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Maritime inventory routing problems involve determining optimal routes for seagoing vessels between
ports while managing the inventory of each port. Normally, such problems are considered with the ves-
sels operating at fixed sailing speeds. However, the speed of vessels can typically be adjusted within an
interval, and the actual fuel consumption depends on both the load and the speed of the vessel. The fuel
consumption function combines speed and load in a non-linear manner, but can be approximated
through linearization. In this work, to evaluate the importance of taking into account that both speeds
and load levels influence the fuel costs, the resulting solutions are contrasted with solutions from the case
where speeds and travel costs are taken as constants, as well as the case where speed is a decision, but
the cost considered to be independent of the load. For either of these cases, load-dependent speed opti-
mization can be added as a post-processing step. Computational experiments show that combining speed
and load do have an impact on the selection of routes in maritime inventory routing problems, and that
proper modelling of the fuel consumption can reduce sailing costs significantly. On the test instances con-
sidered, taking into account speed while ignoring the load leads to cost savings of around 38%.
Considering the fuel consumption as a function of speed and load when planning leads to additional cost
savings of 28%.
� 2020 The Authors. Published by Elsevier Ltd. This is an open access articleunder the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction In this article, a maritime inventory routing problem (MIRP)
Maritime transport is important when it comes to trade and
development. On specific routes, seaborne trade can compete with
rail and road transportation when it comes to accessibility, time,
cost, speed, and other constraints. For some types of products,
seagoing vessels provide the only viable link between certain
regions and continents.

In the past, a strong growth in world trade and development led
to the need for higher speeds in shipping. This increase in speed
was made possible by technological advances in hull design,
hydrodynamic performance of vessels, and engine and propulsion
efficiency (Psaraftis and Kontovas, 2013). However, increasing fuel
prices, depressed market conditions, and the rising focus on envi-
ronmental issues has shifted the attention over on the disadvan-
tages of high speed. There is a non-linear dependency between
speed and fuel consumption (Psaraftis and Kontovas, 2013). Due
to the super-linear dependency between speed and fuel consump-
tion, high vessel speed usually leads to a large increase in the fuel
consumption, and hence in the total cost of cargo deliveries, and in
emissions of pollutants (Psaraftis and Kontovas, 2013).
with load-dependent speed optimization is introduced and stud-
ied. A MIRP is solved to find optimal delivery routes between pro-
ducers and consumers and at the same time maintain a reasonable
inventory level. The objective of the problem is to minimize total
costs, which includes transportation and operation costs for each
vessel. The transportation costs are to a large extent driven by
the fuel consumption, which depends on the sailing speed of a ves-
sel as well as the load of the vessel.

The main objective of this work is to determine how the intro-
duction of load as factor of the fuel consumption influences the
routes obtained when solving a MIRP. In standard MIRPs, the travel
cost is taken as fixed, implying that speeds are fixed and that the
cost is assumed not to depend on the load of the vessels. Some lit-
erature has studied routing problems where the travel costs
depend on the speed of a vessel, while ignoring the potential influ-
ence that load levels have on the fuel consumption (Andersson
et al., 2015). Another study considered load-dependent fuel con-
sumption while optimizing the speed of vessels, but for full-load
transportation, where the vessel is either totally empty or com-
pletely full (Wen et al., 2016). In the MIRP studied here, the fuel
consumption depends on both the load and the speed, and both
the speed and the load are themselves decisions to be made. To this
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end, we propose a mixed integer programming model to computa-
tionally tackle the problem at hand. The model linearizes the fuel
consumption by discretizing the speed and load levels, and then
allowing other speeds and loads through interpolation.

The rest of this article is organized as follows: Section 2 pre-
sents a short literature review. The details of the MIRP considered
are given in Section 3. Then, Section 4 introduces a mixed integer
programming model for the problem. Next, Section 5 presents a
computational evaluation of the model, comparing it with simpler
variants either not considering speed as a decision, or ignoring the
relationship between load levels and travel costs. Finally, in Sec-
tion 6 we draw conclusions from this work.
2. Literature review

The problem considered in this article is a MIRP where the fuel
consumption, and hence the costs, are minimized by optimizing
the speed and load of the vessels. In the following we review some
relevant contributions from the literature on MIRPs, then some
contributions related to speed optimization, and finally some rele-
vant contributions to modelling fuel consumption. For reviews of
the literature on general IRPs, see (Andersson et al., 2010; Coelho
et al., 2014).
2.1. Maritime inventory routing

A MIRP is an IRP where the transportation is carried out by a
seagoing vessel (Song and Furman, 2013). The literature on MIRPs
is extensive, and besides introductions to the area as provided by
Christiansen et al. (2009), recent surveys have been provided by
Christiansen et al. (2013) and Papageorgiou et al. (2014).
Andersson et al. (2010) wrote about industrial aspects of combined
inventory management and routing problems and described the
industrial practice. In addition, they presented a classification
and a comprehensive literature survey of around 90 papers that
focused on the IRP and the MIRP.

The MIRP variant studied in this article is similar to variants
previously presented in the literature, but with an added speed
optimization component. Agra et al. (2015) described a stochastic
short sea shipping problem, where the port times and sailing times
are considered as stochastic parameters. The company presented is
responsible for both distribution between ports and inventory
management at the ports. Later, Agra et al. (2016) studied a single
product MIRP where the production and consumption rates are
constant over the planning horizon. The problem presented
involves a heterogenous fleet of vessels and several production
and consumption ports with limited storage capacity. As in Agra
et al. (2015), the weather conditions are uncertain, and this has
an effect on the sailing times. Hence, the travel time between the
ports is assumed to be random, following a log–logistic distribu-
tion. The authors proposed a two-stage stochastic programming
problem with recourse to be able to deal with the random sailing
times. Furthermore, they developed a MIP based local search
heuristic to be able to solve the problem. Agra et al. (2018) consid-
ered a robust optimization model to the same variant of MIRP and
presented a decomposition algorithm with several improvement
strategies.

De et al. (2017) explored the use of a slow steaming policy
within ship routing. They presented a mixed integer non-linear
programming model, where a non-linear equation is used to cap-
ture sustainability aspects regarding the balance between fuel con-
sumption and vessel speed. Furthermore, they included several
time window constraints to enhance the service level at each port,
as well as penalty costs associated with vessels arriving to early or
finishing too late according to the time windows. The problem was
solved heuristically with particle swarm optimization. Recently,
Gocmen and Yilmaz (2018) suggested that vessel speeds should
be considered in the MIRP, with the goal of reducing the fuel
consumption.

2.2. Speed optimization

In traditional ship routing and scheduling problems, the speed
of the vessels is fixed and the fuel consumption rate for each vessel
is given (Norstad et al., 2011). However, in real life the speed of a
vessel can be adjusted within some interval, and the fuel consump-
tion per time unit can be described by a cubic function of speed.
Norstad et al. (2011) presented a tramp ship routing and schedul-
ing problem with speed optimization, where the speed of the ves-
sels is represented as a decision variable and a multi-start local
search heuristic is applied to solve the problem. To determine
speed levels, a specialized method was developed that was later
proven to calculate optimal speeds (Hvattum et al., 2013).

It is common to use a sequential approach when planning ship-
ping routes, where routes are first determined as if each vessel sails
with a given speed, and then sailing speeds are optimized for the
given routes. Andersson et al. (2015) proposed a new modeling
approach for integrating speed optimization in the planning of
shipping routes and used a rolling horizon heuristic to solve the
combined problem. Their work considered a real deployment and
routing problem in roll-on roll-off shipping.

Wen et al. (2016) analyzed the simultaneous optimization of
routing and sailing speed in full-shipload tramp shipping. The
problem consists of different cargos that needs to be transported
from load ports directly to discharge ports. There is a heterogenous
fleet of vessels, with vessels having different speed ranges and
load-dependent fuel consumption. The goal is to determine which
cargo to pick up, which route each vessel should follow, and the
speed the vessels should have on each leg to maximize the profit.
A three-index formulation and a set packing formulation are pro-
posed, and a branch-and-price algorithm is implemented and
tested to solve the problem. While Wen et al. (2016) consider a
load-dependent fuel consumption function, the ships are either full
or empty, meaning that the load is fixed for a given sailing leg.

Norlund and Gribkovskaia (2017) examined how speed opti-
mization strategies perform when accounting for varying weather
conditions. They developed a simulation–optimization tool to esti-
mate the fuel consumption of weekly schedules for supply vessels
servicing offshore oil and gas installations. The fuel consumption
given a fixed speed is higher in rough weather than in calm sea.
Speed is optimized using a similar procedure as in (Norstad
et al., 2011), and it is shown that speed optimization is still valu-
able under weather uncertainty.

Psaraftis and Kontovas (2013) presented a survey and a taxon-
omy of models in maritime transportation where speed is one of
the decision variables. They discussed advantages and disadvan-
tages of reducing the speed of vessels, related to both costs and
emissions. Different fuel consumption functions are described,
and the authors give examples of how inventory costs can influ-
ence the optimal speed. The taxonomy of the different models is
based on predefined parameters, such as whether or not the model
can find the optimal speed as a function of payload.

Psaraftis and Kontovas (2014) focused on clarifying issues in
general speed optimization problems in maritime inventory rout-
ing, and then presenting models that optimize the speed of a single
vessel for different routing scenarios. Fundamental parameters and
considerations were incorporated in the models, such as fuel price,
freight rate, inventory cost of the cargo, and the dependency of fuel
consumption on payload. The authors considered the difference
between solutions that optimize the economic performance and
solutions that optimize the environmental performance.
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Bialystocki and Konovessis (2016) suggested an approach for
constructing an accurate fuel consumption and speed curve. Differ-
ent factors that can affect the fuel consumption were presented
and taken into consideration. An algorithm was introduced and
proven to be both simple and accurate when estimating the fuel
consumption.
Fig. 2. The non-linear function of travel time as a function of speed (Bialystocki and
Konovessis, 2016; Andersson et al., 2015). The dashed line is an inner approxima-
tion using three break-points.

Fig. 3. The relationship between speed, load, and daily sailing costs of a vessel.
2.3. Fuel consumption models

Andersson et al. (2015) approximated the non-linear fuel con-
sumption function using three speed alternatives and combined
these speeds to find a linear overestimation of the consumption.
They assumed that the fuel consumption per time unit is approxi-
mated by a cubic function, meaning that the consumption per dis-
tance unit is quadratic. There is a certain minimum speed for the
vessel at which it travels with minimum cost. In addition, a maxi-
mum speed can be achieved when there are perfect weather
conditions.

Bialystocki and Konovessis (2016) introduced a regression for-
mula with two constant values to represent the non-linear rela-
tionship between speed and fuel consumption. The function of
the fuel consumption is equal to 0:1727l2 � 0:217l, where l is
the speed of the vessel. This function is independent of load; thus,
the load is implicitly taken as a constant. As Fig. 1 shows, the fuel
consumption curve is convex. Therefore, the linearization of the
curve is an overestimation of the fuel consumption.

When linearizing a fuel consumption function, there can also be
an additional overestimation when it comes to the non-linear
dependency between time and speed, as pointed out by
Andersson et al. (2015). Hence, there is also an overestimation
when it comes to the travel time. This is illustrated in Fig. 2. After
linearizing the travel time curve, the resulting travel time is higher
than the actual time needed for the given speed.

According to Psaraftis and Kontovas (2014), the fuel consump-
tion has a non-linear dependency on both the speed and the load

of a vessel. The daily fuel consumption is equal to kl3 lþ Að Þ2=3,
where k is a given constant, l is the speed of the vessel, l is the pay-
load and A is the lightship weight, that is, the weight of the vessel
when it has no load except fuel. The daily sailing costs from this
fuel consumption formula is illustrated in Fig. 3, for a single vessel
with three different load levels. The part of the formula that is
related to speed generates a convex function. However, the part
of the formula that depends on load, generates a concave function.
A linear approximation of the convex part will give an overestima-
tion of the costs, while a linear approximation of the concave part
will give an underestimation of the costs.
Fig. 1. The non-linear relationship between speed and fuel consumption
(Bialystocki and Konovessis, 2016; Andersson et al., 2015). The dashed line is an
inner approximation using three break-points.
3. Problem description

This work examines how load and speed influence the cost
function of a maritime inventory routing problem. A geographical
region is considered, where a single product is transported
between different ports in bulk. The transportation is carried out
by a heterogeneous fleet of vessels, with vessels differing in terms
of capacity and cost of use. Traveling distances between each pair
of ports in the region are given. There are several ports, which are
divided into consumption and production ports. The production
facilities have fixed production rates, while the consumption facil-
ities have fixed consumption rates, with both production and con-
sumption being continuous over time. Vessels load the product at
the production facilities and unload at the consumption facilities at
a given rate that depends on the vessel type.

Both the consumption and the production facilities have inven-
tories and hence each port has storage facilities with fixed lower
and upper limits, as well as an initial inventory level. The produc-
tion facilities are not allowed to exceed the maximum storage
level, while the consumption ports are not allowed to have short-
ages. Facilities keep a steady production and consumption, so that
the only way to decrease the amount of product at a production
facility or to increase the amount of product at a consumption
facility is by a vessel loading or unloading the product. Each port
can be visited multiple times by different vessels in the planning
horizon, depending on the size of its storage and the amount of
product to be loaded or unloaded.

Each vessel is given a starting location and executes its route in
the best possible way. Throughout the routes, each vessel trans-
ports different loads between ports in accordance with the demand
and can use different operating speeds during the execution of the
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routes. A vessel does not need to be fully loaded, nor fully
unloaded, upon visiting a port. Thus, routes can involve visiting
several production ports or several consumption ports in succes-
sion. At the beginning of the planning horizon, each vessel has a
given location and may have some product already loaded.

Fig. 4 shows the routes of two vessels. The black ports are pro-
duction ports, and the white ports are consumption ports. The first
vessel, following the solid arrows, goes to port 3 to load cargo
before it sails to port 4. There it unloads before sailing to port 5
to fill up again. From port 5 it sails to port 6 to unload and ends
its journey. The second vessel, following the dashed arrows, goes
to port 1 to load before it sails to port 2 to unload. From there it
sails to port 3 to partially fill up and continues to port 5. There it
loads additional cargo, before it sails to port 6 to unload and ends
its journey.

Each port has a given location, demand rate, and an individual
visiting cost depending on the vessel. The vessels can operate with
different speeds and loads. In addition, the vessels have different
sailing costs depending on both speed and load.

The vessels differ in size to better meet the various demands.
The size of the vessels is categorized by deadweight tonnage, in
other words how much the vessels can transport. In addition, the
vessels operate with different speeds, measured in knots. The oper-
ating speed of the vessels depends on the size of the vessel, where
the larger vessels operate with higher speeds. Furthermore, the
vessels have different load rates, which also is dependent on the
size of the vessels.

The main objective of the problem is to minimize the total costs,
which includes transportation and operating costs for each vessel
in the routes they conduct. The fuel consumption, and thus also
the sailing cost, depends non-linearly on the speed and load of
Fig. 5. Example of the resulting network and

Fig. 4. Example of the structure of a maritime inventory routing problem.
the vessel. In particular, for a given vessel, the daily fuel consump-
tion follows the relationship discussed by Bialystocki and

Konovessis (2016), being equal to kl3 lþ Að Þ2=3, where k is a con-
stant, l is the speed, l is the payload and A is the lightship weight.

4. Mathematical model

The following mathematical model is based on a model without
speed or load optimization provided by Agra et al. (2016). Let V rep-
resent a set of vessels and N a set of ports. Each vessel v 2 V has its
starting point, which can be a point at sea. Each port can have mul-
tiple visits during the time horizon. Nodes in the network are indi-
cated by a pair i;mð Þ, where i is a port and m is the visit number.
The direct move from node i;mð Þ to node j;nð Þ, is denoted as
i;m; j;nð Þ.

Fig. 5 depicts the origins and destinations of two different vessels
and how they move from port to port following the same routes
shown in Fig. 1. Vessel 1 starts from origin O1 and goes to port 3
for the first visit, then sails to port 4 for the first visit, continues to
port 5 for the first visit, followed by port 6 for the first visit, and ends
up in destination D1, as the route is completed. The solid line shows
this. Vessel 2 starts from origin O2 and sails to port 1 for the first
visit, continues to port 2 for the first visit, continues to port 3 for
the second visit, sails further to port 5 for the second visit, followed
by port 6 for the second visit, and ends up in destination D2, as the
route is completed. The dashed line shows this.

In the following model vessel routes as well as load and speed of
each vessel are decision variables. The model considers the mini-
mization of cost by setting the variables under the model con-
straints. First we describe the sets, variables and parameters of
the model.
cor
Sets
respond
ing
V
 :
 set of vessels

N
 :
 set of production and consumption ports
SA
 :
 set of possible nodes i;mð Þ

SAv
 :
 set of nodes that can be visited by vessel v
SXv
 :
 set of all possible moves i;m; j;nð Þ of vessel v

SSv
 :
 set of breakpoints for the speed of vessel v, with

SSv ¼ 1;2; . . . ;Uf g

SLv
 :
 set of breakpoints for the load level of vessel v, with

SLv ¼ 1;2; . . . ;Rf g
With these sets we can determine a maximum number of visits for

each port (with SA), prohibit some vessels to visit some ports (with SAv)

and also prohibit some vessels to perform certain trips (with SXv ).
routes illustrated in Fig. 4.
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Variables
ximjnv
 :
 1 if vessel v 2 V moves directly between nodes
i;mð Þ and j;nð Þ,

0 otherwise,v 2 V ; i;m; j;nð Þ 2 SXv
xOimv
 :
 1 if vessel v departs from its initial position to
node i;mð Þ,

0 otherwise,v 2 V ; i;mð Þ 2 SAv
zimv
 :
 1 if vessel v finishes its route at node i;mð Þ,

0 otherwise, v 2 V ; i;mð Þ 2 SAv
zOv
 :
 1 if vessel v is not used in the planning horizon,

0 otherwise, v 2 V
qimv
 :
 the amount loaded or unloaded by vessel v at

node i;mð Þ; v 2 V ; i;mð Þ 2 SAv

f imjnv
 :
 the amount of product that vessel v transports

from node i;mð Þ to node j;nð Þ,

v 2 V ; i;m; j;nð Þ 2 SXv
f Oimv
 :
 the amount of product that vessel v transports
from the origin to node i;mð Þ,

v 2 V ; i;mð Þ 2 SAv
f Dimv
 :
 the amount of product that vessel v transports
from node i;mð Þ to the
destination, v 2 V ; i;mð Þ 2 SAv

tim
 :
 start time of visit numberm to port i; i;mð Þ 2 SAv

oimv
 :
 1 if vessel v operates in node i;mð Þ,
0 otherwise, v 2 V ; i;mð Þ 2 SAv

yim
 :
 1 if there is a visit i;mð Þ to port i,
0 otherwise, i 2 N; i;mð Þ 2 SA
sim
 :
 stock levels at ports at the start of visit m to

port i; i;mð Þ 2 SA
gimjnv ls
 :
 auxiliary variable to determine the speed and
load of vessel v when going from

i;mð Þ to j;nð Þ, with s corresponding to a given
choice of speed and l of a level of
load, v 2 V ; s 2 SSv ; l 2 SLv ; i;m; j;nð Þ 2 SXv

gOimv ls
 :
 auxiliary variable to determine the speed and

load of vessel v when going from

its origin to i;mð Þ, with s corresponding to a
given choice of speed and l of a level of
load, v 2 V ; s 2 SSv ; l 2 SLv ; i;mð Þ 2 SAv

pimjnv l
 :
 1 if a level of load in the interval between the

two adjacent breakpoints l and lþ 1 is

chosen on route i;m; j;nð Þ of vessel v,

0 otherwise, v 2 V ; l 2 SLv n Rf g; i;m; j;nð Þ 2 SXv
pOimv l
 :
 1 if a level of load in the interval between the
two adjacent breakpoints l and lþ 1 is

chosen on route from origin to node i;mð Þ

0 otherwise, v 2 V ; l 2 SLv n Rf g; i;mð Þ 2 SAv
Variables zOv can be used to determine whether or not a vessel is
used. Variables gimjnv ls are continuous. Constraints (19) ensure that
for given values of i;m; j;n, and v, the sum of the variables gimjnv ls

is 1 if there is a trip from node i;mð Þ to node j;nð Þ of vessel v and
0 otherwise. The actual speed and load of the vessel can then be
computed as a weighted sum of those values. Variables pimjnv l and
pO
imv l are used to enforce the correct interpolation between load

levels. To avoid overflow at production ports, it may be necessary
to load cargo near the end of the planning horizon. Thus variables

f Dimv are needed to allow vessels to be non-empty at the end of the
planning horizon. Corresponding variables for the movement of
the vessel, or for the travel cost calculation, when moving to the des-
tination node are not required, as the destination node is simply an
artificial node, with a travel distance of 0 from the last port visited.
Parameters
T
 :
 number of time units in the planning horizon

Hi
 :
 minimum number of visits to port i 2 N

Mi
 :
 maximum number of visits to port i 2 N

Di
 :
 consumption or demand at port i 2 N per

unit of time

Ji
 :
 1 if production facilities are located in port i,
and �1 if consumption facilities are located
in port i; i 2 N
Piv
 :
 port cost at port i 2 N for vessel v 2 V

Cv
 :
 capacity of vessel v 2 V

Lv
 :
 initial load onboard vessel v 2 V

Si
 :
 lower bound on the inventory level at port

i 2 N
Si
 :
 upper bound on the inventory level at port
i 2 N
S0i
 :
 the initial stock level in port i 2 N at the
beginning of the planning horizon
Aim
 :
 earliest time for starting visit m to port

i; i;mð Þ 2 SA
Bim
 :
 latest time for starting visit m to port

i; i;mð Þ 2 SA
Ki
 :
 minimum time between two consecutive
visits to port i 2 N
Qi
 :
 minimum load/unload quantity in port i 2 N

Uim
 :
 latest time for finishing visit m to port

i; i;mð Þ 2 SA
TQ
v

:
 time for unloading or loading each unit by
vessel v 2 V
TPP
ijvs
:
 time required by vessel v 2 V to sail from
port i 2 N to port j 2 N with
speed s 2 SSv

TOP
ivs
:
 time required by vessel v 2 V to sail from its

origin to port i 2 N with speed s 2 SSv

Lvl
 :
 possible levels of load l 2 SLv that can be

transported on vessel v 2 V
CPP
ijv ls
:
 sailing cost from port i 2 N to port j 2 N with

vessel v 2 V with load l 2 SLv

and with speed s 2 SSv
COP
iv ls
:
 sailing cost from origin to port i 2 N by vessel

v 2 V with load l 2 SLv and
with speed s 2 SSv
With the sets, variables, and parameters defined the model can
be written as follows:

min
P

v2V
X

i;m;j;nð Þ2SXv

X
l2SLv

X
s2SSv

CPP
ijvlsgimjnvls þ

X
v2V

X
i;mð Þ2SAv

X
l2SLv

X
s2SSv

COP
ivlsg

O
imvls

þ
X
v2V

X
i;mð Þ2SAv

Pivoimv
ð1Þ

The objective function (1) expresses the minimization of the
sum of traveling costs between ports depending on the chosen
speed and load, and operational costs in each port. This objective
function is optimized over a set of constraints. We present the con-
straints split in different semantic groups. First we present routing
constraints.
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X
j;nð Þ2SAv

xOjnv þ zOv ¼ 1v 2 V ð2Þ

oimv �
X

j;n;i;mð Þ2SXv

xjnimv � xOimv ¼ 0v 2 V ; i;mð Þ 2 SAv ð3Þ

oimv �
X

i;m;j;nð Þ2SXv

ximjnv � zimv ¼ 0v 2 V ; i;mð Þ 2 SAv ð4Þ
X
v2V

oimv ¼ yim i;mð Þ 2 SA ð5Þ

yi m�1ð Þ � yim P 0 i;mð Þ 2 SA : Hi þ 1 6 m 6 Mi ð6Þ
yim ¼ 1 i;mð Þ 2 SA : m 2 1; . . . ;Hif g ð7Þ

Constraints (2) show that a vessel must either depart from the
origin to a port or not be used at all. Constraints (3) define that if
a node is visited by vessel v, the vessel must either arrive at the node
from the origin or from another node. Constraints (4) ensure that if a
vessel is at node i it must either leave to another node or end its
route there. Constraints (5) show that a vessel can only visit node
i;mð Þ if there are at least m visits to port i. Constraints (6) guarantee
that if a port i is visited m times, then it also has been visited m� 1
times. Constraints (7) defines the number of mandatory visits for
port i. Constraints (8) and (9) are loading and unloading constraints.

qimv 6 min Cv ; Si � Si
n o

oimvv 2 V ; i;mð Þ 2 SAv ð8Þ
Qioimv 6 qimvv 2 V ; i;mð Þ 2 SAv ð9Þ

Constraints (8) ensure the quantity loaded/unloaded cannot
exceed the vessel capacity nor the port capacity. Constraints (9)
show that if a vessel visits the port, then the amount loaded/un-
loaded should be at least equal to the minimum quantity. Con-
straints (10)–(13) concern the product flow.

f Oimv ¼ LvxOimvv 2 V ; i;mð Þ 2 SAv ð10Þ
f Ojnv þ

X
i;m;j;nð Þ2SXv

f imjnv þ Jiqjnv ¼
X

j;n;i;mð Þ2SXv

f jnimv þ f Djnvv 2 V ; j; nð Þ 2 SAv

ð11Þ
f imjnv 6 Cvximjnvv 2 V ; i;mð Þ; j; nð Þ 2 SAv ð12Þ
f Djnv 6 Cvzjnvv 2 V ; j;nð Þ 2 SAv ð13Þ

Constraints (10) define that if a vessel travels from the initial
position, then the transported amount is equal to the initial load
of the vessel. Constraints (11) guarantees that the amount of
incoming product flow plus the amount loaded/unloaded must
be equal to the outgoing product flow. Constraints (12) show that
the product flow from port to port should be at most equal to the
capacity of the vessel. Constraints (13) ensure that the product
flow to the destination is at most equal to the capacity of the ves-
sel. Constraints (14)–(18) are time constraints.

tim � ti m�1ð Þ �
X
v2V

TQ
v qi m�1ð Þv � Kiyim P 0 i;mð Þ

2 SA : m > 1tim þ
X
v2V

TQ
v qimv � tjn ð14Þ

þ
X
v2V

X
l2SLv

X
s2SSv

max Uim þ TPP
ijvs � Ajn;0

n o
gimjnvls 6 Uim

� Ajn i;mð Þ; j;nð Þ 2 SA ð15Þ
X
v2V

X
l2SLv

X
s2SSv

TOP
ivsg

O
imvls 6 tim i;mð Þ 2 SA ð16Þ

tim P Aim i;mð Þ 2 SA ð17Þ
tim 6 Bim i;mð Þ 2 SA ð18Þ
Constraints (14) enforce the minimum time period between
two consecutive visits of port i. Constraints (15) relates the start
time associated with node (i, m) to the start time associated with
node (j, n) when a vessel travels between ports i and j. Constraints
(16) show that the travel time for a vessel traveling from origin
should not exceed the start time of the visit to the port. Constraints
(17)–(18) define time windows for the start and end time of the
visits. Constraints (19)–(24) relate the speed and load variables
(g), to the routing (x) and flow (f) variables.
X
l2SLv

X
s2SSv

gimjnvls ¼ ximjnvv 2 V ; i;m; j;nð Þ 2 SXv ð19Þ

X
l2SLv

X
s2SSv

gO
imvls ¼ xOimvv 2 V ; i;mð Þ 2 SAv ð20Þ

0 6 gimjnvls 6 1v 2 V ; i;m; j;nð Þ 2 SXv ; s 2 SSv ; l 2 SLv ð21Þ

0 6 gO
imvls 6 1v 2 V ; i;mð Þ 2 SAv ; s 2 SSv ; l 2 SLv ð22Þ

X
l2SLv

X
s2SSv

Lvlgimjnvls ¼ f imjnvv 2 V ; i;m; j;nð Þ 2 SXv ð23Þ

X
l2SLv

X
s2SSv

LvlgO
imvls ¼ f Oimvv 2 V ; i;mð Þ 2 SAv ð24Þ

Constraints (19) enforce that speed and a load of a vessel must
be set for a travel from node i;mð Þ to node j;nð Þ if and only if that
travel exists. Constraints (20) are equivalent to constraints (19) but
consider the travel from the origin. Constrains (21) and (22) set the
upper and lower bounds of variables g. Constrains (23) and (24)
compute the load of an arc in terms of the load of the vessel.

The g variables are not binary, and even with constraints (19)
many of them can be larger than 0 for the same trip i;m; j;n;vð Þ.
To interpolate the cost and time for different load and speed values,
at most two variables representing consecutive levels of speed and
at most two variables representing consecutive levels of load should
be allowed to be larger than 0. Given that the fuel consumption
function is convex on the speed of the vessel, the interpolation using
the values of g obtains an overestimation of the cost. Then, the selec-
tion of the two speed level breakpoints closest to the real speed gives
the interpolated value that minimizes the overestimation of the cost.
This property is not true when it comes to the load levels due to the
concave relation between load level and fuel consumption.

Constraints (25)–(31) deal with selection of breakpoints for the
load level of a vessel in a travel between two nodes. They are known
in the literature as special ordered set of type 2 (SOS2). Since the fuel
consumption function is concave on the load of the vessel, it is nec-
essary to introduce binary variables to ensure that, for a given trip,
variables g can only be larger than 0 for at most two consecutive
levels of load allowing the linear interpolation between the available
breakpoints to function correctly (Williams, 2013).
X
l2SLv n Rf g

pimjnvl ¼ ximjnvv 2 V ; i;m; j;nð Þ 2 SXv ð25Þ
X
s2SSv

gimjnv1s 6 pimjnv1v 2 V ; i;m; j;nð Þ 2 SXv ð26Þ

X
s2SSv

gO
imv1s 6 pO

imv1v 2 V ; i;mð Þ 2 SAv ð27Þ

X
s2SSv

gimjnv ls 6 pimjnv l�1ð Þ þ pimjnvlv 2 V ; i;m; j;nð Þ 2 SXv ; l 2 SLv n 1;Rf g

ð28Þ
X
s2SSv

gO
imv ls 6 pO

imv l�1ð Þ þ pO
imv lv 2 V ; i;mð Þ 2 SAv ; l 2 SLv n 1;Rf g ð29Þ
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X
s2SSv

gimjnvRs 6 pimjnv R�1ð Þv 2 V ; i;m; j;nð Þ 2 SXv ð30Þ

X
s2SSv

gO
imvRs 6 pO

imv R�1ð Þv 2 V ; i;mð Þ 2 SAv ð31Þ

Constraints (25) ensure that if a vessel travels an arc, then a
breakpoint delimiting its load level in the arc must be chosen. Con-
straints (26) show that the value of the speed and the load used by
a vessel on route (i, m, j, n) with load between the minimum load
and the first level breakpoint can only be larger than 0 if the first
interval is chosen. Constraints (27) show the same as constraints
(26), but from origin to node i;mð Þ. Constraints (28) ensure that
the value of the speed and the load used by a vessel on route (i,
m, j, n) can only be larger than 0 if one of the intervals connected
to the selected breakpoint is chosen. Constraints (29) ensure the
same as constraints (28), but from origin to node i;mð Þ. Constraints
(30) guarantees that the value of the speed and the load used by
the vessel on route i;m; j;nð Þ between the last breakpoint and the
maximum load can only be larger than 0 if the last interval is chosen.
Constraints (31) guarantees the same as constraint (30), but from
origin to i;mð Þ. Constraints (32)–(39) are inventory constraints.

si1 ¼ SOi þ JiDiti1i 2 N ð32Þ
sim ¼ si m�1ð Þ � Ji

X
v2V

qi m�1ð Þv þ JiDi tim � ti m�1ð Þ
� �

i;mð Þ 2 SA : m > 1

ð33Þ
sim þ

X
v2V

qimv � Di

X
v2V

TQ
v qimv 6 Si i;mð Þ 2 SA : Ji ¼ �1 ð34Þ

sim �
X
v2V

qimv þ Di

X
v2V

TQ
v qimv P Si i;mð Þ 2 SA : Ji ¼ 1 ð35Þ

siMi
þ
X
v2V

qiMiv � Di T � tiMi

� �
P Sii 2 N : Ji ¼ �1 ð36Þ

siMi
�
X
v2V

qiMiv þ Di T � tiMi

� �
6 Sii 2 N : Ji ¼ 1 ð37Þ

sim P Si i;mð Þ 2 SA : Ji ¼ �1 ð38Þ
sim 6 Si i;mð Þ 2 SA : Ji ¼ 1 ð39Þ

Constraints (32) set the stock level at the start time of the first
visit to a port. Constraint (33) show that the stock level at the start
of themth visit is set by to the stock level at the start of the previous
visit, the load or unload operation in the previous visit and the time
elapsed between the two visits. Constraints (34)–(35) guarantee
that the inventory at each port is within the limit at the end of
the visit. Constraints (36)–(37) defines upper and lower bounds
on the inventory level until the end of the time horizon for produc-
tion and consumption ports. Constraints (38)–(39) ensure that the
stock level is within their limits at the start of each visit. The rest of
the constraints enforce the binary or non-negative nature of the
variables.

ximjnv 2 0;1f gv 2 V ; i;m; j;nð Þ 2 SXv ð40Þ
xOimv 2 0;1f gv 2 V ; i;mð Þ 2 SAv ð41Þ
oimv 2 0;1f gv 2 V ; i;mð Þ 2 SAv ð42Þ
zimv 2 0;1f gv 2 V ; i;mð Þ 2 SAv ð43Þ
zOv 2 0;1f gv 2 V ð44Þ
yim 2 0;1f g i;mð Þ 2 SA ð45Þ
pimjnvl 2 0;1f gv 2 V ; i;m; j;nð Þ 2 SXv ; l 2 SLv n Rf g ð46Þ
pO
imvl 2 0;1f gv 2 V ; i;mð Þ 2 SAv ; l 2 SLv n Rf g ð47Þ

qimv P 0v 2 V ; i;mð Þ 2 SAv ð48Þ
f imjnv P 0v 2 V ; i;m; j;nð Þ 2 SXv ð49Þ
f Oimv P 0v 2 V ; i;mð Þ 2 SAv ð50Þ

f Dimv P 0v 2 V ; i;mð Þ 2 SAv ð51Þ

sim P 0 i;mð Þ 2 SA ð52Þ

tim P 0 i;mð Þ 2 SA ð53Þ
A simpler version of this model can be obtained by restricting

the available speeds and levels of load of the vessels to discrete sets
of values. In this case, no interpolation is needed since a fixed cost
may be associated with each combination of vessel, speed, and
load. To see a computational comparison between our model and
the simpler model the reader is referred to Appendix A.

5. Computational study

This section describes test instances and presents computa-
tional results and analysis. The computational tests were run on
a computer with 1.90 GHz Intel i5-8350U CPU with 16 GB of
RAM under Microsoft Windows 10 Enterprise 64-bit version. The
model was coded in AMPL and run in CPLEX 12.9.

5.1. Test instances

The computational study is based on data from seven scenarios,
labelled from A to G, from which several instances are obtained.
These instances and the corresponding data were obtained from
(Agra et al., 2016), being modified from their introduction by
Agra et al. (2013). The seven scenarios are based on real data,
and vary in the number of ports (from three to six) and ships (from
one to five). The instances obtained from each scenario differ in the
number of days in the planning horizon (30 or 60 days), initial
inventory levels, and demand rates at the ports. To separate the
instances from each other, each instance has a specific name based
on the characteristics of the data. The name of each instance con-
sists of the scenario letter, the number of ports, the number of
ships, the number of days in the planning horizon, and an index
number. The names of all the 21 instances used are shown in
Fig. 6. The instances are based on short sea shipping, with loading
and unloading times being long relative to the sailing times.

Each vessel has operational characteristics which varies from
instance to instance. These characteristics are its capacity, its initial
load, its possible speeds and the daily sailing costs for different
speeds and loads. Three vessel types are considered, with speeds
in the ranges 13:5;19½ �; 14:4;20½ �, and 16:2;21½ �. All vessels can per-
form all trips (set SXv has all possible trips). When speed is not opti-
mized, it is assumed that the vessels travel at their maximum
speed. In the model with speed optimization, the fuel consumption
is linearized, and the breakpoints for the curves are the minimum
and maximum speeds, plus a breakpoint selected as 15, 16, or 18,
for the three vessel types, respectively.

The instances allow for a heterogeneous fleet of vessels. While
instances labelled A only has a single vessel, instances from B to
F have two vessels with different capacities and corresponding
speed ranges. Instances labelled F contain three different vessels,
while instances labelled G have five vessels based on four different
capacity levels. In the computational study, the ships have a set of
load level breakpoints, with three options for each vessel. The lar-
gest load level option equals to the capacity of the vessel, and the
smallest load is 0 and represents an empty vessel. The middle
breakpoint is set to exactly half of the ship capacity. The vessels
are not constrained to select only from the loads and speeds repre-
sented by the breakpoints. Rather, the breakpoints are used for the
linearization of the objective function and their number and distri-
bution affect the accuracy of the model.



Fig. 6. Cost comparison of the different instances.
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5.2. Model variations

To effectively evaluate the influence on solutions from consid-
ering load-dependent speed optimization, several variants of the
main model are considered. In traditional MIRPs, the speed and
the travel cost are considered as fixed. This can be emulated by
solving the mathematical model from Section 4 by setting the sail-
ing cost parameter to the fixed travel costs for all load levels, and
by introducing only a single sailing speed: jSSv j ¼ 1. In practice, this
reduces to the model described in (Agra et al., 2016). We will refer
to this setting as (R**), indicating that routes are optimized without
taking into account speed or load. When ignoring speed and load,
the cost parameters in the model are calculated assuming that
the ship sails at full speed and is full.

Having obtained routes, speed can be optimized as a post-
processing step. That is, by fixing all the routing variables, x in
the model, the instance becomes much easier to solve and optimal
sailing speeds can be determined for the given routes. If this is
done without taking into account the load-dependency, it will be
referred to as (R**)+(*S*), and if the post-processing is done with
the full load-dependent fuel consumption curves, it will be referred
to as (R**)+(*SL).

It is also possible to obtain routes allowing speed optimization
and ignoring the load-dependency. This can be done by including
breakpoints for speed levels, but calculating the corresponding tra-
vel costs based on a fixed load level. This setting will be referred to
as (RS*), and an additional setting arises if full load-dependent
speed optimization is performed as a post-processing step: (RS*)
+(*SL). The full model, where routes and speeds are determined
together, while taking into account the load-dependent fuel con-
sumption, is denoted (RSL).
5.3. Solver parameter tuning

To decrease the computational time for solving the models, two
CPLEX parameters were tuned using the most challenging model
(RSL) and the smaller instances (A to C). The first parameter consid-
ered was the branching variable selection technique. Two settings
showed the best performance in preliminary tests: Option 0, algo-
rithm decides (CPLEX default) and option 4, based on pseudo
reduced costs.

The other parameter tuned was the MIP emphasis, for which
three settings showed competitive results in preliminary tests: 0:
seeking optimality (CPLEX default), 1: finding feasible solutions
and 3: improving best bound. Table 1 shows the CPU time in sec-
onds needed to solve RSL model on CPLEX with different parameter
settings. Given the results of the experiments, all further test were
performed using the branching variable selection technique based
on pseudo reduced costs and the MIP emphasis on seeking
optimality.

5.4. Computational time

The emphasis in the computational study is on the effect of
planning using load-dependent fuel consumption rates. To this
end, a commercial mixed integer programming solver is used to
solve the model presented in Section 4 as well as variants of that
model. When solving a post-processing step involving fixed routes
and the optimization of speed, the model is solved very quickly,
with running times in the order of one second or less.

The variants of the model that include routing decisions are
potentially time consuming for the instances used. Whereas,
(R**) is solved in less than 1000 s for all instances, the full model



Table 1
Solution time (CPU seconds) with different parameters. Columns are identified by (branching variable selection strategy, MIP emphasis). Branching variable selection strategy
options are 0: algorithm decides (default) and 4: branch based on pseudo reduced costs. MIP emphasis optoins are 0: seeking optimality (default), 1: finding feasible solutions and
3: improving best bound.

Instance (0, 0) (4, 0) (0, 1) (4, 1) (0, 3) (4, 3)

A-4-1-30-1 0.8 1.1 0.8 1.1 0.8 0.9
A-4-1-60-1 15.2 15.3 11.5 11.6 34.5 34.5
A-4-1-60-2 41.3 10.7 18.0 18.3 25.0 25.3
B-3-2-30-1 283.6 228.6 191.9 175.4 689.3 963.1
B-3-2-60-1 280.9 399.9 556.8 584.7 1498.8 1893.9
B-3-2-60-2 95.1 108.9 148.7 150.0 338.6 598.9
C-4-2-30-1 991.0 471.5 336.8 348.9 1471.7 700.0
C-4-2-60-1 553.7 631.7 1061.1 1078.55 1662.11 2246.53
C-4-2-60-2 10478.0 5285.5 5631.8 5751.8 9753.7 10635.5
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(RSL) is difficult to solve for the larger instances. While all
instances from scenarios A through F are solved to optimality, with
the largest running time being 11,163 s for instance E-5–2-60–2,
the instances of scenario G could not be solved to optimality for
the full model. The runs of these three instances, G-6–5-30–1, G-
6–5-60–1, and G-6–5-60–2, were halted after 40 CPU hours, as
continuing the solver after this would lead to issues with computer
memory. At this point, the optimality gaps were in the range of 5–
17 %, and these instances are therefore not included in the follow-
ing analyses.
5.5. Sailing costs and savings

In this section, a comparison of sailing costs and savings are
presented. The sailing costs are in 1,000 US Dollars. Six methods
to produce solutions are considered:

� (R**) where routes are optimized with fixed sailing costs.
� (R**)+(*S*) where (R**) is followed by optimizing speed while
ignoring load.

� (R**)+(*SL) where (R**) is followed by load-dependent speed
optimization.

� (RS*) where routes and speeds are optimized together while
ignoring load.

� (RS*)+(*SL) where (RS*) is followed by load-dependent speed
optimization.

� (RSL) where routes are optimized together with load-dependent
speed.

The final solutions are evaluated using accurate sailing costs.
That is, costs are calculated from the distances, visits, speeds, and

loads implied by the solutions, using the formula kl3 lþ Að Þ2=3 for
the sailing costs (Psaraftis and Kontovas, 2014). Fig. 6 shows the
results for each of the 18 instances and each of the six solutions
obtained.
Table 2
Cost savings of different planning strategies, relative to (R**). The rows correspond to differ
processing models.

Initial Second

None

Min.: 0.0 %
(R**) Avg.: 0.0 %

Max.: 0.0 %
Min.: 6.9 %

(RS*) Avg.: 37.8 %
Max.: 62.2 %
Min.: 48.4 %

(RSL) Avg.: 56.2 %
Max.: 69.2 %
It is clear that (R**) gives the highest sailing costs in every
instance, especially in the three largest instances. However, in
instance D-5–2-30–1 and D-5–2-60–1 the sailing costs between
(R**) and (R**)+(*S*) are quite similar, which indicates that the
optimal speeds found in (R**)+(*S*) are close to the ones which
were fixed in (R**). It is (RSL) that provides the best solution in
every instance. However, in some of the instances (RS*)+(*SL) can
provide the same sailing cost as (RSL), which indicates that the
routes given (RS*) are equal to the ones found by (RSL).

Table 2 shows the minimum, average, and maximum cost sav-
ing of each solution approach relative to (R**). The lowest saving
is from (R**)+(*S*), but even the simple addition of a post-
processing step that ignores the load-dependent fuel consumption
is able to reduce the costs by more than 25 %. Optimizing routes
and speeds together, while ignoring the load-dependency on fuel
consumption, provides an even larger cost saving, of 38 % on aver-
age. However, the three approaches that involves some step taking
into account the load-dependency all lead to greater savings than
this. The largest savings is from using (RSL), leading to an average
of 56 % lower costs, but even with the fixed routes from (R**), (R**)
+(*SL) leads to a 44 % reduction of costs, without increasing the
overall computational burden significantly compared to a model
with fixed speeds.

Table 2 only includes results for instances solved to optimality.
However, given that some models involve approximating non-
linear functions, one may ask whether better solutions are missed
due to the error in estimation. To this end, we compare the objec-
tive function values obtained from the models with the corre-
sponding objective function values when using the non-linear
fuel consumption functions. For (R**) there is no estimation error,
since the model assumes that fuel consumption does not vary with
speed nor load. For the models assuming that fuel consumption
depends on speed but not load, such as (RS*) or (R**)+(*S*), the
error due to linearization is on average 0.2 %. However, for the
models where fuel consumption depends on both speed and load,
such as (RSL), the approximation error is on average 0.7 %.
ent initial model variations, and the columns correspond to different secondary post-

ary

(*S*) (*SL)

6.6 % 29.2 %
25.3 % 44.3 %
39.1 % 58.0 %

42.0 %
54.5 %
69.2 %



Table 3
Average speed of vessels for different solution strategies.

(R**) (R**)+(*S*) (R**)+(*SL) (RS*) (RS*)+(*SL) (RSL)

Max. speed 21.0 18.8 18.6 16.3 16.3 16.6
Avg. speed 19.8 16.1 16.0 14.8 14.8 14.8
Min. speed 19.2 14.3 14.3 13.9 14.0 13.9
Avg. reduction 0.0 % 19.1 % 19.2 % 25.6 % 25.5 % 25.4 %
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5.6. Speed of vessels

In this section, the average speed in knots of the vessels is com-
pared. The comparison looks at the different solution approaches,
and all the speeds used in the instances in total. Each vessel uses
only one speed between two ports but can use different speeds
for the different visits on the routes. The average speed is simply
taken as the average of the speeds in each travel leg, and does
not factor in the length or duration of each leg. Table 3 shows
the maximum, average, and minimum speed recorded, as well as
the average reduction in the average speed compared to (R**). In
Table 3, all the average speeds from each of the instances are sum-
marized and divided by the number of instances.

The highest average speed is from using (R**). This is because
the vessels are assumed to operate at maximum speed in (R**),
so that there is maximum flexibility in the routing decisions. In
(R**)+(*S*) the predetermined routes from (R**) are used, but speed
is optimized, and hence the average speed is lower in comparison
to (R**). The predetermined routes from (R**) are also used in (R**)
+(*SL), but decisions regarding the load of vessels can change
together with the speed. As shown in Table 3, the average speed
in (R**)+(*SL) is fairly similar to the average speeds provided by
(R**)+(*S*). The full model (RSL) which optimizes the routes, speed,
and load together, gives a lower average speed compared to the
approaches starting with (R**), thus implying that taking into
account the load-dependency on fuel consumption also has an
effect on the routing decisions.
5.7. Load of vessels

The load of the vessels on each trip is a decision that is closely
related to the chosen routes and the chosen speeds. The flow of
cargo must meet the demand requirements of the inventories at
the ports. Arriving at the same port at different times may lead
to the ability to load or unload a different amount of cargo. It is
therefore interesting to examine whether the different solutions
involve transporting different amounts of product.

The average load of the vessels from the three approaches (R**)
+(*SL), (RS*)+(*SL), and (RSL) are compared in the following. That is,
we consider only the approaches where load is optimized together
with speed in the final solution. The average load for an instance is
calculated by adding up the loads of individual sailing legs and
dividing it by the total number of sailing legs. Table 4 presents
the average of the average load levels of each instance.

When comparing the three selected solution approaches, Table 4
shows that (RS*)+(*SL) has the highest average load level, while
(RSL) has the lowest average load level. As (R**)+(*SL) and (RS*)
+(*SL) optimizes load on predefined routes, the flexibility is lower
when fulfilling the requirement of demand. In (RSL), routes and
load (and speed) are optimized at the same time. Thus, adjust-
Table 4
Average load of vessels in 1000 tons.

(R**)+(*SL) (RS*)+(*SL) (RSL)

Avg. load on a trip 52.8 55.6 51.4
ments can be made such that the vessels can carry less load and
still meet the demand in the ports.
5.8. Structural analysis of the solution

The structure of the solution can be analyzed by looking at the
routing decisions. These will differ depending on whether the
routes are decided with a fixed speed (R**), while optimizing speed
but ignoring the effect of loads (RS*), or while taking into account
load-dependent speed optimization (RSL). By examining the solu-
tions, we find that (R**) and (RS*) leads to different routes for 12
out of 18 instances. This means that the speed of the vessels has
an impact on the route structure in 66.7% of the solutions. When
comparing the routes of (RLS) to the routes of (R**), we see that
the structure changes in 15 out of the 18 instances. Thus, speed
and load together have an impact on the route structure in 83.3%
of the cases. When looking at the differences in the structure
between (RS*) and (RSL), we see that the solutions based on
load-dependent speed optimization differs from the optimal routes
of (RS*) in 7 out of the 18 instances. This means that load alone has
an impact of the routing decision in 38.9% of the instances.
6. Concluding remarks

Maritime transport plays a major role in the global trade busi-
ness. To gain competitive advantages, costs reductions can be an
important factor for the companies that operates within the sector.
To minimize the costs, models for MIRP with speed optimization
can be used to find the routes and speeds that will generate the
lowest costs. Like the speed, the vessels load level do also have
an impact on the fuel consumption, and hence the daily sailing
costs. This dependency is non-linear, and this paper discusses a
model where the fuel consumption curve is linearized in order to
find solutions to the MIRP with speed and load optimization.

The computational tests conducted on the different data
instances shows that speed optimization alone can generate high
savings regarding the total costs. When the effect of load levels
on the fuel consumption function are considered, the potential cost
savings become even larger. However, even though the results
show the importance of taking into account the load when deter-
mining the speeds in MIRPs, some limitations of the work remain.

First, the computational time for the largest instances is very
high. With the available hardware, the commercial solver was
unable to obtain optimal solutions to three of the instances consid-
ered. Second, in the computational tests, only three breakpoints are
used for both speed and load. When using a relatively small num-
ber of breakpoints, the linearization leads to deviations between
the approximated costs and the true costs. For fuel consumption
functions that depend only on the speed, these deviations are
small. However, when involving both speed and load as factors,
the deviations are possibly larger. Whether introducing more
breakpoints has an effect on the quality of the solutions obtained
remains to be seen, but additional breakpoints will enlarge the
computational challenges related to solving the full model. Future
research may also consider the development of ad hoc exact and
heuristic algorithms to efficiently solve the problem at hand.



Table 5
Solution time and cost of the solution found by RSL and RSL[B].

RSL RSL[B]

Seconds Solver cost Real cost Seconds Cost Gap (%)

A-4-1-30-1 0.8 234.252 235.462 268.2 563.632 0.0
A-4-1-60-1 15.2 561.242 563.654 14400.0 – –
A-4-1-60-2 41.3 520.466 522.919 14400.0 – –
B-3-2-30-1 283.6 436.242 436.245 1323.8 468.462 0.0
B-3-2-60-1 280.9 578.299 582.698 5679.2 874.095 0.0
B-3-2-60-2 95.1 598.857 601.460 1352.4 Infeasible –
C-4-2-30-1 991.0 351.090 353.070 3494.5 381.850 0.0
C-4-2-60-1 553.7 521.169 522.524 14400.0 633.162 16.8
C-4-2-60-2 10478.0 547.674 549.286 14400.0 627.145 18.9
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Appendix A. Computational comparison with a plain
discretization model

The RSL model proposed in Section 4 uses breakpoints for
speeds and loads, and continuous variables to interpolate between
the breakpoints. We argue that this modeling approach works bet-
ter in terms of efficiency and accuracy than a simple discretization
of speeds and load levels. The latter approach requires the transfor-
mation of speed and load variables into binary variables, which
leads to a model that is more challenging to solve.

To show this, we performed a computational experiment with a
modified version of model RSL in which variables gimjnv ls and gO

imv ls

are binary. In such model, variables pimjnv l and pO
imv l are not needed

since there is no interpolation. Then, variables pimjnv l and pO
imv l and

constraints (25)–(31) were removed from the model. We call this
model RSL[B]. The breakpoints for this model was taken to be the
same as for model (RSL), hence the vessels have only three options
of speed and load level for each trip.

Table 5 shows the results for both models in the smaller
instances under consideration. The first column shows the instance
name. The next three columns show results for our original model:
solution time in seconds, cost of the model (interpolated) and real
cost of the solution found re-evaluated using the non-linear cost
function. All solutions were proved optimal. The last three columns
show results for the binary model: solving time in seconds, cost of
the model (equal to the real cost since there is no interpolation)
and final optimality gap after four hours of CPU time. The results
for both models were obtained using CPLEX default parameters.

Model RSL is much easier to solve than RSL[B] due to the lower
number of binary variables. In fact, four of the six instances with a
time horizon of 60 days were not solved to optimality by the solver
in 4 h of CPU time for RSL[B]. Moreover, for two of those instances
no feasible solutions were found.

Since speeds and load levels are not limited to just three options
in RSL, the real costs of the solutions found are better than the ones
found with RSL[B]. Moreover, the interpolation error is small. For
RSL[B] to provide solutions of reasonable quality, one should con-
sider many more discretization levels. However, in that case the
computational time needed to solve the model would be further
increased.

Finally, note that model RSL[B] is automatically infeasible if any
vessel has an initial load that does not match any of the discretized
load levels available. Added to this, instances can be infeasible even
if the initial loads of all vessels match an available breakpoint, as it
happens in instance B-3-2-60-2. In this case, the sets of allowed
speeds and loads are simply not sufficient to obtain a feasible
solution.
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