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Abstract

As a consequence of the global renewable energy transition, there is a rising demand

for transportation of project cargo, such as wind turbine components. Transportation

of this type of cargo requires special considerations as it is sensitive to adverse weather

exposure. This thesis aims to determine what impact weather-sensitive cargo has on

transportation cost, formulated as the expected incremental cost compared to vessels

transporting ”regular“ cargo. The chosen methodology approach applies a ship weather

routing model to identify the most cost-efficient route from Spain to Houston while

accounting for the required weather considerations. The weather routing model comprises

one of the literature’s most prominent pathfinding algorithms combined with complex

machine learning models to achieve realistic cost estimations. Our findings indicate that

vessels carrying weather-sensitive deck cargo have a high tendency to deviate from the

optimal route selected by vessels carrying regular cargo. This is particularly evident in

the winter months, where our findings identify an incremental cost upwards of 13.80%.

Conversely, the results reveal an upper limit on the incremental cost of 0.70% in the

summer months, indicating a relatively modest disparity from the vessels transporting

regular cargo. This asymmetry is found to be largely explained by the seasonal effect of

adverse weather. Our findings suggest that vessels transporting weather-sensitive deck

cargo are at a considerably higher risk during the winter months, where exposure to

adverse weather effects is especially prominent.

Keywords – Weather-Sensitive Cargo Risk, Ship Weather Routing, Dijkstra’s Algorithm,

Optimization, Machine Learning, Shipping
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1 Introduction

Maritime transport is the fundamental backbone of global trade. According to UNCTAD’s

annual review of maritime transport, goods carried by sea make up more than 80% of

global trade (UNCTAD, 2021). UNCTAD also projects that international maritime trade

will continue to grow in the coming years. An important contributor to this growth is

the accelerating focus on renewable energy sources that increases new infrastructure

investments (Project Cargo Journal, 2021). This generates increased demand for

transportation of project cargo, such as wind turbine components, which is defined

as weather-sensitive deck cargo (Liu, 2021).

The joint-venture company, G2 Ocean, is eager to exploit this growing trend and is

therefore wagering on the project cargo segment (Project Cargo Journal, 2019). G2 Ocean

is comprised of two of the world’s largest open hatch shipowning companies: Gearbulk

and Grieg Maritime Group (G2 Ocean, 2022a). The company currently holds a strong

position in the onshore wind market and aspires to further strengthen its position in

the growing offshore wind segment and oil and gas market. Both market segments

require transportation of project cargo sensitive to adverse weather conditions. However,

transportation of such cargo is likely to have an increased risk of additional costs as special

precautions are required as a consequence of its sensitivity to external forces.

To avoid exposure to adverse weather, vessels with weather-sensitive deck cargo may have

to deviate from the otherwise optimal route for vessels with regular cargo, thus increasing

the costs of transportation. The cost of transporting shipments is largely influenced by

the consumption of bunker fuel. According to Stopford (2009), two-thirds of a vessel’s

voyage costs are attributed to the fuel consumption. Weather-sensitive deck cargo has

two additional cost drivers: increased sailing distance and weather exposure. In addition,

an added day rate is charged if there occurs a delay in the estimated time of arrival

(ETA). Furthermore, as pricing of forward cargo is usually determined weeks in advance,

the chartering managers rely on uncertain weather forecasts during pricing and contract

negotiations. This makes pricing of weather-sensitive cargo especially challenging. Our

study will aid in this process by identifying the expected risk of increased costs, and

thereby enable accurate pricing of voyages with such cargo.
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For this purpose, an optimal ship weather routing model is applied to determine how the

risk of adverse weather conditions affects the routing choices of vessels with and without

weather-sensitive deck cargo. This methodology approach utilizes Dijkstra’s algorithm, a

pathfinding algorithm suitable for identifying the cost-minimizing route while accounting

for the impact of environmental factors. In addition, machine learning (ML) regression

algorithms are implemented to predict the vessel’s fuel consumption, which serves as the

main component of the ship weather routing model’s cost functions. The model selection

includes K-Nearest Neighbour (KNN), Random Forest (RF), Extra Trees (ET), as well as

an Artificial Neural Network (ANN) to identify the empirical model, which provides a

sufficient approximation of the effect of external weather conditions on fuel consumption.

There is a vast number of studies on ship weather routing. This field has seen escalating

interest in recent years as increased computation power has enabled resolving increasingly

complex optimization problems (Zis et al., 2020). In addition, regulatory pressure to

reduce emissions, coupled with volatile bunkers costs, have provided significant economic

incentives to identify the most fuel- and cost-efficient routes. Our study distinguishes itself

from the relevant literature by providing a unique perspective on the weather-sensitive

project cargo segment. The findings of this study supplement both the literature and

industry by stipulating optimal routes and cost estimates for cargo restricted by weather

constraints.

The contributions of our thesis are 4-fold: Firstly, we estimate the incremental cost

associated with the risk of transporting weather-sensitive cargo, which prior to this has

been determined based on previous experience. Secondly, we demonstrate how historic

third-party meteorological data can be incorporated to identify the relation between

external weather effects and fuel consumption on weather-sensitive deck cargo. Thirdly,

we provide an operative tool that can aid in estimating future freight rates for weather-

sensitive deck cargo based on weather forecasts. Lastly, our research contributes to

establishing a benchmark for optimal modelling of vessel fuel consumption predictions,

which helps facilitate further research within the maritime shipping sector.

The structure of this thesis is as follows: section 2 will elaborate on the background and

scope of this thesis. Section 3 will cover existing literature on this topic and provide a

theoretical framework for our optimization and machine learning models. Section 4 and
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scope of this thesis. Section 3 will cover existing literature on this topic and provide a

theoretical framework for our optimization and machine learning models. Section 4 and
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5 will explain our data and methodology approach, respectively. In section 6, we will

provide our results and discussion of our findings. Section 7 will summarize the limitations

of our study and propose how our work can be further developed. Lastly, in section 8, we

will present our conclusion.
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2 Background

Project cargo, such as wind turbine components, is sensitive to adverse weather effects,

thus defined in this thesis as weather-sensitive deck cargo. This cargo is oversized, heavy

and valuable components stored on the open deck of the vessel (G2 Ocean, 2022b). It

requires tailor-made constructions and lashings to be properly secured on deck, which

exposes the cargo to external forces such as adverse weather conditions. Due to this,

weather-sensitive cargo requires special considerations when transported, such as applying

weather constraints. This study restricts the vessels from sailing within an area with any

mean hourly wave height exceeding 6 meters on the day of passing. Note that this is

defined by G2 Ocean as a general directive when transporting weather-sensitive deck cargo,

therefore it might not be applicable to other operators. In reality, the cargo limitation is

often determined on a case-by-case basis dependent on the ship, cargo, and lashings.

As a part of our cooperation with G2 Ocean, we wanted to explore routes relevant to their

operations. We have therefore opted to limit the scope of this thesis to cover trade from

Spain to Houston (Project Cargo Journal, 2019). Furthermore, there are predominantly

two vessel designs of G2 Ocean’s vessels designated for project cargo: Class I and Class L.

Data from these classes will serve as the foundation of our analysis. By looking at historic

routes from these two classes, we have confined the relevant area to be within the northern

part of the Atlantic1. We will examine the weather patterns found within this area to

better grasp the importance of route selection for vessels carrying weather-sensitive cargo.

All historical extreme weather observations2 from 2006 to 2021 have been analyzed and

mapped to determine which areas are more exposed to adverse weather conditions. This

dispersion is seen in Figure 2.1.

1The Gulf of Mexico is excluded due to limited routing options and an observed low frequency of
extreme weather conditions.

2Extreme weather observations is defined as wave heights equal or exceeding 6 meters

4

2 Background

Project cargo, such as wind turbine components, is sensitive to adverse weather effects,

thus defined in this thesis as weather-sensitive deck cargo. This cargo is oversized, heavy

and valuable components stored on the open deck of the vessel (G2 Ocean, 2022b). It

requires tailor-made constructions and lashings to be properly secured on deck, which

exposes the cargo to external forces such as adverse weather conditions. Due to this,

weather-sensitive cargo requires special considerations when transported, such as applying

weather constraints. This study restricts the vessels from sailing within an area with any

mean hourly wave height exceeding 6 meters on the day of passing. Note that this is

defined by G2 Ocean as a general directive when transporting weather-sensitive deck cargo,

therefore it might not be applicable to other operators. In reality, the cargo limitation is

often determined on a case-by-case basis dependent on the ship, cargo, and lashings.

As a part of our cooperation with G2 Ocean, we wanted to explore routes relevant to their

operations. We have therefore opted to limit the scope of this thesis to cover trade from

Spain to Houston (Project Cargo Journal, 2019). Furthermore, there are predominantly

two vessel designs of G2 Ocean's vessels designated for project cargo: Class I and Class L.

Data from these classes will serve as the foundation of our analysis. By looking at historic

routes from these two classes, we have confined the relevant area to be within the northern

part of the Atlantic' . We will examine the weather patterns found within this area to

better grasp the importance of route selection for vessels carrying weather-sensitive cargo.

All historical extreme weather observations2 from 2006 to 2021 have been analyzed and

mapped to determine which areas are more exposed to adverse weather conditions. This

dispersion is seen in Figure 2.1.

1 T h e Gulf of Mexico is excluded due to limited routing options and an observed low frequency of
extreme weather conditions.

2 E x t r e m e weather observations is defined as wave heights equal or exceeding 6 meters



5

Figure 2.1: Mapping of the total number of hourly extreme weather observations (wave
height >= 6m) found in the period from 2006 to 2021. The total number of observations
ranges from 0 to 9000. The line represents the route following the great circle line from
Spain to the Bahamas

It is apparent that the northern part of the area is more exposed to rougher weather

conditions. This includes the area where the shortest path crosses and suggests that vessels

transporting weather-sensitive deck cargo can potentially deviate from the shortest path

due to its weather constraints. The shortest path is defined in terms of the shortest distance

along the great circle line (Jie and Miao, 2021). Due to the concentration of adverse

weather conditions along the shortest path, the shortest path might be undesirable for any

vessel regardless of cargo. To create an accurate comparison, we will compare the cost-

minimizing route of vessels carrying weather-sensitive cargo with the typically considered

optimal route, which is the cost-minimizing route of vessels without weather-sensitive

cargo.

Furthermore, we would like to examine the seasonal environmental conditions along the

route. The Atlantic is known for seasonal weather incidents, such as the hurricane season,

yielding periods of extreme weather conditions (Kossin, 2008). We will examine the

seasonal weather patterns’ effect on routing choices for weather-sensitive deck cargo and,

thereby, the incremental costs of sailing suboptimal routes. The following plot, displayed

in Figure 2.2, strongly indicates a substantial variation in extreme weather conditions
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throughout the year; hence the optimal route selection for sensitive deck cargo might vary

heavily depending on the time of year.

Figure 2.2: The total accumulated number of wave observations equal or exceeding 6
meters found per month within the relevant area from 2006 to 2021

Figure 2.3 displays the median wind speed and wave height for 2020, representing the

median weather conditions observed from 2006 to 2021. This indicates an increased

weather effect during the winter season, while the summer season experiences better

weather conditions. We, therefore, expect a definite seasonal weather effect along the

route.

Figure 2.3: The median of monthly wind speed (knots) and wave height (meters)
observations found in 2020
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Figure 2.3 displays the median wind speed and wave height for 2020, representing the

median weather conditions observed from 2006 to 2021. This indicates an increased

weather effect during the winter season, while the summer season experiences better

weather conditions. We, therefore, expect a definite seasonal weather effect along the
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3 Theory and Literature review

This section provides an overview of scientific literature relevant to this thesis. First, a

synopsis of various methodologies to optimize route selection in maritime transportation

is examined. Then, the fundamental theory of vessel bunker consumption is presented.

Lastly, we will introduce the concept of machine learning algorithms, one of the leading

data-driven techniques to provide accurate bunker consumption estimations.

3.1 Ship weather routing

The thesis’s methodology approach is heavily inspired by pre-existing literature on optimal

ship weather routing. Ship weather routing has seen increasing attention in recent years

in both academia and industry (Zis et al., 2020). The literature mentions a vast array

of methodologies used to optimize route selection for a given voyage while considering

the environmental effects of wind and waves. The most prominent methods related to

weather routing optimization in maritime transportation include the Modified Isochrone

method, dynamic programming, and pathfinding algorithms. These routing algorithms

all share two fundamental components: waypoint grid generation and path selection and

evaluation criteria (Wang et al., 2017).

The isochrones method was originally proposed by James (1957) and further extended

and modified by Hagiwara and Spaans (1987) into the modified isochrone method. An

isochrone represents a line in the waypoint grid system, which displays the different

possible trajectories of a ship for a given route (Zis et al., 2020). Each line is connected

by stages, where each stage is assumed to be sailed at an equivalent time. This assumes

that the ship operates with a constant engine power during the voyage. The modification

of Hagiwara and Spaans (1987) showed that when environmental factors are incorporated,

the length of each isochrone will change, and thus different lengths can be traversed within

the same time interval. The inclusion of stages reduces the complexity by splitting the

problem into multiple sub-route optimization problems. To solve the optimization problem

at hand, this method utilized a forward recursive algorithm for individual sub-routes

(Wang et al., 2017). The forward recursion allows the ship to vary its heading for each

interim stage. Furthermore, a three-dimensional isochrone method (3DMI) was proposed
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by Lin et al. (2013), which enables varying ship speed and wave angle as well. This makes

this method suitable for identifying the optimal route in terms of the expected time of

arrival and fuel consumption (Zis et al., 2020).

Dynamic programming is based on Bellman’s principle of optimality (Bellman, 1954): ”An

optimal policy has the property that whatever the initial state and initial decision is, the

remaining decisions must constitute an optimal policy with regard to the state resulting

from the first decision“. This method constructs a grid system based on the great circle

reference path (Wang et al., 2017). Along this path, the route is divided into multiple

stages, and for each stage, multiple grids are generated perpendicular to the reference

path. A two-dimensional dynamic programming (2DDP) variation has been utilized by

Chen (1978) and Wang and Chrétienne (1993) to minimize expected voyage cost and

fuel consumption, respectively. The dimensions refer to the number of optimization

criteria the algorithm is capable of considering. Shao et al. (2012) proposed a new forward

three-dimensional dynamic programming (3DDP) method. This enabled fuel consumption

minimization while also considering safety constraints for safe ship operations.

There are mainly two pathfinding algorithms that have been applied in ship weather

routing, namely A* and Dijkstra. These algorithms divide all defined paths from point A

to point B into a series of sub-routes and sub-points (Wang et al., 2017). Each sub-point

is connected to its neighboring sub-points by a path, which has an associated cost of

travel. The main principle of these algorithms is that the optimal sub-route follows the

path with the lowest associated cost. The path with the lowest cost will be used as a

reference when comparing the corresponding paths. This means that when a new point is

reached, the new path will be compared to the cost of the reference path. If the associated

cost of the new path is smaller than the reference, it will be assigned as the new reference.

This procedure will continue until the destination point is reached and only the optimum

route remains.

Multiple variations of the pathfinding algorithms have been implemented for ship weather

routing. Padhy et al. (2008) studied the North Indian Ocean using Dijkstra’s algorithm,

while Szlapczynska (2015) implemented A* in her multi-objective weather routing

algorithm. These methods have proved suitable for fuel cost minimization with a focus

on studying the impact of environmental uncertainties on a ship’s optimization planning
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(Wang et al., 2017). Mannarini et al. (2013) for instance, used a modified version of

Dijkstra’s algorithm in combination with meteorological and oceanographic data for

environmental factors to identify the optimal route.

3.2 Vessel fuel theory

According to Zis et al. (2014), the fuel consumption of any voyage can be isolated into four

separate phases: sailing, anchorage, maneuvering, and at-berth. The fuel consumption

during sailing is predominantly determined by the effective horsepower, PE, produced by

the main engine of the ship (Meng et al., 2016). PE expresses the power required by the

engine to propel the ship forward through the water given the total resistance RT and

sailing speed V, in accordance with the formula:

PE = RT × V (3.1)

The total resistance is further comprised of three components:

RT = RF +RR +RA (3.2)

RF is the frictional resistance representing the induced resistance of the hull and the

propeller due to friction and wave-making (Meng et al., 2016). This is affected by the

loading condition of the vessel and the total deterioration of the hull. The RR is the

residual resistance of waves, which causes pitch and heave motions of the vessel, while RA

is the air resistance caused by the wind. Arribas (2007) finds that the residual resistance

can be approximated by a function of the significant wave height and the modal period of

the sea. The air resistance can be explained by features such as wind speed and relative

wind direction (Magnussen, 2017).

As evident from equation 3.1, the vessel speed is a highly influential predictor of bunkers

consumption, supported by previous literature by Adland et al. (2020); Gkerekos et al.

(2019); Meng et al. (2016). The consensus is that the total resistance is roughly proportional

to the square of vessel speed, V 2, the bunkers consumption can therefore be approximated

by a cubic function of speed (Meng et al., 2016). However, this speed-consumption
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relationship is challenged by Adland et al. (2020). They argue that while the ”cubic law“

seems to hold near the design speed of vessels, it is not necessarily applicable for all

speed ranges. Due to this, Adland et al. (2020) emphasizes the importance of accurate

data-driven estimates of the speed-consumption relationship for optimization of ship

operations.

Aside from the vessel speed, the vessel’s bunker consumption is known to be influenced

by various features, such as its draft, hull fouling condition, wave height and direction,

wind force and direction (Adland et al., 2018). Water salinity, currents, and temperature

are found to have a slight effect on consumption as well, however, the influence of wave

and wind is considerably more significant (Carlton, 2018).

3.3 Artificial intelligence and machine learning

The use of artificial intelligence and machine learning methodologies have garnered much

attention in recent years (Zis et al., 2020). Most papers in the literature attempt to utilize

this methodology to predict fuel consumption while accounting for various environmental

factors to minimize either fuel consumption or voyage arrival time. Various data-driven

machine learning approaches have been implemented in an effort to model the complex

and often non-linear relationships associated with vessel fuel consumption. This approach

has been proven effective, as many authors are reporting substantial fuel, cost, or emission

savings (Wang et al., 2016; Zheng et al., 2019; Du et al., 2019).

Machine learning can be defined as the use of formal structures (machines) to do inference

(learning)(Clarke et al., 2009, p. 2). This means that the machine learning algorithms

improve their predictive performance by learning from a set of training data. The

machine learning algorithms can generally be classified into two groups: supervised and

unsupervised problems (Gkerekos et al., 2019). The latter refers to machine learning

problems where the algorithm is left to its own to discover hidden patterns and structures

in its input data without any labels are provided to the learning algorithm (Bishop and

Nasrabadi, 2006, p. 3). Regarding supervised learning, the algorithm’s goal is to learn a

general rule that maps the input data to a target value (output) (Gkerekos et al., 2019).

For our thesis, we will utilize the supervised machine learning approach to estimate a

vessel’s fuel consumption (target value), which is dependent on various parameters (inputs)
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affecting the total resistance in a regression problem.

3.4 Performance metrics

Performance metrics are necessary to evaluate the accuracy of prediction models. There

is a wide variety of metrics for this purpose; however, none can be universally used for all

instances. Each metric has its inherent weaknesses and strengths depending on the nature

of the problem. Thus, an educated selection of metrics can be beneficial to measure the

predictive power of each prediction model objectively. Some of the most common choices

are the Coefficient of Determination (R2), Mean Absolute Error (MAE), and Root Mean

Squared Error (RMSE).

A key performance indicator of model accuracy for regression analysis is the R2 (Abebe

et al., 2020). It measures the proportion of the variance of the response variable that can

be attributed to the model’s features. This is achieved by dividing the sum of squares

of residuals and the sum of squares total. The former quantifies the total deviance of

predicted values (ŷi) to observed data (yi), while the latter identifies the total difference

between observed data and its mean (yi). The resulting quotient is subtracted from 1 to

produce the coefficient of determination. R2 scales from 0 to 1; 0 indicates an inability to

explain the variance, and 1 indicates a perfect prediction. The definition is presented in

Equation 3.3:

R2 = 1−
∑n

i=1(yi − ŷi)
2

∑n
i=1(yi − yi)2

(3.3)

MAE is a relatively simple yet effective measure of error, which identifies the expected

magnitude of error of the model (Willmott and Matsuura, 2005). It involves calculating

the sum of absolute difference between the predicted value (ŷi) and the true observed

value (yi), then dividing by the number of samples in y (n). A low value of MAE is desired

as it corresponds to a low expected prediction error. The formula is displayed in Equation

3.4.

MAE =
1

n

n∑
i=1

|yi − ŷi| (3.4)

RMSE is the standard deviation of the residuals, which can be calculated through a
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sequence of three steps. First, the sum of squared error is obtained as the sum of

the individual squared difference between predicted value (ŷi) and observed value (yi)

(Willmott and Matsuura, 2005). Then, the squared error sum is divided by n, and lastly,

the square root of the resulting equation is computed, yielding the RMSE. Similar to

MAE, a lower value of RMSE denotes a better prediction accuracy (Abebe et al., 2020).

The definition of RMSE can be seen in Equation 3.5.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (3.5)

Though widely used in climatic and environmental literature, Willmott and Matsuura

(2005) argues that RMSE is an inappropriate measure of error. This is due to its function

of three error characteristics; making is misleading and not as easily interpretable. One

unfortunate trait of RMSE is that each error influences the total error in proportion to its

square. This results in larger error margins having a relatively greater influence on the

total error than the more minor ones. Contrary to RMSE, MAE provides an unambiguous

measure of average error and is less biased for increasingly higher error magnitudes. On

the other hand, MAE becomes a less intuitive measure of a model’s performance when

dealing with large error values.

The Mean Absolute Percentage Error (MAPE) is a variant of MAE expressed in percent

form. MAPE has the advantages of scale-independence as well as providing excellent

interpretability (Kim and Kim, 2016). However, a substantial drawback of MAPE is that

it produces infinite or undefined values for zero or values approaching zero (Kim and Kim,

2016). The error measure also wrongly favors underestimated predictions, as there exists

a ceiling of 100% error for underestimated predictions, whereas there exists no ceiling for

overestimation (Gkerekos et al., 2019). To resolve this, the measure can be transformed

into a symmetric measure, seen in equation 3.6.

sMAPE =
1
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|yi − ŷi|
(|yi| − |ŷi|)/2

(3.6)

The symmetric Mean Absolute Percentage Error (sMAPE) provides an improved

alternative to MAPE as it corrects the drawbacks by defining a lower and upper bound.
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4 Data

The data section will provide details of data acquisition, pre-processing methodology and

the resulting feature selection for our dataset. Our approach for data processing is largely

comparable to the data process workflow used by Abebe et al. (2020), depicted in Figure

4.1.

Figure 4.1: Data and methodology workflow (Abebe et al., 2020)

The data acquired is processed and handled in R, Python, and Go on an Apple M1 chip

with 16 GB RAM and 8-core CPU. The datasets acquired are of significant size, which poses

an immense challenge when handling and processing due to our computer equipment’s

limited processing and storage capabilities. These issues are managed by separating our

operations into multiple steps, which will be further clarified in the methodology section.
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an immense challenge when handling and processing due to our computer equipment's

limited processing and storage capabilities. These issues are managed by separating our

operations into multiple steps, which will be further clarified in the methodology section.
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4.1 Noon reports

This thesis will mainly rely on noon reports as the primary data source. A noon report

is a low-resolution dataset prepared by the ship’s chief engineer containing relevant

standardized information (Anish, 2021). The fields reported include, but are not

limited, to the ship’s position, fuel consumption, average speed, and average experienced

environmental conditions. The reports are prepared approximately once every 24 hours

and are then sent to the respective company around noon, hence the name noon report.

The noon report datasets are coarse but still widely used across the global fleet due to

their convenience and cheap compilation (Aldous et al., 2015). An alternative data source

is using continuous monitoring (CM) systems that utilize automated onboard sensors.

These sensors can provide more nuanced and accurate data with a significantly increased

sampling frequency. However, due to its lack of historical use, the CM methods cannot

provide an adequate sample size for the relevant ships of this thesis.

However, noon report datasets should be used with caution, as the reports are prone to

be erroneous due to their reliance on human input, which makes the datasets inherently

uncertain (Aldous et al., 2015). As stated earlier, the chief engineer prepares the noon

reports by hand. This poses multiple problems, as it exposes the reports to potential

human errors such as misinterpreted readings and input errors. In addition, the chief

engineers might not maintain a consistency with units, rounding, report intervals or the

number of fields reported. Lastly, there is also a risk for equipment malfunction, which

can yield inaccurate measurements.

Aldous et al. (2013) have analyzed and quantified the intrinsic uncertainty of noon reports

as a data source. Their approach was to utilize a regression model in combination with

pre-existing knowledge of the physical influence of fuel consumption, which enabled

them to capture the physical interaction between parameters. They fitted a multi-linear

regression model consisting of variables closely linked to a ship’s fuel consumption in a

physical manner while making sure that the remaining residuals were normally distributed.

This produced a model which was a close approximation of the true underlying model.

They found that the relative standard error is in the range of 1-8% for various types

of oil tankers and 15.8% for LNG carriers, which is thought to be due to aleatory and

measurement uncertainty in the noon reports. This proved the viability of the underlying
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data, making it credible for use in performance analysis. However, before the noon report

datasets can be used in our models, it is crucial to perform extensive pre-processing to

address the inherent uncertainty.

Through our collaboration with G2 Ocean, we have received access to 54 882 noon reports,

covering the period from 2009 to 2021. Since G2 Ocean was launched in 2017, any noon

report prior to this is from Grieg Star ships. These reports consist of information from

their Class I and Class L vessels exclusively, as these are commonly used to transport

weather-sensitive deck cargo. A complete list of all the vessels within these classes can be

seen in Table 4.1.

Table 4.1: G2 Ocean’s vessels

Vessel IMO Vesselcode DWT Year of build

Class I
Star Istind 9182954 I001 46,428 1999
Star Ismene 9182966 I002 46,428 2000
Star Isfjord 9182978 I003 45,740 2000

Class L
Star Laguna 9593854 LAG | L001 50,761 2012
Star Lima 9593866 LIM | L002 50,761 2012
Star Lindesnes 9593878 LIN | L003 50,761 2012
Star Louisiana 9593880 LOU | L004 50,748 2013
Star Lofoten 9593892 LOF | L005 50,761 2013
Star Livorno 9593907 LIV | L006 50,761 2013
Star Loen 9603790 LOE | L007 50,761 2013
Star Luster 9603805 LUS | L008 50,761 2013
Star Lygra 9616838 LYG | L009 50,761 2013
Star Lysefjord 9616840 LYS | L010 50,728 2014

The reports include all the historic voyages of the I-class and L-class vessels, displayed in

Figure 4.2, not only the voyages within the Atlantic area that we focus on in this thesis.

We opt to use the dataset in its entirety to secure a sufficient sample size. This assumes

that the ship’s speed and fuel consumption are not affected by the ship’s position but

rather the conditions at the given location. Therefore, we emphasize that our models will

not include time or location, just the vessel-performance data.
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The reports include all the historic voyages of the I-class and L-class vessels, displayed in

Figure 4.2, not only the voyages within the Atlantic area that we focus on in this thesis.

We opt to use the dataset in its entirety to secure a sufficient sample size. This assumes

that the ship's speed and fuel consumption are not affected by the ship's position but

rather the conditions at the given location. Therefore, we emphasize that our models will

not include time or location, just the vessel-performance data.
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Figure 4.2: All historic voyages found in noon reports from G2 Ocean’s I-class and
L-class vessels between 2009-2021

4.2 Third-party weather data

The extent to which our methods and models can be applied and provide accurate results

depends on the data quality. Chu et al. (2015) found that meteorology and oceanography

(METOC) systems can contribute to upwards of 20% in fuel savings. More accurate

weather data enables increased model performance and consequently a significant increase

in cost savings. The noon reports contain information regarding environmental conditions

such as relative wind direction, average wind force, relative sea direction, and average sea

state. However, as previously mentioned, the noon reports are fundamentally uncertain

either due to human error or aleatory and measurement uncertainty.

To ensure high-quality weather data, we opt to use third-party meteorological data rather

than the weather recordings found in the noon reports. We have retrieved historical

weather data from the European service Copernicus Climate Change Service (C3S) Climate

Data Store (CDS) (Hersbach et al., 2018), which provides weather data using satellite

altimetry data, numerical models, and in situ data. It contains information regarding

waves, wind, currents, precipitation, salinity, and temperature. This thesis will mainly

focus on wave and wind features because we assume that these contain the highest

explanatory impact on fuel consumption in a physical manner. We acknowledge that
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4.2 Third-party weather data

The extent to which our methods and models can be applied and provide accurate results

depends on the data quality. Chu et al. (2015) found that meteorology and oceanography

(METOC) systems can contribute to upwards of 20% in fuel savings. More accurate

weather data enables increased model performance and consequently a significant increase

in cost savings. The noon reports contain information regarding environmental conditions

such as relative wind direction, average wind force, relative sea direction, and average sea

state. However, as previously mentioned, the noon reports are fundamentally uncertain

either due to human error or aleatory and measurement uncertainty.

To ensure high-quality weather data, we opt to use third-party meteorological data rather

than the weather recordings found in the noon reports. We have retrieved historical

weather data from the European service Copernicus Climate Change Service (C3S) Climate

Data Store (CDS) (Hersbach et al., 2018), which provides weather data using satellite

altimetry data , numerical models, and in situ data. It contains information regarding

waves, wind, currents, precipitation, salinity, and temperature. This thesis will mainly

focus on wave and wind features because we assume that these contain the highest

explanatory impact on fuel consumption in a physical manner. We acknowledge that
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the remaining features might have some predictive power; however, the influence of wave

and wind is considerably more significant (Carlton, 2018). This is further supported by

Abebe et al. (2020) and Adland et al. (2020) that find that sea current speed and current

direction have a relatively low impact on fuel consumption.

We will be using the ERA5 hourly data on single levels dataset containing data from

1979 to the present. This dataset contains the wind speed components u10 and v10,

which report the wind speed measurements from the eastward and northward directions,

respectively. The dataset also includes the wave measurements for the mean wave period

(mwp), mean wave direction (mwd), as well as the significant height of combined wind

waves and swell (swh). Note that the wave data have a spatial resolution of 0.5 degrees

compared to the wind data’s 0.25-degree resolution. Further details of the third-party

weather data can be found in table 4.2.

Table 4.2: Third-party weather data (Hersbach et al., 2018)

Source Storage size Temporal
resolution

Spatial
resolution Features

ERA5 hourly data on
single levels from 1979

to present (CDS)

222 GB 1 hour 0.5°
Mean wave period (mwp)

Mean wave direction (mwd)
Combined height of wind

waves and swell (swh)

582 GB 1 hour 0.25°
Eastward component

of wind (u10)
Northward component

of wind (v10)

4.3 Pre-processing

4.3.1 Merging datasets

Before performing an extensive pre-processing procedure, the noon reports and third-party

weather data are merged into a single dataset. To enable matching with data from the

noon reports, we interpolate the coordinates in the noon reports to the closest latitude and

longitude value to a grid of 0.5 degrees resolution. The interpolation will yield a maximum

deviation of 27 kilometers from the actual observation, which we deem acceptable. The

wind and wave features are then matched with the noon report dataset along three

dimensions: longitude, latitude, and time (UTC). This ensures that the correct weather

condition is matched with the corresponding location of the vessel at the appropriate time.
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However, due to missing values for the required dimensions, the sample size is reduced

from 54 882 to 35 182. Finally, the dataset is split by class ID, creating a separate dataset

for Class I and Class L vessels. Table 4.3 displays descriptive statistics of the numeric

features comprised in the combined dataset.

Table 4.3: Descriptive statistics of combined noon reports and external weather

n = 35 182

Feature n_missing mean sd p0 p25 p50 p75 p100

longitude 0 -13.76 95.58 -180.00 -85.77 -39.02 79.47 180.00
latitude 0 24.59 23.16 -55.10 13.82 30.95 40.00 66.30
fuel_consumption 2611 16.75 13.00 0.00 0.00 19.30 27.80 150.10
speed_made_good 4386 13.18 31.24 0.00 11.96 13.33 14.44 4923.00
draft_aft 4517 9.72 1.77 0.00 8.20 9.65 11.25 40.60
draft_forward 4517 9.29 13.36 0.00 7.50 9.19 10.85 1096.00
u10 189 -0.32 4.97 -19.84 -3.89 -0.46 2.86 21.50
v10 189 -0.02 4.73 -22.69 -3.06 0.02 3.01 20.24
wave_deg 5445 176.82 98.96 0.03 90.64 180.66 258.93 359.99
wave_period 5445 7.27 2.32 1.67 5.52 7.32 8.90 17.69
wave_height 5445 1.74 1.09 0.03 0.95 1.57 2.28 10.59
h10 189 6.03 3.30 0.03 3.49 5.71 8.12 30.73

4.3.2 Data pre-processing

The scope of this thesis is limited to estimating the fuel consumption during operating

periods of the ship, therefore the feature fo_at_sea indicating fuel consumption from

the main engine, is defined as the dependent variable. This means that mooring and

anchoring periods, as well as the use of auxiliary engines to generate electricity for the

vessel are discarded. The inclusion of the auxiliary engines could affect the accuracy of

our models as their consumption is dependent on different features compared to the main

engine.

The speed of the vessel can decrease during a voyage due to increased weather exposure,

alternatively, it might be because of maneuvering near ports and shores or navigation in

constrained waters (Adland et al., 2020). The low temporal resolution of noon reports

cannot accurately differentiate between these scenarios, but it would still impact the fuel

consumption. To address this, we adopt a similar approach as Adland et al. (2020), by

excluding data with less than 5 knots of speed_made_good. This limits our scope to fuel

consumption estimation during open sea sailing.
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An examination of the residuals and a descriptive analysis following an initial visual

inspection of the raw dataset find that the noon reports contain outliers for various

features. These can result from poorly calibrated or malfunctioning sensors or human

input errors. To reduce the overall noise in our data, a default outlier value is set for

fo_at_sea, speed_made_good, and draft based on the maximum values declared in

the vessel’s technical data plus an additional safety margin (Clarksons Research, 2022).

This gives an upper limit of fo_at_sea, speed_made_good and draft of 60, 20 and 14,

respectively

Feature selection methods are important to filter out unnecessary and redundant features

(Bommert et al., 2020). First, we remove all endogenous determined features, meaning

features heavily correlated to the dependent variable, such as RPM and distance.

Furthermore, to identify and discard of features with lower predictive power, a high-

correlation and near-zero variance filters are applied. The high correlation filter calculates

the correlation coefficient between the input features, discarding input features with a

coefficient higher than 0.8. Input features with an exceedingly low variance are removed

as they represent noise and provide no support in differentiating groups of data (Bommert

et al., 2020). Finally, every row containing a missing value is dismissed as they would

disrupt the model performance. Because of the aforementioned selection and filter methods,

the dataset was further reduced to a total of 22 459 observations.

4.3.3 Feature engineering

The wind variables u10 and v10 are converted from their respective vector forms to

the magnitude of wind speed and direction angle. To calculate the magnitude and

corresponding angle, we use the following equations:

|V | =
√
u102 + v102 (4.1)

θ = 180 +
180

π
tan−1(v10, u10) (4.2)

The wind and wave features contain separate features for their respective magnitude

and direction. To interpret the effect of the forces on the vessel, an interaction term
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corresponding angle, we use the following equations:

[V/ V u 1 0 + v10° (4.1)

180
0= 1804 tan ' ( v 1 0 , u10)

7
(4.2)

The wind and wave features contain separate features for their respective magnitude

and direction. To interpret the effect of the forces on the vessel, an interaction term
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that describe both the size and direction relative to the vessel should be included. This

requires knowledge of the vessel’s bearing, which the noon reports do not include. To

resolve this, we approximate the vessel’s bearing by calculating the true course along the

rhumb line between every connecting points (Karney, 2013). With the inclusion of the

vessel’s bearing, the wind and wave directional features can be transformed based on the

direction of the vessel. This transformation is inspired by Nilsson and Nilsson (2021), who

assign directional features moving in the same direction to 90, while directional features

moving in the opposite direction are assigned a value of -90. This is visualized in 4.3,

where the outer circle represents the difference in angle between the directional weather

features and the vessel’s bearing, and the inner circle represents the transformed relative

direction. Subsequently, the magnitude of wind speed and wave height are multiplied by

their corresponding relative directional feature. This approach accomplishes to distinguish

wind and waves coming from astern or from the bow of the vessel by affecting the fuel

consumption in opposite directions. Based on the findings of Adland et al. (2018), we

expect head wind to have an increasing effect on fuel consumption and wind from astern to

have a decreasing effect. However, this does not capture the sway and roll effect of waves
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Furthermore, the draft is comprised of the two measures draft_forward and draft_aft.

The draft of most ships varies longitudinally from forward to the aft of the vessel; therefore,

the position of the measure is often included. We opt to calculate draft as an average of

draft_forward and draft_aft, as the two measures are highly correlated. This is displayed

in Equation 4.3.

draft =
draft_forward+ draft_aft

2
(4.3)

The draft defines the vertical distance between the waterline and the ship’s keel, which is

useful to determine the loading conditions of the vessel (Menon, 2020). As the load of the

vessel increases, so does its draft in order to support the additional weight. A vessel that

sits lower in the water will have increased resistance (ceteris paribus) and consequently a

higher fuel consumption (Diesel and Turbo, 2004).

Lastly, the vessel’s age is identified by calculating the difference between the time of

reporting (yr) and each vessel’s year of build (yb), resulting in the equation: age = yr − yb.

We opt to include the vessel’s age to represent the state of a given vessel. The vessels

experience a gradual hull deterioration as well as decreasing propulsion system efficiency

over time. Because of this, an older ship is generally expected to consume more fuel given

otherwise equal conditions.

4.3.4 Feature scaling

The selection of features in our dataset varies in magnitude, range, and units. Some

machine learning algorithms are highly sensitive to a feature’s magnitude, assigning

features of higher value a higher weight (Aniruddha, 2020). This increases the bias towards

certain features in the dataset, which can reduce the performance of the machine learning

algorithm. To prevent this, we implement two feature scaling methods: standardization

and normalization.

Feature standardization scales all numerical attributes to be centered around the mean

with unit standard deviation, which is done by subtracting the mean and subsequently

dividing by the standard deviation, as seen in Equation 4.4 (Gkerekos et al., 2019). This

removes the unit differences among the features; however, the features are not restricted
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to a particular range (Aniruddha, 2020).

X ′ =
X − µ

σ
(4.4)

The alternative method is normalization, also referred to as Min-Max scaling, which maps

values to a range between 0 and 1. The formula for normalization can be seen in Equation

4.5.

X ′ =
X −Xmin

Xmax −Xmin

(4.5)

The two feature scaling methods will be favored for different instances depending on

specific attributes of the various machine learning algorithms (Aniruddha, 2020). For

instance, algorithms that utilize gradient descent as an optimization technique, such as

artificial neural network and linear regression model, require data to be scaled. Distance-

based algorithms, like k-nearest neighbours, on the other hand are influenced by the range

of the features. Finally, tree-based algorithms, such as Random Forest and Extra Trees,

are relatively insensitive to feature scaling since these algorithms process each feature

separately. By applying the most suitable scaling method to each algorithm we make sure

that all features contribute equally to the final result.

The final selection of features can be found in table 4.4 below. A detailed descriptive

analysis of the resulting I-Class and L-Class datasets can be found in Appendix A1.2 and

A1.1, respectively.

Table 4.4: Feature descriptions

Feature Description Unit

Noon Report
1 fo_at_sea Fuel consumption since last report mt
2 speed_made_good Mean speed since last report knt
3 draft Mean draft m
4 age Age of vessel years

Copernicus
5 mwp Mean wave period s
6 swh Significant height of combined wind, waves and swell m
7 h10 Mean wind speed knt
8 wind_speed/dir Wind speed relative to vessel direction m . deg. forwards
9 wave_height/dir Waves relative to vessel direction m . deg. forwards
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5 Methodology

The first part of this section will provide an explanation of our chosen machine learning

algorithms: K-Nearest Neighbours, Random Forest, Extra Trees, and Artificial Neural

Network. The main focus will be on the ensemble decision trees: Random Forest and

Extra Trees. The motivation for this is based on Nilsson and Nilsson (2021) and Abebe

et al. (2020) findings that ensemble decision tree models provide superior performance

when predicting a vessel’s fuel consumption. With this in mind, we will examine a few

models of varying sophistication to substantiate their findings. A linear regression model

is included to serve as a benchmark for our models’ performance.

The second part will provide a detailed explanation of our optimization algorithm of

choice, namely Dijkstra’s algorithm. This will cover the fundamental architecture and

objective function of the algorithm and its underlying assumptions and limitations. Lastly,

we will demonstrate how everything comes together in our extensive simulation approach.

5.1 Machine Learning

For the optimization algorithm to function as intended, a cost function must be defined to

provide context to the cost of moving along the path. This cost will largely be explained

by the fuel consumed during the voyage. There are multiple alternatives to estimating

the bunker fuel consumption; one alternative is to choose a selection of predetermined

attributes and assign each attribute an associated weight based on its presumed relative

importance until the output resembles observed values. A similar approach is achieved by

fitting a linear regression on the acquired data. However, both provide imperfect estimates

as they fail to explain the nonlinear dynamics of fuel consumption. Machine learning

algorithms can train and learn from the collected data, which subsequently enables the

algorithms to better identify the patterns, trends, and nonlinear relationships. This

will conceivably provide improved bunkers fuel predictions, which is crucial to achieving

realistic cost estimates.

All machine learning models presented below are related to regression analysis. The

models span from simple linear regression to complex neural networks. Note that the

associated complexity of each model does not necessarily correlate directly to improved
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predictive performance, as this is affected by the quantity and quality of available data,

as well as the complexity of the problem at hand (Gkerekos et al., 2019).

5.1.1 Cross-validation

In order to measure the models’ performance, we split the data into train, test, and

validation sets. The test set is used as an evaluation measure to determine how well the

trained model will generalize to an independent dataset (Prashant, 2017). This requires

the test set to remain untouched during the training process, which means an additional

set, referred to as the validation set, is required for measuring the accuracy during this

process. To avoid the risk of overfitting our models, as well as ensuring an unbiased

validation set, a repeated k-fold cross-validation method is applied (Gkerekos et al., 2019).

This method splits the training data into k subsets (or folds). The model is trained on the

k-1 subsets, while the remaining subset is treated as the validation and used to evaluate

the model’s performance. This is an iterative process that runs k number of times, and

for every iteration, a model’s accuracy score is obtained and averaged. This process will

be repeated a specified number of times before obtaining the overall accuracy score by

calculating the average of the prediction accuracy measures from each repetition. This

process is visualized in figure 5.1. This approach adds significant complexity and running

time to the training process; however, this is preferred to ensure an optimal training

procedure for our models.

Figure 5.1: Visualization of repeated 10-fold cross validation method (Gkerekos et al.,
2019)
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5.1.2 Model parameters

There are two main modeling approaches, namely parametric and non-parametric models.

The former assumes a finite set of parameters that are attained from the training set during

the learning phase (Bishop and Nasrabadi, 2006). This set of parameters is expected to

capture all variance within the dataset and thereby binding the complexity of the model

(Russel and Norvig, 2010, p. 737). Linear regression and Artificial Neural Networks are

examples of parametric models.

Models such as K-Nearest Neighbours, Random Forest, and Extra Trees are non-parametric

models. Non-parametric models assume that the dataset distribution cannot be defined by

a finite number of parameters (Gkerekos et al., 2019). For this reason, the non-parametric

models can learn any functional form from the training data. Consequently, the predictive

performance of these models will grow with the sample size of the training data. This

approach can potentially provide higher-performance models as parametric assumptions

do not restrict them; however, a sufficient dataset is required, and it will impose a higher

computational cost.

5.1.3 Hyperparameter tuning

Parameters that define a model’s structure are referred to as hyperparameters. A change

in hyperparameter values can significantly affect the performance of the constructed

model. Therefore, a process for searching for the ideal architecture should be carried out

to select the proper values for each model (Abebe et al., 2020). The two most common

methods of optimization are grid search and random search. The grid search tests all the

potential combinations of a predefined list of hyperparameters, while the random search

tests a randomly selected hyperparameter configuration within a given range. The grid

search requires extensive trial and error of each hyperparameter to identify the optimal

combination. Due to some of the models possessing multiple tunable hyperparameters,

this process can get demanding. Furthermore, Bergstra and Bengio (2012) finds that

random search can provide equal or better results than grid search; thus, we opt to apply

random search as our preferred tuning approach.
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5.1.4 Machine learning algorithms

We choose to implement a diverse selection of machine learning regression algorithms

of varying complexity. The most basic algorithm is K-Nearest Neighbours (KNN), a

non-parametric supervised method. Given a new data point, the algorithm identifies the

k closest surrounding points in terms of the Euclidean distance (Russel and Norvig, 2010,

p. 738-741). The predicted value of the new data point is found by calculating the mean

of the identified k closest points (Christopher, 2021). The predictive performance of the

model is heavily influenced by the value of k, a wide array of values should therefore be

examined to identify the appropriate value of k for our model. A low value imposes a

higher risk for error as the algorithm is more exposed to potential outliers. Contrarily,

a higher value risks the inclusion of too many data points, which might reduce the

model’s accuracy, as well as increase the computational cost of the algorithm. Note that

the distance of all data points is weighted equally, which causes the KNN-model to be

inherently sensitive to outliers and the scale of the input data (Gkerekos et al., 2019). A

tune length of 15 is chosen for our KNN-model. As a result, the model will be trained on

a selection of 15 randomly sampled values of k. The value of k providing the lowest mean

average error (MAE) during the validation process is chosen as the optimal value.

For our next model, we opt to implement a relatively simple configuration of a neural

network, that is, a single hidden layer feed-forward neural network (NNET) (Ripley

and Venables, 2022). (James et al., 2013, Chapter 10) refer to this as the most widely

used ”vanilla“ neural network model. A typical feed-forward neural network consists of

interconnected neurons (nodes) structured in three layers: input layer, hidden layer, and

output layer. Each neuron in a particular layer is connected with all neurons in the

following layer, where each neuron is assigned a weight based on the degree of importance

of the given connection in the neural network (Svozil et al., 1997, p. 45).

In our case the input features are passed to a set of neurons consisting of a function of its

input value and associated weight. These weighted values are further passed to the output

layer and produce a prediction based on the sum product of all neuron values above a

threshold. To recalculate the weights, gradient descent is commonly used following each

learning sequence (Ruder, 2016). Our models require two tuning hyperparameters: (1) the

number of nodes in the hidden layer and (2) the value of weight decay (Ripley and Venables,
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2022). The number of potential configurations is vast, and an ample running time training

the model prevents an exhaustive search for the optimal configuration of hyperparameters.

Therefore, we implement a grid search of a small subset of hyperparameters showing

promising results.

The remaining algorithms in our selection are Random Forest (RF) and Extra Trees (ET),

which are algorithms that combine ensemble learning methods with the decision tree

framework (Beheshti, 2022). Decision trees are structured in the form of trees with nodes

and branches. It functions by forking decisions based on specific criteria until a leaf node

(prediction) is reached. Ensemble methods utilize multiple weak learner models, which

are trained on the same dataset, then aggregate the results of each model to produce

a more robust prediction. The RF-algorithm combines these two methods by drawing

multiple randomly sampled decision trees and averaging the results to improve prediction

performance. The ET-algorithm is a slight modification to RF, by performing randomized

splitting of the nodes rather than informed splits (Tunnicliffe, 2021).

5.2 Ship weather routing

To quantify the associated incremental cost of weather-sensitive cargo risk, we must first

identify how the optimal routes of vessels with weather-sensitive deck cargo differentiate

from vessels with no such cargo. We opt for a routing approach heavily inspired by

Dijkstra’s algorithm to achieve this. Dijkstra is one of the most prominent pathfinding

algorithms, achieving accurate route cost minimization while allowing for multi-dimensional

considerations, such as environmental effects, as displayed by Wang et al. (2017); Mannarini

et al. (2013).

5.2.1 Dijkstra’s algorithm

The fundamental structure of Dijkstra’s algorithm is based on a generated waypoint grid

system. To create this, we first select our starting point and ending point that marks

the ship’s starting position and ending position. Then, we split the space between the

starting and ending positions into stages. We select 15 stages for our route and space

them equally. After the number of stages are selected, we fill the stages with nine nodes

each. To make sure that the nodes are within a reasonable travel path for the selected
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route, the placements of the nodes are dictated by the historical positioning data from the

noon reports. The grid we have created represents all possible positions a ship can visit

in our model. We name the connecting line between two nodes in two different stages an

edge. The optimal route will be a series of connecting edges from the starting point to

the ending point. Further, we limit the combinations of our model by having each node

only be able to connect to three nodes on the adjacent stage. This rule does not apply to

the starting point and the ending point, as each node in the first and last stage must be

able to access or be accessed by the starting and ending point. It is then impossible for

the route to go back to a previous stage or laterally within the same stage. By limiting

neighboring nodes, we drastically reduce the possible routes we need to calculate. With

this approach, we are left with:

nodes_per_stage ∗ connections_per_node(stages−1) = 43 046 721 possible paths (5.1)

A visualization of the generated waypoint grid network is displayed in Figure 5.2.

Figure 5.2: Visualization of the route grid network on top of all historic I-class and
L-class vessel positioning data from noon reports over the Atlantic

The optimization algorithm’s objective is to find the optimal route for any given month.

To reiterate, we define the optimal route as the cost-minimizing route while not sailing

over a coordinate that has observed a mean hourly wave height exceeding six meters

during the day of passing. To define the route’s cost, we split the cost function into

two parts: the cost of fuel consumption and the cost of time. We calculate the fuel
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nodes_per_stage connections_per _ n o d e « o e s 1 ) 43 046 721 possible paths (5.1)

A visualization of the generated waypoint grid network is displayed in Figure 5.2.
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Figure 5.2: Visualization of the route grid network on top of all historic I-class and
L-class vessel positioning data from noon reports over the Atlantic

The optimization algorithm's objective is to find the optimal route for any given month.

To reiterate, we define the optimal route as the cost-minimizing route while not sailing

over a coordinate that has observed a mean hourly wave height exceeding six meters

during the day of passing. To define the route's cost, we split the cost function into

two parts: the cost of fuel consumption and the cost of time. We calculate the fuel
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consumption cost by multiplying the estimated consumption of the route by the bunker

cost. Due to high energy demand, the current bunker cost is at $800 per metric ton (Ship

& Bunker, 2022). We add the consumption cost together with the estimated time cost

that is derived from the length and speed of the route and multiplied by the day rate of

the ship at $25 000 per day. Note that only whole days are counted, meaning that if a

trip takes 11 days and 12 hours, the day rate of 12 days will be used to calculate the cost.

There are months where the model cannot identify an optimal route without breaking the

defined weather constraint. For these routes, an additional day rate is added to the cost

to simulate the need to wait a day for milder weather conditions. The change in ETA will

likely be insignificant to the customer of the shipment, however we assume that due to

vessel scarcity, the vessel must be replaced in the market, hence the extra day rate.

Due to computational limitations, pre-calculations and data pre-fetching are needed to

reduce the time needed to find the optimal route. The data is calculated on an edge level,

meaning that we connect all of our parameters and calculations to the edges rather than

the nodes. Our pre-calculations consist of obtaining the angle and length of the edge as

these remain constant between routes and months. The angle of the edge is calculated in

relation to the north direction. While the length of the edge is the distance, d, calculated

by using the haversine formula designed to find the length between two points on a sphere

(Kettle, 2017). This calculation is displayed in Equation 5.2, where r refers to the radius

of Earth, ϕ1 and ϕ2 is the latitude of the two points, and λ1 and λ2 represent the longitude

of the two points, respectively.

d = 2r sin−1

√
sin2(

ϕ2 − ϕ1

2
) + cos(ϕ1)cos(ϕ2)sin2(

λ2 − λ1

2
) (5.2)

Furthermore, we attach the weather data to each edge. We use the weather data for the

ending node of the edge as it represents the weather the ship is sailing into.

Central to our pathfinding algorithm is our machine learning model, which we use

to estimate a vessel’s fuel consumption when sailing an edge. For the inputs of the

machine learning model, we need the following parameters from the edge: Wave height

(swh), wave period (mwp), wave direction (mwd), wind eastward direction (u10 ), wind

northward direction (v10 ), and the vessel’s bearing (bearing). In addition, the speed

(speed_made_good), draft, and age must be determined prior to our fuel consumption
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calculations. For the ship’s speed, the current climate and bunker prices dictate the ship to

sail at a speed of 13.5 knots, referred to as ”super eco“ speed. Alternatively, a vessel’s speed

could be predicted based on the impact of experienced weather effects during the voyage,

which would provide more nuanced speed estimations. However, the high computational

effort associated with this, prohibits the inclusion of speed predictions in our approach.

We therefore assume that a constant speed provides a sufficient approximation of the

ship’s speed during open sea sailing. This also holds true for draft predictions; we assume

that the vessels will be loaded to the a draft of 10.5 meters based on recommendations

from G2 Ocean. A vessel’s age is also needed as a parameter in the model as a vessel

experience increasing hull roughness and decreasing propulsion system efficiency as it ages.

As a result, newer ships will be more energy efficient and able to consume less bunker fuel

for the same speeds. We have set the age of the two classes I and L to 20 (built around

2000) and 10 (built around 2012), respectively.

From the noon reports and data from the speed and distance calculations, we found that

the Atlantic crossing takes approximately 14 days. Based on this information, we can

assume that there is about a day between each of our 15 stages, and can thereby map

known weather observations to each node. This means that a node in the first stage will

contain all corresponding hourly weather conditions of the first day of the month, a node

in the second stage will contain all corresponding hourly weather conditions of the second

day of the month, etc. This approach enables us to extend the model’s functionality to

incorporate weather forecasts on a later stage if we wish to do so. Switching to forward-

looking weather data rather than historical weather data is simply a matter of changing

the weather data at the nodes.

5.2.2 Methodology workflow

In accordance with the aforementioned methodology, our optimization approach can be

summarized in four steps: firstly, we start with the generation of the edges that will make

up each possible route between Spain and Houston. Secondly, we pre-calculate the angle

and the distance of each edge and fetch all of the weather parameters attached to the

edges. Thirdly, we calculate the fuel consumption for each edge using our best-performing

machine learning model. Fourthly, we generate our input files for the optimization model.

Lastly, to conduct our analysis, we run our route optimization simulation for all 192
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months from 2006 to 2021 and find the optimal route for each month. By running the

simulation for such an extended period, we decrease the impact outliers have on our results,

and are therefore more likely to capture the overall trend. This process is visualized in

figure 5.3.

Figure 5.3: Visualization of our weather routing simulation pipeline
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6 Results and Discussion

6.1 Vessel fuel estimations

We have produced two models for each machine learning algorithm by fitting the training

data to the two vessel designs, Class I and Class L, independently. The notion is that

each vessel design possesses different vessel-specific properties; a combination of the two

classes might reduce a model’s capability to identify the appropriate relationships between

input values and fuel consumption. We will dedicate separate discussions for both models

as their results might draw different conclusions.

6.1.1 Hyperparameters

Regarding the I-class model, the KNN-model yields a k value of 13 after tuning the model

for 15 randomly drawn k numbers of neighbors. For the NNET-model, we opt for a grid

search, which finds that the best performing combination of parameters is 10 in the hidden

layer (size) and 0.3 as the regularization parameter (decay). Both ensemble models, RF

and ET, use a random search parameter of 7, corresponding to the maximum number of

input features. This yields a parameter value of 7 randomly selected predictors (mtry) for

the RF-model and 5 for the ET-model. The ET-model contains an additional parameter

describing the number of random cuts (numRandomCuts) during the evaluation period,

which is found to be 7 for the best tuned model.

An identical approach is used during the evaluation period for the L-class model, however,

the optimal parameter selection deviates to some extent from the I-class model. The

KNN-model finds that a k value of 11 produces the best tune for this model. The L-class

NNET-model yields quite a similar tune as the I-class, with 9 units in the hidden layer

(size) and 0.3 as the regularization parameter (decay). The optimal RF-model and ET-

model detect a value of randomly selected predictors (mtry) of 4 and 7, respectively. The

L-class ET-model identifies a random cut parameter (numRandomCuts) of 4 to produce

the best tune for the model.

We should emphasize that the selection of hyperparameters for neither the I-class nor

L-class contains an exhaustive list of possible hyperparameters, but rather a comprised
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subset of possible hyperparameters assumed most relevant to achieving the optimal model

performance. Furthermore, the predictive performance of the models during the evaluation

period is measured using MAE, as we find this to be the most unambiguous measure of

error.

6.1.2 Feature importance

We implement a feature importance technique to help improve understanding of each

feature’s relationship with the dependent variable. This technique ranks all features based

on a score, where a high score indicates high importance on the dependent variable and

vice versa. There are mainly two groups of functions to evaluate the feature importance:

model-specific metrics or model-independent metrics (Kuhn, 2019). We choose a model-

based approach as this is more closely tied to the model’s performance, and is able to

incorporate the correlation structure between predictions into the feature importance

calculations. Not all machine learning models possess the correct properties to determine

each feature’s predictive power. However, the RF-model is suited for this purpose, thus we

use this model for our feature importance calculations. Figure 6.1 displays the identified

feature importance when training the model for L-class vessels.

Figure 6.1: Identified feature importance for L-class vessel designs using Random Forest

A potential drawback of utilizing model-specific metrics is the risk of minor irregularities

or variations between models, which might be influenced by patterns identified in a
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A potential drawback of utilizing model-specific metrics is the risk of minor irregularities

or variations between models, which might be influenced by patterns identified in a
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specific model. This is to some extent found in this case as Figure 6.2 displays the feature

importance of I-class vessel designs. We find that the main findings stay consistent between

models, but there are some minor discrepancies between the features of lesser importance.

This might result from the vast disparity in sample size, however the differences are so

small that we consider them to be negligible.

Figure 6.2: Identified feature importance for I-class vessel designs using Random Forest

It is evident that the feature speed_made_good seems to be of especially high importance,

which is in accordance with the fuel-speed theory discussed in section 3. Next, we find

that draft is the second most important feature. A deeper draft will expose a vessel’s

hull to increased resistance, thus more power is required to maintain the same speed. An

increased power output results in higher fuel consumption, and it is therefore expected

that a higher value of draft corresponds to higher fuel consumption. Furthermore, the

wave_height and corresponding wave_period appears to be of significant importance.

A higher wave height and period increase the residual resistance and causes pitch and

heave motions of the vessel, consequently, we expect a significant correlation between

wave effects and fuel consumption. The last feature to be of significant importance is age.

Age corresponds to the inevitable deterioration of the vessel and its engine; it is likely

that a higher age correlates with higher fuel output. The remaining directional weather

features are found to be of lesser importance. The amount of influence the features exert

on the dependent variable is based on the current selection of features. This means that
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the relative importance can change dramatically given a different selection of features. It

is possible that the exclusion of the wave and wind magnitude could have increased the

relative importance of the directional weather features. However, they are included in our

dataset as we believe these are necessary to achieve the highest prediction performance.

6.1.3 Model selection

To identify the best performing machine learning model for each class of vessel, each

machine learning algorithm is fitted to an identical training set separated by vessel class.

The predictive performance is measured using the out-of-sample test set. Table 6.1 and

6.2 displays the sMAPE, RMSE, MAE, and R2 score for the I-class and L-class models,

respectively.

Additionally, we have included a basic linear regression model (LM) to serve as a benchmark

for our more complex machine learning models. As discussed in Section 3, a non-linear

relationship exists between vessel fuel consumption and speed. The features fo_at_sea

(dependent variable), speed_made_good, as well as draft should therefore ideally be log-

transformed to be consistent with ”cubic law“. This would unfortunately diminish its

capability as a benchmark as we cannot compare the residual standard errors of dependent

variables on different scales. For this reason, we opted not to log-transform the features of

the linear regression model. However, to provide context we have included the performance

metrics of the corresponding log-transformed linear regression model in Table A2.1 in the

Appendix.

Table 6.1: [Class I] Performance metrics of models

Models sMAPE (%) RMSE MAE RSquared

Extra Trees 8.155 3.209 1.639 0.886
Random Forest 12.770 3.974 2.612 0.839
KNN 22.314 6.787 5.005 0.478
NNET 22.178 6.852 4.993 0.462
LM 24.403 7.459 5.582 0.381
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Table 6.2: [Class L] Performance metrics of models

Models sMAPE (%) RMSE MAE RSquared

Extra Trees 6.269 2.566 1.219 0.894
Random Forest 10.007 3.106 1.977 0.855
KNN 17.809 5.148 3.713 0.568
NNET 18.154 5.295 3.809 0.540
LM 20.393 5.800 4.223 0.443

It is apparent that regardless of which performance metrics are used, the two ensemble

models, Extra Trees (ET) and Random Forest (RF), perform significantly better than the

remaining models. Both models have a R2 score in the range of 0.8 to 0.9, which means

they explain close to 90% of the observed variance. The L-class ET model has a MAE

value of 1.219, while the I-class has a MAE value of 1.639. In terms of fuel consumption,

this indicates an average prediction error of 1.219 and 1.639 metric tons of fuel per day.

This is far superior to the linear benchmark model producing an average error of 4.223

for the L-class and 5.582 metric tons for the I-class. We can safely conclude that the ET

and RF models rank number 1 and 2, respectively, in regards to predictive performance.

However, due to some unreliable dependencies of the ET models that occasionally produce

computational difficulties, we have opted to use the RF models as our best-performing

models instead. Consequently, this will, unfortunately, reduce the accuracy of our fuel

predictions to some extent.

6.1.4 Prediction performance

As our fuel prediction approach involves estimating the daily cumulative fuel consumption

for a specific vessel design, the predictive performance of our models should be evaluated

based on error minimization of fuel predictions for an I-class and a L-class vessel rather

than a generic vessel. For this purpose, we have arbitrarily selected one vessel from each

class, namely Star Istind and Star Lysefjord to represent I-class and L-class, respectively.

The predictive performance is displayed in Figure 6.3 and Figure 6.4.
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LM 20.393 5.800 4.223 0.443
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Figure 6.3: Daily cumulative fuel consumption observations plotted against daily
cumulative fuel consumption predictions using the Random Forest model. The sample
size includes all fuel consumption reports of the vessel Star Istind

Figure 6.4: Daily cumulative fuel consumption observations plotted against daily
cumulative fuel consumption predictions using the Random Forest model. The sample
size includes all fuel consumption reports of the vessel Star Lysefjord

We find that the daily cumulative predictions do not correspond perfectly with the actual

daily cumulative fuel consumption. The models are able to capture the general trend and

variance in the observed data, however the models struggle to explain the most extreme

fuel observations. Further, we want to examine the performance over an extended period.

We opt for a 14-day period as it is the approximate duration of a voyage. The performance
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Figure 6.3: Daily cumulative fuel consumption observations plotted against daily
cumulative fuel consumption predictions using the Random Forest model. The sample
size includes all fuel consumption reports of the vessel Star Istind
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Figure 6.4: Daily cumulative fuel consumption observations plotted against daily
cumulative fuel consumption predictions using the Random Forest model. The sample
size includes all fuel consumption reports of the vessel Star Lysefjord

We find that the daily cumulative predictions do not correspond perfectly with the actual

daily cumulative fuel consumption. The models are able to capture the general trend and

variance in the observed data, however the models struggle to explain the most extreme

fuel observations. Further, we want to examine the performance over an extended period.

We opt for a 14-day period as it is the approximate duration of a voyage. The performance
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of the I-class model can be observed in Figure 6.5. We find that the model, though not

perfectly accurate on a daily level, performs sufficiently well over an extended period.

We calculate a MAE score of 8.975, representing an average prediction error of 8.975

metric tons of fuel over a 14-day period. We considered this to be an insignificant amount,

and conclude that our models are relatively unbiased and function as ample vessel fuel

predictors.

Figure 6.5: The difference between actual cumulative fuel consumption and predicted
cumulative fuel consumption over a period of 14 days. The data includes all fuel
consumption reports of the vessel Star Istind
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Figure 6.5: The difference between actual cumulative fuel consumption and predicted
cumulative fuel consumption over a period of 14 days. The data includes all fuel
consumption reports of the vessel Star Istind
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6.2 Ship weather routing

This segment will highlight the results from our weather routing model. The results are

summarized descriptive data, consisting of the optimal routes for each of the 192 months

in our simulation. Our preliminary assumption is that the seasonal weather conditions will

have a substantial impact on optimal route selection. As displayed in Figure 2.2 in Section

2, we find significantly more frequent extreme weather observations in the winter months

compared to the summer months. Consequently, we will provide separate discussions

for the summer and winter months to examine if the seasonality differences affects the

expected voyage cost. To clarify, by summer months we refer to the months of April, May,

June, July, August, and September, while winter months refer to the remaining months,

namely January, February, March, October, November, and December.

Our primary objective is to identify the incremental cost associated with the weather-

sensitive cargo risk. This is found by analyzing the differences in comparative routes

between vessels with and without weather constraints. To generalize our results, the

findings are presented as the relative incremental cost and not as absolute cost differences.

Furthermore, we would like to emphasize that we have produced separate results for the

I-class and L-class vessels. As these models produce relatively similar results, we will

focus our attention on the results from the L-class. This is due to the superior sample

size of the L-class model, which ensures reliability of results and improved predictions

performance, as shown in Table 6.1 and Table 6.2. The results of the I-class is displayed

in Table A5.1 in the Appendix.

6.2.1 Route selection

The figures 6.6 and 6.7 presents an overview of the general differences in route selection

based on seasonality. These contain the optimal route for each month between 2006 and

2021 generated by our optimization algorithm. Two examples of these routes are included

in the Appendix (Figure A4.1 and Figure A4.2). The dotted line in the figures 6.6 and 6.7

represents the closest approximation to the great circle line. Given no weather constraints

and zero cost benefits by choosing a route with milder weather conditions, all routes

should follow this line. Additionally, the figures include the dispersion of coordinates with

historical wave height observations exceeding 6 meters to showcase how the seasonality
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effect influences the routing choices. The visualization includes the total number of wave

height observations above 6 meters from the period 2006 to 2021. The total number ranges

from 0 to 8000 observations for each coordinate, where a highly saturated coordinate

indicates a high number of observations.

There are apparent differences between the summer and the winter route selections and

nuances within the figures. The most striking observation is the differences in extreme

weather conditions. The weather in Figure 6.6 showcases a high variation in terms of

the number of extreme weather observations, including coordinates with more than 8000

observations, all the way down to coordinates at the lower end of the scale at less than 1000.

There is also a clear distinction in weather between the northern and southern regions of

the Atlantic. The same distinction is not as evident during the summer months, as seen in

Figure 6.7. It is difficult to distinguish coordinates that experience more extreme weather

than others, as almost all coordinates have less than 1000 adverse weather observations.

Consequently, we observe that the winter routes in Figure 6.6 span a much greater number

of selected routes compared to the summer routes in Figure 6.7. While the summer routes

are primarily grouped around the great circle line, the winter routes can be scattered well

south of the shortest path, opting to take a significant distance penalty to avoid weather

constraints and optimize cost savings.
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Figure 6.6: Routes generated by simulating for winter months with heatmap of extreme
weather observations (wave height > 6m). The dotted line is the shortest path possible in
our route grid

Figure 6.7: Routes generated by simulating for summer months with heatmap of extreme
weather observations (wave height > 6m). The dotted line is the shortest path possible in
our route grid

The clear difference in route selection between Figure 6.6 and in Figure 6.7, indicates that

there is an obvious increased risk associated with taking on a weather-sensitive shipment

6.2 Ship weather routing

55

- Winter

so

45

40

35

30

25

20
- 8 0 - 7 0 - 6 0

41

- so - 4 0
Longitude

- 3 0 - 2 0 - 1 0

1000 2000 3000 4000 5000 6 0 0 0 7000 8 0 0 0

Figure 6.6: Routes generated by simulating for winter months with heatmap of extreme
weather observations (wave height > 6m). The dotted line is the shortest path possible in
our route grid
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Figure 6.7: Routes generated by simulating for summer months with heatmap of extreme
weather observations (wave height > 6m). The dotted line is the shortest path possible in
our route grid

The clear difference in route selection between Figure 6.6 and in Figure 6.7, indicates that

there is an obvious increased risk associated with taking on a weather-sensitive shipment
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in the winter compared to the summer season. Although, we do find a surprisingly high

variance in route selection within the summer months. This variance can imply that there

is still some cost-benefit from diverging from the shortest path and sailing into calmer

seas. Another interesting remark is that we still see many winter routes covering the same

area as the summer routes, which implies that there are still many winter routes that

are not constrained by adverse weather conditions. The clear trend, however, is that if

the ship needs an alternative route when subjected to adverse weather conditions, the

ship opts to take a path further south. This can be an instructive hedge technique if an

operator wants to reduce the chance of running into rough weather.

6.2.2 Cost estimation

Now that we have explored the dissimilarities in seasonal route selection, we would like to

examine if this translates to differences in cost estimates. We investigate the incremental

differences in cost and relevant parameters for vessels subjected to weather constraints

and vessels that are not. We find the distance, time, fuel, and cost from the generated

routes of vessels subjected to weather constraints and then subtract the results from the

corresponding routes of vessels not subjected to weather constraints. This implies that

vessels subjected to weather constraints, but do not deviate from the optimal path due to

insufficient waves, will have no additional cost. We look at the results in the following

table 6.3.

Table 6.3: [Class L] Results from Comparative Analysis of Vessels Transporting Weather
Sensitive deck cargo and Regular Cargo

Change in Parameters (%) Incremental Cost (%)

Month Distance (km) Time (hrs) Fuel (mt) Mean Max. Min. Var. Std.

January 0.94 0.94 0.99 1.74 9.30 0.00 7.93 2.82
February 1.54 1.54 1.47 2.26 10.80 0.00 15.22 3.90
March 1.41 1.41 2.37 1.49 13.80 0.00 12.11 3.48
April 0.07 0.07 0.03 0.01 0.20 0.00 0.00 0.05
May 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
June 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
July 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
August 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
September 0.05 0.05 0.11 0.05 0.70 0.00 0.03 0.18
October 0.96 0.96 0.89 0.43 4.40 0.00 1.22 1.10
November 0.57 0.57 0.47 0.21 1.60 0.00 0.22 0.46
December 1.88 1.88 2.00 2.56 10.70 0.00 14.25 3.78
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Similarly to the results from Figure 6.6 and Figure 6.7, we identify an indisputable

difference in incremental cost between routes generated in the winter months compared to

the summer months, displayed in Table 6.3. We find that the months between December

and March have the highest associated risk, where certain routes can be upwards of 13.80%

more costly when carrying weather-sensitive cargo. On the other hand, the same months

have a mean incremental costs closer to the minimum than the maximum value. This

bias implies that there are only a small number of routes that deviate a lot compared

to those that do not, meaning there are still good chances of normal sailing during

these months. Note that all months have routes that do not deviate from the optimal

path, as all months have a minimum incremental cost of zero. Summer months have

a maximum incremental cost of 0.70%, meaning that they are either barely affected or

not affected by weather constraints. The mean incremental cost tells us that the cost of

transporting weather-sensitive cargo often does not differ substantially from regular cargo.

Nevertheless, the high variance suggests that the transportation of weather-sensitive cargo

is still significantly exposed to the risk of higher costs.

Based on the results from Table 6.3, we believe that there is potentially a big difference

in choosing which month to carry weather-sensitive cargo. For instance, waiting a month

between March and April results in a significant risk reduction in increasing costs or cargo

loss. The summer months are generally safe to carry weather-sensitive cargo, as they rarely

encounter weather constraints. Suppose there is a need to transport weather-sensitive

cargo during the winter; our findings suggests the sailing to have a fairly low chance of

substantially deviating from the optimal path due to weather constraints. However, the

operators still have to be mindful of the worst-case scenario imposing an additional cost

of 13.80%.
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Figure 6.8: Cost development throughout the year compared to non-weather constrained
routes

Figure 6.8 visualizes the differences in absolute voyage cost between vessels with and

without weather constraints. We see that in the summer months, from April to September,

the mean of the weather-constrained routes is close to or equal to the mean of the non-

constrained routes. The cost variance in these routes is also minuscule compared to the

winter routes. As the months turn to winter, the mean of the weather-constrained routes

deviates progressively from the mean of the non-constrained routes. In addition, we see

that the cost estimate gets increasingly more uncertain in the winter months, peaking in

February, where we can expect a cost ranging between $485 000 and $535 000.
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Figure 6.8: Cost development throughout the year compared to non-weather constrained
routes

Figure 6.8 visualizes the differences in absolute voyage cost between vessels with and

without weather constraints. We see that in the summer months, from April to September,

the mean of the weather-constrained routes is close to or equal to the mean of the non-

constrained routes. The cost variance in these routes is also minuscule compared to the

winter routes. As the months turn to winter, the mean of the weather-constrained routes

deviates progressively from the mean of the non-constrained routes. In addition, we see

that the cost estimate gets increasingly more uncertain in the winter months, peaking in

February, where we can expect a cost ranging between $485 000 and $535 000.
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Figure 6.9: Class L voyage statistics displaying fuel consumption (mt), duration (hrs),
and distance (km) compared to non-weather constrained routes

The same pattern is also true for the differences in relevant voyage parameters between the

constrained and non-constrained routes, presented in Figure 6.9. This figure showcases the

monthly variations in total voyage duration, distance, and fuel consumption. We find that

the difference in duration and distance is greater than the fuel consumption. This is likely

because fuel consumption decreases as the deviating route selects calmer seas, reducing

energy demands. In comparison, the duration and distance parameters only depend on

the distance between the nodes included in the route. Note that the relationship between

duration and distance is constant as our model does not support varying speeds. The

variance of the fuel consumption is also more consistent throughout the months than the

variance of duration and distance, indicating that weather conditions play a significant

role in the consumption.

6.2 Ship weather routing 45

[Class L] Mean Voyage Fuel Consumption (mt)

I 300
c
O 290a
E

280
(/)
c
0o 270
Q)
:::,

LL 260

265

260

@
:::,
o 255r

250

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

[Class L] Mean Voyage Duration (hours)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

[Class L] Mean Voyage Route Distance (km)

6600

E 6500
£
Q)
O
c
ro
6
6

6400

6300

6200

Lines

- wl Weather constraint

- wlo Weather constraint

Lines

- wl Weather constraint

wlo Weather constraint

Lines

- wl Weather constraint

w/o Weather constraint

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

Figure 6.9: Class L voyage statistics displaying fuel consumption (mt), duration (hrs),
and distance (km) compared to non-weather constrained routes

The same pattern is also true for the differences in relevant voyage parameters between the

constrained and non-constrained routes, presented in Figure 6.9. This figure showcases the

monthly variations in total voyage duration, distance, and fuel consumption. We find that

the difference in duration and distance is greater than the fuel consumption. This is likely

because fuel consumption decreases as the deviating route selects calmer seas, reducing

energy demands. In comparison, the duration and distance parameters only depend on

the distance between the nodes included in the route. Note that the relationship between

duration and distance is constant as our model does not support varying speeds. The

variance of the fuel consumption is also more consistent throughout the months than the

variance of duration and distance, indicating that weather conditions play a significant

role in the consumption.
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6.2.3 Sensitivity analysis

Further, we will examine how the value of the weather constraint impacts the expected

incremental cost. This study assumes that there is no uncertainty in the weather

observations. In a forward-looking system, however, a buffer on wave heights should be

utilized due to the potential uncertainty of the predictions. The advantage of knowing the

cost of such a buffer will be significant as it sets a price of being too careful in regards to

adverse weather. To examine this, we have simulated route selection for the 192 months,

constraining the simulations by a limit on wave heights ranging from 4 to 8 meters with

half meter increments. Figure 6.10 and Table 6.4 showcase the generated plot and table

of the additional cost and variance for each wave constraint.

Figure 6.10: Sensitivity analysis showcasing the expected incremental cost for a weather
constraint ranging from 4 to 8 meters

From the Figure 6.10, we observe primarily the same pattern for the summer and winter

months identified in our prior results. An additional cost is found on almost every level of

wave height during the winter months. The mean additional cost is found to increase by

1-2 percentage points for almost every level of wave height. We can therefore conclude that

the winter months are relatively sensitive to wave constraints. However, the interesting fact

is that the summer months do not see a significant increase in additional costs. There is

almost no change between April and September until we set a wave constraint of 4.5 meters.

May to September is barely affected even with a wave constraint of as low as 4 meters.

These results further demonstrate the difference between carrying weather-sensitive cargo
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Figure 6.10: Sensitivity analysis showcasing the expected incremental cost for a weather
constraint ranging from 4 to 8 meters

From the Figure 6.10, we observe primarily the same pattern for the summer and winter

months identified in our prior results. An additional cost is found on almost every level of

wave height during the winter months. The mean additional cost is found to increase by

1-2 percentage points for almost every level of wave height. We can therefore conclude that

the winter months are relatively sensitive to wave constraints. However, the interesting fact

is that the summer months do not see a significant increase in additional costs. There is

almost no change between April and September until we set a wave constraint of 4.5 meters.

May to September is barely affected even with a wave constraint of as low as 4 meters.

These results further demonstrate the difference between carrying weather-sensitive cargo
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in the summer and winter when trying to minimize the risk of additional costs.

Table 6.4: [Class L] Sensitivity analysis for wave constraint ranging from 4-8 meters

Summer Incremental Cost (%) Winter Incremental Cost (%)

Constraint Mean Max. Min. Var. Std. Mean Max. Min. Var. Std.

4.0 0.90 12.09 0.00 5.19 2.28 7.35 23.57 0.00 38.83 6.23
4.5 0.46 8.12 0.00 2.34 1.53 5.28 21.66 0.00 34.47 5.87
5.0 0.11 5.10 0.00 0.31 0.55 3.72 18.97 0.00 26.13 5.11
5.5 0.07 5.10 0.00 0.28 0.53 2.33 15.91 0.00 18.73 4.33
6.0 0.01 0.73 0.00 0.01 0.08 1.45 13.76 0.00 8.77 2.96
6.5 0.01 0.73 0.00 0.01 0.08 0.93 11.41 0.00 5.59 2.36
7.0 0.01 0.73 0.00 0.01 0.07 0.66 9.53 0.00 3.92 1.98
7.5 0.01 0.54 0.00 0.00 0.06 0.19 3.42 0.00 0.30 0.55
8.0 0.01 0.54 0.00 0.00 0.06 0.10 1.92 0.00 0.11 0.33

Looking at Table 6.4, we observe considerably higher additional costs for the winter

months for every level of wave constraint. To exemplify the differences, we will look at a

scenario where one would like to consider the extra costs associated with having a 1 meter

wave height buffer from 6 meters, which implicitly mean sailing with a wave constraint

of 5 meters. From Table 6.4, we find an expected 0.11% increase in costs on average if

we choose to transport weather-sensitive cargo during the summer months compared to

a 3.72% increase during the winter months. This incremental cost can be expected to

vary by 0.55% in the summer compared to the 5.11% in the comparable winter months.

However, the vast span in variance suggests that we actually risk an additional cost of

5.10% in the summer compared to 18.97% in the winter. When looking at the difference

between using 5 meter as the constraint compared to 6 meters, it is evident that one

exposes the sailing to an ampler risk range of divergences using a buffer. Nonetheless, the

increase is always much higher in the winter compared to the summer months.
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7 Limitations and Further research

We acknowledge that our study has certain weaknesses that can affect the accuracy of

our findings. First, we rely on the use of noon reports during the training process of our

machine learning algorithms. As discussed in Section 4, the noon reports are inherently

uncertain and are considered an inferior alternative to the automated data logging &

monitoring systems (Aldous et al., 2015). However, it is likely that we manage to reduce

this uncertainty by including third-party weather data and performing a rigorous pre-

processing. This is supported by the high explanatory power of our machine learning

models. Furthermore, it should be emphasized that the results of our fuel consumption

estimates can only be considered applicable to the respective vessel designs used during

the training process and not as an objective prediction model for all vessel types.

Second, as the noon reports only register the consumption since the previous report,

the weather observations should preferably be matched at the time and location of the

midpoint between the preceding report and the point of reporting. This could arguably

provide a more accurate representation of the observed conditions since the previous report.

Instead, we opted to predict the fuel consumption based on the weather observations at the

reporting point. This was done to correspond with the approach used in the pathfinding

algorithm, which, due to its structure, is limited to use either the starting or ending nodes

as reference. Additionally, due to the low spatial resolution of our third-party weather

data, it is possible that we would be unable to match the appropriate weather observation

to the corresponding midpoint. Improper matching would increase the uncertainty of our

dataset as the route may reference weather points that are not actually on the route.

Lastly, our pathfinding algorithm identifies the most optimal route from the generated

grid, which makes the accuracy of our findings highly dependent on the grid resolution

(Wang et al., 2017). As the grid resolution is the direct cause of the computational effort

required, we cannot construct a sufficiently high grid resolution to cover all potential

routes.

For further research into the transportation of weather-sensitive cargo, the optimization

algorithm should be expanded to include additional factors that affect the cargo load

and thus affect the limitations of sailing. When assessing routes, factors like the length
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of waves and wave duration relative to the ship structure and specifications should be

considered. Additionally, the specific details about the wave’s effect on the given cargo

should be considered as some cargo and cargo supporting structures require different

considerations than others.

Due to simplifications, the optimization model is limited by setting a predetermined time

at each stage to fetch each node’s weather data. Optimally the model should fetch weather

data for a node live as the solver checks the nodes in the route. The solver could then

support cases where an edge will have different data associated with it, depending on the

preceding edges. In this way, the model can consider more accurate and realistic data

when making the routing decision. Live weather data fetching at runtime in the solver

would also enable the possibility of performing live consumption predictions on each edge

and significantly increase the method’s applicability. Lastly, we would like to include

actual predictions of speed on a route rather than let this be a constant like it is now. The

speed variation would likely impact fuel consumption, yielding more accurate cost results.
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8 Conclusion

In this thesis, we have sought to determine the incremental cost associated with weather-

sensitive cargo risk. We have examined how adverse weather affects the routing choices of

vessels transporting weather-sensitive components compared to vessels without this type

of cargo. We propose a ship weather routing model comprised of one of the prevailing

pathfinding algorithms combined with a sophisticated ensemble machine learning model.

Our machine learning model produces highly accurate fuel consumption estimates, which

provide context to the vessel’s cost of sailing along a given route. This approach enables

multi-objective optimization, allowing the model to identify the optimal cost-minimizing

route while accounting for the associated environmental constraints of weather-sensitive

cargo.

As a part of our collaboration with G2 Ocean, we wanted to explore routes relevant

to their operations. Therefore, our thesis’s scope only covers the route from Spain to

Houston. This limits the relevant area of this study to the northern part of the Atlantic.

Additionally, G2 Ocean has supplied us with noon reports from two of their vessel designs,

namely I-class and L-class. These have, in combination with third-party meteorologic data,

been our primary data sources. The data span the period from 2009 to 2021, providing a

sufficient sample size for our analysis.

Our findings indicate that the vessels transporting weather-sensitive deck cargo have a

significantly higher tendency to deviate from the objectively considered optimal route

relative to vessels without this type of cargo. The results further identify that the seasonal

variations in weather conditions heavily influence the route selection. The winter months

typically experience substantially rougher weather conditions relative to the summer

months. This results in the winter months yielding incremental costs upwards of 13.8%.

Contrarily, sailing during the summer months only yield a maximum incremental cost

of 0.70%, indicating that the vessels largely follow the optimal route of vessels with

cargo impervious to adverse weather during these months. Therefore, we conclude that

there is a significantly higher risk of increased costs associated with the transport of

weather-sensitive deck cargo from Spain to Houston, however the degree of impact is

seasonal determined.
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Appendix

A1 Descriptive statistics

Table A1.1: [Class L] Descriptive statistics of the L-class dataset

n = 14 307

Feature n_missing mean sd p0 p25 p50 p75 p100

fuel_consumption 0 23.44 7.78 5.10 18.30 24.10 29.40 59.20
speed_made_good 0 13.29 1.67 5.28 12.30 13.45 14.46 18.38
wave_period 0 7.77 2.17 1.67 6.37 7.84 9.23 15.84
wave_height 0 1.89 1.02 0.03 1.21 1.76 2.40 10.34
draft 0 9.71 1.87 5.90 8.02 9.80 11.41 12.77
wind_speed 0 12.61 6.17 0.10 8.00 12.25 16.50 43.46
wind_dir_interact 0 -94.33 772.50 -3287.17 -602.93 0.00 431.72 3360.46
wave_dir_interact 0 -8.72 107.34 -791.21 -74.40 0.00 58.34 527.49
age 0 4.23 2.46 0.00 2.00 4.00 6.00 9.00

Table A1.2: [Class I] Descriptive statistics of the I-class dataset

n = 5 729

Feature n_missing mean sd p0 p25 p50 p75 p100

fuel_consumption 0 25.95 9.45 5.10 19.80 26.40 32.00 47.30
speed_made_good 0 13.60 1.67 5.42 12.64 13.65 14.75 18.91
wave_period 0 7.66 2.17 2.05 6.23 7.68 9.14 17.69
wave_height 0 1.99 1.13 0.09 1.20 1.78 2.59 10.44
draft 0 9.60 1.76 0.00 8.34 9.83 11.16 12.37
wind_speed 0 13.18 6.62 0.05 8.28 12.62 17.48 49.12
wind_dir_interact 0 -117.33 803.00 -3218.53 -638.21 0.00 399.67 3526.58
wave_dir_interact 0 -7.77 118.62 -632.74 -79.54 0.00 62.23 666.35
age 0 14.68 3.61 9.00 12.00 14.00 18.00 22.00

A2 Speed performance metrics

Table A2.1: [Class L] Performance metrics of speed prediction model

Models sMAPE (%) RMSE MAE RSquared

LM (log-transformed) 7.284 0.312 0.212 0.398
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A3 Fuel consumption - prediction error distribution

Figure A3.1: Absolute prediction error on fuel consumption sorted by speed_made_good
(kts), draft (m), and wave_height (m)
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A4 Route selection

Figure A4.1: Example of optimal route in February 2010.

Figure A4.2: Example of optimal route in September 2015
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A5 Cost estimations

Table A5.1: [Class I] Results from Comparative Analysis of Vessels Transporting Weather
Sensitive deck cargo and Regular Cargo

Change in Parameters (%) Incremental Cost (%)

Month Distance (km) Time (hrs) Fuel (mt) Mean Max. Min. Var. Std.

January 0.82 0.82 1.64 2.04 8.90 0.00 7.05 2.66
February 2.03 2.03 1.86 2.48 12.90 0.00 18.58 4.31
March 1.99 1.99 2.66 1.62 14.50 0.00 12.98 3.60
April 0.13 0.13 0.24 0.11 0.90 0.00 0.08 0.29
May 0.00 0.00 0.01 0.01 0.10 0.00 0.00 0.03
June 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
July 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
August 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
September 0.13 0.13 0.26 0.11 0.70 0.00 0.05 0.23
October 0.98 0.98 0.88 0.41 2.70 0.00 0.53 0.73
November 0.73 0.73 0.82 0.37 1.90 0.00 0.42 0.65
December 1.84 1.84 2.49 2.76 11.10 0.00 12.67 3.56
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