

Faculty of Science and Technology

MASTER’S THESIS

Study program/ Specialization:

Spring semester, 20......

Open / Restricted access

Writer:

…………………………………………

(Writer’s signature)
Faculty supervisor:

External supervisor(s):

Thesis title:

Credits (ECTS):

Key words:

 Pages: …………………

 + enclosure: …………

 Stavanger, ………………..
 Date/year

Front page for master thesis
Faculty of Science and Technology

Decision made by the Dean October 30th 2009

Computer Science
Data Science

June 15 2022

79

Vinay Jayarama Setty

Ole Petter Nilsen

30

Code included in PDF

22

Conversational AI for Serving Fact-Checks

Conversational AI, Fact-Checks

Faculty of Science and Technology
Department of Electrical Engineering and Computer Science

Conversational AI for Serving
Fact-Checks

Master’s Thesis in Computer Science
by

Ole Petter Nilsen

Internal Supervisors

Vinay Jayarama Setty

June 15, 2022

Abstract

The purpose of this thesis was to create a conversational AI for serving fact-checks, using
a collection of already existing fact-checking articles. The conversational AI uses a hybrid
system, combining both a question answering agent, chitchat agent, and multiple non-AI
based skills to perform the task.

The program created consists of a user interface, broker, and seven different skills. For
the implementation multiple existing pre-trained deep learning models were used, where
many are based on the Transformer architecture. Already fine-tuned versions of these
models were used. The conversational AI can present fact-checking articles in multiple
ways, fact-check a claim presented, and has some multi-turn capabilities.

The result is a functional conversational AI which is capable of serving fact-checks from
a collection of fact-checking articles. Although the conversational AI is functional, there
are several issues that should be addressed, and further work to be done.

Acknowledgements

I would like to thank my supervisor Vinay Setty for his guidance and many suggestions
regarding the project. His interest in the project helped with keeping motivation
throughout the semester. Additionally, I would thank Factiverse for hosting the article
collection, and lending their AI. I would also like to thank Mediafutures for showing
interest in the project, and hosting the AI. Lastly, I would like to thank everyone who
provided feedback on the AI.

iv

Contents

Abstract iii

Acknowledgements iv

Abbreviations ix

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Definition . 2
1.3 Use Cases/Examples . 2
1.4 Challenges . 3
1.5 Contributions . 3
1.6 Outline . 3

2 Related Work 5
2.1 Conversational AI . 5

2.1.1 Question answering . 5
2.1.2 Chatbot . 6
2.1.3 Hybrid System . 6

2.2 IR . 6
2.2.1 Text Preprocessing . 6
2.2.2 Inverted Index . 7
2.2.3 BM25 . 7
2.2.4 Elasticsearch . 7
2.2.5 Initial Retrieval and Re-Ranking 8

2.3 NLP . 8
2.3.1 Transformer Models . 8
2.3.2 NER . 11
2.3.3 Coreference resolution . 11
2.3.4 Intent classification . 12

2.4 Fine-tuning Datasets . 12
2.4.1 SQuAD . 13
2.4.2 MS MARCO . 13
2.4.3 PERSONA-CHAT . 13

v

2.4.4 CNN/Daily Mail . 13
2.5 Spelling Correction . 13
2.6 Fact-checks . 14

3 Design and Architecture 15
3.1 Introduction . 15
3.2 Existing Approaches . 15
3.3 Proposed Solution . 16

3.3.1 User Interface . 18
3.3.2 Broker . 20
3.3.3 Skills . 21
3.3.4 Summary . 24
3.3.5 Feedback . 25
3.3.6 Storage . 26

4 Implementation 27
4.1 Introduction . 27
4.2 User Interface . 27

4.2.1 Fontend . 27
4.2.2 Backend . 30

4.3 Broker . 30
4.3.1 Query Preprocessing . 31
4.3.2 Topic identification . 31
4.3.3 Intent detection . 32

4.4 Skills . 34
4.4.1 Summaries . 34
4.4.2 Random . 36
4.4.3 Fact-Checking Skill . 37
4.4.4 Chitchat Skill . 39
4.4.5 Count Articles Skill . 40

4.5 User Feedback . 41
4.6 Security . 42

5 Experimental Evaluation 43
5.1 Experimental Setup and Data Set . 43
5.2 Experimental Results . 43

6 Discussion 47
6.1 Introduction . 47
6.2 Ratings . 47
6.3 Conveying the Purpose of the AI . 48
6.4 Broker Components . 48

6.4.1 Intent classifier . 48
6.4.2 NER . 48

6.5 Fact-check skill . 49

7 Conclusion and Future Directions 51
7.1 Conclusion . 51

7.2 Future Directions . 52

List of Figures 53

List of Tables 57

A Instructions to Run System 59

B Attachments 61

Bibliography 63

Abbreviations

AI Artificial Intelligence

AJAX Asynchronous Javascript And XML

API Application Programming Interface

BM25 Best Matching 25

CDN Content Delivery Network

CSS Cascade Style Sheets

DBMS DataBase Management System

HTML HyperText Markup Language

IR Information Retrieval

JS JavaScript

JSON JavaScript Object Notation

MRC Machine Reading Comprehension

NER Named Entity Recognition

NLP Natural Language Processing

NLU Natural Language Understanding

REST REpresentational State Transfer

URL Uniform Resource Locator

SQL Structured Query Language

ix

Chapter 1

Introduction

In today’s society the rate at which information spreads has rapidly increased. Firstly
with the development of the internet which made information easily accessible for anyone.
Secondly with social media where information can be spread even faster. There is a catch
though, anyone can author this information. This causes a problem since the information
provided might be false. That be for financial gain, political gain, just for fun, and many
other reasons. To combat this spread of false information, multiple fact-checking websites
have been created, such as Politifact and Snopes. They check factual statements with
credible sources and provide a verdict along with the factual information. Although
these fact-checking sites are rising in popularity, false information are still being spread.
The objective of this thesis is to provide a new way of accessing the fact-checks provided
by these websites, namely a conversational AI.

1.1 Motivation

The motivation for this thesis is to improve the accessibility of factual information. The
way factual checks are presented today provides a barrier for some people. To check
a statement, one needs to visit the website focused on that specific type of topic and
search for the factual claim. Having a fact-checking as easily accessible as telling your
phones virtual assistant to call your friend, could help breaking down this barrier. An
example of the use of false information for political gain is the Cambridge Analytica
scandal. There false information was used to skew voters towards voting for a certain
party, as is told by a former employee in an interview with BBC [1].

It is also a technically interesting problem. As many components are involved for the
creation of a conversational AI, where multiple parts can best be solved with deep
learning.

1

Abbreviations Chapter 1 Introduction

1.2 Problem Definition

This thesis focuses on presenting already existing fact-checking articles through a conver-
sational AI. The problem can be broken into the following main task:

• Create a conversational AI that can serve fact-checks.

This objective can be broken into the following subtasks:

• The conversational AI should be able to answer the question based on the informa-
tion present in the collection.

• The conversational AI should be able to serve the fact-checks in multiple ways.

• The conversational AI should have an intuitive use interface.

• The conversational AI should be able to handle multi-turn questions.

• The conversational AI should be human like in the conversation.

The conversational AI should be able to present fact-checks of interest to the end user,
and the conversational capabilities of the AI should extend beyond a single question and
response.

1.3 Use Cases/Examples

The functioning of the program is best shown through a dialogue between the AI and
the user, as is shown in Figure 1.1.

Turn Speaker Message

1 User Hi
Bot Hello, how can I help?

2 User is the earth flat?
Bot No, the earth is not flat.

3 User Okey, what shape is it then?
Bot The earth is round.

4 User Thank you.
Bot You’re welcome.

Table 1.1: Example conversation between the AI and end user.

A common use case for the conversational AI would be: A person sees a post on social
media that seems questionable. The person can then ask the conversational AI about
this claim and find out if the claim is correct.

Abbreviations 3

1.4 Challenges

There are multiple challenges present for the task at hand. Some can be solved using
already existing solutions, While some are new, and therefore need a new solution.
Although many coversational AIs exist, none exist that are based on using a collection
of available fact-checking articles. Therefore creating such a Conversational AI is a
challenge in of itself.

1.5 Contributions

The contributions of this thesis is the creation of a conversational AI, which can serve
fact-checks based on a collection of preexisting fact-checking articles.

1.6 Outline

The rest of the thesis is structured accordingly:

Chapter 2 introduces the concepts and models used in the creation of the conversational
AI.

Chapter 3 presents the architecture and design decisions made, to create the conversational
AI.

Chapter 4 presents the implementation of the architecture established in the previous
chapter.

Chapter 5 presents the results from the feedback collected.

Chapter 6 discusses the results and the known limitations of the implemented conversa-
tional AI.

Chapter 7 presents a conclusion and further work suggestions.

Chapter 2

Related Work

2.1 Conversational AI

Conversational AI is an AI able to converse with a human. This could be day-to-day
conversations, answering questions , assisting with some task or anything in between.
There have been a large improvement in this field recently, due to the release of large
datasets and progress in deep learning for multiple IR and NLP tasks. The conversations
and tasks a conversational AI might need to handle can differ. Gao et al. [2] proposed
to categorize conversational systems into three categories: Question answering agents,
task-oriented dialogue agents, and chatbots. Task-oriented dialogue agents will not be
mentioned, as they are not relevant for this project.

2.1.1 Question answering

This paragraph is based on Gao et al. [2] and their explanation of a question answering
agent. An question answering agent provides an answer to a user query. This answer
should be concise and direct. To generate this answer the agent will use a data source
such as a text collection. There are two types of question answering agents, KB-QA
agents, and text-QA agents. The former uses a knowledge base to create the answer,
and the latter uses a text collection. Machine Reading Comprehension is the task of
answering a question based on a provided passage. Such a model is the core of a text-QA
agent.

In the case of this project the data source is a semi-structured text collection, so a
text-QA agent will be made. The MRC model will be explained in detail in Section 2.3.1,
and how to arrive at the passage for the MRC model will be explained in Section 2.2.

5

Abbreviations Chapter 2 Related Work

2.1.2 Chatbot

This paragraph is based on Gao et al. [2] and their explanation of a social bot. A social
bot should be able to hold a conversation with a user both seamlessly and appropriately.
In recent years end-to-end approaches using the sequence-to-sequence framework [3] has
been used. An end-to-end approach means whole response generation is handled by the
model.

Long short-term memory models [4] has been a popular choice for creating such end-to-
end models. But much of this popularity has shifted towards pretrained transformer
models [5]. More details on transformer models, and how they can be used as a social
chatbot, is provided in section 2.3.1.

2.1.3 Hybrid System

When developing a Conversational AI on might want an AI that can both perform tasks
and answer questions, or small talk and answer questions. To do this one could use a
hybrid system, where a broker would handle the overall conversation, and multiple skills
would be responsible for handling an individual turn [6].

2.2 IR

The field of study focused on retrieving relevant information is called information retrieval.
A basic example of IR is: looking up a phone number of a person in a Telephone directory.
A common IR tool used today is a search engine. IR is not limited to text, and does also
concern other media. In the case of this project the interest is in arriving at the right
fact-checking article, which contains the answer to the end users question.

2.2.1 Text Preprocessing

Text preprocessing is the process of preparing the input query for use in retrieval. There
are many ways a preprocessing pipeline can be designed, depending on the collection at
hand, and the retrieval model to be used. Stopwords can be removed, which are words
of little meaning to the query. A stopword list can be designed in multiple ways, but it
is common to include words such as: "the", "and", and "a". It is also common to tokenize
the words. Tokenizing a sentence means splitting the query into tokens, where tokens
can be a character, word, or what suits the task at hand. This means the tokenization

Abbreviations 7

process can be as simple as to splitting a query into tokens on every space. It could also
involve a more complex technique to create lexical correct tokens.

2.2.2 Inverted Index

An inverted index is used to find documents based on the words it contains. Commonly
words are kept as keys and documents as values for the index. Other information such as
the frequency of the word in the document, can also be stored. The reason for creating
such an index is for use in a ranking function. The drawback of using an inverted index
is the cost of creating and maintaining such an index. The advantage is in removing the
need for going through the whole collection of documents when ranking, thus decreasing
the computational cost of ranking significantly. An example of how an inverted might
look is shown in Table 2.1.

Key Value
also document 1, document 2, document 3

theme document 2, document 4
world document 1
zebra document 4

Table 2.1: Example of an inverted index.

2.2.3 BM25

Best Matching 25 is a ranking function commonly used in IR. It is bag-of-word based,
meaning it uses the words and their frequency to calculate the score. The use of BM25
in this project is for initial document retrieval.

2.2.4 Elasticsearch

Elasticsearch is a search and analytics engine [7]. It supports both structured and
unstructured data [7]. Elasticsearch handles the storage of the data, and creates an
inverted index. It also has BM25 built in for ranking the documents. To interact with
Elasticsearch it provides a REST API. The collection of fact-checking articles used in
this project were provided through an Elasticsearch instance. This instance, with the
articles, was set up by the supervisor.

Abbreviations Chapter 2 Related Work

2.2.5 Initial Retrieval and Re-Ranking

In IR it is common to divide the ranking process in two. Better performing scoring
models or functions, usually require more computing power. Therefore an initial retrieval
is first done over the whole collection. From this initial retrieval a more advanced model
is used to score the top n documents again. In short doing an initial retrieval, and then
re-ranking, shortens the computing time used to retrieve top n documents.

2.3 NLP

Natural language processing is the field focused on processing natural language for
computational analysis. The meaning of this is to find some information in the natural
language presented.

2.3.1 Transformer Models

Vaswani et al. [5] and the title of their article "Attention Is All You Need", which
introduces the Transformer network architecture, summarizes the the architecture well.
The architecture has been shown to perform well on many different NLP tasks [5].
Another advantage is the possibility of parallelization [5]. Multiple different models based
on this architecture has been created. In this project some of these models will be used
to solve many of the NLP tasks present, for creating the conversational AI.

Tokenization

Before using a Transformer model the input text must be processed into tokens, which
the model can work with. These tokens are translated into token identification numbers.
A corpus is used to track the translation from word tokens to integer tokens. As for the
actual word tokens this can be as simple as the tokenization mentioned in 2.2.1. Most of
the Transformer models use a more advanced form of tokenization. One such tokenizer is
WordPiece [8], which BERT [9] uses. WordPiece is a balance between word an character
tokens, which results in improved accuracy [8]. To distinguish different parts of the input
it also uses special tokens. Such tokens could be "[CLS]" and "[SEP]" which BERT uses,
for classification and separating input respectively [9]. The naming of these tokens vary
between the different tokenizers.

Abbreviations 9

Huggingface’s Transformers

Huggingface’s Transformers library [10] is a library making pretrained Transformer
models easily available for use. The library provides an API for use of the models. A
website is used for browsing the different models available, and the models can also be
tested in on the website. This was used, both to explore models to use, and for simple
download and use of multiple of the models in the project. The library also provides the
appropriate tokenizer for the models, where the function also handles the insertion of
special tokens where they are need.

BERT

Bidirectional Encoder Representations from Transformers [9], as the name implies is
designed to capture the context of a word from both directions. BERT is pretrained
on BookCorpus [11] and English Wikipedia, using two different tasks, Masked LM and
next sentence prediction [9]. Along with the token embedding, a segment and position
embedding is provided [9].

To rank passages using BERT, two passages are input to the model. The first passage
being the query in this case, and the second being the passage of the document to score.
On top of the "[CLS]" there is an output layer, which can be used to score relevancy of
the passage [9]. The model used in this project was fine-tuned by Reissel and Manaj
[12], they state that they finetuned using the method developed by Nogueira and Cho
[13]. This method by Nogueira and Cho [13] achieved state of the art performance on
the TREC-CAR dataset, when released in 2020 [13].

The solve the MRC task BERT fine-tuned on SQuAD [14] is used, which was released by
Devlin et al. [9], the creators of BERT. This paragraph is based on Devlin et al. [9] and
their description of using BERT for question answering. The question and the passage
containing the answer is provided as input, embedded as two different segments. As a
start and end vector was introduced in training, each token can be scored by taking the
dot product of theses vectors and the tokens. Each token now has a start and end score.
Candidate spans can be created by adding the score of a start and token together, where
the end token comes after the start token. The highest scoring candidate pair is chosen
as the answer. The model is also trained, to know when an answer is not present in the
passage. In that case the "[CLS]", which is always the first token, will be highest scoring,
for both start and end. A simplified example of how BERT for question answering works
is shown in Figure 2.1. Keep in mind the model works on token ids and not words, and
a question would also be present.

Abbreviations Chapter 2 Related Work

Span

Figure 2.1: A simplified example of how BERT is used for QA, where the posed question
could be: is the earth flat? The answer would be the marked span.

GPT-2

GPT-2 created by Radford et al. [15], is a large transformer model. Their largest
model contains 1.5B parameters, and they have shown that increasing the amount of
parameters result in a better performing model [15]. To train the model they used a
dataset containing millions of webpages, which they named WebText [15].

It should be mentioned that a newer generation, namely GPT-3 [16], has been released.
This has 175B parameters, with strong performance on multiple NLP datasets [16]. Due
to the large size it would require too much computing resources to use this model.

In this project the interest is in using the model for chitchat. To be able to provide a
persona for the AI, PersonaGPT [17] is used. This model is built on the DialoGPT [18],
medium version, which in turn is based on GPT-2 [17, 18]. The model is finetuned on
the PERSON-CHAT dataset [19] which enables the use of a persona for the chitchat
model [17].

BART

BART, introduced by Lewis et al. [20], is a denoising autoencoder, which combines the
bidirertional encoder of BERT, and the left-to-right decoder of GPT [20]. To train the
model they used five different methods, where the goal of the methods is to corrupt
the document, the reconstruction loss is then used for optimization [20]. For use in
generating summaries Lewis et al. [20] used the CNN/Daily Mail dataset [20].

Abbreviations 11

Summaries can be either abstractive, or extractive. Where abstractive summaries
generates new text, while extractive summarizes by extracting the key sentences from
the text. The summaries created by the BART model, finetuned on the CNN/Daily
Mail dataset, tend to be more extractive [20]. This is due to the summary sentences
in the finetuning dataset being similar to the sentences contained in the text to be
summarized [20].

It should be mentioned that Zhang et al. [21] created a model, named PEGASUS, for
summarization. This model has better performance than the other models on multiple
summarization datasets [21]. On the CNN/Daily Mail dataset the ROGUE results
between BART and PEGASUS are comparable [21]. The reason for going with BART is
the smaller amount of parameters, where BART has about ten percent more parameters
than BERT (340M parameters), resulting in around 374M parameters [9, 20]. while
PEGASUS has 568M, which is around 52 percent more parameters [21]. The parameter
sizes used here are for the large models. If abstractive summaries were to be used,
PEGASUS would be a better choice, but using a smaller model requires less time, or
computing resources, to generate the summaries. This was prioritized over getting
abstractive summaries.

2.3.2 NER

Named Entity Recognition is the process of finding entities in a text. The entities found
are then grouped into categories, the categories can vary based on NER system used.
Some examples of entities and a category they could be put into is shown in Table 2.2.
For NER in this project, spaCy [22] is used.

Entity Category
Donald Trump Person
Jens Stoltenberg Person
Norway Country
Dollar Money

Table 2.2: Examples of entities and categories for NER.

2.3.3 Coreference resolution

Coreference resolution is the task of resolving coreferences in a text. A coreference is
when a word references another word. An example of a sentence with a coreference and
a resolved coreference is shown in Figure 2.2.

Abbreviations Chapter 2 Related Work

Her name is Annie. She loves to take long walks on the beach.
Her name is Annie. Annie loves to take long walks on the beach.

Figure 2.2: An example of a summary that was created.

To resolve coreferences in this project the end-to-end coreference resolution model
introduced by Lee et al. [23] is used. The implementation used is from the AllenNLP
platform [24].

2.3.4 Intent classification

To classify intent DeepPavlov’s intent catcher [25] is used. This intent catcher uses a
Transformer model to classify the intent [26]. The model has multiple fully connected
layers on top [26]. This is then fitted on Universal Sentence Encoder [27] embeddings [26].

The intent classifier uses regular expressions in the training data to upsample the data [26].
Not much information is provided on how the regular expressions should structured so
this was inferred from their tutorial notebook [28]. This means the description might not
be correct, or lacking, but this worked when creating the training data in this project.
The "|" character is used as an "or" meaning one of the provided text should be selected.
The text which the "or" selection should select between needs to be encapsulated in
parentheses, then encapsulating the whole selection. Any encapsulated text can be set to
optional by providing "{0,1}" after the closing parenthesis. An example of a sentence
with the regular expression, and the resulting sentence is shown in Table 2.3. It is also
possible to nest the rules described, resulting in more advanced data, and therefore more
samples.

Regex data Up-sampled data

not (feeling){0,1}so ((good)|(great))

not feeling so good
not feeling so great
not so good
not so great

Table 2.3: An example of a sentences and the resulting samples.

2.4 Fine-tuning Datasets

While this project uses already trained and fine-tuned models, except the intent classifier,
where the dataset was created and the model fine-tuned on this. The fine-tuning datasets
for the transformer models provides insight to how they were trained to perform the
tasks at hand.

Abbreviations 13

2.4.1 SQuAD

The following information is from Rajpurkar et al. [14], the creators of SQuAD. Short for
Stanford Question Answering Dataset, it consists of over a hundred thousand questions.
The questions were asked by crowdworkers, and the answers are a segment of a passage
from a wikipedia article. A new version of the dataset was released, also containing
questions where no answer exists in the passage.

2.4.2 MS MARCO

The following information is from Nguyen et al. [29], the creators of MS MARCO. MS
MAchine Reading COmprehension dataset is a collection of large dataset containing over
a million questions, taken from the Bing search engine, meaning it is questions posed by
humans. It contains almost nine million passages. And the datasets were created for
use in question answering, MRC, and passage ranking. In this case the interest is in the
dataset made for passage ranking.

2.4.3 PERSONA-CHAT

Zhang et al. [19] addressed the issue of specificity and consistency in personality, for
chitchat models [19]. Along with this they created the dataset PERSONA-CHAT [19].
The data collection consisted of three stages, personas, revised personas, and persona
chat [19]. The result is a dataset containing conversations, based on personas [19].

2.4.4 CNN/Daily Mail

Hermann et al. [30] proposed a new dataset for teaching models reading comprehension.
The dataset was created by collection a large amount of news articles from CNN 1 and
the Daily Mail 2 [30]. Through the use of NER and anonymization algorithms they made
the articles into a dataset containing: context, query, and answer [30].

2.5 Spelling Correction

To correct spelling errors DeepPavlov’s spelling correction model [25] is used. This model
is based on the spelling correction model proposed by Brill and Moore [31] [26]. Their

1https://edition.cnn.com/
2https://www.dailymail.co.uk/home/index.html

Abbreviations Chapter 2 Related Work

model uses a large dictionary of words, and the model is trained to provide the probability
of a word being a word in the dictionary [31].

2.6 Fact-checks

Fact-checks are an important part of this project. As the goal is not for the Conversational
AI to do the fact-checking, but to use existing fact-check to answer questions. These fact-
checks come from multiple sources. The fact-checks were stored in a remote Elasticsearch
instance, which could be accessed through the REST API. This Elasticsearch instance,
with the collection of fact-checks, were provided by the supervisor. The fact-check are
stored in a semi-structured manner. Each fact-checking article is given an identification,
and the content is stored in fields. Each field identifies a specific part of the article. The
fields vary depending on the source it comes from. Some fields are present in all. The
fields present for all articles were focused on in this project. The fields of interest are
listed in Table 2.4, along with a description of the content of the field.

Field name Description
claim The statement which is the claim originating the fact-check.
label The verdict of the claim given by the fact-check. That be true, false,

or mixed. The actual name given for labels vary depending on the
source.

doc The main content of the article.
fact_source The source at which the fact-check comes from.

url The URL that points to the original fact-check article.
summary A summary of the article. Only a few articles had this field populated.

Table 2.4: The fields in the fact-checks collection used.

It should be mentioned that this collection of fact-checking articles is not provided
along with the source code. So to use this Conversational AI one must first create an
Elasticsearch instance. As long as the collection contains the fields listed in Table 2.4,
with the described content, it should work.

The collection of fact-checking articles was set up to update automatically. Therefore
the amount of articles will continuously increase. Thus approximate values will be used,
when addressing amount of articles. With this in mind the collection consist of around
43 000 articles.

Chapter 3

Design and Architecture

3.1 Introduction

This chapter will discuss the design choices made in the creation of the conversational
AI. It will also explain the architecture. Some existing approaches will be mentioned,
before explaining the overall architecture. And then going into details about the different
components.

3.2 Existing Approaches

There exist a large range of Conversational AIs, especially in the commercial scene.
Customer support is one place where it is often used. Many questions are frequently
asked where the tasks or answers can be automated. In this case a Conversational AI
can reduce the need for customer support staff, where they are only need for the tasks
and questions the conversational AI can not answer or solve. Home assistants is another
area where conversational AIs are commonly used. Many of the large tech companies
have their own versions, such as Google’s Google Assistant, Amazon’s Alexa, and Apples
Siri. There are many other commercial areas where a conversational AI might be used,
but these are the ones that most people would be familiar with. Since these approaches
are commercial there exist no literature on their approaches so these can not be used for
reference.

There currently exist no approach on a conversational AI for serving existing fact-checking
articles, to the authors knowledge. This means that there exist no direct comparison to
the conversational AI that will be created here.

15

Abbreviations Chapter 3 Design and Architecture

3.3 Proposed Solution

There are many approaches that would be fitting for a conversational AI that would
serve fact-checks. From the categories mentioned in section 2.1 a question answering
agent would be most fitting. Where the user would ask about a claim and the agent
would respond with an answer about the claim, using the relevant fact-check. A problem
arises with using this approach alone, the conversational AIs capabilities and use case
becomes limited. This was experienced early in the project, where it became obvious
that it is hard to come up with multiple claims on the spot. This limits the use case for
the conversational AI mainly to the following scenario; The end user sees or remembers
a claim they want fact-checked.

Based on the observation mentioned in the previous paragraph. A hybrid system where
multiple agents are combined together could expand the use case of the conversational
AI. Along with the previously proposed agent, an agent for serving a random fact-check
could be added. This would make the Conversational AI usable without needing to have
a claim at hand. Thus the end user could use the conversational AI at any time and not
only when a question comes to mind.

Another problem that arises is overall conversation would not seem natural, as it would
only respond to fact-checking questions or requests for articles. A typical human conver-
sation would incorporate chitchat elements around the actual question and answering
turn. An example of such a conversation is shown in Table 3.1.

Turn Speaker Message

1 Human 1 Hello.
Human 2 Hi, how can I help you?

2 Human 1 Is the earth flat?
Human 2 No, the earth is round.

3 Human 1 Thank you.
Human 2 You’re welcome.

Table 3.1: A conversation with a question and answer turn. Also showing a preceding
and succeeding turn.

It would be natural in a human conversation to also have some chitchat elements in the
same conversation where the question was asked. A solution to handle this would be
to also include a chatbot agent. This hybrid system would then use a broker to control
the overall conversation and choose the appropriate skill. That be chitchat, providing a
random fact-check, or any other skill created. It should be mentioned that there exist
multiple open source frameworks for creating conversational AIs, such as RASA 1 2

1https://rasa.com/
2They have both an Enterprise, and open source solution

Abbreviations 17

and DeepPavlov3. It was decided to not use a specific framework and instead combine
different components from multiple packages to create the Conversational AI, and some
parts come from the DeepPavlov framework. This gives full control over the whole stack
of the conversational AI.

Based on the earlier expressed design needs the following components have to be created:
A user interface, so the end user can interact with the system. A broker to handle the
overall conversation, and non skill specific parts. Multiple skills will then handle a single
turn. And a DBMS for handling long term storage. The different components and the
interaction between them is shown in Figure 3.1.

Figure 3.1: Interaction between the different components.

This design draws inspiration from the design of the RASA [32], and DeepPavlov [25]
frameworks. All the deep learning models for the AI should be loaded into memory when
the AI first starts up. This will reduce the time taken to generate a response, as opposed
to loading a model when it is need. Only loading a model when needed would result
in longer response time, but less memory requirement. For the conversational AI the
response time should be as fast as possible, therefore response time should be prioritized
over resource requirements. An assumption that should be made about the user input is:
In many cases the input text will not be properly letter cased. There are two possible

3https://deeppavlov.ai/

Abbreviations Chapter 3 Design and Architecture

solutions to this, preprocess the input to properly letter case. Or use models that are
case-insensitive. The latter solution will be used, where possible.

The next part will go into details on the design and decisions of the different components
that were established.

3.3.1 User Interface

Even though the user interface used in this project is a website. The conversational AI
was designed in such a way that it is adaptable to other user interfaces. Other types of
user interfaces could be a social robot or a web browser extension. Ideally for simplicity
the communication between the server component and the conversational AI would be
user input in and a response back. Since a website needs to handle multiple users at
the same time, multiple conversations need to be tracked simultaneously for the broker.
The tracking of the data for the broker is therefore done using web server sessions.
But implementing such tracking for other user interfaces would not require much work.
Another approach would be to store this data in a database. But in the case of a user
interface where multiple end users can interact simultaneously an identification must be
sent to the broker to know which conversation data that should be used. Therefore for
simplicity and faster implementation session is used. The reason for not only providing
the response from the conversational AI is to display extra information. If the user
interface does not support displaying extra information the AIs reply could be extracted
from the response dictionary before returning the response.

The next part will go into the design of the user interface created in this project. This
will also include the backend design which will communicate with the website. The
design of the web page, which represents the user interface is shown in figure 3.2.

The conversation itself is shown inside a chat window. Using a familiar type of interface
for displaying conversations makes it more intuitive to use. The messages are appended
under the last message. The AI’s message is shown to the left, while the end user’s
messages are shown to the right. And old messages are scrolled of the window when new
messages need space. The topic selection button’s serve two purposes:

• Incentivize and assist the user on a topic to converse with the AI about.

• Provide a topic for use with multiple of the skills.

As for the topics to use for the topics selection buttons, this could be any topic. A
currently relevant topic would make most sense. The number of buttons, and thus the

Abbreviations 19

4

1

1

2

3

4 4

7

5

6

Figure 3.2: Design Of The User Interface. 1. AI’s messages. 2. User’s message. 3. Input
field for the user’s messages. 4. Buttons for selecting topic. 5. Tooltip for displaying

extra information. 6. Chat window. 7. The webpage.

amount of topics can be changed. One button should also be for all topics. From the
brokers perspective this means no topic is selected.

The Tooltip will display information related to the article used for generating message,
and is attached to that message. The Tooltip contains the following information:

• Claim, which originated the fact-checking article.

• Label, meaning the verdict given by the article.

• The site which authored the article.

The reason behind providing this information is, the message from the AI may not be
correct. By including the extra information the end user can check the message against
the information, which can aid the end user in drawing an appropriate conclusion. A
link to the original fact-checking is also provided in the response message. The end user
consequently has access to the full information, that be because the message and extra
information still was unclear. Or simply having an interest in reading the article.

The backend of the website serves a few purposes, display the user interface (website),
forward the communication between the AI itself and the front end. Send requests to
the DBMS to store the feedback. The final purpose is storing conversation information,
through the use of sessions. As mentioned earlier the conversation information is
technically a part of the broker, but stored in sessions for simplicity.

Abbreviations Chapter 3 Design and Architecture

3.3.2 Broker

The input from the user interface will be forwarded to the broker. The different com-
ponents and interactions between the different components of the broker are shown in
Figure 3.3.

Figure 3.3: Flow Of The Broker.

When the broker receives the user input from the web server, it is preprocessed, where
the preprocessing consists of the following, steps in the listed order.

1. Lower-casing all characters.

2. Spelling correction.

3. Expanding the contractions.

4. Resolve coreferences.

Lowercasing all the characters and expanding contractions is for consistency, meaning
slightly different queries with the same meaning will render the same result. As the
broker receives the raw user input it is possible to have spelling mistakes. therefore
spelling correction will remove the wrong responses, which are a direct result of spelling
mistakes. To handle multi-turn questions the coreference need to be resolved. This is
because multiple skills only use the input from the current turn and would therefore not
know what was coreferenced.

Abbreviations 21

Some of the skills can use a topic provided in the input. To identify the topic mentioned,
NER is used. The interest is not in what type of entity that was recognized, but that
an entity was found. Therefore the entity is provided to the skills, but the category of
entity is discarded. Data from earlier turns is used in some of the skills, so this is also
provided to the skills.

The intent classifier is responsible for choosing the skill that should handle the input and
produce a response. Based on the provided preprocessed input text it will select one skill
suited to handle the request. The intent catcher does not provide any input to the skill,
only selects which skill to use. Only the selected skill will be run to produce a response.
The broker is designed with expansion of skills in mind.

3.3.3 Skills

The skills perform the task of generating a response based on the given input. Seven
skills where created in total for this conversational AI. The main skill is the fact-checking
skill. The user can ask about a claim, and the AI will use the collection of fact-checking
articles to create a response. The skills can take, no input, one input or multiple of the
inputs listed bellow.

• The preprocessed text input from the end user.

• A topic chosen by the end user through the user interface.

• The entity found by the NER component.

• The stored data from previous turns.

Since there are two ways of providing a topic to the skills, a decision on which to use
should be made. This was solved by using priority. An entity recognized by the NER
component should be prioritized, over the selected topic from the user interface. This
means that the topic selected through the user interface is only used if there is no topic
provided in the text input. The entity found by the NER component is prioritized as
this was specifically mentioned by the end user.

The next part will describe the skills and their design, where Table 3.2 gives an overview
of the seven skills that were made.

Random Fact-Check

This skill will provide a random fact-check. A topic for the fact-check to return can also
be provided. The returned result will be a summary of the chosen random article.

Abbreviations Chapter 3 Design and Architecture

Skill Description
Random Provide a random fact-checking article
Fact-check Fact-check a claim using existing fact-checking articles
Elaborate Provide more information about the article
Related Give a fact-check similar to the last one
Chitchat Small talk
Count Provide a count of articles about a topic
List Provide multiple articles

Table 3.2: The different skills for the converstainal AI.

Fact-Check

The fact-checking skill will try to answer a claim input by the user. This is done by finding
the relevant fact-check article from the collection. A question answering model will use
the relevant article to find the phrase best answering the question given. Figure 3.4
shows the different steps taken to generate a reply based on the input query.

Figure 3.4: The factchecking skill

Abbreviations 23

Due to working with a collection of semi-structured documents, as opposed to a knowledge
base, the relevant article must be found. To find this article an initial retrieval is preformed.
See Section 2.2 for more information on the process. The initial retrieval uses BM25
and to get better results from the function the query is preprocessed. The following
preprocessing steps are used:

• Remove special characters.

• Split into tokens.

• Remove stopwords.

There are more and different ways to preprocess the query. But since the collection
is small, as opposed to a search engine for the internet. The difference between the
articles should therefore be more significant. The reranking of the retrieved document,
will use the original query. As long as the article is among one of the highest scoring it is
no problem, due to the reranking. The rerank will be done using a transformer model
finetuned for the reranking task.

Using the found relevant article a response must be generated from it. To generate the
response a transformer model, finetuned for question answering, is used. The model
marks a span that is most likely to be an answer to the query. This means it does not
generate new sentences, but rather uses sentences from the article to create a response.
This is not ideal, as the responses are not necessarily a direct response to the question,
since it must be present in the given passage.

Elaborate On Fact-Check

The following skill exists to supplement the fact-checking skill. The fact-checking skill
only provides an answer to the question it does not provide much information on the
content of the article. This skill will expand upon the information provided. The
elaborate skill uses the stored identification of the previously used article to look up the
summary associated with the article. This summary is returned as the response.

Related Fact-Check

This skill is similar to the random fact-check skill. But instead of providing a random
fact-check, where a topic can be provided, it uses the topics attached to the previous
retrieved fact-check. This means this skill only works if a fact-check has previously been
returned. The way it works is that it retrieves the last used article’s topics. These topics

Abbreviations Chapter 3 Design and Architecture

are then used with a random search to provide a new article. For this new article the
summary is sent as a response.

Chitchat

As mentioned earlier the conversation should be more human like. To achieve this a
chitchat skill is introduced. It handles the small talk the user will input between the
questions. To know the context of the conversation it will use the whole conversation
history. A persona is also provided to make the AI more engaging.

Count Articles

This skill will provide the user with information about the collection of fact-checks. The
specific information it provides is the amount of articles it contains on a specific topic.
This is achieved by getting the topic from the NER component of the broker. If no topics
are provided it will return the total amount of articles in the collection.

List of Articles

Similar to the random fact-check skill, the list of articles skill returns random articles.
Rather than returning a single article it returns multiple. This skill differs in response,
as opposed to the other skills this returns a list of replies. This is so each article can
be displayed as a separate message. If the user interface does not support this it can
be combined into a single response. Another difference is that this skill returns the
claim rather than the summary of the article. This is because a summary is a significant
amount of text. To avoid overwhelming the end user with text, only the claim is shown.

3.3.4 Summary

Since many of the articles in the collection do not have a summary, it must be generated
for these articles. This will be done using a Transformer model fine-tuned for the
summarization task.

The summaries of the articles are stored along with the source code, due to not having
write access to the Elasticsearch instance. Ideally they would be stored in the summary
field of the fact-checks, on the Elasticsearch instance. This way all the data on the
collection would be store in a single place.

Abbreviations 25

The summaries can be stored in a single table. This is because only an identification, for
linking the summary to the appropriate article, and the actual summary is needed.

3.3.5 Feedback

To get results on performance of the conversational AI, feedback needs to be gathered
and stored. The feedback is anonymized, as there is no need for the feedback to be
traceable back to the originator. The whole conversation and the order of the turns
should be tracked. By tracking the whole conversation it is possible to get a more holistic
view of the interactions with the AI. The rating of the response is tracked through a star
rating system. The star ratings are ordinal and ranging from one to five stars. Where
one star represents a not satisfactory response and five stars being a satisfactory one.
A response can be more nuanced than wrong or correct, therefore three ratings are in
between.

Based on parts discussed in the previous paragraph the database can be designed. No
relations are needed therefore all data can be stored in a single table. The table should
contain the information listed bellow.

• Conversation identification.

• Turn identification.

• End users input to the AI.

• The response provided by the AI.

• Rating provided by the end user.

• The identified intent.

• The version number of the AI.

The version is added to be able to distinguish between different deployments of the AI.
Different components can be disabled, or the AI could have been built upon further. When
the feedback from different versions are added together they are still distinguishable
because of the version number. Storing the user input and the output from the AI
provides more insight. Using this information it is possible to identify trends in input
that give correct answers, and vice versa. This helps identify which skill or component
that should be focused on for improvement.

Abbreviations Chapter 3 Design and Architecture

Another use case for the feedback is further training of the models used in the AI. The
plan was to do this, but due to issues with deployment this had to dropped, as the
feedback were collected to late, and the deployment consumed to much time.

3.3.6 Storage

The storage of the feedback and summaries must be handled in some way. This will be
handled by a DBMS. For simplicity and easy deployment a system integrated with the
programming language is used. This way the database can be managed directly in the
code. The data can also be stored directly in a file with no external software needed.
The summaries and feedback are stored in separate files. This way the feedback can be
retrieved without the need for downloading summaries.

Chapter 4

Implementation

4.1 Introduction

This chapter will explain how the design of the Conversational AI described in Chapter 3
were implemented. The ordering of sections will be similar to Chapter 3, with minor
changes where needed.

The Conversational AI is mainly programmed in the Python programming language, due
to large support for machine learning. The user interface also includes HTML and JS.
The DBMS is interacted with through SQL.

4.2 User Interface

As mentioned in Chapter 3 the user interface used is a website. Since the website must
handle communications back and forth, as opposed to a static website, a web framework
is used. Namely Flask [33], which was chosen due to familiarity.

4.2.1 Fontend

The conversational AI will require a single page with the layout described in Figure 3.2.
Some common website elements are added on top, which are not strictly used for the
functioning of the AI. Such as a navigation bar and an "about" page. A introduction
is displayed the first time visiting the site. This is to introduce the end user to the
capabilities of the AI, and therefore how it can be used. A disclaimer is also shown
beforehand, but it is not strictly a part of the project so the implementation will be
omitted. What the end user sees when first visiting the website is shown in Figure 4.1.

27

Abbreviations Chapter 4 Implementation

Mobile devices was not taken into consideration for the implementation, so it will not
function properly on such devices.

Figure 4.1: The view of the website when visiting for the first time. An introduction is
displayed to introduce the end user to the AIs capabilities.

The introduction is displayed as a slideshow, with a image showing an example and some
explanatory text. The text is kept concise to retain the attention of the end user. The
implementation of the slideshow is made with Bootstrap 5’s [34] carousel component. A
button is added so the carousel can be dismissed, meaning the parent element is set to
hidden. A button exist in the navigation bar to reopen the introduction. The web page
after the introduction has been hidden is shown in Figure 4.2.

Figure 4.2: The implemented web page.

The topic selection buttons are implemented as a list with CSS to style the list items
as buttons. An "onclick" event listener calls a function which changes the topic and
the CSS, to indicate the topic selected. The chat window is implemented using a JS
framework called BotUI [35]. This handles all the visual elements of the chat window,
and comes with an JS API for interaction [35]. The BotUI JS API has three concepts for

Abbreviations 29

interacting with the chat window [35]. These are message, action, and use of "then" [35].
Message are used for displaying a message in the chat window [35]. Actions are used for
displaying input in the chat window [35]. The "then" concept is to add a callback from
the other two concepts [35]. Knowing these concepts the interaction loop can be created.
The flow of the interaction loop is shown in Figure 4.3.

Figure 4.3: Flow of the chat window interactions. Where every transition is made on a
callback.

The communication between the conversational AI and the web page should not result
in a reload of the full page. To avid this the messages are sent asynchronous, by using
AJAX. The AJAX requests sent from the web page are shown in Table 4.1. The different
endpoints these messages are sent to are explained in the next subsection.

Description Key Value On callback
Request to update topic Query Integer representing

topic
Do nothing

Request to store feed-
back

Query Integer representing rat-
ing

Do nothing

Request to interact with
conversational AI

Query End user’s message to
the conversational AI

Continue interaction
loop

Table 4.1: The different AJAX requests, their content and what is done when the
callback is received.

Depending on the skill that generated the response there can be different components
that should be added to the message. A link to the fact-check, which the response was
generated from and a Tooltip displaying information of the article.

The BotUI framework does not support Tooltips, so this is added to appropriate element
after it is displayed. To create the Tooltip the Tooltip plugin for Bootstrap 5 [34] is

Abbreviations Chapter 4 Implementation

used. BotUI does support links through a subset of Markdown so this is used to display
links [35].

4.2.2 Backend

The web server backend of the website is not complex as it’s purpose is to: serve the
requested pages, or forward requests to the conversational AI. As mentioned in Chapter 3
the data tracking for the broker is done using sessions, and therefore done on the web
server. The endpoints created are shown in Table 4.2.

HTTP
request
method

Endpoint Description Input Response

GET / Index page None Index.html file
GET /about Description

page
None About.html file

GET /_search User input to
AI

query parame-
ter

AI response as
JSON

GET /_topic Topic selection
value

query parame-
ter

ok as JSON

GET /_feedback Feedback rat-
ing

query parame-
ter

ok as JSON

Table 4.2: The endpoints implemented in the backend.

The first two endpoints respond with the requested pages, and last three endpoints handle
the AJAX requests established in the previous subsection. The topic endpoint changes
the topic to the requested one in the session data. The feedback endpoint stores the
feedback data. The search endpoint stores the tracked data in the session, and forwards
the end users input to the broker. When the response is sent back from a skill it is
forwarded to the appropriate client as JSON.

4.3 Broker

Following the design of the broker shown in Figure 3.3, the input is first preprocessed.
The NER and intent detection is performed on the preprocessed query. The appropriate
skill is selected and provided with its required input, and executed.

Abbreviations 31

4.3.1 Query Preprocessing

Lowercasing all characters is straight forward. Correcting spelling errors is done using the
Brillmoore model from DeepPavlov [25, 31]. Using the model requires calling the model
with the input query, and the corrected query is provided as the output. The contractions
are expanded using the contractions Python package [36], by calling the fix method.
To resolve the coreferences the AllenNLP package [24] is used, which implements the
model described by Lee et al. [23]. The process of resolving the coreference is shown in
Figure 4.4.

Figure 4.4: The coreference resolution process.

With this implementation an assumption is made, the end user’s coreference is contained
in the previous message. This means that if the end user’s reference is not in the previous
turn, the coreference resolution will not work.

4.3.2 Topic identification

The topic identification is done using NER, with the SpaCy package [22]. It should
be mentioned that DeepPavlov also has a NER component, but this gave errors when
tried. The Spacy model used is "en_core_web_lg" [37]. Although the difference in
precision and recall between the small and large model are 0.01, for precision , and 0.02

Abbreviations Chapter 4 Implementation

for recall [37]. Minor tests showed that the small models had issues with input that was
not properly cased, therefore the large model was used. The SpaCy models seem to be
case sensitive as the recall achieved when testing is lower than the one provided in the
documentation [37]. SpaCy is therefore not ideal based on the assumption made, that
the message from the user will not be properly cased.

To get the named entities from SpaCy the preprocessed query is used as input to the
model. The result contains a list of the named entities found, along with the category it
belongs to. This list can be iterated over to extract the named entities found, which will
be the list of topics that can be provided to the skills.

4.3.3 Intent detection

To select skill, which should generate the response, an intent classifier is used. As the
skills created are specific to this conversational AI the intents are also specific to this
AI. This means an already fine-tuned model can not be used, and the dataset must be
created.

Dataset

The dataset consists of training data and testing data. The testing data is also used as
verification data, as the DeepPavlov training method requires both. The reason for this
is to not spend to much time on creating the dataset. All possible ways to specify an
intention that could be thought of were added to the training data. The plan was to use
the feedback to expand on the dataset, as this would contain other ways people specified
an intention. But due to deployment problems there was no time left for this.

The training data is formatted for regular expressions so it can be up sampled, as
explained in Section 2.3.4. It was made in a spreadsheet and stored as tab-separated
values file, where each column represents an intent and each row is a regular expression
question. The first row specifies the name of the intent. Due to the regular expressions
in the questions it is not as straightforward as showing the number of rows. A single row
can be long and up sampled to ten questions, or short and up sampled to two questions.
An overview of the training data is shown in Table 4.3, and examples of training data is
shown in Table 4.4.

If an entity was provided it was included in all intents where applicable, to avoid specific
entities being learned as being important to an intent.

Abbreviations 33

Intent Rows Minimum
characters

Maximum
characters

Average
characters
(Rounded)

Random 21 21 261 95
Elaborate 10 19 193 71
Factcheck 11 32 142 74
Related 6 45 111 85
Chitchat 16 11 61 32
Count 5 93 190 153
List 4 95 156 122

Table 4.3: Training data information. Where min, max and average are for characters
in rows.

Intent Example of row
Random can you(please){0,1} give me a ((fact check)|(fact-check)|(fact))

Elaborate ((provide)|(give)|(supply)) (more){0,1}((information)|(info)){0,1}
Factcheck does ((biden)|(trump)|(putin)|(zelensky)) ((think)|(believe)) the earth is

flat
Related ((tell)|(show)|(give)|(provide)) (me){0,1}((a)|(an)|(some)) ((simi-

lar)|(related))
Chitchat can you ((help)|(assist))(me){0,1}
Count ((how many)|(count))((about)|(on)){0,1}

((ukraine)|(trump)|(putin)|(russia)|(the invasion))
List i want ((a list of)|(few)|(some)) ((fact checks)|(fact-

checks)|(facts)|(factchecks)|(articles))

Table 4.4: Example of a training data row for each intent.

Training

The training was done in a google colab notebook. The notebook is based on the notebook
provided by DeepPavlov for training the intent classifier [28]. The training and testing
data mentioned earlier is loaded. Some modification to the training configuration file
is made, and the model is trained. The trained model is downloaded and added to the
project folder, for use in prediction of intent. The key information regarding the training
of the intent classifier is shown in Table 4.5. A line chart showing the progression of the
accuracy, sampled every fifth epoch, is shown in Figure 4.5. The testing data consists of
76 sentences.

Predicting

The trained model is loaded by changing the path to the model in DeepPavlov’s intent
catcher configuration. After the model is loaded it can be used by providing the
preprocessed query as input. The model provides the predicted label as output.

Abbreviations Chapter 4 Implementation

Description Value
Original training samples 73
Average generated training samples 425
Minimum generated training samples 409
Maximum generated training samples 436
Testing data count 76
Training epochs 60
Finish accuracy 0.9079
Finish f1 macro score 0.8985

Table 4.5: Key information about the training of the intent classifier.

Figure 4.5: The accuracy of the intent classifier through training epochs. Calculated
every fifth epoch.

4.4 Skills

This section covers the implementation of the seven skills designed. Due to some of the
skills being similar and therefore using the same functions they will be grouped and
explained together. So the implementation will not be explained on a per skill basis. But
rather the functionality and then the skill built upon this functionality.

4.4.1 Summaries

Since most fact-checking articles do not have a summary, the summaries had to be
generated. The model used for generating the summaries was BART large-sized, already
finetuned on the CNN Daily Mail dataset, released by the team behind BART [20]. The
HuggingFace transformer library [10] was used to load a pipeline handling the whole
process, meaning two lines of code is needed to use the model, one to load the pipeline,
with the model and tokenizer, and one to use the model [10]. An example of a summary
created is shown in Figure 4.6.

Abbreviations 35

A pendulum-style ride at Kankaria Adventure Park in Ahmedabad, India, collapsed on
July 14, killing two people and injuring 29. A cellphone video of the incident shows
one arm of the ride breaking off and falling. Six people, including the director of the
company managing the site, have been arrested in connection with the accident.

Figure 4.6: An example of a summary that was created by the BART model [20].

To store the summaries the database must be created and initialized. Since SQLite 3 [38]
is used a single db file is needed for storage. A connection is then made to the file and a
single table is created. The table contains two columns: id, and summary. Both columns
are of the "text" datatype, and id is set to be unique. A summary can be retrieved by
asking for the summary where the id of the row is the same as the one wanted.

To create the summaries for the whole collection, all the fact-checking article identifications
from the collection are collected from the Elasticsearch instance, and stored in a JSON
file as a list. A separate JSON file is created to store the index in the list of the current
article to create summary for, which is initialized with zero as index. This way the
fact-checking articles, which a summary has been created for, are tracked. The creation
of summaries do not have to be run in a single execution. A flowchart showing the flow
of creating a requested amount of summaries are shown in Figure 4.7.

Figure 4.7: The flow of creating summaries.

Due to the large amount of parameters in the BART model it takes noticeable time
to generate an output [20]. With the computer used to generate the summaries it was
estimated to take around eleven days of non stop execution to generate summaries for
the whole collection of articles. To speed up the process multiple virtual machines on

Abbreviations Chapter 4 Implementation

the Google Cloud Platform [39] was used. The summary identifications were divided to
the different virtual machines and the database file were collected from all the instances
and merged into a single database file. This shortened the summary creation time down
to a few days.

Since the collection of fact-checking articles are automatically updated, once deployed
the database will not not have summaries of the newly added fact-checking articles. To
avoid the issue not being able to provide a summary if it does not exist. The database is
therefore first queried to check if it contains a summary. If it does not contain a summary,
the summary is first created before continuing. This has the added drawback of long
response time, when a summary does not exist. A solution to this would be to have a job
running which creates and updates the database once in a while. This is a deployment
issue and is not covered in this project.

Elaborate On Fact-Check Skill

Since the summaries are already created, the elaborate skill only need to retrieve
the correct summary. The skill receives the identification of the previously used fact-
checking article. The database is queried for the summary associated with the received
identification, and the retrieved summary is the output from the skill.

The identification, which this skill receives, is updated every time the response data from
any skill contains an identification. Meaning it is updated when the following skills are
called: fact-check, related, and random.

4.4.2 Random

Multiple of the skills use random fact-checks from the collection. The common element
for these skills are the query construction, for the Elasticsearch API. To get a random
article from the Elasticsearch instance a Boolean query is used. This query contains a
must clause, with the scoring function set to random score. This means all the articles
in the collection are given a random score, and the highest scoring one can be retrieved,
which in turn will be a random one. To get an article on a specific topic a filter is also
added to the query. The filtering is made over the terms contained in the topic field.
And a list off topics is provided. This means firstly all articles not containing one of
the terms provided in the topic field are not part of the scoring. The remaining articles
are randomly scored and the top scoring article can be retrieved. This means a random
article containing at least one of the provided topic terms are retrieved.

Abbreviations 37

Random Fact-Check Skill

To enable the user to provide a topic for the random fact-checking article, the named
entity found by the NER component of the broker is used. If no topic is provided by the
NER component, the stored topic is used. This topic or list of topics is used to generate
the query as explained earlier. The identification of the retrieved article is then used to
get the summary associated with the article from the summary database. This summary,
along with the claim, is the response from the skill. An example of a response from the
skill is shown in Figure 4.8.

Claim: Photo of injured Ukrainian woman was from 2018 Russia gas explosion. Summary:
Olena Kurilo, a teacher, was injured on Feb. 24, 2022, when a Russian missile strike hit
her apartment complex in Chuhuiv, Ukraine.Her photograph was taken by at least three
journalists that day and she was interviewed on video.Photos in news reports that day
show the apartment complex is not the building damaged by a 2018 gas explosion in
Russia.

Figure 4.8: An example of a response from the random fact-check skill.

List of Articles Skill

This skill uses the same implementation as the previous mentioned skill. The difference
is that in stead of getting one article it retrieves a list of articles. The amount of articles
can be set in a separate configuration file. Instead of the summary being used as a reply,
the claim is used. Therefore there is no need to query the summary database, and the
claim is already contained in the response from the Elasticsearch instance.

Related Fact-Check Skill

This skill uses the topics from the previously retrieved fact-checking article. This means
it takes last retrieved article’s identification as input. Since the topics for this article is
not stored, this must be retrieved first. A request is sent to the Elasticsearch instance to
get the topics for the article. The rest of the implementation is the same as the random
fact-check skill, but the topics provided are the topics retrieved from the article.

4.4.3 Fact-Checking Skill

The process of finding an answer in a fact-check is divided into the following three steps:
Preprocess, document ranking, and question answering.

Abbreviations Chapter 4 Implementation

Preprocessing

To get better results from the inital retrieval the query is preprocessed. The special
characters are replaced with spaces using regular expressions. To be more specific, every
character that is not not a lowercase letter or number is replaced with a space. The
query is split into a list of tokens by splitting on spaces. every token is checked against a
list of stopwords from the NTLK package [40]. If the token exist in the list it is removed.
The list of tokens is joined into a single string, which is the query used for the initial
retrieval.

Document Retrieval and Ranking

The ranking process is shown in Figure 4.9.

Figure 4.9: The flow of the document ranking process.

The initial retrieval is handled by the Elasticsearch instance, where the preprocessed
query is given to the instance. The Elasticsearch has a built in BM25 function [41]. The
default values of "b" being 0.75 and "k1" being 1.2 were used [41]. A higher "b" value
punishes longer documents, and a higher "k1" score lowers the effect of the frequency of

Abbreviations 39

a single word [41]. No tuning of these values were performed as the results from minor
testing showed good results.

The reranking is performed using the fine-tuned BERT model by Reissel and Manaj [12].
This model is multilingual and uncased [12]. The input provided to the model is the
unprocessed user input, except from the preprocessing done in the broker. Along with
this the first passage, combined with the claim of the article, is added. The first passage
should work great in the case of the collection in this project. Because the fact-checking
articles usually states the false information in the beginning of the article. And the false
information is similar the queries input by the end user. The Transformers library [10]
is used for working with the model, requiring few lines of code to use. How the BERT
model can be used for reranking is mentioned in Section 2.3.1.

Question Answering

For the question answering the fine-tuned model released by the BERT team is used [9],
which was fine-tuned on SQuAD [14].The flow created based on their explanation is
shown in Figure 4.10. How the BERT model can be used for question answering is
mentioned in Section 2.3.1.

As opposed to using the first passage, the last passage is used for the question answering.
This is done for two reasons, the fact-checking part of the article is usually contained
within the last part of the article. And to partly avoid an issue where the model uses the
part of the article stating the claim as an answer. An article could be small enough to for
the whole article to fit as a single passage. But for the articles longer than the maximum
token size of 512 tokens [9]. The last passage is a better choice. It should be mentioned
that Devlin et al. [9] also uses softmax before the output. In the implementation the
logits are used, as this is the output from the BERT for question answering class from
the Transformer library [42]. As softmax is not strictly needed it was not added.

4.4.4 Chitchat Skill

The chitchat skill uses the model created by Tang et al. [17], which is explained in
Section 2.3.1. And the code released by the authors [43] is used, but adapted for the
program. The predefined persona sentences and the message history can then be used on
the personaGPT model to generate a response [17]. The chat history must therefore be
stored. To avoid tokenizing the whole chat history every turn it is stored in tokenized
form. Meaning only the new input and response need to be tokenized on each turn. The
predefined persona sentences are shown as follows:

Abbreviations Chapter 4 Implementation

Figure 4.10: The question answering process. Based on the explanation by Devlin et al.
[9].

• I am a fact-checking chatbot.

• I serve to deliver the truth.

• I will try to find existing fact-checks for you.

• I don’t have a name.

• My features are random, elaborate, fact-check, related, chitchat, count and list.

• I like to read fact-checks.

4.4.5 Count Articles Skill

To get a count of articles on a topic the Count API for Elasticsearch [7] is used. The
skill takes a topic as input and returns the count. If no topic is given as input a match
all query is sent, meaning the count will be of the whole collection. If a topic is provided
a Boolean query is used. The query uses a filter on the topic field in the collection,

Abbreviations 41

with the provided topic as term. If multiple topics are provided to the filter as a list
of separate terms. This way the topic field must contain both terms, and not only one
of the terms. The response message is predefined, with the amount of articles, and the
topic found. The topic is told back to the end user, so they can verify the count is for
the topic they asked about. Some examples of questions and responses from the skill is
shown in Table 4.6

Question Response
how many factchecks do you have about
russia

There are 134 fact-checks about russia.

how many articles about biden There are 352 fact-checks about biden.
how many factchecks do you have? There are 42925 fact-checks in total.

Table 4.6: Examples of responses from the count articles skill, with the question asked.

4.5 User Feedback

The user feedback is not directly used in the Conversational AI. Therefore it is only
initialized, and contain a function for inserting a new column. A function for extracting
all the stored data to a comma-separated file is also made. This way the data can be
loaded into a spreadsheet program or dataframe, to be worked upon. A single table is
created in the database to store all the data, and the columns of the table are shown in
Table 4.7.

Column name Datatype Description
Id Text Id for tracking whole conversations. In this case

connection time is used
Time Timestamp Message store time, to track the ordering of turns

Question Text End users input to the conversational AI
Answer Text The response from the conversational AI, only the

message
Intent Text The intent identified by the intent classifier

Evaluation Integer The rating provided by the end user for that turn
Version Integer The deployment version

Table 4.7: The columns of the table for storing feedback.

All data need for the feedback is stored in the session data as it is received or generated.
That means the id is created and stored when the user first connects. The time is the
current system time when the row is stored. The question is stored when it is received on
the search endpoint. The answer and intention is stored before it is sent to the website.
And the version is set as a variable before the application is deployed. When a rating is
received on the feedback endpoint all the other data is retrieved from the session, and a
query is executed to store the row in the database.

Abbreviations Chapter 4 Implementation

4.6 Security

Since the user interface is implemented as a website, security should be taken into
consideration. There are different issues attached to deploying a web application which
will not be discussed here, as this mostly comes down to correctly configuring the web
server.

All the endpoints use GET as http request methods. All endpoints therefore only accept
GET requests. The default endpoint does not accept any parameters. Most automated
bots only target the default endpoint, but this does not stop a targeted attack. The user
input is never responded back to the website. The topic change endpoint and feedback
endpoint only executes if the input parameter is an integer, and the response is always the
same. User input for the search endpoint is converted into a string. The data provided
as a response from the conversational AI is filtered to only contain needed information.
When storing the user’s input for the feedback database, it is escaped, and therefore
SQL code will not be executed. A general error message is shown to the end user if
the conversational AI encountered an error, meaning the same error message is always
shown.

Chapter 5

Experimental Evaluation

5.1 Experimental Setup and Data Set

Since the goal was to create a conversational AI, which could serve fact-checks, the
evaluation will be on the performance of the AI. Another way to evaluate the AI would be
on user satisfaction. But since user feedback of this type were not gathered, this will not
be evaluated. Due to encountering several problems on deployment the conversational
AI were not deployed to the general public in time. As a result of this the feedback
collected is limited, and only provided by persons familiar with the project, or known by
the author. Due to this, there might be some bias in the ratings provided.

The deployed version used to collect the feedback had the spelling correction, and
coreference resolution removed. This was done as the provided instance for hosting did
not have enough computational resources to support the model with all the components.
A fallback method for the fact-checking skill was also added. If the skill did not generate
a response the question was sent to the Factiverse AI [44], which could fact-check the
question. The structure of the feedback gathered is explained in Section 3.3.5. To convey
strengths and weaknesses in the conversational AI, some of the data from the feedback
will be shown. A conversation between the author and the AI is also shown to show the
capabilities of the AI.

5.2 Experimental Results

The average rating of each intent, and the overall average rating is shown in Figure 5.1.
The two intent "list" and "related" are not shown as no feedback were received for these

43

Abbreviations Chapter 5 Experimental Evaluation

intents. The word intent is used instead of skill, as the intent decides which skill to use,
and the intent may not be properly recognized.

Figure 5.1: The average rating each skill received, and the overall average rating.

The number of times an intent was recognized is shown in Figure 5.2, and the total
number of feedback received was 129. 26 of the 129 feedback were miss classified by the
intent classifier. Giving it an accuracy of about 0.80, where 24 of them where incorrectly
classified as "count", and two for "random". Four of the questions had an intent not
present in the conversational AI, so by disregarding these the intent classifier gets an
accuracy of 0.82.

Figure 5.2: The number of feedback received for each skill.

Table 5.1 shows some selected sentences from the collected feedback. This will be used
in Chapter 6 to argue the strengths and weaknesses. Table 5.2 shows a conversation
between the author and the AI. This displays how a full conversation with the AI could
look like.

Abbreviations 45

Question Response Intent
1 Are there any fact checks

about Monkeypox?
(response omitted) RANDOM

2 Is Hitler dead? hitler died by his own hand in
his berlin bunker in the closing
days of world war ii

FACTCHECK

3 Who is China’s leader? There are 133 fact-checks
about china.

COUNT

4 is obama the president of
USA?

barack obama is former pres-
ident of the united states of
america

FACTCHECK

5 Do EU support Ukraine in the
war

following russia ’ s invasion of
ukraine

FACTCHECK

6 How many fact checks do you
have on Putin?

There are 20 fact-checks about
putin.

COUNT

7 How many fact checks do you
have on Trump

There are 42881 fact-checks in
total.

COUNT

8 Will Finland be approved as a
NATO member?

finland ’ s parliament still must
vote on whether to join nato

FACTCHECK

9 did elon musk buy twitter? elon musk was in the process
of purchasing twitter

FACTCHECK

10 tell me more In April 2022, the country mu-
sic website SavingCountryMu-
sic.com published an article
stating that the billionaire had
also purchased country music
for $89 billion. While sav-
ingcountrymusic.com is not a
satire website, the author of
this article made it abundantly
clear that this was a work
of fiction. The article was
also tagged with words “fake
news.” A number of similar
jokes have been made on so-
cial media. In fact, Musk has
made some facetious claims
himself, joking that he was go-
ing to buy Coca-Cola so that
he could restore the drinks orig-
inal cocaine-filled recipe.

ELABORATE

11 was the moon landing fake? never says in this video that
the moon landing was fake

FACTCHECK

12 did congress want obama to
have a third term?

congress moves to appoint
obama a third term in 2016

FACTCHECK

Table 5.1: Some selected questions and responses.

Abbreviations Chapter 5 Experimental Evaluation

Turn Speaker Message

1 User how are you?
AI i’m fine, how are you?

2 User im fine thx
AI good to hear, just checking my chats

3 User does trump think the earth is flat?
AI trump never said this

4 User is it flat?
AI if the earth was flat , you would not be able to take both routes

to and from a single destination

5 User can you tell me more?
AI Rapper B.o.B. tweeted a picture of the Earth with no discern-

able curve on the horizon. astrophysicist Neil deGrasse Tyson
responded with a series of tweets. We asked astronomers what
they would tell the rapper to convince him the Earth is round.

6 User Awesome!
AI i am a factchecking chatbot that reports facts. i am not a rapper.

7 User ok, bye then
AI goodbye to you too.

Table 5.2: Possible conversation with the conversational AI.

Chapter 6

Discussion

6.1 Introduction

This chapter will discuss and interpret the results from the feedback mentioned in
Chapter 5. The goal of this discussion is to establish how well the conversational AI
performs, and thus the success of the AI.

6.2 Ratings

Focusing on ratings in Figure 5.1 and number of feedback in Figure 5.2, the majority of
interest is in the fact-checking skill. The chitchat, random and elaborate skills have few
ratings making it hard to draw conclusions. The overall average rating is about three,
where the highest scoring skill is the fact-check. The lowers scoring is the counting skill.
The poor rating of the count skill is mainly explained by the miss classification of intent.
Most questions classified with "count" as intent, had an intention of fact-check.

Why were most of the ratings for the fact-checking skill? This might have been because
of the how the persons were asked to test the AI. But the other skills were also built to
supplement the fact-checking skill. The interesting result here is the lack of interest in
the other skills, but it is not possible to draw any conclusions on the basis of the feedback
here. Since it was done over a short time span, with few participants.

47

Abbreviations Chapter 6 Discussion

6.3 Conveying the Purpose of the AI

An issue with the AI created is the conveying of its purpose. As many of the questions
asked to the AI, are not fact-check related. This issue comes from the problem, most
fact-checking articles originate from a social media post, or statement from a public
person. Therefore the fact-checking articles are specific in content. A few examples of
this are shown in Figure 6.1.

Claim: Photo shows Modi touching a woman’s foot with his chin.
Claim: The word "shit" comes from an acronym for "Ship High in Transit."
Claim: Media was not “silent” about the NXVIM case.

Figure 6.1: A few examples of claims in articles.

From the feedback data, about 64 percent of the fact-check went to the Factiverse AI [44],
meaning the fallback method. Some of these could be explained by not finding the right
article, or the MRC not finding a response. But the majority of questions seem to be
due to non fact-check related questions.

6.4 Broker Components

Some of the skills, only rely on the components of the broker working as intended, such
as random, list, and count. A response will therefore be correct as long as the broker
works.

6.4.1 Intent classifier

The accuracy of the intent classifier, achieved on the feedback, is worse than the accuracy
based on the testing data. This is expected as the testing data is small, and no verification
set were created. The data revealed an issue where "fact-checking" intents were classified
as the "count" intent. There might be an issue in the training data provided for the count
intent, or just the lack of training data. The feedback mostly focus on a single intent,
making it hard to establish a good accuracy measure. Row one and two in Table 5.1
shows examples of miss classification by the intent classifier.

6.4.2 NER

The feedback data shows the issue mentioned in Section 4.3.2 on the NER model used,
the model seems to be case sensitive. Examples of the NER working and not working are

Abbreviations 49

shown in row six and seven of Table 5.1. The recall should be 0.85 [37], but the feedback
gives a recall of 0.73, this was calculated from all feedback classified as the "count" intent,
as the entity is responded back. Many of the questions contain multiple entities, but the
"count" will only show one of them. This means the recall could be lower 0.73. It could
also be that the entities encountered are not similar to the data it was trained on. In
both of the cases further training would solve the problem.

6.5 Fact-check skill

The fact-checking skill is the most complex of the skills, and the core of the conversational
AI. This section will discuss the performance of this skill. The rows from Table 5.1 will be
used as examples, meaning all rows referenced in this section refers to rows in Table 5.1.

Row two shows an example of a response answering the question asked. It could be
argued that the response could also be a simple "yes". But as stated in Section 2.3.1, the
model can not generate new answers only use answers from the passage supplied. On
the other hand the response give a detailed explanation to the answer, which would be
preferred as it’s working with fact-checks.

The rows four and nine, shows the IR manages to find articles containing the answer
when the article is about something else, and briefly mentions the answer to the question.
The summary for the article used in row nine is shown in row ten to show what the
article is about. It might not always provide a sensible response as shown in row five, but
it is probable that the collection does not contain an answer to the question. Rows five
and eight, also brings forward an issue that is not accounted for in the implementation.
Some questions are time frame dependent, meaning the answer to the question could be
updated in a new article. As the collection contains fact-checking articles dating way
back, the information it responds with could be outdated. Row eleven is another example
of a unnatural response, which technically answers the question, but not in the expected
manner. The MRC model is not fine-tuned for fact-checking articles, an issue with this
is that the model can not distinguish between phrases stating the false information in
the article, and the actual fact-check answer. As a result of this the answer it finds can
be false, as shown in row twelve.

Although there are many cases where the MRC model will not provide an answer, or
the wrong answer to a question, the user interface is designed to supply the information
necessary for the end user to get the right information. This is through linking to the
article used, and a Tooltip with information about the article and the verdict. Although
not optimal it is a solution.

Chapter 7

Conclusion and Future Directions

7.1 Conclusion

The goal of this project was to create a conversational AI that can server fact-checks.
To conclude if this goal was achieved the subtasks mentioned in Section 1.2 will first be
addressed, which in turn as a whole answers the overall goal.

The first subtask was to provide answers to fact-checking questions based on the provided
collection. This task was addressed by the fact-checking skill. The article most likely
to contain the answer is found. This is done in a multistep process, preprocessing of
query, initial retrieval, and reranking. An answer to the query is generated from the
article through the use of a MRC model for question answering. There are multiple
issues resulting in an incorrect or non-answering reply. These issues were addressed in a
non-optimal way through the use of the user interface providing extra information.

Subtask number two was to serve the fact-checking article in multiple ways. This was
addressed by the creation of multiple skills which serves a related, random, or list of
articles. A broker system was introduced to handle the overall conversation, so the
appropriate skill could be used to generate the response.

An intuitive user interface for the conversational AI were created. This was through a
website, where a chat window is used to converse with the AI. The extra information
provided by the AI were presented through a Tooltip and a link. This way of interacting
is common, thus making the AI intuitive to interact with. A slideshow also introduces
the end user to the capabilities of the AI. An issue which became apparent, and is not
address with the user interface is the introduction to the concept of a fact-check. The
end user is not properly introduced to what a fact-checking article is, and in many cases
will start asking non fact-checking related questions.

51

Abbreviations Chapter 7 Conclusion and Future Directions

To address the task of multiturn questions, a coreference resolver was introduced. This
resolver can only handle the previous turn question, so the issue is not fully addressed.
The elaborate skill was also introduced, enabling possibility to get more information
about a response. This response is a pregenerated summary of the article and is therefore
not a direct elaboration of the previous response.

To make the conversation more human like, a chitchat skill was introduced. This makes
AI able to chitchat in between the turns of the other skills. Which gives the sense of
the conversational AI being more human like, as it also converse with the end user, thus
responding to every message by the end user.

All though there are multiple issues with the conversational AI created, it is a functioning
AI capable of serving fact-checks. It is capable of answering a fact-checking question, but
extra information must be displayed as the answer alone could be wrong. The AI can
handle multi-turn conversation though coreference resolution and the elaborate skill, but
it is limited. Through the use of a chitchat agent the AI can also small talk, making the
conversation seem more human like. With this said, the goal of this thesis was achieved.
But there are many issues that should be solved, and many improvements that could be
made.

7.2 Future Directions

The conversational AI created is just the beginning and there are several issues that
should be addressed. There are also many possibilities for expansion on the model to
make it perform better.

The issues covered in Chapter 6 should be addressed. Where the issue of the responses
by the fact-checking skill using the false information in the article as an answer, should
be prioritized. This would remove the need for displaying extra information, making
it simpler to add other user interfaces. The dataset for the intent classifier should be
expanded, where the issue of the fact-checking intent being classified as the count intent
is the largest issue. The issue of NER should also be addressed, either by changing the
NER model, to one that is trained on lowercase text, or properly case the user input.

Lexical normalization could be used, in the preprocessing of the broker. This could
increase the performance of the AI as most models used are mostly trained on more
lexical data. A pointer to doing this would be to look into the work of Bucur et al. [45].
Another improvement would be to make the response to the questions a direct response.
Most skills use a pre-made response and to make them seem more human like it would
be better if the response took the question asked into account. The priority of topics can

Abbreviations 53

also be improved, through a multistep process. Rather than checking if one topic matches
they should be scored based on how many topics match. If there were no matches it
could then try filtering for one of the provided topics. With the current implementation,
an article with one matching topic has the same probability of being chosen as an article
where two topics match.

A browser extension for user interface would be interesting as it would be easy for an
end user to open when encountering a claim on social media. This would make the AI
more accessible as the AI could overlay a small portion of the web page and the end user
would not have to change the tab or leave the page where the claim was encountered.
Another issue is conveying the purpose of the conversational AI itself. It can not answer
all questions, the questions should be related to fact-checks.

There do exist some fact-checking related datasets, which could be used to either further
fine-tune some of the Transformer models used or to train new model when expanding
the conversational AI. One could look into the works of Gupta and Srikumar [46], Wang
[47], and Augenstein et al. [48] for this.

List of Figures

2.1 A simplified example of how BERT is used for QA, where the posed
question could be: is the earth flat? The answer would be the marked span. 10

2.2 An example of a summary that was created. 12

3.1 Interaction between the different components. 17
3.2 Design Of The User Interface. 1. AI’s messages. 2. User’s message. 3.

Input field for the user’s messages. 4. Buttons for selecting topic. 5.
Tooltip for displaying extra information. 6. Chat window. 7. The webpage. 19

3.3 Flow Of The Broker. 20
3.4 The factchecking skill . 22

4.1 The view of the website when visiting for the first time. An introduction
is displayed to introduce the end user to the AIs capabilities. 28

4.2 The implemented web page. 28
4.3 Flow of the chat window interactions. Where every transition is made on

a callback. 29
4.4 The coreference resolution process. 31
4.5 The accuracy of the intent classifier through training epochs. Calculated

every fifth epoch. 34
4.6 An example of a summary that was created by the BART model [20]. . . 35
4.7 The flow of creating summaries. 35
4.8 An example of a response from the random fact-check skill. 37
4.9 The flow of the document ranking process. 38
4.10 The question answering process. Based on the explanation by Devlin et al.

[9]. 40

5.1 The average rating each skill received, and the overall average rating. . . . 44
5.2 The number of feedback received for each skill. 44

6.1 A few examples of claims in articles. 48

55

List of Tables

1.1 Example conversation between the AI and end user. 2

2.1 Example of an inverted index. 7
2.2 Examples of entities and categories for NER. 11
2.3 An example of a sentences and the resulting samples. 12
2.4 The fields in the fact-checks collection used. 14

3.1 A conversation with a question and answer turn. Also showing a preceding
and succeeding turn. 16

3.2 The different skills for the converstainal AI. 22

4.1 The different AJAX requests, their content and what is done when the
callback is received. 29

4.2 The endpoints implemented in the backend. 30
4.3 Training data information. Where min, max and average are for characters

in rows. 33
4.4 Example of a training data row for each intent. 33
4.5 Key information about the training of the intent classifier. 34
4.6 Examples of responses from the count articles skill, with the question asked. 41
4.7 The columns of the table for storing feedback. 41

5.1 Some selected questions and responses. 45
5.2 Possible conversation with the conversational AI. 46

57

Appendix A

Instructions to Run System

For the program to work an Elasticsearch instance must be setup. The collection must
contain the fields shown in Table 2.4. The credentials for accessing the Elasticsearch
instance must then be added to the esConfig.yml file. The dependencies must be installed,
more information on this is contained in a README.md file. Afterwards the system can
be run as a Flask app.

59

Appendix B

Attachments

All code created as part of this thesis is included, this also includes the dataset created.

• Embedded: conversationalAI.7z

61

Bibliography

[1] ’cambridge analytica planted fake news’. BBC, 2018. URL https://www.bbc.com/

news/av/world-43472347. Accessed: 2022-06-14.

[2] Jianfeng Gao, Michel Galley, Lihong Li, et al. Neural approaches to conversational
ai. Foundations and trends® in information retrieval, 13(2-3):127–298, 2019.

[3] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with
neural networks. Advances in neural information processing systems, 27, 2014.

[4] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[5] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

[6] Krisztian Balog. Conversational ai from an information retrieval perspective: Remain-
ing challenges and a case for user simulation. In Proceedings of the 2nd International
Conference on Design of Experimental Search & Information REtrieval Systems
(DESIRES ’21), pages 80–90, 2021.

[7] Elastic NV. What is elasticsearch?, n.d. URL https://www.elastic.co/guide/

en/elasticsearch/reference/current/elasticsearch-intro.html. Accessed:
2022-06-14.

[8] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
Google’s neural machine translation system: Bridging the gap between human and
machine translation. arXiv preprint arXiv:1609.08144, 2016.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

63

https://www.bbc.com/news/av/world-43472347
https://www.bbc.com/news/av/world-43472347
https://www.elastic.co/guide/en/elasticsearch/reference/current/elasticsearch-intro.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/elasticsearch-intro.html

Bibliography BIBLIOGRAPHY

[10] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al.
Huggingface’s transformers: State-of-the-art natural language processing. arXiv
preprint arXiv:1910.03771, 2019.

[11] Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun,
Antonio Torralba, and Sanja Fidler. Aligning books and movies: Towards story-like
visual explanations by watching movies and reading books. In Proceedings of the
IEEE international conference on computer vision, pages 19–27, 2015.

[12] Philipp Reissel and Igli Manaj. Passage reranking multilingual bert[clockwise
vertical arrows][earth globe europe-africa], 2021. URL https://huggingface.co/

amberoad/bert-multilingual-passage-reranking-msmarco. Accessed: 2022-06-
14.

[13] Rodrigo Nogueira and Kyunghyun Cho. Passage re-ranking with bert. arXiv preprint
arXiv:1901.04085, 2019.

[14] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad:
100,000+ questions for machine comprehension of text. arXiv preprint
arXiv:1606.05250, 2016.

[15] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. Language models are unsupervised multitask learners. OpenAI blog, 1(8):9,
2019.

[16] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. Language models are few-shot learners. Advances in neural information
processing systems, 33:1877–1901, 2020.

[17] Fengyi Tang, Lifan Zeng, Fei Wang, and Jiayu Zhou. Persona authentication through
generative dialogue. arXiv preprint arXiv:2110.12949, 2021.

[18] Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao,
Jianfeng Gao, Jingjing Liu, and Bill Dolan. Dialogpt: Large-scale generative pre-
training for conversational response generation. arXiv preprint arXiv:1911.00536,
2019.

[19] Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur Szlam, Douwe Kiela, and
Jason Weston. Personalizing dialogue agents: I have a dog, do you have pets too?
arXiv preprint arXiv:1801.07243, 2018.

https://huggingface.co/amberoad/bert-multilingual-passage-reranking-msmarco
https://huggingface.co/amberoad/bert-multilingual-passage-reranking-msmarco

Bibliography 65

[20] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad andAbdelrahman
Mohamed, Omer Levy andVeselin Stoyanov, and Luke Zettlemoyer. BART: denoising
sequence-to-sequence pre-training for natural language generation, translation, and
comprehension. CoRR, abs/1910.13461, 2019. URL http://arxiv.org/abs/1910.

13461.

[21] Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter Liu. Pegasus: Pre-
training with extracted gap-sentences for abstractive summarization. In International
Conference on Machine Learning, pages 11328–11339. PMLR, 2020.

[22] Matthew Honnibal, Ines Montani, Sofie Van Landeghem, and Adriane Boyd. spaCy:
Industrial-strength Natural Language Processing in Python. 2020. doi: 10.5281/
zenodo.1212303.

[23] Kenton Lee, Luheng He, Mike Lewis, and Luke Zettlemoyer. End-to-end neural
coreference resolution. arXiv preprint arXiv:1707.07045, 2017.

[24] Matt Gardner, Joel Grus, Mark Neumann, Oyvind Tafjord, Pradeep Dasigi, Nelson
Liu, Matthew Peters, Michael Schmitz, and Luke Zettlemoyer. Allennlp: A deep
semantic natural language processing platform. arXiv preprint arXiv:1803.07640,
2018.

[25] Mikhail S Burtsev, Alexander V Seliverstov, Rafael Airapetyan, Mikhail Arkhipov,
Dilyara Baymurzina, Nickolay Bushkov, Olga Gureenkova, Taras Khakhulin, Yuri
Kuratov, Denis Kuznetsov, et al. Deeppavlov: Open-source library for dialogue
systems. In ACL (4), pages 122–127, 2018.

[26] DeepPavlov MIPT. Deeppavlov documentation, 2022. URL http://docs.

deeppavlov.ai/en/master/. Accessed: 2022-06-14.

[27] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St John,
Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, et al. Universal
sentence encoder. arXiv preprint arXiv:1803.11175, 2018.

[28] DeepPavlov MIPT. Intentcatcher example, 2022. URL https://colab.research.

google.com/drive/1l6Fhj3rEVup0N-n9Jy5z_iA3b1W53V6m?usp=sharing. Ac-
cessed: 2022-06-14.

[29] Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan
Majumder, and Li Deng. Ms marco: A human generated machine reading com-
prehension dataset. In CoCo@NIPS, 2016. URL http://ceur-ws.org/Vol-1773/

CoCoNIPS_2016_paper9.pdf.

http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
http://docs.deeppavlov.ai/en/master/
http://docs.deeppavlov.ai/en/master/
https://colab.research.google.com/drive/1l6Fhj3rEVup0N-n9Jy5z_iA3b1W53V6m?usp=sharing
https://colab.research.google.com/drive/1l6Fhj3rEVup0N-n9Jy5z_iA3b1W53V6m?usp=sharing
http://ceur-ws.org/Vol-1773/CoCoNIPS_2016_paper9.pdf
http://ceur-ws.org/Vol-1773/CoCoNIPS_2016_paper9.pdf

Bibliography BIBLIOGRAPHY

[30] Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will
Kay, Mustafa Suleyman, and Phil Blunsom. Teaching machines to read and compre-
hend. Advances in neural information processing systems, 28, 2015.

[31] Eric Brill and Robert C Moore. An improved error model for noisy channel spelling
correction. In Proceedings of the 38th annual meeting of the association for compu-
tational linguistics, pages 286–293, 2000.

[32] Tom Bocklisch, Joey Faulkner, Nick Pawlowski, and Alan Nichol. Rasa: Open source
language understanding and dialogue management. arXiv preprint arXiv:1712.05181,
2017.

[33] Armin Ronacher. Flask, 2011. URL https://palletsprojects.com/p/flask/.
Accessed: 2022-06-15.

[34] Bootstrap Core Team. Bootstap 5, 2021. URL https://getbootstrap.com/.
Accessed: 2022-06-15.

[35] Moin Uddin. Botui documentation, 2017. URL https://docs.botui.org/. Ac-
cessed: 2022-06-14.

[36] Pascal van Kooten. contractions, 2016. URL https://github.com/kootenpv/

contractions. Accessed: 2022-06-14.

[37] Matthew Honnibal, Ines Montani, Sofie Van Landeghem, and Adriane Boyd. Spacy
documentation on english models, 2020. URL https://spacy.io/models/en. Ac-
cessed: 2022-06-14.

[38] Richard D Hipp. SQLite, 2020. URL https://www.sqlite.org/index.html.

[39] Google. Google cloud, 2008. URL https://cloud.google.com/. Accessed: 2022-
06-15.

[40] Team NLTK. Natural language toolkit. URL https://www.nltk.org/.

[41] Shane Connelly. Practical bm25 - part 2: The bm25 algorithm
and its variables, 2018. URL https://www.elastic.co/blog/

practical-bm25-part-2-the-bm25-algorithm-and-its-variables. Accessed:
2022-06-14.

[42] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement
Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Mor-
gan Funtowicz, et al. Huggingface’s transformers documentation on bert,
2019. URL https://huggingface.co/docs/transformers/model_doc/bert#

transformers.BertForQuestionAnswering. Accessed: 2022-06-14.

https://palletsprojects.com/p/flask/
https://getbootstrap.com/
https://docs.botui.org/
https://github.com/kootenpv/contractions
https://github.com/kootenpv/contractions
https://spacy.io/models/en
https://www.sqlite.org/index.html
https://cloud.google.com/
https://www.nltk.org/
https://www.elastic.co/blog/practical-bm25-part-2-the-bm25-algorithm-and-its-variables
https://www.elastic.co/blog/practical-bm25-part-2-the-bm25-algorithm-and-its-variables
https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertForQuestionAnswering
https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertForQuestionAnswering

Bibliography 67

[43] Fengyi Tang, Lifan Zeng, Fei Wang, and Jiayu Zhou. A conversational agent with
many personalities (personagpt), 2021. URL https://huggingface.co/af1tang/

personaGPT. Accessed: 2022-06-14.

[44] Factiverse, 2019. URL https://www.factiverse.no/. Accessed: 2022-06-15.

[45] Ana-Maria Bucur, Adrian Cosma, and Liviu P Dinu. Sequence-to-sequence lexical
normalization with multilingual transformers. arXiv preprint arXiv:2110.02869,
2021.

[46] Ashim Gupta and Vivek Srikumar. X-fact: A new benchmark dataset for multilingual
fact checking. arXiv preprint arXiv:2106.09248, 2021.

[47] William Yang Wang. " liar, liar pants on fire": A new benchmark dataset for fake
news detection. arXiv preprint arXiv:1705.00648, 2017.

[48] Isabelle Augenstein, Christina Lioma, Dongsheng Wang, Lucas Chaves Lima, Casper
Hansen, Christian Hansen, and Jakob Grue Simonsen. Multifc: A real-world
multi-domain dataset for evidence-based fact checking of claims. arXiv preprint
arXiv:1909.03242, 2019.

https://huggingface.co/af1tang/personaGPT
https://huggingface.co/af1tang/personaGPT
https://www.factiverse.no/

	Abstract
	Acknowledgements
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Problem Definition
	1.3 Use Cases/Examples
	1.4 Challenges
	1.5 Contributions
	1.6 Outline

	2 Related Work
	2.1 Conversational AI
	2.1.1 Question answering
	2.1.2 Chatbot
	2.1.3 Hybrid System

	2.2 IR
	2.2.1 Text Preprocessing
	2.2.2 Inverted Index
	2.2.3 BM25
	2.2.4 Elasticsearch
	2.2.5 Initial Retrieval and Re-Ranking

	2.3 NLP
	2.3.1 Transformer Models
	2.3.2 NER
	2.3.3 Coreference resolution
	2.3.4 Intent classification

	2.4 Fine-tuning Datasets
	2.4.1 SQuAD
	2.4.2 MS MARCO
	2.4.3 PERSONA-CHAT
	2.4.4 CNN/Daily Mail

	2.5 Spelling Correction
	2.6 Fact-checks

	3 Design and Architecture
	3.1 Introduction
	3.2 Existing Approaches
	3.3 Proposed Solution
	3.3.1 User Interface
	3.3.2 Broker
	3.3.3 Skills
	3.3.4 Summary
	3.3.5 Feedback
	3.3.6 Storage

	4 Implementation
	4.1 Introduction
	4.2 User Interface
	4.2.1 Fontend
	4.2.2 Backend

	4.3 Broker
	4.3.1 Query Preprocessing
	4.3.2 Topic identification
	4.3.3 Intent detection

	4.4 Skills
	4.4.1 Summaries
	4.4.2 Random
	4.4.3 Fact-Checking Skill
	4.4.4 Chitchat Skill
	4.4.5 Count Articles Skill

	4.5 User Feedback
	4.6 Security

	5 Experimental Evaluation
	5.1 Experimental Setup and Data Set
	5.2 Experimental Results

	6 Discussion
	6.1 Introduction
	6.2 Ratings
	6.3 Conveying the Purpose of the AI
	6.4 Broker Components
	6.4.1 Intent classifier
	6.4.2 NER

	6.5 Fact-check skill

	7 Conclusion and Future Directions
	7.1 Conclusion
	7.2 Future Directions

	List of Figures
	List of Tables
	A Instructions to Run System
	B Attachments
	Bibliography

MSc-thesis-Ole-Petter/current_index.json

MSc-thesis-Ole-Petter/ids.json

MSc-thesis-Ole-Petter/ids_rem.json

MSc-thesis-Ole-Petter/answerGenerator.py

import pandas as pd
import numpy as np
from esConnect import esConnect

import tensorflow as tf
from transformers import BertForQuestionAnswering
from transformers import BertTokenizer
from elasticsearch import Elasticsearch
import torch
import nltk
from nltk.tokenize import sent_tokenize
import time
import requests
import json
from misc import read_config

conf = read_config()

nltk.download("punkt")

load model and tokenizer from source into memory (globally)
model = BertForQuestionAnswering.from_pretrained(
 "bert-large-uncased-whole-word-masking-finetuned-squad"
)
tokenizer = BertTokenizer.from_pretrained(
 "bert-large-uncased-whole-word-masking-finetuned-squad"
)

def find_answer(question, doc):
 """use question answering model to find the answer in the passage to the
 provided question

 Args:
 question: input query
 doc: document to find answer from

 Returns:
 answer found in passage or none

 """
 # print("Document length: " + str(len(doc)))
 # t1 = time.time()
 # use end of document as passage
 doc = doc[-2500:]
 # print(doc)
 # print("Trimmed document length: " + str(len(doc)))
 tokens = tokenizer(
 question, doc, return_tensors="pt", max_length=512, truncation=True
)
 # print(tokenizer.convert_ids_to_tokens(tokens["input_ids"].numpy()[0]))
 # end1 = time.time() - t1
 # print("time taken (tokenizer):" + str(end1))
 # print("Token length: " + str(len(tokens['input_ids'][0])))
 if len(tokens["input_ids"][0]) < 50:
 return None

 t2 = time.time()
 output = model(**tokens)

 # calculate all candidate spans and get highest scoring one
 startLogits = output.start_logits
 endLogits = output.end_logits
 idToToken = tokenizer.convert_ids_to_tokens(
 tokens["input_ids"].detach().numpy()[0]
)
 startArr = startLogits.detach().numpy()[0]
 endArr = endLogits.detach().numpy()[0]
 spanScore = []
 for i in range(len(startArr)):
 for j in range(i, len(endArr)):
 spanScore.append([startArr[i] + endArr[j], i, j])
 span = sorted(spanScore, key=lambda x: x[0], reverse=True)[0]
 answer = " ".join(idToToken[span[1] : span[2] + 1])

 # if no answer was found return none
 if answer.startswith("[CLS]") or answer == "" or answer.startswith("[SEP]"):
 return None

 # convert tokens to string
 ans = tokens_to_string(answer)
 # end2 = time.time() - t2
 # print("time taken (predict):" + str(end2))
 return ans

def tokens_to_string(answer):
 """convert the wordpiece tokens back to words, and limit answer to two
 sentences

 Args:
 answer: wordpiece tokens answer

 Returns:
 answer converted from wordpiece tokens to text

 """
 answer = answer.split()
 res = ""
 for token in answer:
 if token.startswith("##"):
 res += token[2:]
 else:
 res += " " + token
 res = sent_tokenize(res)
 if len(res) > 1:
 ans = res[0] + "." + res[1]
 else:
 ans = res[0]
 return ans

def factcheckFallback(claim):
 """fallback method calling Factiverse api if the QA model could not find an
 answer.

 Args:
 claim: input query

 Returns:
 dict with answer from Factiverse api

 """
 url = conf["FACTIVERSE"]
 headers = {"accept": "application/json", "Content-Type": "application/json"}
 data = {"claim": claim, "lang": "en", "logging": False}
 r = requests.post(url, headers=headers, data=json.dumps(data))
 data = json.loads(r.text)
 evidence = []
 for ev in data["evidence"]:
 evidence.append({"url": ev["url"], "evidence": ev["evidenceSnippet"]})
 if data["finalPrediction"] == 1:
 result = "true"
 elif data["finalPrediction"] == 0:
 result = "false"
 return {"evidence": evidence, "result": result}

if __name__ == "__main__":
 es, INDEX_NAME = esConnect()
 fc = es.get(index="fact_checks", id="j3Co4AW6psABHSXGfkcWESEFpGY=")
 ans = find_answer(
 "does trump think the earth is flat?",
 fc["_source"]["doc"],
)
 print(ans)

MSc-thesis-Ole-Petter/backend.py

from flask import Flask, render_template, jsonify, request, session
from chatbot import handleInput, replyConstruct, createResponseDict
from feedback import insert_feedback
from enums import Topic, Intent
import os
import datetime
from intentHandler import loadModelIntent
from spellingCorrection import loadModelSpelling
from misc import read_config
from intentChitchat import messageTokenize
from coreference import corefLoad

app = Flask(__name__)
app.config.update(SESSION_COOKIE_SAMESITE="None", SESSION_COOKIE_SECURE=False)
app.secret_key = os.urandom(12).hex()

deplyment version number, used for feedback to distinguish different deployment
versions
VERSION = 1
read configuration file
conf = read_config()

@app.route("/")
def index():
 """index route, also loads some models on first person connecting when
 startup

 Returns:
 the index page

 """
 loadModelIntent()
 if conf["SPELLINGCORRECTION"]:
 loadModelSpelling()
 if conf["COREFERENCE"]:
 corefLoad()
 if session.get("uid") is None:
 session["uid"] = str(datetime.datetime.now())
 session["history"] = []
 return render_template("index.html")

show about page
@app.route("/about")
def about():
 """route for accessing the about page

 Returns:
 about page

 """
 return render_template("about.html")

ajax, handle message input
@app.route("/_search")
def search():
 """route for messages to the AI, stores the conversation data for the broker
 in the session data

 Returns:
 the response dictionairy from the AI

 """
 query = request.args.get("query")
 if len(query) > 100:
 return "Input to long", 400
 # tokenized message history for chitchat
 session["history"].append(messageTokenize(query))
 result = handleInput(query, session)
 if "_id" in result:
 session["lastID"] = result["_id"]
 result = replyConstruct(result)
 result = createResponseDict(result)
 session["answer"] = result["reply"]
 session["intent"] = result["intent"]
 session["history"].append(messageTokenize(result["reply"]))
 session["lastQuestion"] = query
 return jsonify(result=result)

ajax, change topic
@app.route("/_topic")
def topic():
 """route for changing the topics used by the AI

 Returns:
 ok, as it is a get request it needs to respond

 """
 topic = request.args.get("query")
 # for safety make sure topic is a digit
 if topic.isdigit():
 session["topic"] = [Topic(int(topic)).name.lower()]
 # print("Topic change: " + str(Topic(int(topic))))
 return jsonify(result="ok")

ajax, feedback
@app.route("/_feedback")
def feedback():
 """route which accepts a rating to a question and stores the feedback

 Returns:
 ok, as it is a get request it needs to respond

 """
 feedback = request.args.get("feedback")
 if feedback.isdigit():
 insert_feedback(
 session["uid"],
 session["lastQuestion"],
 session["answer"],
 feedback,
 Intent(session["intent"]).name,
 VERSION,
)
 return jsonify(result="ok")

MSc-thesis-Ole-Petter/chatbot.py

import tensorflow as tf
tf.config.set_visible_devices([], 'GPU')
from queryHandler import query_preprocess
from fact_checks_handler import search_fact_checks
from answerGenerator import find_answer, factcheckFallback
import time
from intentHandler import getIntent
from enums import Intent, FcResult
from randomFactChecks import factchecksCount, getRandomFC, getRandomList
from summary import intent_elaborate
from esConnect import esConnect
import contractions
from spellingCorrection import correctSpelling
import copy
from intentChitchat import chitchat
from namedEnetityRecognition import getNamedEntities
from misc import read_config
from coreference import coreferenceResolve

TODO: fix elasticsearch no results error

conf = read_config()

def handleInput(text, sessionData):
 """the broker
 - preprocess input
 - get intent
 - get topic using NER
 - call skill (some parts of the skills are also done here)

 Args:
 text: user input
 sessionData: stored conversation data for the broker

 Returns:
 a dict with the result, varies depending on the skill

 """
 # text preprocessing
 text = text.lower()
 if conf["SPELLINGCORRECTION"]:
 text = correctSpelling(text)
 text = contractions.fix(text)
 if conf["COREFERENCE"] and "lastQuestion" in sessionData:
 text = coreferenceResolve(sessionData["lastQuestion"], text)
 # intent
 intent = getIntent(text)
 intentDict = copy.copy(sessionData)
 intentDict["intent"] = intent
 # choose skill based on intent
 if intent == Intent.RANDOM:
 topic = getNamedEntities(text)
 if "lastID" in sessionData:
 lastID = sessionData["lastID"]
 else:
 lastID = None
 if topic:
 fc = getRandomFC(topic, lastID)
 else:
 fc = getRandomFC(sessionData["topic"], lastID)
 sum = intent_elaborate(fc["_id"])
 result = {**intentDict, **fc}
 result["summary"] = sum
 return result
 elif intent == Intent.ELABORATE:
 if "lastID" in sessionData:
 id = sessionData["lastID"]
 es, INDEX_NAME = esConnect()
 fc = es.get(index="fact_checks", id=id)
 sum = intent_elaborate(id)
 result = {**intentDict, **fc}
 result["summary"] = sum
 result["result"] = FcResult.WORK
 else:
 result = intentDict
 result["result"] = FcResult.FAIL
 return result
 elif intent == Intent.FACTCHECK:
 query = query_preprocess(text)
 query = " ".join(query)
 fc = search_fact_checks(query, text)
 fc["result"] = FcResult.WORK
 if fc["_id"] is None:
 answer = "Sorry, I could not understand your question."
 fc["result"] = FcResult.FAIL
 elif fc["score"] < 2.0:
 answer = "Sorry, I don't have any fact-checks on that."
 fc["result"] = FcResult.FAIL
 else:
 answer = find_answer(text, fc["_source"]["doc"])
 if answer is None:
 """
 answer = (
 "I found this claim : "
 + fc["_source"]["claim"]
 + " Which is labeled "
 + fc["_source"]["label"]
 + " and fact-checked by "
 + fc["_source"]["fact_source"]
 + "."
)
 """
 fc["result"] = FcResult.FALLBACK
 if fc["result"] != FcResult.WORK:
 fc = {"result": fc["result"]}
 fc["factiverse"] = factcheckFallback(text)
 result = {**intentDict, **fc}
 result["reply"] = answer
 return result
 elif intent == Intent.RELATED:
 es, INDEX_NAME = esConnect()
 if "lastID" in sessionData:
 id = sessionData["lastID"]
 fc = es.get(index="fact_checks", id=id)
 # make sure its not the same as last one
 # count related, then find new one
 topics = fc["_source"]["topic"]
 fc = getRandomFC(topics, sessionData["lastID"])
 if fc is not None:
 fc["summary"] = intent_elaborate(fc["_id"])
 fc["result"] = FcResult.WORK
 else:
 fc = {}
 fc["result"] = FcResult.FAIL
 else:
 fc = {}
 fc["result"] = FcResult.FAIL
 result = {**intentDict, **fc}
 return result
 elif intent == Intent.CHITCHAT:
 reply = chitchat(sessionData["history"])
 response = {"reply": reply}
 result = {**intentDict, **response}
 return result
 elif intent == Intent.COUNT:
 topic = getNamedEntities(text)
 # print(topic)
 count = factchecksCount(topic)
 result = intentDict
 result["count"] = count
 result["entity"] = topic
 return result
 elif intent == Intent.LIST:
 topic = getNamedEntities(text)
 # print(topic)
 list, articles = getRandomList(topic)
 result = intentDict
 result["entity"] = topic
 if list is not None:
 result["list"] = list
 result["articles"] = articles
 result["result"] = FcResult.WORK
 else:
 result["result"] = FcResult.FAIL
 return result

fact_source
def replyConstruct(data):
 """construct the response message from the AI, based on the skill.
 if the skill failed a different response is created.

 Args:
 data: dict with response from the skill

 Returns:
 dict with the reply message added

 """
 intent = data["intent"]
 if intent == Intent.RANDOM:
 reply = (
 "Claim: "
 + data["_source"]["claim"]
 + " Summary: "
 + data["summary"]
)
 data["reply"] = reply
 return data
 elif intent == Intent.ELABORATE:
 if data["result"] == FcResult.WORK:
 reply = data["summary"]
 else:
 reply = "You must ask for a fact-check first."
 data["reply"] = reply
 return data
 elif intent == Intent.FACTCHECK:
 if data["result"] != FcResult.WORK:
 reply = (
 "This claim was found to be "
 + data["factiverse"]["result"]
 + " by the factiverse AI."
)
 data["reply"] = reply
 return data

 elif intent == Intent.RELATED:
 # print(data)
 if data["result"] == FcResult.WORK:
 reply = (
 "Title: "
 + data["_source"]["claim"]
 + " Summary: "
 + data["summary"]
)
 else:
 reply = "Sorry, but you need to ask me for a fact-check first."
 data["reply"] = reply
 return data
 elif intent == Intent.CHITCHAT:
 return data
 elif intent == Intent.COUNT:
 if data["entity"]:
 reply = (
 "There are "
 + str(data["count"])
 + " fact-checks about "
 + data["entity"][0]
 + "."
)
 else:
 reply = "There are " + str(data["count"]) + " fact-checks in total."
 data["reply"] = reply
 return data
 elif intent == Intent.LIST:
 if data["result"] == FcResult.FAIL:
 data[
 "reply"
] = "Sorry, I could not find any fact-checks on this topic."
 else:
 if data["entity"]:
 data["reply"] = (
 " Here are five articles about " + data["entity"][0] + "."
)
 else:
 data["reply"] = " Here are five articles."
 articles = data["articles"]
 articlesClean = []
 for article in articles:
 article = article["_source"]
 articlesClean.append(
 {
 "claim": article["claim"],
 "label": article["label"],
 "fact_source": article["fact_source"],
 "url": article["url"],
 }
)
 data["articles"] = articlesClean
 return data

for safety only send needed data in dict
def createResponseDict(data):
 """for security, only the necessary data is sent

 Args:
 data: response dict after reply was created.

 Returns:
 response dict from the AI.

 """
 response = {}
 response["intent"] = data["intent"].value
 if "result" in data.keys():
 response["result"] = data["result"]
 else:
 response["result"] = 0
 if "_source" in data.keys():
 response["claim"] = data["_source"]["claim"]
 response["fact_source"] = data["_source"]["fact_source"]
 response["url"] = data["_source"]["url"]
 response["label"] = data["_source"]["label"]
 response["reply"] = data["reply"]
 if "list" in data.keys():
 response["list"] = data["list"]
 response["articles"] = data["articles"]
 if "factiverse" in data.keys():
 response["list"] = data["factiverse"]["evidence"]
 # print(response["reply"])
 return response

MSc-thesis-Ole-Petter/configs/config.yml

how many articles to use in the re-ranking
RERANK: 5
if input should be spelling corrected
SPELLINGCORRECTION: False
How many articles to list in the list intent
LIST: 5
#coreferencing
COREFERENCE: True
#url for factiverse api
FACTIVERSE:

MSc-thesis-Ole-Petter/configs/esConfig.yml

Details for accessing the elastic search server
ADDRESS:
PORT:
USER:
PW:

MSc-thesis-Ole-Petter/coreference.py

from allennlp.predictors.predictor import Predictor

predictor = None

def corefLoad():
 """if not already cached download model. Load model into memory (globally)"""
 global predictor
 if predictor is None:
 predictor = Predictor.from_path(
 "https://storage.googleapis.com/allennlp-public-models/coref-spanbert-large-2021.03.10.tar.gz"
)

def coreferenceResolve(text1, text2):
 """resolve coreference from previous sentence

 Args:
 text1: previous user input
 text2: current turn user input

 Returns:
 the resolved current turn user input

 """
 sentence = text1 + " " + text2
 if len(sentence) < 25:
 return text1
 result = predictor.coref_resolved(sentence)
 return result[len(text1) :]

if __name__ == "__main__":
 text = "does trump think the earth is flat?"
 text2 = "why does he think this?"

 print(coreferenceResolve(text, text2))

MSc-thesis-Ole-Petter/databases/feedback.db

MSc-thesis-Ole-Petter/databases/summary.db

MSc-thesis-Ole-Petter/dataset/Intent_test.tsv

random	elaborate	factcheck	related	chitchat	count	list
give me a random fact	information	does trump think the earth is flat	give me a related fact check	hi	how many articles about charlie chaplin	give me a list on ukraine
can i have a random fact check	please tell me more	has facebook banned military emblems	related	hello	can you count number of articles about ukraine	show a list of articles about united states
random	give me more information	did congress want obama to have a third term	another similar fact	how are you	count articles about united states	i want some factchecks about russia
do you have a random fact-check	more information	did a man on the titanic get on a lifeboat by wearing a dress	i want one like this	i am having a bad day	show me how many articles you have on youtube	can you list som facts on
please give a random fact-check	i want to know more	did someone dig up charlie chaplin's remains	can i have an article on the same topic	you are stupid	count factchecks on joe	show some factchecks on trump
i want a random fact-check on the invasion of ukraine	tell me more about this article	is cassidy Boon suing her savior	show an related article	please stop	tell me how many articles there are about folklore	can i have two facts about california
tell me a random fact on the topic of trump	more information please	did california ban the .45 acp	give a similar factcheck	i do not like you	count on trump	list about ukraine
random factcheck	elaborate	is news acronym for north west south east	similar	can i have a sandwich	count spain	list
arbitrary	show more information	did a war veteran refuse jane and ted service	give a related fact	i like music	how many about serbia	seven articles
arbitrary fact	more info	does aladdin whisper "Good teenagers, take off your clothes"	similar one			
	information	is it true that the earth is flat	related one			
	summary	is it false that trump said the earth is flat	show a similar			
	give me a summary	can you tell me if what putin said is wrong				
	what is it about					

MSc-thesis-Ole-Petter/dataset/Intent_train.tsv

random	elaborate	factcheck	related	chitchat	count	list
(could you){0,1}(please){0,1}give me ((a random)|(some)) ((fact check)|(fact-check)|(fact)|(factcheck)|(article))	((can you)|(could you)){0,1}(please){0,1}((elaborate)|(tell me more)|(explain)|(give me an explanation)|(give an explanation)|(give me a summary)|(give a summary)|(give me more information))	did ((biden)|(trump)|(putin)|(zelensky)) ((invaded ukraine)|(say this)|(do this))	((tell)|(show)|(give)|(provide)) (me){0,1}((a)|(an)|(some)) ((similar)|(related))	((hello)|(hi)|(good day))	how many ((fact check)|(fact-check)|(fact)|(factcheck)|(article)) ((are there)|(exists)|(exist)) on (the topic of){0,1} ((ukraine)|(trump)|(putin)|(russia)|(the invasion))	((show me)|(list)|(i want)){0,1}((some)|(multiple)|(10)|(a few)|(five)) ((fact checks)|(fact-checks)|(facts)|(factchecks)|(articles))
((some)|(a)|(an)){0,1}((random)|(arbitrary))((fact check)|(fact-check)|(fact)|(factcheck)|(check)){0,1}	i do not understand	does ((biden)|(trump)|(putin)|(zelensky)) ((think)|(believe)) the earth is flat	((tell)|(show)|(give)|(provide))(me){0,1}	i am ((good)|(fine)|(great)|(awesome))	(can you){0,1}count (the){0,1}(number){0,1}((fact checks)|(fact-checks)|(facts)|(factchecks)|(articles)) on (the){0,1}(topic of){0,1} ((ukraine)|(trump)|(putin)|(russia)|(the invasion))	(can you){0,1}list ((fact checks)|(fact-checks)|(facts)|(factchecks)|(articles)) on (the topic of){0,1}((ukraine)|(trump)|(putin)|(russia)|(the invasion))
i want a((random)|(n arbitrary)){0,1} ((fact check)|(fact-check)|(fact)|(factcheck)|(article)) on 	((i would like)|(i want)|(give me)|(supply)) (a){0,1}summary	does the ((illuminati)|(flat earth society)) exist	((can i have)|(give me)|(show me)){0,1}(a){0,1}((similar)|(related))(one){0,1}(thank you){0,1}	not (feeling){0,1}so ((good)|(great))	((show me)|(tell me)) how many ((fact checks)|(fact-checks)|(facts)|(factchecks)|(articles)) there are on ((ukraine)|(trump)|(putin)|(russia)|(the invasion))	((list)|(multiple)|(three)|(2))((fact checks)|(fact-checks)|(facts)|(factchecks)|(articles)){0,1}
(please){0,1} ((give)|(give me)) a(random){0,1} ((fact check)|(fact-check)|(fact)|(factcheck)|(article))	((summarize)|(summary)|(explain)|(explanation)|(more)|(more information)|(info)|(information))(please){0,1}	((has)|(have)) ((biden)|(trump)|(putin)|(zelensky)|(facebook)|(google)|(twitter)|(obama)) banned ((military emblems)|(books)|(users)|(people))	((provide)|(give)|(tell)|(show)) (me){0,1}a ((similar)|(related)) ((fact check)|(fact-check)|(fact)|(article))	having a ((bad)|(terrible)) day	((how many)|(count)) ((fact checks)|(fact-checks)|(facts)|(factchecks)|(articles)){0,1} ((about)|(on)) ((ukraine)|(trump)|(putin)|(russia)|(the invasion))	i want ((a list of)|(few)|(some)) ((fact checks)|(fact-checks)|(facts)|(factchecks)|(articles))
tell me a(n interesting){0,1} ((fact check)|(fact-check)|(fact))	((summarize)|(explain)|(elaborate on)) ((this)|(the)) ((fact check)|(fact-check)|(fact)|(article))	is it ((true)|(false)|(correct)|(wrong)) that ((biden)|(trump)|(putin)|(zelensky)) ((invaded ukraine)|(said this)|(did this))	((give)|(show)) me one on the same ((topic)|(type)|(topics))	((ok)|(okey)|(thx)|(thank you)|(great)|(nice))	((how many)|(count))((about)|(on)){0,1} ((ukraine)|(trump)|(putin)|(russia)|(the invasion))	
i want ((a random)|(an arbitrary)){0,1} ((fact check)|(fact-check)|(fact))	((i want to know)|(tell me)) (more){0,1}	is this ((true)|(false)|(correct)|(wrong))	((can i have)|(give me)|(show me)){0,1}(a){0,1}((fact check)|(fact-check)|(fact)|(article)) like this one	((who)|(what)) are you		
(please){0,1}provide me with a ((fact check)|(fact-check)|(fact)|(check))	((can)|(could)) i have (more){0,1}((information)|(info))	(can you){0,1}(please){0,1}check if this((post)|(article)|(image)|(video)) is ((true)|(false)|(correct)|(wrong))		((bye)|(exit)|(stop)|(farewell)|(that was it))(for now){0,1}		
can you(please){0,1} give me a ((fact check)|(fact-check)|(fact))	((provide)|(give)|(supply)) (more){0,1}((information)|(info)){0,1}	did (a war){0,1}veteran refuse jane and ted service		tell me about yourself		
i am interessted in a(random){0,1} ((fact check)|(fact-check)|(fact)|(article))	(i){0,1}need more information	((was)|(were)) jane and ted ((refused)|(rejected))(service){0,1}		how are you		
let us have a(random){0,1} ((fact check)|(fact-check)|(fact)|(article))	((tell me what it)|(what is it)) about	is cassidy boon suing her savior		can you ((help)|(assist))(me){0,1}		
arbitrary((fact check)|(fact-check)|(fact)){0,1}		does cassidy boon sue her savior		(you are){0,1}((bad)|(ugly)|(stupid)|(handsome)|(awesome))		
provide me with a ((fact check)|(fact-check)|(fact))				((bla)|(qwe)|(qwerty)|(asd))		
i want(a random){0,1}(an arbitrary){0,1} ((fact check)|(fact-check)|(fact)|(article)) on ((ukraine)|(trump)|(putin)|(russia)|(the invasion))				tell me a ((joke)|(story))		
let us have an arbitrary ((fact check)|(fact-check)|(fact)|(article))				who ((made)|(created)|(developed)) you		
((arbitrary)|(random))((fact check)|(fact-check)|(fact)|(check)){0,1}				what is your name		
((could)|(can)) you(please){0,1} ((tell)|(give)|(provide))(me){0,1} a ((fact check)|(fact-check)|(fact))				who are you		
(please){0,1} (give me){0,1}a(random){0,1} ((fact check)|(fact-check)|(fact)) on (the topic of){0,1}((ukraine)|(trump)|(putin)|(russia)|(the invasion))						
((i want)|(give me)|(tell me)|(im interested in)|(show me)|(show)) ((some)|(a)) (random){0,1}(debunked){0,1}((fact check)|(fact-check)|(fact))						
((i want)|(give me)|(tell me)|(show me)|(show)) ((some)|(a)|(an)) ((random)|(arbitrary)){0,1}(debunked){0,1}((fact check)|(fact-check)|(fact)) on (the topic of){0,1}(the){0,1}((corona vaccine)|(vaccine)|(covid)|(biden)|(trump)|(putin)|(ukraine)|(zelensky))						
((another)|(new)) one						
we ((want)|(need)) a ((fact check)|(fact-check)|(fact)|(article))						

MSc-thesis-Ole-Petter/dataset/model.tar.gz

MSc-thesis-Ole-Petter/dataset/model.tar

intent_catcher/model/regexps.json

[{"regexp": "((i want)|(give me)|(tell me)|(im interested in)|(show me)|(show)) ((some)|(a)) (random){0,1}(debunked){0,1}((fact check)|(fact-check)|(fact))", "label": "0"}, {"regexp": "((bla)|(qwe)|(qwerty)|(asd))", "label": "1"}, {"regexp": "((i want)|(give me)|(tell me)|(show me)|(show)) ((some)|(a)|(an)) ((random)|(arbitrary)){0,1}(debunked){0,1}((fact check)|(fact-check)|(fact)) on (the topic of){0,1}(the){0,1}((corona vaccine)|(vaccine)|(covid)|(biden)|(trump)|(putin)|(ukraine)|(zelensky))", "label": "0"}, {"regexp": "(could you){0,1}(please){0,1}give me ((a random)|(some)) ((fact check)|(fact-check)|(fact)|(factcheck)|(article))", "label": "0"}, {"regexp": "((give)|(show)) me one on the same ((topic)|(type)|(topics))", "label": "4"}, {"regexp": "can you(please){0,1} give me a ((fact check)|(fact-check)|(fact))", "label": "0"}, {"regexp": "((tell)|(show)|(give)|(provide))(me){0,1}", "label": "4"}, {"regexp": "((provide)|(give)|(tell)|(show)) (me){0,1}a ((similar)|(related)) ((fact check)|(fact-check)|(fact)|(article))", "label": "4"}, {"regexp": "((some)|(a)|(an)){0,1}((random)|(arbitrary))((fact check)|(fact-check)|(fact)|(factcheck)|(check)){0,1}", "label": "0"}, {"regexp": "i want(a random){0,1}(an arbitrary){0,1} ((fact check)|(fact-check)|(fact)|(article)) on ((ukraine)|(trump)|(putin)|(russia)|(the invasion))", "label": "0"}, {"regexp": "(please){0,1}provide me with a ((fact check)|(fact-check)|(fact)|(check))", "label": "0"}, {"regexp": "let us have a(random){0,1} ((fact check)|(fact-check)|(fact)|(article))", "label": "0"}, {"regexp": "i am ((good)|(fine)|(great)|(awesome))", "label": "1"}, {"regexp": "i want a((random)|(n arbitrary)){0,1} ((fact check)|(fact-check)|(fact)|(factcheck)|(article)) on ", "label": "0"}, {"regexp": "tell me a(n interesting){0,1} ((fact check)|(fact-check)|(fact))", "label": "0"}, {"regexp": "is this ((true)|(false)|(correct)|(wrong))", "label": "2"}, {"regexp": "i do not understand", "label": "3"}, {"regexp": "((i would like)|(i want)|(give me)|(supply)) (a){0,1}summary", "label": "3"}, {"regexp": "(i){0,1}need more information", "label": "3"}, {"regexp": "who are you", "label": "1"}, {"regexp": "((can i have)|(give me)|(show me)){0,1}(a){0,1}((similar)|(related))(one){0,1}(thank you){0,1}", "label": "4"}, {"regexp": "i want ((a random)|(an arbitrary)){0,1} ((fact check)|(fact-check)|(fact))", "label": "0"}, {"regexp": "arbitrary((fact check)|(fact-check)|(fact)){0,1}", "label": "0"}, {"regexp": "i want ((a list of)|(few)|(some)) ((fact checks)|(fact-checks)|(facts)|(factchecks)|(articles))", "label": "6"}, {"regexp": "((another)|(new)) one", "label": "0"}, {"regexp": "not (feeling){0,1}so ((good)|(great))", "label": "1"}, {"regexp": "i am interessted in a(random){0,1} ((fact check)|(fact-check)|(fact)|(article))", "label": "0"}, {"regexp": "((can you)|(could you)){0,1}(please){0,1}((elaborate)|(tell me more)|(explain)|(give me an explanation)|(give an explanation)|(give me a summary)|(give a summary)|(give me more information))", "label": "3"}, {"regexp": "(can you){0,1}(please){0,1}check if this((post)|(article)|(image)|(video)) is ((true)|(false)|(correct)|(wrong))", "label": "2"}, {"regexp": "((how many)|(count)) ((fact checks)|(fact-checks)|(facts)|(factchecks)|(articles)){0,1} ((about)|(on)) ((ukraine)|(trump)|(putin)|(russia)|(the invasion))", "label": "5"}, {"regexp": "((has)|(have)) ((biden)|(trump)|(putin)|(zelensky)|(facebook)|(google)|(twitter)|(obama)) banned ((military emblems)|(books)|(users)|(people))", "label": "2"}, {"regexp": "how many ((fact check)|(fact-check)|(fact)|(factcheck)|(article)) ((are there)|(exists)|(exist)) on (the topic of){0,1} ((ukraine)|(trump)|(putin)|(russia)|(the invasion))", "label": "5"}, {"regexp": "does the ((illuminati)|(flat earth society)) exist", "label": "2"}, {"regexp": "did (a war){0,1}veteran refuse jane and ted service", "label": "2"}, {"regexp": "tell me a ((joke)|(story))", "label": "1"}, {"regexp": "let us have an arbitrary ((fact check)|(fact-check)|(fact)|(article))", "label": "0"}, {"regexp": "(can you){0,1}count (the){0,1}(number){0,1}((fact checks)|(fact-checks)|(facts)|(factchecks)|(articles)) on (the){0,1}(topic of){0,1} ((ukraine)|(trump)|(putin)|(russia)|(the invasion))", "label": "5"}, {"regexp": "((can)|(could)) i have (more){0,1}((information)|(info))", "label": "3"}, {"regexp": "did ((biden)|(trump)|(putin)|(zelensky)) ((invaded ukraine)|(say this)|(do this))", "label": "2"}, {"regexp": "does ((biden)|(trump)|(putin)|(zelensky)) ((think)|(believe)) the earth is flat", "label": "2"}, {"regexp": "we ((want)|(need)) a ((fact check)|(fact-check)|(fact)|(article))", "label": "0"}, {"regexp": "is it ((true)|(false)|(correct)|(wrong)) that ((biden)|(trump)|(putin)|(zelensky)) ((invaded ukraine)|(said this)|(did this))", "label": "2"}, {"regexp": "((summarize)|(summary)|(explain)|(explanation)|(more)|(more information)|(info)|(information))(please){0,1}", "label": "3"}, {"regexp": "(please){0,1} (give me){0,1}a(random){0,1} ((fact check)|(fact-check)|(fact)) on (the topic of){0,1}((ukraine)|(trump)|(putin)|(russia)|(the invasion))", "label": "0"}, {"regexp": "what is your name", "label": "1"}, {"regexp": "(please){0,1} ((give)|(give me)) a(random){0,1} ((fact check)|(fact-check)|(fact)|(factcheck)|(article))", "label": "0"}, {"regexp": "((was)|(were)) jane and ted ((refused)|(rejected))(service){0,1}", "label": "2"}, {"regexp": "(can you){0,1}list ((fact check)|(fact-check)|(fact)|(factcheck)|(article)) on (the topic of){0,1}((ukraine)|(trump)|(putin)|(russia)|(the invasion))", "label": "6"}, {"regexp": "((could)|(can)) you(please){0,1} ((tell)|(give)|(provide))(me){0,1} a ((fact check)|(fact-check)|(fact))", "label": "0"}, {"regexp": "is cassidy boon suing her savior", "label": "2"}, {"regexp": "((bye)|(exit)|(stop)|(farewell)|(that was it))(for now){0,1}", "label": "1"}, {"regexp": "((provide)|(give)|(supply)) (more){0,1}((information)|(info)){0,1}", "label": "3"}, {"regexp": "((i want to know)|(tell me)) (more){0,1}", "label": "3"}, {"regexp": "having a ((bad)|(terrible)) day", "label": "1"}, {"regexp": "how are you", "label": "1"}, {"regexp": "((who)|(what)) are you", "label": "1"}, {"regexp": "((arbitrary)|(random))((fact check)|(fact-check)|(fact)|(check)){0,1}", "label": "0"}, {"regexp": "provide me with a ((fact check)|(fact-check)|(fact))", "label": "0"}, {"regexp": "((tell me what it)|(what is it)) about", "label": "3"}, {"regexp": "(you are){0,1}((bad)|(ugly)|(stupid)|(handsome)|(awesome))", "label": "1"}, {"regexp": "((show me)|(list)|(i want)){0,1}((some)|(multiple)|(10)|(a few)|(five)) ((fact check)|(fact-check)|(fact)|(factcheck)|(article))", "label": "6"}, {"regexp": "who ((made)|(created)|(developed)) you", "label": "1"}, {"regexp": "((show me)|(tell me)) how many ((fact checks)|(fact-checks)|(facts)|(factchecks)|(articles)) there are on ((ukraine)|(trump)|(putin)|(russia)|(the invasion))", "label": "5"}, {"regexp": "((tell)|(show)|(give)|(provide)) (me){0,1}((a)|(an)|(some)) ((similar)|(related))", "label": "4"}, {"regexp": "tell me about yourself", "label": "1"}, {"regexp": "((can i have)|(give me)|(show me)){0,1}(a){0,1}((fact check)|(fact-check)|(fact)|(article)) like this one", "label": "4"}, {"regexp": "((summarize)|(explain)|(elaborate on)) ((this)|(the)) ((fact check)|(fact-check)|(fact)|(article))", "label": "3"}, {"regexp": "can you ((help)|(assist))(me){0,1}", "label": "1"}, {"regexp": "((ok)|(okey)|(thx)|(thank you)|(great)|(nice))", "label": "1"}, {"regexp": "does cassidy boon sue her savior", "label": "2"}, {"regexp": "((list)|(multiple)|(three)|(2))((fact checks)|(fact-checks)|(facts)|(factchecks)|(articles)){0,1}", "label": "6"}, {"regexp": "((hello)|(hi)|(good day))", "label": "1"}, {"regexp": "((how many)|(count))((about)|(on)){0,1} ((ukraine)|(trump)|(putin)|(russia)|(the invasion))", "label": "5"}]

intent_catcher/model/nn.h5

intent_catcher/classes.dict

random	21
chitchat	16
factcheck	11
elaborate	10
related	6
count	5
list	4

MSc-thesis-Ole-Petter/dataset/train_intent_classifier.ipynb

{
 "nbformat": 4,
 "nbformat_minor": 0,
 "metadata": {
 "accelerator": "GPU",
 "colab": {
 "name": "train_intent_classifier.ipynb",
 "provenance": [],
 "collapsed_sections": []
 },
 "kernelspec": {
 "display_name": "Python 3",
 "name": "python3"
 }
 },
 "cells": [
 {
 "cell_type": "markdown",
 "source": [
 "# Based on\n",
 "Title: IntentCatcher example.ipynb\n",
 "\n",
 "Authors: DeepPavlov MIPT\n",
 "\n",
 "Year: 2022\n",
 "\n",
 "Availability: https://colab.research.google.com/drive/1l6Fhj3rEVup0N-n9Jy5z_iA3b1W53V6m?usp=sharing\n",
 "\n",
 "#adapted to load csv files"
],
 "metadata": {
 "id": "iYNorujALTAA"
 }
 },
 {
 "cell_type": "markdown",
 "metadata": {
 "id": "sPyu06BvdjAe"
 },
 "source": [
 "### Install DeepPavlov and dependences needed for IntentCatcher."
]
 },
 {
 "cell_type": "code",
 "metadata": {
 "id": "NeZ6rndW3ivO"
 },
 "source": [
 "# Installation of DeepPavlov\n",
 "!pip install deeppavlov\n",
 "\n",
 "# Dependences installation\n",
 "!python3 -m deeppavlov install intent_catcher\n",
 "\n",
 "# Make directory\n",
 "!mkdir downloads\n",
 "!mkdir downloads/intent_catcher_data"
],
 "execution_count": null,
 "outputs": []
 },
 {
 "cell_type": "markdown",
 "metadata": {
 "id": "Hvg9WDwldzn2"
 },
 "source": [
 "## load the intents data (the dataset is assumed to be in a folder named dataset)"
]
 },
 {
 "cell_type": "code",
 "source": [
 "# imports\n",
 "from deeppavlov import configs, train_model\n",
 "import pandas as pd\n",
 "import json\n",
 "\n",
 "#load training and testing data\n",
 "df_train = pd.read_csv('dataset/Intent_train.tsv', sep='\\t')\n",
 "df_test = pd.read_csv('dataset/Intent_test.tsv', sep='\\t')\n",
 "\n",
 "# create dict for dumping training data to json \n",
 "train_data = {}\n",
 "for (columnName, columnData) in df_train.iteritems():\n",
 " train_data[columnName] = columnData.dropna().values.tolist()\n",
 "\n",
 "# create dict for dumping testing data to json \n",
 "test_data = {}\n",
 "for (columnName, columnData) in df_test.iteritems():\n",
 " test_data[columnName] = columnData.dropna().values.tolist()\n",
 "\n",
 "# model also needs validation data so a copy of the testing data is used for this.\n",
 "# should ideally also create a validation set \n",
 "valid_data = test_data\n",
 "print(f\"Intents: {list(train_data.keys())}\")"
],
 "metadata": {
 "id": "1gSCCEi73IwO"
 },
 "execution_count": null,
 "outputs": []
 },
 {
 "cell_type": "markdown",
 "source": [
 "# get dataset statistics"
],
 "metadata": {
 "id": "bRdZ5BkLPIXP"
 }
 },
 {
 "cell_type": "code",
 "source": [
 "print(\"\\nMean\")\n",
 "print(df_train['random'].str.len().mean())\n",
 "print(df_train['elaborate'].str.len().mean())\n",
 "print(df_train['factcheck'].str.len().mean())\n",
 "print(df_train['related'].str.len().mean())\n",
 "print(df_train['chitchat'].str.len().mean())\n",
 "print(df_train['count'].str.len().mean())\n",
 "print(df_train['list'].str.len().mean())\n",
 "\n",
 "print(\"\\nMin\")\n",
 "print(df_train['random'].str.len().min())\n",
 "print(df_train['elaborate'].str.len().min())\n",
 "print(df_train['factcheck'].str.len().min())\n",
 "print(df_train['related'].str.len().min())\n",
 "print(df_train['chitchat'].str.len().min())\n",
 "print(df_train['count'].str.len().min())\n",
 "print(df_train['list'].str.len().min())\n",
 "\n",
 "print(\"\\nMax\")\n",
 "print(df_train['random'].str.len().max())\n",
 "print(df_train['elaborate'].str.len().max())\n",
 "print(df_train['factcheck'].str.len().max())\n",
 "print(df_train['related'].str.len().max())\n",
 "print(df_train['chitchat'].str.len().max())\n",
 "print(df_train['count'].str.len().max())\n",
 "print(df_train['list'].str.len().max())"
],
 "metadata": {
 "id": "4L4mEU0-LAEi"
 },
 "execution_count": null,
 "outputs": []
 },
 {
 "cell_type": "markdown",
 "source": [
 "# Dump the data, so it can be loaded for training"
],
 "metadata": {
 "id": "aXguSB3TPMXQ"
 }
 },
 {
 "cell_type": "code",
 "metadata": {
 "id": "xCdPiqEQh3m9"
 },
 "source": [
 "\n",
 "json.dump(train_data, open(\"/content/downloads/intent_catcher_data/train.json\", 'w'))\n",
 "json.dump(test_data, open(\"/content/downloads/intent_catcher_data/test.json\", 'w'))\n",
 "json.dump(valid_data, open(\"/content/downloads/intent_catcher_data/valid.json\", 'w'))"
],
 "execution_count": null,
 "outputs": []
 },
 {
 "cell_type": "markdown",
 "metadata": {
 "id": "MtAVHK1VeYL0"
 },
 "source": [
 "# Configure and train our model"
]
 },
 {
 "cell_type": "code",
 "metadata": {
 "id": "1u0lUI7q_dDd"
 },
 "source": [
 "# Get config\n",
 "config = json.load(open(configs['intent_catcher']['intent_catcher']))\n",
 "config"
],
 "execution_count": null,
 "outputs": []
 },
 {
 "cell_type": "code",
 "metadata": {
 "id": "IYJ9hl0fAAeb"
 },
 "source": [
 "# Modify root path to fit data, and number of intents, 60 epochs seems to work good\n",
 "config['metadata']['variables']['ROOT_PATH'] = '/content/'\n",
 "config['chainer']['pipe'][1]['number_of_intents'] = len(train_data.keys())\n",
 "config['train']['epochs'] = 60"
],
 "execution_count": null,
 "outputs": []
 },
 {
 "cell_type": "code",
 "metadata": {
 "id": "MSwElUzhEk61"
 },
 "source": [
 "# Train model\n",
 "model = train_model(config)"
],
 "execution_count": null,
 "outputs": []
 },
 {
 "cell_type": "code",
 "metadata": {
 "id": "G-uVxMhlAHN6"
 },
 "source": [
 "# Test model\n",
 "model([\"is the earth flat?\"])"
],
 "execution_count": null,
 "outputs": []
 },
 {
 "cell_type": "code",
 "metadata": {
 "id": "urXUh1g3AMN2"
 },
 "source": [
 "# Zip model\n",
 "!cd models/classifiers && tar -czvf model.tar.gz intent_catcher"
],
 "execution_count": null,
 "outputs": []
 },
 {
 "cell_type": "markdown",
 "source": [
 "# the model must be added to the models folder in the project folder to use"
],
 "metadata": {
 "id": "u1ywFTCKOSvh"
 }
 }
]
}

MSc-thesis-Ole-Petter/enums.py

from enum import Enum

enum for the topics the user can select in user interface
class Topic(Enum):
 UKRAINE = 1
 ALL = 2

enum representing the different intents
class Intent(Enum):
 RANDOM = 1
 ELABORATE = 2
 FACTCHECK = 3
 RELATED = 4
 CHITCHAT = 5
 COUNT = 6
 LIST = 7

enum representing the result of a skill
if it managed to generate a response, used fallback method or failed.
class FcResult:
 WORK = 1
 FALLBACK = 2
 FAIL = 3

if __name__ == "__main__":
 print(Intent(3))

MSc-thesis-Ole-Petter/esConnect.py

from elasticsearch import Elasticsearch
import yaml

def esConnect():
 """create a connection to the elasticsearch instance
 uses the information stored in esConfig.yml
 Returns:
 es connection and name of index

 """
 conf = read_config()
 url = (
 "http://"
 + conf["USER"]
 + ":"
 + conf["PW"]
 + "@"
 + conf["ADDRESS"]
 + ":"
 + str(conf["PORT"])
)
 es = Elasticsearch(url)
 INDEX_NAME = "fact_checks"
 return es, INDEX_NAME

def read_config():
 """read elasticsearch connection information from config

 Returns:
 dict with es connection information

 """
 with open("configs/esConfig.yml", "r") as f:
 return yaml.safe_load(f)

MSc-thesis-Ole-Petter/fact_checks_handler.py

from elasticsearch import Elasticsearch

import tensorflow as tf
from transformers import BertTokenizer, BertForSequenceClassification
import yaml
from esConnect import esConnect
from enums import FcResult
from misc import read_config

conf = read_config()

def search_fact_checks(query, question):
 """find top matching fact check based on query, in Elasticsearch.

 Args:
 query: preprocessed string with keywords.

 Returns:
 dict with top scoring fact-check

 """
 es, INDEX_NAME = esConnect()

 hits = es.search(
 index=INDEX_NAME, q=query, _source=False, size=conf["RERANK"]
)["hits"]
 if len(hits["hits"]) < 1:
 return {"result": FcResult.FAIL}

 top_doc = rerank_search(es, hits, question)
 _id = top_doc[0]
 print(_id)
 _score = top_doc[1]
 fc = es.get(index="fact_checks", id=_id)
 result = fc
 result["score"] = _score
 return result

def print_claims(es, hits):
 """print the claims of the elasticsearch hits provided

 Args:
 es: elasticsearch connection
 hits: elasticsearch bm25 hits

 """
 if len(hits["hits"]) < 1:
 print("no result")
 else:
 claims = []
 for hit in hits["hits"]:
 claims.append(
 es.get(index="fact_checks", id=hit["_id"])["_source"]["claim"]
)
 print(claims)

Load re-ranking models globally
tokenizer_rerank = BertTokenizer.from_pretrained(
 "amberoad/bert-multilingual-passage-reranking-msmarco"
)
model_rerank = BertForSequenceClassification.from_pretrained(
 "amberoad/bert-multilingual-passage-reranking-msmarco"
)

def get_docs(es, hits):
 """retrieve the content of the bm25 highest scoring documents

 Args:
 es: elastic search connection
 hits: list of top bm25 scoring document ids

 Returns:
 list of top scoring documents content

 """
 docs = []
 for hit in hits["hits"]:
 doc_info = es.get(index="fact_checks", id=hit["_id"])
 doc = doc_info["_source"]["claim"] + " " + doc_info["_source"]["doc"]
 docs.append([hit["_id"], doc])
 return docs

def score_documents(question, docs):
 """Rerank the documents using rerank model

 Args:
 question: query to match documents against
 docs: content of document to match against

 Returns:
 descending list reranked documents (first is highest scoring)

 """
 output = []
 for doc in docs:
 tokens = tokenizer_rerank(
 question,
 doc[1],
 return_tensors="pt",
 max_length=512,
 truncation=True,
)
 score = model_rerank(**tokens)
 output.append([doc[0], score.logits.detach().numpy()[0][1]])
 return sorted(output, key=lambda x: x[1], reverse=True)

def rerank_search(es, hits, question):
 """get documents content and rerank them

 Args:
 es: elasticsearch connection
 hits: elasticsearch bm25 hits
 question: input query for reranking

 Returns:
 highest scoring passage from reranking

 """
 docs = get_docs(es, hits)
 scores = score_documents(question, docs)
 return scores[0]

if __name__ == "__main__":
 """
 print(
 search_fact_checks(
 ["betsy", "order", "globes", "flattened"],
 "did betsy order globes to be flattened",
)
)
 """
 es, INDEX_NAME = esConnect()
 fc = es.get(index="fact_checks", id="Jjm3vHFUbWmc4HS51wg/wjExA08=")
 print(fc)
 # search_fact_checks("were Charlie Chaplin's mortal remains abducted?")
 # search_fact_checks("does trump think the earth is flat?")

MSc-thesis-Ole-Petter/feedback.py

import sqlite3
from sqlite3 import Error
import datetime
import csv

def insert_feedback(uid, question, answer, evaluation, intent, version):
 """connect to feedback db and insert feedback row

 Args:
 uid: id created on connection
 question: question input by the user
 answer: answer by the AI
 evaluation: users evaluation of the response
 intent: intent found by the AI
 version: deployment version

 """
 con = db_create_connection()
 db_insert_feedback(con, uid, question, answer, evaluation, intent, version)
 con.commit()
 con.close()

def db_create_connection():
 """create a connection to the feedback database

 Returns:
 connection

 """
 connection = None
 try:
 connection = sqlite3.connect("databases/feedback.db")
 print("Connection to SQLite DB successful")
 except Error as e:
 print(f"The error '{e}' occurred")

 return connection

def db_create(con):
 """create the feedback table if it does not exist

 Args:
 con: feedback database connection

 """
 cur = con.cursor()
 cur.execute(
 """CREATE TABLE IF NOT EXISTS feedback (id text, time timestamp, question text, answer text, intent text, evaluation integer, version integer)"""
)

def db_insert_feedback(con, id, question, answer, evaluation, intent, version):
 """execute query to insert feedback into feedback table

 Args:
 con: feedback db connection
 id: id to distinguish conversations
 question: users input question
 answer: AIs generated response
 evaluation: users rating of the response
 intent: intent recognized by the AI
 version: deployment version

 """
 cur = con.cursor()
 cur.execute(
 "INSERT INTO feedback VALUES (?,?,?,?,?,?,?)",
 (
 id,
 datetime.datetime.now(),
 question,
 answer,
 intent,
 evaluation,
 version,
),
)

def db_get_feedback(con):
 """print all the rows stored in the feedback table

 Args:
 con: feedback database connection

 """
 cur = con.cursor()
 i = 0
 for row in cur.execute("SELECT * FROM feedback"):
 i += 1
 print(row)
 print(i)

def db_store_feedback_csv(con):
 """retrieve all data from the feedback db and store in a csv file

 Args:
 con: feedback database connection

 """
 cur = con.cursor()
 with open("feedback_results.csv", "w", newline="") as file:
 csv_out = csv.writer(file)
 csv_out.writerow(
 ["id", "time", "question", "answer", "intent", "rating", "version"]
)
 for row in cur.execute("SELECT * FROM feedback"):
 csv_out.writerow(row)

if __name__ == "__main__":
 con = db_create_connection()
 # db_create(con)
 # con.commit()
 db_get_feedback(con)
 con.close()
 # insert_feedback(0,"Q","A","E","I",1)

MSc-thesis-Ole-Petter/intentChitchat.py

from transformers import GPT2Tokenizer, GPT2LMHeadModel
import torch

load chitchat model into memory (globally)
tokenizer = GPT2Tokenizer.from_pretrained("af1tang/personaGPT")
model = GPT2LMHeadModel.from_pretrained("af1tang/personaGPT")

##
Title: A conversational agent with many personalities (PersonaGPT)
Authors: Fengyi Tang and Lifan Zeng and Fei Wang and Jiayu Zhou
Year: 2021
Availability: https://huggingface.co/af1tang/personaGPT
##

the code is adapted from the mentioned source.
the input parameters to the model are the same as the ones suggested in
the source.

def generateMsg(inputIds):
 """generate a reply from the chitchat model

 Args:
 inputIds: input token ids, both persona and history

 Returns:
 models response, as token ids

 """
 output = model.generate(
 inputIds,
 do_sample=True,
 top_k=10,
 top_p=0.92,
 max_length=1000,
 pad_token_id=tokenizer.eos_token_id,
)
 msg = output.detach()[0].data.numpy()[inputIds.shape[-1] :]
 return msg

def getPersona():
 """get the predefined persona for the chitchat model

 Returns:
 the tokenized persona

 """
 personas = [
 "i am a fact-checking chatbot." + tokenizer.eos_token,
 "i serve to deliver the truth." + tokenizer.eos_token,
 "i will try to find existing fact-checks for you" + tokenizer.eos_token,
 "i don't have a name." + tokenizer.eos_token,
 "my features are random, elaborate, fact-check, related, chitchat, count and list."
 + tokenizer.eos_token,
 "i like to read fact-checks." + tokenizer.eos_token,
]
 personas = tokenizer.encode(
 "".join(["<|p2|>"] + personas + ["<|sep|>"] + ["<|start|>"])
)
 return personas

def messageTokenize(text):
 """tokenize the user input.

 Args:
 text: user input

 Returns:
 the tokenized user input

 """
 msg = tokenizer.encode(text + tokenizer.eos_token)
 return msg

def chitchat(history):
 """generate chitchat message

 Args:
 history: message history (including current turn user input)

 Returns:
 chitchat message from the model

 """
 hist = [word for lst in history for word in lst]
 input = torch.Tensor([getPersona() + hist]).long()
 reply = generateMsg(input)
 return tokenizer.decode(reply, skip_special_tokens=True)

if __name__ == "__main__":
 print(chitchat("hello"))
 print(chitchat("how are you?"))

MSc-thesis-Ole-Petter/intentHandler.py

import json
from deeppavlov import configs, build_model
from tensorflow.python.keras.backend import set_session
from enums import Intent
import tensorflow as tf
import os
import sys

if endless loop is encountered on model load, try uncommenting this line and setting the directory to a unprotected folder.
os.environ["TFHUB_CACHE_DIR"] =

modelIntent = None
tfSession = None

def loadModelIntent():
 """load intent classifier model into memory (globally)"""
 global modelIntent
 if modelIntent is None:
 config = json.load(open(configs["intent_catcher"]["intent_catcher"]))
 config["metadata"]["variables"]["ROOT_PATH"] = sys.path[0]
 # print(sys.path[0])
 global tfSession
 # global graph
 tfSession = tf.Session(graph=tf.Graph())
 with tfSession.graph.as_default():
 set_session(tfSession)
 modelIntent = build_model(config, download=False)
 # graph = tf.get_default_graph()

def getIntent(input):
 """use intent classifier to find the intent in the text

 Args:
 input: user input

 Returns:
 intent found

 """
 with tfSession.graph.as_default():
 set_session(tfSession)
 intent = modelIntent([input])
 intent = Intent[intent[0].upper()]
 return intent

if __name__ == "__main__":
 print(getIntent("does trump think the earth is flat?"))

MSc-thesis-Ole-Petter/misc.py

import yaml

def read_config():
 """read the main config file

 Returns:
 dict containing the configuration

 """
 with open("configs/config.yml", "r") as f:
 return yaml.safe_load(f)

MSc-thesis-Ole-Petter/models/classifiers/intent_catcher/classes.dict

random	21
chitchat	16
factcheck	11
elaborate	10
related	6
count	5
list	4

MSc-thesis-Ole-Petter/models/classifiers/intent_catcher/model/nn.h5

MSc-thesis-Ole-Petter/models/classifiers/intent_catcher/model/regexps.json

[{"regexp": "((i want)|(give me)|(tell me)|(im interested in)|(show me)|(show)) ((some)|(a)) (random){0,1}(debunked){0,1}((fact check)|(fact-check)|(fact))", "label": "0"}, {"regexp": "((bla)|(qwe)|(qwerty)|(asd))", "label": "1"}, {"regexp": "((i want)|(give me)|(tell me)|(show me)|(show)) ((some)|(a)|(an)) ((random)|(arbitrary)){0,1}(debunked){0,1}((fact check)|(fact-check)|(fact)) on (the topic of){0,1}(the){0,1}((corona vaccine)|(vaccine)|(covid)|(biden)|(trump)|(putin)|(ukraine)|(zelensky))", "label": "0"}, {"regexp": "(could you){0,1}(please){0,1}give me ((a random)|(some)) ((fact check)|(fact-check)|(fact)|(factcheck)|(article))", "label": "0"}, {"regexp": "((give)|(show)) me one on the same ((topic)|(type)|(topics))", "label": "4"}, {"regexp": "can you(please){0,1} give me a ((fact check)|(fact-check)|(fact))", "label": "0"}, {"regexp": "((tell)|(show)|(give)|(provide))(me){0,1}", "label": "4"}, {"regexp": "((provide)|(give)|(tell)|(show)) (me){0,1}a ((similar)|(related)) ((fact check)|(fact-check)|(fact)|(article))", "label": "4"}, {"regexp": "((some)|(a)|(an)){0,1}((random)|(arbitrary))((fact check)|(fact-check)|(fact)|(factcheck)|(check)){0,1}", "label": "0"}, {"regexp": "i want(a random){0,1}(an arbitrary){0,1} ((fact check)|(fact-check)|(fact)|(article)) on ((ukraine)|(trump)|(putin)|(russia)|(the invasion))", "label": "0"}, {"regexp": "(please){0,1}provide me with a ((fact check)|(fact-check)|(fact)|(check))", "label": "0"}, {"regexp": "let us have a(random){0,1} ((fact check)|(fact-check)|(fact)|(article))", "label": "0"}, {"regexp": "i am ((good)|(fine)|(great)|(awesome))", "label": "1"}, {"regexp": "i want a((random)|(n arbitrary)){0,1} ((fact check)|(fact-check)|(fact)|(factcheck)|(article)) on ", "label": "0"}, {"regexp": "tell me a(n interesting){0,1} ((fact check)|(fact-check)|(fact))", "label": "0"}, {"regexp": "is this ((true)|(false)|(correct)|(wrong))", "label": "2"}, {"regexp": "i do not understand", "label": "3"}, {"regexp": "((i would like)|(i want)|(give me)|(supply)) (a){0,1}summary", "label": "3"}, {"regexp": "(i){0,1}need more information", "label": "3"}, {"regexp": "who are you", "label": "1"}, {"regexp": "((can i have)|(give me)|(show me)){0,1}(a){0,1}((similar)|(related))(one){0,1}(thank you){0,1}", "label": "4"}, {"regexp": "i want ((a random)|(an arbitrary)){0,1} ((fact check)|(fact-check)|(fact))", "label": "0"}, {"regexp": "arbitrary((fact check)|(fact-check)|(fact)){0,1}", "label": "0"}, {"regexp": "i want ((a list of)|(few)|(some)) ((fact checks)|(fact-checks)|(facts)|(factchecks)|(articles))", "label": "6"}, {"regexp": "((another)|(new)) one", "label": "0"}, {"regexp": "not (feeling){0,1}so ((good)|(great))", "label": "1"}, {"regexp": "i am interessted in a(random){0,1} ((fact check)|(fact-check)|(fact)|(article))", "label": "0"}, {"regexp": "((can you)|(could you)){0,1}(please){0,1}((elaborate)|(tell me more)|(explain)|(give me an explanation)|(give an explanation)|(give me a summary)|(give a summary)|(give me more information))", "label": "3"}, {"regexp": "(can you){0,1}(please){0,1}check if this((post)|(article)|(image)|(video)) is ((true)|(false)|(correct)|(wrong))", "label": "2"}, {"regexp": "((how many)|(count)) ((fact checks)|(fact-checks)|(facts)|(factchecks)|(articles)){0,1} ((about)|(on)) ((ukraine)|(trump)|(putin)|(russia)|(the invasion))", "label": "5"}, {"regexp": "((has)|(have)) ((biden)|(trump)|(putin)|(zelensky)|(facebook)|(google)|(twitter)|(obama)) banned ((military emblems)|(books)|(users)|(people))", "label": "2"}, {"regexp": "how many ((fact check)|(fact-check)|(fact)|(factcheck)|(article)) ((are there)|(exists)|(exist)) on (the topic of){0,1} ((ukraine)|(trump)|(putin)|(russia)|(the invasion))", "label": "5"}, {"regexp": "does the ((illuminati)|(flat earth society)) exist", "label": "2"}, {"regexp": "did (a war){0,1}veteran refuse jane and ted service", "label": "2"}, {"regexp": "tell me a ((joke)|(story))", "label": "1"}, {"regexp": "let us have an arbitrary ((fact check)|(fact-check)|(fact)|(article))", "label": "0"}, {"regexp": "(can you){0,1}count (the){0,1}(number){0,1}((fact checks)|(fact-checks)|(facts)|(factchecks)|(articles)) on (the){0,1}(topic of){0,1} ((ukraine)|(trump)|(putin)|(russia)|(the invasion))", "label": "5"}, {"regexp": "((can)|(could)) i have (more){0,1}((information)|(info))", "label": "3"}, {"regexp": "did ((biden)|(trump)|(putin)|(zelensky)) ((invaded ukraine)|(say this)|(do this))", "label": "2"}, {"regexp": "does ((biden)|(trump)|(putin)|(zelensky)) ((think)|(believe)) the earth is flat", "label": "2"}, {"regexp": "we ((want)|(need)) a ((fact check)|(fact-check)|(fact)|(article))", "label": "0"}, {"regexp": "is it ((true)|(false)|(correct)|(wrong)) that ((biden)|(trump)|(putin)|(zelensky)) ((invaded ukraine)|(said this)|(did this))", "label": "2"}, {"regexp": "((summarize)|(summary)|(explain)|(explanation)|(more)|(more information)|(info)|(information))(please){0,1}", "label": "3"}, {"regexp": "(please){0,1} (give me){0,1}a(random){0,1} ((fact check)|(fact-check)|(fact)) on (the topic of){0,1}((ukraine)|(trump)|(putin)|(russia)|(the invasion))", "label": "0"}, {"regexp": "what is your name", "label": "1"}, {"regexp": "(please){0,1} ((give)|(give me)) a(random){0,1} ((fact check)|(fact-check)|(fact)|(factcheck)|(article))", "label": "0"}, {"regexp": "((was)|(were)) jane and ted ((refused)|(rejected))(service){0,1}", "label": "2"}, {"regexp": "(can you){0,1}list ((fact check)|(fact-check)|(fact)|(factcheck)|(article)) on (the topic of){0,1}((ukraine)|(trump)|(putin)|(russia)|(the invasion))", "label": "6"}, {"regexp": "((could)|(can)) you(please){0,1} ((tell)|(give)|(provide))(me){0,1} a ((fact check)|(fact-check)|(fact))", "label": "0"}, {"regexp": "is cassidy boon suing her savior", "label": "2"}, {"regexp": "((bye)|(exit)|(stop)|(farewell)|(that was it))(for now){0,1}", "label": "1"}, {"regexp": "((provide)|(give)|(supply)) (more){0,1}((information)|(info)){0,1}", "label": "3"}, {"regexp": "((i want to know)|(tell me)) (more){0,1}", "label": "3"}, {"regexp": "having a ((bad)|(terrible)) day", "label": "1"}, {"regexp": "how are you", "label": "1"}, {"regexp": "((who)|(what)) are you", "label": "1"}, {"regexp": "((arbitrary)|(random))((fact check)|(fact-check)|(fact)|(check)){0,1}", "label": "0"}, {"regexp": "provide me with a ((fact check)|(fact-check)|(fact))", "label": "0"}, {"regexp": "((tell me what it)|(what is it)) about", "label": "3"}, {"regexp": "(you are){0,1}((bad)|(ugly)|(stupid)|(handsome)|(awesome))", "label": "1"}, {"regexp": "((show me)|(list)|(i want)){0,1}((some)|(multiple)|(10)|(a few)|(five)) ((fact check)|(fact-check)|(fact)|(factcheck)|(article))", "label": "6"}, {"regexp": "who ((made)|(created)|(developed)) you", "label": "1"}, {"regexp": "((show me)|(tell me)) how many ((fact checks)|(fact-checks)|(facts)|(factchecks)|(articles)) there are on ((ukraine)|(trump)|(putin)|(russia)|(the invasion))", "label": "5"}, {"regexp": "((tell)|(show)|(give)|(provide)) (me){0,1}((a)|(an)|(some)) ((similar)|(related))", "label": "4"}, {"regexp": "tell me about yourself", "label": "1"}, {"regexp": "((can i have)|(give me)|(show me)){0,1}(a){0,1}((fact check)|(fact-check)|(fact)|(article)) like this one", "label": "4"}, {"regexp": "((summarize)|(explain)|(elaborate on)) ((this)|(the)) ((fact check)|(fact-check)|(fact)|(article))", "label": "3"}, {"regexp": "can you ((help)|(assist))(me){0,1}", "label": "1"}, {"regexp": "((ok)|(okey)|(thx)|(thank you)|(great)|(nice))", "label": "1"}, {"regexp": "does cassidy boon sue her savior", "label": "2"}, {"regexp": "((list)|(multiple)|(three)|(2))((fact checks)|(fact-checks)|(facts)|(factchecks)|(articles)){0,1}", "label": "6"}, {"regexp": "((hello)|(hi)|(good day))", "label": "1"}, {"regexp": "((how many)|(count))((about)|(on)){0,1} ((ukraine)|(trump)|(putin)|(russia)|(the invasion))", "label": "5"}]

MSc-thesis-Ole-Petter/namedEnetityRecognition.py

import spacy

load spacy model into memory
nlp = spacy.load("en_core_web_lg")

def getNamedEntities(text):
 """get the entities in the input text, for use as topics

 Args:
 text: user input

 Returns:
 list of found entities

 """
 entities = []
 doc = nlp(text)
 for ent in doc.ents:
 if ent.text != "factcheck":
 entities.append(ent.text)
 return entities

if __name__ == "__main__":
 print(getNamedEntities("give me a fact on charlie chaplin"))

MSc-thesis-Ole-Petter/queryHandler.py

import enum

import nltk

nltk.download("stopwords")
from nltk.corpus import stopwords
import re

def query_preprocess(text):
 """
 preprocess input text
 1. lowercase letters
 2. remove special characters
 3. tokenize
 4. remove stopwords
 Args:
 text: (string) users text input
 return:
 list: preprocessed query
 """
 new_text = str.lower(text)
 stop_words = set(stopwords.words("english"))
 new_text = re.sub("[^a-z0-9]+", " ", new_text)
 new_text = new_text.split(" ")
 words = []
 for word in new_text:
 if word not in stop_words and word != "":
 words.append(word)
 return words

if __name__ == "__main__":
 print(query_preprocess("This is a test. How is it performing?"))

MSc-thesis-Ole-Petter/randomFactChecks.py

from esConnect import esConnect
from misc import read_config

conf = read_config()

def getRandomFC(topics=None, lastID=None):
 """get a random fact-checking article, filtered on topics provided

 Args:
 topics (optional): topic to filter. Defaults to None.
 lastID (optional): id to exclude from search. Defaults to None.

 Returns:
 dict containing a random article

 """
 if topics[0] == "all":
 topics = None
 es, INDEX_NAME = esConnect()
 query = getQuery(topics)
 hits = es.search(index=INDEX_NAME, body=query, _source=False, size=1)[
 "hits"
]
 if len(hits["hits"]) < 1:
 return None
 id = hits["hits"][0]["_id"]
 return es.get(index=INDEX_NAME, id=id)

def getRandomList(topics=None):
 """get a list of random fact-checking articles, filtered on topics provided

 Args:
 topics (optional): topics to filter for articles. Defaults to None.

 Returns:
 a list of articles

 """
 if not topics:
 topics = None
 es, INDEX_NAME = esConnect()
 query = getQuery(topics)
 hits = es.search(
 index=INDEX_NAME, body=query, _source=False, size=conf["LIST"]
)["hits"]
 if len(hits["hits"]) < 1:
 return None, None
 titles = []
 articles = []
 for hit in hits["hits"]:
 fc = es.get(index=INDEX_NAME, id=hit["_id"])
 titles.append(fc["_source"]["claim"])
 articles.append(fc)
 return titles, articles

def getQuery(topics, lastID=None):
 """create a query to use with elasticsearch.
 Use random scoring and filter on provided topics

 Args:
 topics: topics to filer on
 lastID (optional): id to exclude from search. Defaults to None.

 Returns:
 dict which is a query for elasticsearch to get a random article on a
 topic

 """
 if topics is None:
 query = {
 "query": {
 "bool": {
 "must": {
 "function_score": {"functions": [{"random_score": {}}]}
 }
 }
 }
 }
 else:
 query = {
 "query": {
 "bool": {
 "filter": [{"terms": {"topic": topics}}],
 "must": {
 "function_score": {"functions": [{"random_score": {}}]}
 },
 }
 }
 }
 if lastID is not None:
 exclude = [{"ids": {"values": [lastID]}}]
 query["query"]["bool"]["must_not"] = exclude
 return query

def factchecksCount(topics=None):
 """get number of articles about a topic

 Args:
 topics (optional): . Defaults to None.

 Returns:
 description

 """
 es, INDEX_NAME = esConnect()
 # if no topic selected count all documents
 if topics is None or not topics:
 query = {"query": {"match_all": {}}}
 else:
 top = []
 for topic in topics:
 q = {"term": {"topic": topic}}
 top.append(q)
 query = {"query": {"bool": {"filter": top}}}
 count = es.count(index=INDEX_NAME, body=query)["count"]
 return count

if __name__ == "__main__":
 print(getRandomFC())
 # titles, _ = getRandomList(["putin", "ukraine", "biden"])
 # print(titles)
 # count_factchecks(["trump"])
 # print(factchecksCount())

MSc-thesis-Ole-Petter/README.md

Requirements

Elasticsearch instance

Python version 3.7 required.
need python 3.7 for DeepPavlov version 0.17.3
when DeepPavlov version 1.0.0rc0 is released, newer python version should work.

after installing dependecy, also need to run following commands:
- python -m spacy download en_core_web_lg
- python -m deeppavlov install intent_catcher
- python -m deeppavlov install brillmoore_wikitypos_en

How to run
set FLASK_APP=backend
flask run

If the system startup is in an infinite loop see intentHandler.py

MSc-thesis-Ole-Petter/requirements.txt

flask
spacy
nltk
deeppavlov
transformers[torch]
elasticsearch
contractions
allennlp

MSc-thesis-Ole-Petter/requirements_freeze.txt

absl-py==1.0.0
aio-pika==6.4.1
aiohttp==3.8.1
aiormq==3.3.1
aiosignal==1.2.0
allennlp==2.9.3
allennlp-models==2.9.3
anyascii==0.3.1
astor==0.8.1
astunparse==1.6.3
async-timeout==4.0.2
asynctest==0.13.0
atomicwrites==1.4.0
attrs==21.4.0
base58==2.1.1
beautifulsoup4==4.10.0
bert-dp @ git+https://github.com/deepmipt/bert.git@741d9bed9d52c6a9409ca27d8bf284615645618b
black==22.3.0
blis==0.7.7
boto3==1.21.44
botocore==1.24.44
bs4==0.0.1
cached-path==1.1.2
cachetools==5.0.0
catalogue==2.0.7
certifi==2021.10.8
cffi==1.15.0
chardet==3.0.4
charset-normalizer==2.0.12
click==7.1.2
colorama==0.4.4
conllu==4.4.1
contractions==0.1.68
cryptography==36.0.2
cymem==2.0.6
Cython==0.29.14
datasets==2.1.0
DAWG-Python==0.7.2
deeppavlov==0.14.0
dill==0.3.4
docker-pycreds==0.4.0
docopt==0.6.2
elasticsearch==7.17.2
en-core-web-lg @ https://github.com/explosion/spacy-models/releases/download/en_core_web_lg-3.2.0/en_core_web_lg-3.2.0-py3-none-any.whl
en-core-web-sm @ https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.2.0/en_core_web_sm-3.2.0-py3-none-any.whl
fairscale==0.4.6
fastapi==0.47.1
filelock==3.6.0
flake8==4.0.1
Flask==2.1.1
flatbuffers==2.0
frozenlist==1.3.0
fsspec==2022.3.0
ftfy==6.1.1
gast==0.2.2
gensim==3.8.1
gitdb==4.0.9
GitPython==3.1.27
google-api-core==2.7.2
google-auth==2.6.2
google-auth-oauthlib==0.4.6
google-cloud-core==2.3.0
google-cloud-storage==2.3.0
google-crc32c==1.3.0
google-pasta==0.2.0
google-resumable-media==2.3.2
googleapis-common-protos==1.56.0
grpcio==1.44.0
h11==0.9.0
h5py==2.10.0
huggingface-hub==0.5.1
idna==2.8
importlib-metadata==4.2.0
iniconfig==1.1.1
itsdangerous==2.1.2
Jinja2==3.1.1
jmespath==1.0.0
joblib==1.1.0
kenlm @ https://github.com/kpu/kenlm/archive/master.zip
keras==2.8.0
Keras-Applications==1.0.8
Keras-Preprocessing==1.1.2
langcodes==3.3.0
libclang==13.0.0
lmdb==1.3.0
lxml==4.4.2
Markdown==3.3.4
MarkupSafe==2.1.1
mccabe==0.6.1
more-itertools==8.12.0
multidict==6.0.2
multiprocess==0.70.12.2
murmurhash==1.0.6
mypy-extensions==0.4.3
neuralcoref==4.0
nltk==3.7
numpy==1.18.0
oauthlib==3.2.0
opt-einsum==3.3.0
overrides==2.7.0
packaging==21.3
pamqp==2.3.0
pandas==0.25.3
pathspec==0.9.0
pathtools==0.1.2
pathy==0.6.1
Pillow==9.1.0
platformdirs==2.5.1
pluggy==1.0.0
preshed==3.0.6
prometheus-client==0.7.1
promise==2.3
protobuf==3.20.0
psutil==5.9.0
py==1.11.0
py-rouge==1.1
pyahocorasick==1.4.4
pyarrow==7.0.0
pyasn1==0.4.8
pyasn1-modules==0.2.8
pycodestyle==2.8.0
pycparser==2.21
pydantic==1.8.2
pyflakes==2.4.0
pymorphy2==0.8
pymorphy2-dicts==2.4.393442.3710985
pymorphy2-dicts-ru==2.4.417127.4579844
pyOpenSSL==19.1.0
pyparsing==3.0.7
pyTelegramBotAPI==3.6.7
pytest==7.1.1
python-dateutil==2.8.2
python-Levenshtein==0.12.0
pytz==2019.1
PyYAML==6.0
regex==2022.3.15
requests==2.22.0
requests-oauthlib==1.3.1
responses==0.18.0
rsa==4.8
ruamel.yaml==0.15.100
rusenttokenize==0.0.5
s3transfer==0.5.2
sacremoses==0.0.35
scikit-learn==0.21.2
scipy==1.4.1
sentencepiece==0.1.96
sentry-sdk==1.5.10
setproctitle==1.2.3
shortuuid==1.0.8
six==1.16.0
smart-open==5.2.1
smmap==5.0.0
sortedcontainers==2.1.0
soupsieve==2.3.2
spacy==3.2.4
spacy-legacy==3.0.9
spacy-loggers==1.0.2
srsly==2.4.2
starlette==0.12.9
tensorboard==1.15.0
tensorboard-data-server==0.6.1
tensorboard-plugin-wit==1.8.1
tensorboardX==2.5
tensorflow==1.15.2
tensorflow-estimator==1.15.1
tensorflow-hub==0.7.0
tensorflow-io-gcs-filesystem==0.24.0
termcolor==1.1.0
textsearch==0.0.21
tf-estimator-nightly==2.8.0.dev2021122109
thinc==8.0.15
tokenizers==0.11.6
tomli==2.0.1
torch==1.11.0
torchvision==0.12.0
tqdm==4.64.0
transformers==4.18.0
typed-ast==1.5.2
typer==0.4.1
typing-extensions==3.10.0.2
urllib3==1.25.11
uvicorn==0.11.7
wandb==0.12.14
wasabi==0.9.1
wcwidth==0.2.5
websockets==8.1
Werkzeug==2.1.1
word2number==1.1
wrapt==1.14.0
xeger==0.3.5
xxhash==3.0.0
yarl==1.7.2
zipp==3.8.0

MSc-thesis-Ole-Petter/spellingCorrection.py

from deeppavlov import build_model, configs
from tensorflow.python.keras.backend import set_session
import tensorflow as tf

modelSpelling = None
tfSession = None

def loadModelSpelling():
 """load spelling correction model into memory (globally)"""
 global modelSpelling
 if modelSpelling is None:
 CONFIG_PATH = configs.spelling_correction.brillmoore_wikitypos_en
 global tfSession
 tfSession = tf.Session(graph=tf.Graph())
 with tfSession.graph.as_default():
 set_session(tfSession)
 modelSpelling = build_model(CONFIG_PATH, download=False)

def correctSpelling(text):
 """correct spelling mistakes from input

 Args:
 text: input text

 Returns:
 input text with spelling mistakes resolved

 """
 with tfSession.graph.as_default():
 set_session(tfSession)
 newText = modelSpelling([text])[0]
 return newText

MSc-thesis-Ole-Petter/static/chatBot.js

// creat botui window
var botui = new BotUI('chatwindow');

// adds hello message from bot
botui.message.add({
 delay: 500,
 content: 'Hello, how may I help you?'
})

// text input field, called again on callback
function text_Input() {
 botui.action.text({
 action: {
 placeholder: 'Enter your text here'
 }
 }).then(function (res) { // on submit
 //console.log(res.value);
 // send ajax request with query
 if (res.value.length < 100) {
 $.getJSON($SCRIPT_ROOT + '/_search', {
 query: res.value
 }, function (data) {
 //console.log(data.result);
 searchCallback(data)
 })
 .fail(function () {
 message_reply({ "reply": "Sorry, something did not go as expected." });
 text_Input(); // calls function again to show text input
 })
 } else {
 show_warning("Your message must be shorter than 100 characters...");
 text_Input(); // calls function again to show text input
 }
 });
}

// show text input field
text_Input();

// called by feedback toggler, change if feedback options should be displayed
function feedbackChange() {
 if (this.checked) {
 wantFeedback = true
 console.log(wantFeedback)
 } else {
 wantFeedback = false
 console.log(wantFeedback)
 }
}

// callback from question sent to server
function searchCallback(data) {
 // call method for showing AIs message based on intent
 switch (data.result["intent"]) {
 case 1:
 message_random(data.result);
 break;
 case 2:
 message_elaborate(data.result);
 break;
 case 3:
 console.log(data.result);
 message_factcheck(data.result);
 break;
 case 4:
 message_related(data.result);
 break;
 case 5:
 message_chitchat(data.result);
 break;
 case 6:
 message_count(data.result);
 break;
 case 7:
 message_list(data.result);
 break;
 }
 // show feedback buttons if checked
 if ($("#feedbackSwitch").is(':checked')) {
 show_feedback();
 } else {
 text_Input();
 }
}

// show warning chat message
function show_warning(message) {
 botui.message.add({
 delay: 1000,
 content: message
 })
}

// handle topic buttons click
function change_topic(topic) {
 // update css to reflect button selected and display predefined chat messages
 $(".topic").css("border-color", "#9B9991");
 switch (topic) {
 case 1:
 $("#topic_ukraine").css("border-color", "#1d1c1a");
 message_topic_ukraine();
 break;
 case 2:
 $("#topic_all").css("border-color", "#1d1c1a");
 message_topic_all();
 break;
 }

 // send request to server to change topic
 $.getJSON($SCRIPT_ROOT + '/_topic', {
 query: topic
 }, function (data) {
 // no need for callback
 });
}

// display messages when "ukraine" topic is selected
function message_topic_ukraine() {
 botui.message.add({
 delay: 1000,
 content: 'Seen some questionable post about the Russian invasion of Ukraine?'
 })

 botui.message.add({
 delay: 2000,
 content: 'Many of these posts on social media are false or miscaptioned...'
 })
}

// display messages when "all" topic is selected
function message_topic_all() {
 botui.message.add({
 delay: 1000,
 content: 'I will do my best to fact-check anything...'
 })
}

// update the fact-check information at the bottom
function update_fact_check(claim, label, url) {
 $("#claim").html("Claim: " + claim)
 $("#label").html("Label: " + label)
 $("#url").html("Original: " + url + "")

}

// display feedback buttons in chat window
function show_feedback() {
 botui.action.button({
 addMessage: false,
 action: [
 {
 icon: 'star-o',
 text: ' ',
 value: 1,
 },
 {
 icon: 'star-o',
 text: ' ',
 value: 2,
 },
 {
 icon: 'star-o',
 text: ' ',
 value: 3,
 },
 {
 icon: 'star-o',
 text: ' ',
 value: 4,
 },
 {
 icon: 'star-o',
 text: ' ',
 value: 5,
 },
 {
 text: 'Skip',
 value: 6,
 }
]
 }).then(function (res) {
 // on callback show text input and send feedback to server
 text_Input();
 if (res.value != 6) {
 $.getJSON($SCRIPT_ROOT + '/_feedback', {
 feedback: res.value
 });
 }
 });

 setTimeout(stars, 200);
}

// set star
function stars() {
 $(".botui-actions-buttons-button").has("i").each(function (i, obj) {
 $(this).mouseenter(hoverIn)
 });
}

// change stars to reflect rating on mouseenter
function hoverIn() {
 $(".botui-actions-buttons-button").has("i").children().removeClass("fa-star")
 $(".botui-actions-buttons-button").has("i").children().addClass("fa-star-o")
 $(this).children().removeClass("fa-star-o")
 $(this).prevAll().children().removeClass("fa-star-o")
 $(this).children().addClass("fa-star")
 $(this).prevAll().children().addClass("fa-star")

}

// check if user has accepted the disclaimer
function check_disclaimer_cookie() {
 disc = Cookies.get("Disclaimer")
 if (disc == "true") {
 $("#disclaimer").css("display", "none");
 } else {
 $("#disclaimer").css("display", "block");
 }
}

// store the accepted disclaimer, hide disclaimer and show introduction
function set_disclaimer_cookie() {
 Cookies.set("Disclaimer", "true", { expires: 14 })
 $("#disclaimer").css("display", "none");
 $("#features").css("display", "block");
}

// hide the introduction
function hide_introduction() {
 $("#features").css("display", "none");
}

// show introduction if features button is pressed in navbar
$("#features_nav").click(function () {
 $("#features").css("display", "block");
});

// add tooltip to reply
function add_tooltip(claim, label, author) {
 content = "Claim: " + claim + " Label: " + label + ". Source: " + author + ".";
 last_msg = $(".botui-message-content").last().parent();
 last_msg.attr({
 "data-bs-toggle": "tooltip",
 "data-bs-placement": "left",
 "data-bs-html": "true",
 title: content
 }).tooltip();
}

//
// display messages based on intent
//

// random intent
function message_random(data) {
 message_reply(data, true, true)
}

// elaborate intent
function message_elaborate(data) {
 message_reply(data, true)
}

// factcheck intent
// 1:WORK, 2:FALLBACK, 3:FAIL
// only show link and tooltip if the skill found an answer
function message_factcheck(data) {
 switch (data["result"]) {
 case 1:
 message_reply(data, true, true)
 break;
 case 2:
 message_reply_fallback(data)
 break;
 case 3:
 message_reply_fallback(data)
 break;
 }
}

// related intent
function message_related(data) {
 if (data["result"] == 3) {
 message_reply(data, false, false)
 } else {
 message_reply(data, true, true)
 }
}

// chitchat intent
function message_chitchat(data) {
 message_reply(data);
}

//// count intent
function message_count(data) {
 message_reply(data);
}

// list intent
function message_list(data) {
 if (data["result"] == 3) {
 message_reply(data);
 } else {
 for (let i = 0; i < data["list"].length; i++) {
 art = data["articles"][i];
 art["reply"] = data["list"][i];

 setTimeout(message_reply, 50 * i, art, true, true);
 }
 }
}

// create response message in chat window
// can display only message, or also add tooltip and link
function message_reply(data, tooltip = false, link = false) {
 if (link) {
 reply = data["reply"] + " [Learn more](" + data["url"] + ")^";
 } else {
 reply = data["reply"];
 }
 botui.message.add({
 content: reply
 });
 if (tooltip) {
 setTimeout(function () { add_tooltip(data["claim"], data["label"], data["fact_source"]) }, 1);
 }
}

// message for Factiverse fallback method
function message_reply_fallback(data) {
 botui.message.add({
 content: data["reply"]
 });
 link = "javascript: showFallbackSources(" + data['reply'] + "," + data['list'] + ")"
 console.log(link)

 setTimeout(fallbacklink, 10, data);
}

// add link to message to show sources From factiverse message
function fallbacklink(data) {
 $(".botui-message-content").last().append("Show sources")
 $(".botui-message-content").last().find("a").click(function () { showFallbackSources(data['list']) });
}

// on factiverse sources link pressed
// show sources window
function showFallbackSources(list) {
 $('#evidences').html("");
 for (let i = 0; i < list.length; i++) {
 html = '<div id="evidence">\
 <h6 class="evidence_text">Source</h6>\
 <p class="evidence_text">'+ list[i]["evidence"] + '
\
 '+ list[i]["url"] + '</p></div>'

 $('#evidences').append(html);
 }
 $('#overlaySources').show()
}

// hide factiverse sources
function hideFallbackSources() {
 $('#overlaySources').hide()
}

MSc-thesis-Ole-Petter/static/features/features_1.png

MSc-thesis-Ole-Petter/static/features/features_10.png

MSc-thesis-Ole-Petter/static/features/features_11.png

MSc-thesis-Ole-Petter/static/features/features_2.png

MSc-thesis-Ole-Petter/static/features/features_3.png

MSc-thesis-Ole-Petter/static/features/features_4.png

MSc-thesis-Ole-Petter/static/features/features_5.png

MSc-thesis-Ole-Petter/static/features/features_6.png

MSc-thesis-Ole-Petter/static/features/features_7.png

MSc-thesis-Ole-Petter/static/features/features_8.png

MSc-thesis-Ole-Petter/static/features/features_9.png

MSc-thesis-Ole-Petter/static/logos/factiverse.png

MSc-thesis-Ole-Petter/static/logos/uis.png

MSc-thesis-Ole-Petter/static/main.css

body {
 background-color: #FFFFFF;
 overflow: hidden;
}

nav {
 background-color: #9B9991;
}

.jumbotron {
 background-color: #D0D6B5;
}

.hide {
 display: none
}

#topics {
 margin-top: 5em;
 margin-left: 0px;
 width: auto;
 text-align: center;
 color: #FFFFFF;
 user-select: none;
}

/*BDC8CD 9B9991*/

.topic {
 border: 1px solid;
 border-color: #9B9991;
 border-radius: 1em;
 display: inline-block;

 width: auto;
 padding-left: 1em;
 padding-right: 1em;
 margin-right: 1em;

 background-color: #9B9991;
}

.topic:hover {
 color: #d8d8d8;
}

#chatwindow {
 margin-top: 1em;
}

ul {
 list-style-type: none;
}

.reference {
 margin-top: 1em;
 color: #FFFFFF;
 text-align: center;
}

/* DISCLAIMER */

#disclaimer {
 position: fixed;
 display: none;
 z-index: 10;
 background-color: rgba(0, 0, 0, 0.5);
 width: 100%;
 height: 100%;
 top: 0%;
 left: 0%;
}

#disc_container {
 position: absolute;
 margin-left: auto;
 margin-right: auto;
 left: 0;
 right: 0;
 width: 50%;
 height: 60%;
 top: 20%;
 font-size: 1em;
 background-color: #9B9991;
 color: white;
 border: 1px solid;
 border-radius: 1em;
}

#text {
 margin-top: 5%;
 margin-left: 5%;
 margin-right: 5%;
}

/* FEATURES */

#features {
 position: fixed;
 z-index: 10;
 display: none;
 background-color: rgba(0, 0, 0, 0.5);
 width: 100%;
 height: 100%;
 top: 0%;
 left: 0%;
}

#features_container {
 position: absolute;
 margin-left: auto;
 margin-right: auto;
 left: 0;
 right: 0;
 width: 40%;
 height: 40%;
 top: 20%;
}

/* LOGOS */

#logos {
 position: absolute;
 bottom: 0%;
 margin-left: auto;
 margin-right: auto;
 margin-bottom: 0%;
 left: 0;
 right: 0;
 width: 30%;
}

#uis {
 margin-top: 1%;
 margin-bottom: 0%;
 margin-left: 5%;
 width: 40%;
}

#factiverse {
 float: right;
 margin-right: 0%;
 margin-top: 0%;
 width: 55%;
}

/* TOOLTIP */
.tooltip-inner {
 background-color: #9B9991;
 box-shadow: 0px 0px 0px #9B9991;
 opacity: 1 !important;
}

.tooltip-arrow::before {
 border-left-color: #9B9991 !important;
}

.botui-container {
 border: 2px solid #9B9991;
 border-radius: 0px;
}

/* fact-check fallback sources */

#overlaySources {
 position: absolute;
 width: 30%;
 height: 40%;
 top: 50%;
 left: 50%;
 transform: translate(-50%, -50%);
 -ms-transform: translate(-50%, -50%);
 border-radius: 1em;
 overflow-wrap: break-word;
 background-color: #9B9991;
 display: none;
}

.sourcesTitle {
 color: white;
 margin: 10px;
}

#evidences {
 overflow: auto;
 height: 75%;
 width: 98%;
 margin: auto;
}

#evidence {
 color: #9B9991;
 background-color: white;
 padding: 0.5em;
}

#evidence:not(:last-child) {
 margin-bottom: 10px;
}

#evidence_close {
 margin: 1em;
}

MSc-thesis-Ole-Petter/summary.py

import sqlite3
from sqlite3 import Error

from answerGenerator import INDEX_NAME
from esConnect import esConnect
import json
from tqdm import tqdm
import time
from transformers import pipeline

def db_create_connection(path="databases/summary.db"):
 """create connection to summary db

 Args:
 path (optional): path to summary db file. Defaults to "databases/summary.db".

 Returns:
 connection

 """
 connection = None
 try:
 connection = sqlite3.connect(path)
 except Error as e:
 print(f"The error '{e}' occurred")

 return connection

def db_create(con):
 """create summary table in the db

 Args:
 con: db connection

 """
 cur = con.cursor()
 cur.execute(
 """CREATE TABLE IF NOT EXISTS summaries (id text, summary text, UNIQUE(id))"""
)

def get_summary(con, _id):
 """get summary associated with id from db

 Args:
 con: db connection
 _id: article id

 Returns:
 summary

 """
 cur = con.cursor()
 data = cur.execute("SELECT * FROM summaries WHERE id = (?);", (_id,))
 res = None
 for row in data:
 res = row
 return res

def getSummary(_id):
 """get summary associated with id from db

 Args:
 _id: article id

 Returns:
 summary

 """
 con = db_create_connection()
 cur = con.cursor()
 data = cur.execute("SELECT * FROM summaries WHERE id = (?);", (_id,))
 res = None
 for row in data:
 res = row
 con.close()
 return res

def print_summary_all(con):
 """print summary db statistics

 Args:
 con: db connection

 """
 cur = con.cursor()
 data = cur.execute("SELECT * FROM summaries")
 i = 0
 n = 0
 avg = 0
 for row in data:
 if row[1] is not None:
 avg += len(row[1])
 else:
 n += 1
 i += 1

 print("Number of records: " + str(i))
 print("Avg len: " + str(avg / i))
 print("None records: " + str(n))

def add_summary(con, id, summary):
 """add a summary row to table in db

 Args:
 con: db connection
 id: article id
 summary: summary of article

 """
 cur = con.cursor()
 q = 'SELECT EXISTS(SELECT * FROM summaries WHERE id="' + id + '")'
 exist = cur.execute(q)
 if not exist.fetchall()[0][0]:
 cur.execute("INSERT INTO summaries VALUES (?,?);", (id, summary))

def add_summaries(data):
 """add multiple summaries to db

 Args:
 data: list of summaries and ids

 """
 con = db_create_connection()
 cur = con.cursor()
 for row in data:
 q = 'SELECT EXISTS(SELECT * FROM summaries WHERE id="' + row[0] + '")'
 exist = cur.execute(q)
 if not exist.fetchall()[0][0]:
 cur.execute("INSERT INTO summaries VALUES (?,?);", (row[0], row[1]))
 else:
 print("ID already exists")
 con.commit()
 con.close()

def table_delete(con):
 """delete db table

 Args:
 con: db connection

 """
 cur = con.cursor()
 cur.execute("DROP TABLE IF EXISTS summaries;")

def create_summaries(size):
 """generate multiple summaries
 need ids of documents to create summaries for as list in ids.json
 use current_index.json to hold index of id to start creating summaries
 from in ids

 Args:
 size: amount of summaries to create

 """
 with open("ids.json", "r") as outfile:
 ids = json.load(outfile)
 with open("current_index.json", "r") as outfile:
 start = json.load(outfile)
 es, INDEX_NAME = esConnect()
 con = db_create_connection()
 for i in tqdm(range(start, start + size)):
 id = ids[i]
 fc = es.get(index=INDEX_NAME, id=id)["_source"]
 if "summary" in fc:
 if fc["summary"] is not None:
 if len(fc["summary"]) > 20:
 summary = fc["summary"]
 else:
 summary = create_summary(es, INDEX_NAME, id)
 else:
 summary = create_summary(es, INDEX_NAME, id)
 else:
 summary = create_summary(es, INDEX_NAME, id)

 add_summary(con, id, summary)
 con.commit()
 with open("current_index.json", "w") as outfile:
 json.dump(i + 1, outfile)
 con.close()
 """
 print(
 "Summaries for ids in range ("
 + str(start)
 + ", "
 + str(start + size - 1)
 + ") added."
)
 """

def merge_summaries(path):
 """add summaries from on db file to another db file

 Args:
 path: path to db file to copy summaries to main db file

 """
 con = db_create_connection(path)
 cur = con.cursor()
 data = cur.execute("SELECT * FROM summaries")
 summaries = []
 for row in data:
 if row[1] is not None:
 summaries.append([row[0], row[1]])
 else:
 print("No summary")
 con.close()
 con = db_create_connection()
 for row in summaries:
 add_summary(con, row[0], row[1])
 con.commit()
 con.close()

def get_all_ids():
 """get all ids from the elasticsearch and store in ids.json
 this is used when creating summaries

 """
 es, INDEX_NAME = esConnect()
 query = {"query": {"match_all": {}}}

 hits = es.search(
 index=INDEX_NAME, body=query, _source=False, size=1000, scroll="1m"
)
 scroll_id = hits["_scroll_id"]
 ids = []
 for hit in hits["hits"]["hits"]:
 ids.append(hit["_id"])
 i = 0
 while len(hits["hits"]["hits"]):
 hits = es.scroll(scroll_id=scroll_id, scroll="20s")
 scroll_id = hits["_scroll_id"]
 for hit in hits["hits"]["hits"]:
 ids.append(hit["_id"])
 i += 1000
 print("collected: " + str(i))

 with open("ids.json", "w") as outfile:
 json.dump(ids, outfile)

def test_ids():
 """check that all ids in ids.json are unique"""
 with open("ids.json", "r") as outfile:
 ids = json.load(outfile)
 print(len(ids))
 print(len(set(ids)))
 if not len(ids) > len(set(ids)):
 print("all unique")

load model into memory on application start
model = pipeline("summarization", model="facebook/bart-large-cnn")

def create_summary(es, INDEX_NAME, id):
 """use the BART model to create a summary

 Args:
 es: elasticsearch connection
 INDEX_NAME: name of elasticsearch index
 id: id of article to create summary for

 Returns:
 a summary generated by the BART model

 """
 fc = es.get(index=INDEX_NAME, id=id)["_source"]
 article = fc["doc"]
 summary = model(article, min_length=50, max_length=100)
 return summary[0]["summary_text"]

def filter_ids():
 """filter list of ids from ids.json to only remaining ids in ids_rem.json"""
 with open("ids.json", "r") as outfile:
 ids = json.load(outfile)
 con = db_create_connection()
 rem = []
 for id in ids:
 res = get_summary(con, id)
 if res is None:
 rem.append(id)
 print(len(rem))
 con.close()
 with open("ids_rem.json", "w") as outfile:
 json.dump(rem, outfile)

def intent_elaborate(id):
 """get summary or generate one if it does not exist

 Args:
 id: id of article to get summary from

 Returns:
 summary

 """
 es, INDEX_NAME = esConnect()
 con = db_create_connection()
 cur = con.cursor()
 q = 'SELECT EXISTS(SELECT * FROM summaries WHERE id="' + id + '")'
 exist = cur.execute(q)
 if not exist.fetchall()[0][0]:
 print("creating summary")
 summary = create_summary(es, INDEX_NAME, id)
 cur.execute("INSERT INTO summaries VALUES (?,?);", (id, summary))
 con.commit()
 else:
 print("using existing summary")
 q = 'SELECT * FROM summaries WHERE id="' + id + '"'
 data = cur.execute(q)
 for row in data:
 summary = row[1]
 con.close()
 return summary

MSc-thesis-Ole-Petter/templates/about.html

 Fact-check chatbot

 Home
 About

 About

 This is a chatbot for fact-checking claims and posts published on the internet.

 Hi, I'm a fact-checking chatbot.

 Seen a post you would like to know is true recently?
 Or
 maybe a
 politician has made a statement?

 I will use multiple fact-checking websites to find and give
 you the
 answer.

 You can for example ask me if Donald Trump thinks the earth is flat.

MSc-thesis-Ole-Petter/templates/index.html

 Before you use...

 The chatbot is still under development and could give the
 wrong answer, you should therefore check against the original
 fact-check. This can be seen by hovering over the reply.

 Short and generic questions do not work well, and will not produce good results.

 We use session and cookies but only for functional reasons.

 We store the questions and replies, but it is stored anonymously.

 To be exact, we store the connection time, the time the message was sent, the response given by the
 chatbot, the
 rating you give, what intent the chatbot identified and version number of the chatbot.
 This will only be stored if you provide a rating for the response provided.

 Do not type in any personal information, as the feedback will be
 published publicly.

 Accept
 Decline

 [image: ...]

 Quick Introduction

 To get you started we will show you the features of the chatbot. You can open this
 introduction again by clicking the features button at the top.

 [image: ...]

 Fact-check

 You can ask about a claim and the chatbot will try to find a fact-check about it and
 provide an answer.

 [image: ...]

 Random

 You can ask for a random fact-check. A topic can also be provided.

 [image: ...]

 Elaborate

 You can ask for a summary of the last fact-check you were provided. This does not work
 for fact-checks provided by the Factiverse AI.

 [image: ...]

 Related

 You can ask for a fact-check that has the same topic as the last one.

 [image: ...]

 Chit-chat

 You can small talk with the chatbot.

 [image: ...]

 Count

 You can ask how many fact-check the chatbot has on a specific topic.

 [image: ...]

 List

 You can ask for a list of articles. A topic can also be specified.

 [image: ...]

 More information

 Information about the fact-check used can be found by hovering over the chatbot's reply.
 The chatbot also provides a link which will take you to the fact-check used.

 [image: ...]

 Topic

 You can choose a topic the chatbot should focus on. The supported topics are Ukraine (
 the russian invasion of ukraine). Or all topics.

 [image: ...]

 Feedback (Optional)

 After the chatbot responds some feedback buttons will show up. You can rate a reply 1-5
 stars. You can also press the skip button if you do not want to give feedback. Feedback
 can also be toggled on and off in the top right corner. Feedback would be much
 appreciated.

 Previous

 Next

 Continue

 Fact-check chatbot

 Home
 About
 Features

 Feedback

 			Ukraine

			All

 [image: University of Stavanger]

 [image: Factiverse]

 Sources

