patient 1

 #------------- Gamma variate
 def scaled_gamma(self, x,c, k, theta):
 frac = 1/(gamma(k)*theta**(k))
 return c*frac*x**(k-1)*np.exp(-(x/theta))

 # ------------
 def m_inj(self,t,ti=[0,3.33,3.33,6.67,6.67],qi=[6,6,6,6,0],ci=[350,350,0,0,0]):
 ti=np.array(ti)
 qi=np.array(qi)
 # ci=np.array(ci)
 # m = qi*ci
 return torch.tensor(np.interp(t,ti,qi),dtype = torch.float)

 def wrap_grad(self, f,x):
 return torch.autograd.grad(f,x,
 grad_outputs=torch.ones_like(x),
 retain_graph=True,
 create_graph=True)[0]

 def de_loss(self):
 c_pred = self.model(self.domain)

 c =c_pred*(self.cp_max - self.cp_min) + self.cp_min
 dup = self.wrap_grad(c_pred, self.domain)

 norm_fac = (self.cp_max -self.cp_min)

 Q = self.qc + self.Q_ref*self.sq_param
 c7 = self.c7*self.sc_param

 z = dup -(Q*c7-Q*c)/(self.vref*self.sv_param*norm_fac)
 return torch.mean(z**2) + c_pred[0]**2

 def data_loss(self):
 u7_pred = self.model(self.t_patient)
 return torch.mean((u7_pred - self.c_patient_norm)**2)

 def combined_loss(self):
 return self.data_loss() #self.de_loss() + self.data_loss()

 def model_call(self):
 return self.model(self.domain)

 def plot_preds(self):
 pred = self.model(self.domain)
 plt.plot(self.domain.detach(),pred.detach()*(self.cp_max -self.cp_min) + self.cp_min)
 plt.scatter(self.patient_data[0], self.patient_data[1])
 plt.grid()
 #plt.legend()

 def lbfgs_train(self):
 self.model.train()
 for epoch in range(self.epochs):
 def closure():
 self.lbfgs_optimizer.zero_grad()
 loss = self.combined_loss()
 loss.backward()
 return loss
 self.lbfgs_optimizer.step(closure=closure)
 print(f'Epoch {epoch}, training loss: {self.combined_loss()}')
 self.plot_preds()

 def adam_train(self):
 steps = 1000
 for epoch in range(self.epochs):
 for step in range(steps):
 def closure():
 self.adam_optimizer.zero_grad()
 loss = self.combined_loss()
 loss.backward()
 return loss
 self.adam_optimizer.step(closure=closure)
 print(f'Epoch {epoch}, training loss: {self.combined_loss().item()} de_loss: {self.de_loss().item()}, data_loss {self.data_loss()}, sq {self.sq_param.item()} sv: {self.sv_
 self.plot_preds()

In []:

In []: test = blood_1pinn(epochs = 20, data = (patient4,p4_sim, vref4[7], qref4),params = {'sv': 1., 'sc':1.}, nde = 100, gamma=False)

In []: # Model configs:

qcv ={'sq':1., 'sv':1. , 'sc':1.}
qv = {'sq':1., 'sv':1. }
qc = {'sq':1. , 'sc':1.}
q = {'sq':1.}
vc = {'sv':1. , 'sc':1.}
c = { 'sc':1.}
v = {'sv':1.}
no_params = {}

In []: p1_data = (patient1,p1_sim, vref1[7], qref1)

p1_none = blood_1pinn(epochs = 20, data = p1_data,params =no_params, nde = 100, gamma=False)

In []: p1_none.adam_train()
plt.gca().axes.get_yaxis().set_visible(False)
plt.gca().axes.get_xaxis().set_visible(False)

In []: p1_data = (patient1,p1_sim, vref1[7], qref1)

p1_none = blood_1pinn(epochs = 20, data = p1_data,params =no_params, nde = 100, gamma=False)
p1_none_gamma = blood_1pinn(epochs = 20, data = p1_data,params =no_params, nde = 100, gamma=True)

p1_qcv = blood_1pinn(epochs = 20, data = p1_data,params =qcv, nde = 100, gamma=False)
p1_qcv_gamma = blood_1pinn(epochs = 20, data = p1_data,params =qcv, nde = 100, gamma=True)

p1_qv = blood_1pinn(epochs = 20, data = p1_data,params =qv, nde = 100, gamma=False)
p1_qv_gamma = blood_1pinn(epochs = 20, data = p1_data,params =qv, nde = 100, gamma=True)

p1_qc = blood_1pinn(epochs = 20, data = p1_data,params =qc, nde = 100, gamma=False)
p1_qc_gamma = blood_1pinn(epochs = 20, data = p1_data,params =qc, nde = 100, gamma=True)

p1_q = blood_1pinn(epochs = 20, data = p1_data,params =q, nde = 100, gamma=False)
p1_q_gamma = blood_1pinn(epochs = 20, data = p1_data,params =q, nde = 100, gamma=True)

p1_vc = blood_1pinn(epochs = 20, data = p1_data,params =vc, nde = 100, gamma=False)
p1_vc_gamma = blood_1pinn(epochs = 20, data = p1_data,params =vc, nde = 100, gamma=True)

p1_c = blood_1pinn(epochs = 20, data = p1_data,params =c, nde = 100, gamma=False)
p1_c_gamma = blood_1pinn(epochs = 20, data = p1_data,params =c, nde = 100, gamma=True)

p1_v = blood_1pinn(epochs = 20, data = p1_data,params =v, nde = 100, gamma=False)
p1_v_gamma = blood_1pinn(epochs = 20, data = p1_data,params =v, nde = 100, gamma=True)

In []: p1_none.adam_train()

98 Appendix B. Python Code

In []: p1_none_gamma.adam_train()

In []: p1_qcv.adam_train()

In []: p1_qcv_gamma.adam_train()

In []: p1_qv.adam_train()

In []: p1_qv_gamma.adam_train()

In []: p1_qc.adam_train()

In []: p1_qc_gamma.adam_train()

In []: p1_q.adam_train()

In []: p1_q_gamma.adam_train()

In []: p1_vc.adam_train()

In []: p1_vc_gamma.adam_train()

In []: p1_c.adam_train()

In []: p1_c_gamma.adam_train()

In []: p1_v.adam_train()

In []: p1_v_gamma.adam_train()

In []:

Appendix B. Python Code 99

Implementation and test of PiNN over 8 free compartments of the test bolus model

c:\Users\Lars\anaconda3\envs\torchenv\lib\site-packages\tqdm\auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/s
table/user_install.html
 from .autonotebook import tqdm as notebook_tqdm

In []: import torch
import matplotlib.pyplot as plt
import numpy as np
from scipy.integrate import odeint
from scipy.optimize import curve_fit
from scipy.special import gamma

In []: ## patient data:
HU=31.74

patient1 = # Hidden
patient2 = # Hidden
patient3 = #...
patient4 =
patient5 =

In []: p1_sim = np.genfromtxt('Data/blood_generated/p1q4218.69', delimiter=',')
p2_sim = np.genfromtxt('Data/blood_generated/p2q3513.35', delimiter=',')
p3_sim = np.genfromtxt('Data/blood_generated/p3q4310.52', delimiter=',')
p4_sim = np.genfromtxt('Data/blood_generated/p4q4510.85', delimiter=',')
p5_sim = np.genfromtxt('Data/blood_generated/p5q3104.34', delimiter=',')
p6_sim = np.genfromtxt('Data/blood_generated/p6q3905.67', delimiter=',')

In []: vref1 = # Hidden
vref2 =
vref3 =
vref4 =
vref5 =
vref6 =

In []: qref1 = 4218.69/60
qref2 = 3513.35/60
qref3 = 4310.52/60
qref4 = 4510.85/60
qref5 = 3104.34/60
qref6 = 3905.67/60

In []:

In []: class Neural_net(torch.nn.Module):
 def __init__(self, n_in = 1, n_out =1):
 super(Neural_net, self).__init__()

 self.tanh = torch.nn.Tanh()

 self.layer1 = torch.nn.Linear(n_in,20)
 self.layer2 = torch.nn.Linear(20,20)
 self.layer3 = torch.nn.Linear(20,20)
 self.layer_out = torch.nn.Linear(20,n_out)

 def forward(self, x):
 x = self.layer1(x)
 x = self.tanh(x)
 x = self.layer2(x)
 x = self.tanh(x)
 x = self.layer3(x)
 x = self.tanh(x)
 x = self.layer_out(x)

 return x

In []: class blood_8pinn:
 def __init__(self, epochs, data, nde= 100, gamma = False):
 self.epochs = epochs
 self.model = Neural_net(n_out=8)
 self.domain = torch.linspace(0,100, nde, requires_grad=True).reshape(-1,1)

 ### Variable parameters
 self.s1_unconstr = torch.nn.Parameter(torch.tensor([1.]))
 self.s2_unconstr = torch.nn.Parameter(torch.tensor([1.]))

 # Adding parameters to model trainable variables
 self.model.register_parameter(name='s1_param', param = self.s1_unconstr)
 self.model.register_parameter(name='s2_param', param =self.s2_unconstr)

 ### Optimizers
 self.lbfgs_optimizer = torch.optim.LBFGS(params = self.model.parameters(), lr = 0.001,max_iter = 500)
 self.adam_optimizer = torch.optim.Adam(params = self.model.parameters(), lr = 0.001)

 #### Simulation Fixed parameters
 patient_data, sim_data, vref , qref = data
 self.pdat = patient_data

 self.Q_ref = qref
 self.Qinj_ref = 162/6500*self.Q_ref

 self.V_ref = torch.tensor(vref, dtype= torch.float)
 self.mc, self.qc =self.m_inj(np.linspace(0,100,nde))

 # self.Q = Q_ref + qc
 # self.Q_inj = Qinj + qc
 self.PS = 10

 ### Initialize data

 d_ids = np.arange(start=0, stop=len(sim_data[0]), step=len(sim_data[0])//nde)

 s_data ={}
 for i,d in enumerate(sim_data[1:]/HU):
 s_data[i] = torch.tensor(d[d_ids], dtype=torch.float).reshape(-1,1)

 self.maxes ={i:max(d) for i,d in s_data.items()}
 self.mins = {i:min(d) for i,d in s_data.items()}

 if gamma: ## Using a gamma variate fit of data at end-compartment instead of pure data-points
 popt, pcov = curve_fit(self.scaled_gamma, patient_data[0], patient_data[1], bounds = ((1000,1,1),(10000,10,10)))
 self.c_patient = torch.tensor(self.scaled_gamma(np.linspace(0,100,100),popt[0],popt[1], popt[2]), dtype=torch.float).reshape(-1,1)
 self.t_patient = torch.linspace(0,100,100).reshape(-1,1)

 else:
 self.c_patient = torch.tensor(patient_data[1], dtype = torch.float).reshape(-1,1)
 self.t_patient = torch.tensor(patient_data[0], dtype=torch.float).reshape(-1,1)

 self.c_patient_max = max(self.c_patient)
 self.c_patient_min = min(self.c_patient)
 self.c_patient_norm = (self.c_patient - self.c_patient_min)/(self.c_patient_max-self.c_patient_min)

 #Constrain parameters to be in range
 @property
 def s1_param(self):
 return self.s1_unconstr

100 Appendix B. Python Code

 @property
 def s2_param(self):
 return self.s2_unconstr

 def model_call(self,x):
 #return torch.abs(self.model(x))
 return self.model(x)

 #------------- Gamma variate
 def scaled_gamma(self, x,c, k, theta):
 frac = 1/(gamma(k)*theta**(k))
 return c*frac*x**(k-1)*np.exp(-(x/theta))

 # ------------
 def m_inj(self, t,ti=[0,3.33,3.33,6.67,6.67],qi=[6,6,6,6,0],ci=[350,350,0,0,0]):
 ti=np.array(ti)
 qi=np.array(qi)
 ci=np.array(ci)
 m = qi*ci
 return torch.tensor(np.interp(t,ti,m), dtype=torch.float).reshape(-1,1), torch.tensor(np.interp(t,ti,qi), dtype = torch.float).reshape(-1,1)

 def normalize(self, id, unnormed):
 return (unnormed - self.mins[id])/(self.maxes[id]- self.mins[id])

 def un_normalize(self, id, normed):
 return normed*(self.maxes[id] -self.mins[id])+ self.mins[id]

 def wrap_grad(self, f,x):
 return torch.autograd.grad(f,x,
 grad_outputs=torch.ones_like(x),
 retain_graph=True,
 create_graph=True)[0]

 def de_loss(self):
 pred = self.model_call(self.domain)
 cs = [x.reshape(-1,1) for x in torch.unbind(pred, dim =1)]
 dcs =[self.wrap_grad(c, self.domain) for c in cs]
 cs_unnormed = [self.un_normalize(i,d) for i,d in enumerate(cs)]

 c0,c1,c2,c3,c4,c5,c6,c7 = cs_unnormed
 dc0,dc1,dc2,dc3,dc4,dc5,dc6,dc7 = dcs

 Q = self.Q_ref*self.s1_param+ self.qc
 Q_inj = 162/6500*self.Q_ref*self.s1_param + self.qc
 V = self.V_ref*self.s2_param

 z0 = dc0 - (self.mc -(Q_inj*c0))/(V[0]*(self.maxes[0]- self.mins[0]))
 z1 = dc1 - ((Q_inj)*c0-Q*c1)/(V[1]*(self.maxes[1]- self.mins[1]))
 z2 = dc2 - (Q*c1-Q*c2)/(V[2]*(self.maxes[2]- self.mins[2]))
 z3 = dc3 - (Q*c2-Q*c3-self.PS*Q*(c3-c4))/(V[3]*(self.maxes[3]- self.mins[3]))
 z4 = dc4 - (self.PS*Q*(c3-c4))/(V[4]*(self.maxes[4]- self.mins[4]))
 z5 = dc5 - (Q*c3-Q*c5)/(V[5]*(self.maxes[5]- self.mins[5]))
 z6 = dc6 - (Q*c5-Q*c6)/(V[6]*(self.maxes[6]- self.mins[6]))
 z7 = dc7 - (Q*c6-Q*c7)/(V[7]*(self.maxes[7]- self.mins[7]))

 # z = (1/11111111)*(1e7*torch.mean(z0**2)+1e6*torch.mean(z1**2)+ 1e5*torch.mean(z2**2) + 1e4*torch.mean(z3**2) /
 # 1e3*torch.mean(z4**2) + 1e2*torch.mean(z5**2) + 1e1*torch.mean(z6**2) + 1e0*torch.mean(z7**2))

 weights = [1,1,1,1,1,1,1,1]

 zs = [torch.mean(z0**2), torch.mean(z1**2), torch.mean(z2**2) , torch.mean(z3**2) /
 torch.mean(z4**2) , torch.mean(z5**2) , torch.mean(z6**2) , torch.mean(z7**2)]

 z = sum([w*l for w,l in zip(zs,weights)])*(1/(sum(weights)))

 init_cond = torch.mean(pred[0]**2)

 return init_cond + z

 def data_loss(self):
 c1,c2,c3,c4,c5,c6,c7,c8 = torch.unbind(self.model_call(self.t_patient), dim =1)
 return torch.mean((c8.reshape(-1,1) - self.c_patient_norm)**2)

 def combined_loss(self):
 return self.de_loss() + self.data_loss()

 def plot_preds(self):
 pred = self.model_call(self.domain)
 cs = [x for x in torch.unbind(pred, dim =1)]
 for i,c in enumerate(cs[1:]):
 plt.plot(self.domain.detach(),self.un_normalize(i+1,c.detach())*HU, label = f'c {i+2}')

 #plt.scatter(self.pdat[0], self.pdat[1])
 plt.grid()
 plt.legend()

 def lbfgs_train(self):
 self.model.train()
 for epoch in range(self.epochs):
 def closure():
 self.lbfgs_optimizer.zero_grad()
 loss = self.combined_loss()
 loss.backward()
 return loss
 self.lbfgs_optimizer.step(closure=closure)
 print(f'Epoch {epoch}, training loss: {self.combined_loss()}')
 self.plot_preds()

 def adam_train(self):
 steps = 1000
 for epoch in range(self.epochs):
 for step in range(steps):
 def closure():
 self.adam_optimizer.zero_grad()
 loss = self.combined_loss()
 loss.backward()
 return loss
 self.adam_optimizer.step(closure=closure)
 print(f'Epoch {epoch}, training loss: {self.combined_loss()}, s1 {self.s1_param} S2: {self.s2_param} Q: {self.Q_ref*self.s1_param*60}')
 self.plot_preds()

In []: class b8_pinn_noparams(blood_8pinn):
 def __init__(self, epochs, data, nde= 100, gamma = False):
 super().__init__(epochs, data, nde= 100, gamma= gamma)
 self.const = torch.tensor([1.], dtype=torch.float)

 @property
 def s2_param(self):
 return self.const

 @property
 def s1_param(self):
 return self.const

class b8_pinn_sQ(blood_8pinn):
 def __init__(self, epochs, data, nde= 100, gamma = False):
 super().__init__(epochs, data, nde= 100, gamma = gamma)

Appendix B. Python Code 101

Patient 1

Patient 2

Patient 3

 self.const = torch.tensor([1.], dtype=torch.float)

 @property
 def s1_param(self):
 return self.const

class b8_pinn_sV(blood_8pinn):
 def __init__(self, epochs, data, nde= 100, gamma = False):
 super().__init__(epochs, data, nde= 100, gamma = gamma)
 self.const = torch.tensor([1.], dtype=torch.float)

 @property
 def s2_param(self):
 return self.const

In []: testdata = (patient4 ,p4_sim, vref4, qref4)

inst = blood_8pinn(epochs=20, data=testdata, gamma=False)

In []: p1data = (patient1, p1_sim, vref1, qref1)

print('Patient 1 s1, and s2')
p1_all_params= blood_8pinn(epochs=20, data = p1data)
p1_all_params.adam_train()

In []: print('Patient 1 s1, and s2, gamma fit')
p1_all_params_gamma = blood_8pinn(epochs=20, data = p1data, gamma=True)
p1_all_params_gamma.adam_train()

In []: print('Patient 1 s1')
p1_sq = b8_pinn_sQ(epochs=20, data = p1data)
p1_sq.adam_train()

In []: print('Patient 1 s1, gamma fit')
p1_sq_gamma = b8_pinn_sQ(epochs=20, data = p1data, gamma = True)
p1_sq_gamma.adam_train()

In []: print('Patient 1, s2')
p1_sv = b8_pinn_sV(epochs=20, data = p1data)
p1_sv.adam_train()

In []: print('patient 1, s2, gamma fit')
p1_sv_gamma = b8_pinn_sV(epochs=20, data = p1data, gamma = True)
p1_sv_gamma.adam_train()

In []: print('patient 1, no params')
p1_none =b8_pinn_noparams(epochs=20, data = p1data)
#p1_none.adam_train()

p1_none.plot_preds()
t_ms = [p1_sim[0][np.argmax(c)] for c in p1_sim[1:]]
maxes =[max(c) for c in p1_sim[1:]]

d = 2
for i,p in zip(t_ms[1:], maxes[1:]):
 plt.scatter(i,p, marker='x', label =f'c{d} true peak')
 d+=1
plt.legend()

In []: preds = p1_none.model_call(p1_none.domain).detach().numpy()

t_mspred = [preds.T[0][np.argmax(c)] for c in preds.T[1:]]
pred_maxes =[max(c) for c in preds.T[1:]]

In []: print('patient 1 , no params, gamma fit')
p1_none_gamma = b8_pinn_noparams(epochs=20, data = p1data, gamma=True)
p1_none_gamma.adam_train()

#p1_none_gamma.plot_preds()

d = 2
for i,p in zip(t_ms[1:], maxes[1:]):
 plt.scatter(i,p, marker='x', label =f'c{d} true peak')
 d+=1
plt.legend()

In []: p2data = (patient2, p2_sim, vref2, qref2)

#1
print('Patient 2 s1, and s2')
p2_all_params= blood_8pinn(epochs=20, data = p2data)
p2_all_params.adam_train()

In []: #2
print('Patient 2 s1, and s2, gamma fit')
p2_all_params_gamma = blood_8pinn(epochs=20, data = p2data, gamma=True)
p2_all_params_gamma.adam_train()

In []: #3
print('Patient 2 s1')
p2_sq = b8_pinn_sQ(epochs=20, data = p2data)
p2_sq.adam_train()

In []: #4
print('Patient 2 s1, gamma fit')
p2_sq_gamma = b8_pinn_sQ(epochs=20, data = p2data, gamma = True)
p2_sq_gamma.adam_train()

In []: #5
print('Patient 2, s2')
p2_sv = b8_pinn_sV(epochs=20, data = p2data)
p2_sv.adam_train()

In []: #6
print('patient 2, s2, gamma fit')
p2_sv_gamma = b8_pinn_sV(epochs=20, data = p2data, gamma = True)
p2_sv_gamma.adam_train()

In []: #7
print('patient 2, no params')
p2_none =b8_pinn_noparams(epochs=20, data = p2data)
p2_none.adam_train()

In []: #8
print('patient 2 , no params, gamma fit')
p2_none_gamma = b8_pinn_noparams(epochs=20, data = p2data, gamma=True)
p2_none_gamma.adam_train()

In []:

102 Appendix B. Python Code

Patient 4

Patient 5

In []: p3data = (patient3, p3_sim, vref3, qref3)

#1
print('Patient 3 s1, and s2')
p3_all_params= blood_8pinn(epochs=20, data = p3data)
p3_all_params.adam_train()

In []: #2
print('Patient 3 s1, and s2, gamma fit')
p3_all_params_gamma = blood_8pinn(epochs=20, data = p3data, gamma=True)
p3_all_params_gamma.adam_train()

In []: #3
print('Patient 3 s1')
p3_sq = b8_pinn_sQ(epochs=20, data = p3data)
p3_sq.adam_train()

In []: #4
print('Patient 3 s1, gamma fit')
p3_sq_gamma = b8_pinn_sQ(epochs=20, data = p3data, gamma = True)
p3_sq_gamma.adam_train()

In []: #5
print('Patient 3, s2')
p3_sv = b8_pinn_sV(epochs=20, data = p3data)
p3_sv.adam_train()

In []: #6
print('patient 3, s2, gamma fit')
p3_sv_gamma = b8_pinn_sV(epochs=20, data = p3data, gamma = True)
p3_sv_gamma.adam_train()

In []: #7
print('patient 3, no params')
p3_none =b8_pinn_noparams(epochs=20, data = p3data)
p3_none.adam_train()

In []: #8
print('patient 3 , no params, gamma fit')
p3_none_gamma = b8_pinn_noparams(epochs=20, data = p3data, gamma=True)
p3_none_gamma.adam_train()

In []:

In []: p4data = (patient4, p4_sim, vref4, qref4)

#1
print('Patient 4 s1, and s2')
p4_all_params= blood_8pinn(epochs=20, data = p4data)
p4_all_params.adam_train()

In []: #2
print('Patient 4 s1, and s2, gamma fit')
p4_all_params_gamma = blood_8pinn(epochs=20, data = p4data, gamma=True)
p4_all_params_gamma.adam_train()

In []: #3
print('Patient 4 s1')
p4_sq = b8_pinn_sQ(epochs=20, data = p4data)
p4_sq.adam_train()

In []: #4
print('Patient 4 s1, gamma fit')
p4_sq_gamma = b8_pinn_sQ(epochs=20, data = p4data, gamma = True)
p4_sq_gamma.adam_train()

In []: #5
print('Patient 4, s2')
p4_sv = b8_pinn_sV(epochs=20, data = p4data)
p4_sv.adam_train()

In []: #6
print('patient 4, s2, gamma fit')
p4_sv_gamma = b8_pinn_sV(epochs=20, data = p4data, gamma = True)
p4_sv_gamma.adam_train()

In []: #7
print('patient 4, no params')
p4_none =b8_pinn_noparams(epochs=20, data = p4data)
p4_none.adam_train()

In []: #8
print('patient 4 , no params, gamma fit')
p4_none_gamma = b8_pinn_noparams(epochs=20, data = p4data, gamma=True)
p4_none_gamma.adam_train()

In []:

In []: p5data = (patient5, p5_sim, vref5, qref5)

#1
print('Patient 5 s1, and s2')
p5_all_params= blood_8pinn(epochs=20, data = p5data)
p5_all_params.adam_train()

In []: #2
print('Patient 5 s1, and s2, gamma fit')
p5_all_params_gamma = blood_8pinn(epochs=20, data = p5data, gamma=True)
p5_all_params_gamma.adam_train()

In []: #3
print('Patient 5 s1')
p5_sq = b8_pinn_sQ(epochs=20, data = p5data)
p5_sq.adam_train()

In []: #4
print('Patient 5 s1, gamma fit')
p5_sq_gamma = b8_pinn_sQ(epochs=20, data = p5data, gamma = True)
p5_sq_gamma.adam_train()

In []: #5
print('Patient 5, s2')
p5_sv = b8_pinn_sV(epochs=20, data = p5data)
p5_sv.adam_train()

In []: #6
print('patient 5, s2, gamma fit')
p5_sv_gamma = b8_pinn_sV(epochs=20, data = p5data, gamma = True)
p5_sv_gamma.adam_train()

In []: #7

Appendix B. Python Code 103

Patient 6

print('patient 5, no params')
p5_none =b8_pinn_noparams(epochs=20, data = p5data)
p5_none.adam_train()

In []: #8
print('patient 5 , no params, gamma fit')
p5_none_gamma = b8_pinn_noparams(epochs=20, data = p5data, gamma=True)
p5_none_gamma.adam_train()

In []:

In []: p6data = (patient6, p6_sim, vref6, qref6)

#1
print('Patient 6 s1, and s2')
p6_all_params= blood_8pinn(epochs=20, data = p6data)
p6_all_params.adam_train()

In []: #2
print('Patient 6 s1, and s2, gamma fit')
p6_all_params_gamma = blood_8pinn(epochs=20, data = p6data, gamma=True)
p6_all_params_gamma.adam_train()

In []: #3
print('Patient 6 s1')
p6_sq = b8_pinn_sQ(epochs=20, data = p6data)
p6_sq.adam_train()

In []: #4
print('Patient 6 s1, gamma fit')
p6_sq_gamma = b8_pinn_sQ(epochs=20, data = p6data, gamma = True)
p6_sq_gamma.adam_train()

In []: #5
print('Patient 6, s2')
p6_sv = b8_pinn_sV(epochs=20, data = p6data)
p6_sv.adam_train()

In []: #6
print('patient 6, s2, gamma fit')
p6_sv_gamma = b8_pinn_sV(epochs=20, data = p6data, gamma = True)
p6_sv_gamma.adam_train()

In []: #7
print('patient 6, no params')
p6_none =b8_pinn_noparams(epochs=20, data = p6data)
p6_none.adam_train()

In []: #8
print('patient 6 , no params, gamma fit')
p6_none_gamma = b8_pinn_noparams(epochs=20, data = p6data, gamma=True)
p6_none_gamma.adam_train()

In []:

104 Appendix B. Python Code

	Abstract
	Acknowledgements
	Introduction
	Problem formulation

	Background
	State of the art
	Machine learning
	Numerical methods and differential equations
	Applications, why use a PiNN?

	Theory
	Regression analysis
	The multilayer perceptron model
	Simple feed forward NN example
	Training a Neural Network
	Gradient decent regression
	Algorithm

	The backpropagation algorithm
	Considerations for neural network training
	Feature space and activation functions
	Optimizer algorithms

	Regularization
	Runge-Kutta schemes
	Explicit RK
	Implicit RK

	Inverse problems
	Physics informed neural networks
	Neural networks as solution models of differential equations
	The PiNN methodology
	Continuous time

	Discrete time PiNN
	Parameter discovery
	Continuous time PiNN
	Discrete time PiNN

	Compartment models
	General multi-compartment models
	Numerical solutions to compartment differential equations

	Implementation and Case studies
	Coding and frameworks
	Overall PiNN implementation structure
	Case one PiNN as neural solver
	Problem statement
	Case 1 Solution

	Case two Lotka Volterra equations
	LV discrete time PiNN
	Implementation

	 Case three the SIR model
	Problem statement
	PyTorch implementation
	10 Random Sampled Data-Points, 100 Domain Points

	Performance testing scheme
	Created simulation data-sets

	Performance Testing Results
	Round 1
	Round 2
	Rounds 3 - 5
	Rounds 6 and 7 noisy data

	Case 2 testing discussion
	SIR neural solver difficulties

	Biomedical compartment model: test bolus injection
	Circulatory compartment models
	Model subsystem
	Test bolus simulation
	Gamma variate
	Problem formulation
	How to apply PiNN?

	Strategies and implementation
	Strategy 1
	Strategy 2

	Testing Schemes
	Results
	Strategy 1
	Strategy 2
	Plots

	Case four summary and discussion
	Methodology vs implementation

	Conclusion
	Case-problems
	When is PiNN most sensible?

	Conclusion

	Bibliography
	SIR Test rounds plots and tables 3-5, 7
	Python Code

