
20 

Applied Computer Science, vol. 14, no. 2, pp. 20–37 
doi:10.23743/acs-2018-10 

Submitted: 2018-03-22 
Revised: 2018-06-01 

Accepted: 2018-06-21 
 

 

graphical representations, Petri nets, Control Flow Graph,  

Concurrent Process Systems, multithreaded applications 

 

 

Damian GIEBAS*, Rafał WOJSZCZYK* 
 

 

GRAPHICAL REPRESENTATIONS  

OF MULTITHREADED APPLICATIONS 
 

 

Abstract 

This article contains a brief description of existing graphical methods for 

presenting multithreaded applications, i.e. Control Flow Graph and Petri 

nets. These methods will be discussed, and then a way to represent multi-

threaded applications using the concurrent process system model will be 

presented. All these methods will be used to present the idea of a multi-

threaded application that includes the race condition phenomenon. In the 

summary, all three methods will be compared and subjected to the evaluation, 

which will depend on whether the given representation will allow to find 

the mentioned phenomenon. 

 

 

1.  INTRODUCTION  

 

Applications written for modern computers are characterized by diversity  

and are used in almost every area of life. Many of these applications are single-

threaded programs that perform tasks one by one. Along with the development 

of computer hardware and the introduction of processors enabling concurrent 

performance of tasks, multithreaded applications began to appear. Some pro-

gramming languages, as in C and C++, were not created for multithreading.  

To complement these gaps for C language, a pthreads library was created in line 

with the constantly evolving standard (ISO/IEC, 2003). The C++ language has 

received support for multithreading in the form of an extension of the standard 

library, with the introduction of the C++ 11 standard (Hinnant, Dawes, Crowl, 

Garland & Williams, 2007). 
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As there is a multitude of software created in these languages on the market 

and a lot of such software is still created, the mentioned languages have been 

selected to present examples of multithreaded programs. 

Compared to previously used single-threaded programming, multithreaded 

programming has a number of advantages and a number of disadvantages (Torp, 

2001). The most important of them are presented below: 

Advantages 

 Responsiveness – in the case of long tasks in programs with a graphical 

user interface, single-threaded programs undergo the so-called freezing. 

This problem does not occur in multi-threaded applications, as such tasks 

can be delegated to separate threads. 

 Resource sharing – threads that run as part of a single process share 

computer resources. Everything happens within one address space. In the 

case of single threaded programs, tasks had to be delegated to separate 

processes and communication was done by copying values from one 

address space to another. 

 Savings – multithreaded programs consume less memory than solutions 

that use several single-threaded applications. 

 Scalability – multithreaded applications make much better use of the 

hardware capabilities of multithreading processors than a set of single-

threaded applications that perform the same task together. At the same 

time, machines for multithreaded application states are much less 

complicated than machines of an analogous state of solution composed of 

single-threaded applications. 

Disadvantages 

 Complex application code – each application start-up may look different and 

depends on the current state of other system components. The programmer 

never knows how much time the scheduler has allocated to a given thread and 

does not know the order of their work. This state of affairs also affects: 

 Debugging of such applications is very difficult because the debugging 

process itself can affect the behavior of the application. 

 Testing the application is very difficult, because it is extremely hard to 

predict all possible states in which applications will be found. 

 Deadlock – this phenomenon is also called jamming or blocking. A situation 

in which a process or thread in case of multithreaded applications orders 

access to resources and goes into a waiting state. It is possible that  

the pending process or thread will never change its state, because the 

resources it procures are held by other waiting processes (Silberschatz, 

Galvin & Gagne, 2005). 

Deadlock and race condition were known before, as they occur not only  

in multithreaded applications but also in solutions in which single-threaded 

applications use shared resources. 
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Other known phenomena occurring in multithreaded applications are described 

in chapter 4 on atomicity violation and order violation (Lu, Park, Seo & Zhou, 

2016), and the last one is not analyzed in this work. This work focuses on 

graphical representation of multithreaded applications, which will allow, above 

all, to reveal places where race condition is present. Control Flow Graph discussed 

in chapter 1 is the most well-known graphical representation that allowed to develop 

methods and build tools for error detection of multithreaded applications. Petri nets 

discussed in chapter 2 are another popular graphic representation. The graphic 

representations used today have a number of limitations, which affect the developed 

methods and tools that use them. These tools include: 

 Helgrind – a tool from the Valgrind's Tool Suite to securely debug 

multithreaded programs that can detect any kind of problems related to 

parallel access to resources. On the creators' site there is information that 

they do not guarantee the correct operation of the application. Despite all the 

advantages, Helgrind does not have the possibility of remote debugging, 

which is necessary to work in a very large number of environments where C 

and C++ languages are used, e.g. in embedded systems. For more about 

Valgrind's Tool Suite go to http://valgrind.org/info/tools.html#others 

 ThreadSanitizer – Google's tool based on Helgrind and also having its 

limitations. Both tools use the algorithm described in the Helgrind 

documentation. ThreadSanitizer is a tool included in the LLVM / Clang 

and GCC compilers package for the x86 platform. This tool, like Helgrind,  

is in beta phase and its authors do not guarantee correct operation. For more 

about ThreadSanitizer go to https://clang.llvm.org/docs/ThreadSanitizer.html 

 RacerX – a tool to detect race condition and deadlock phenomena 

described in the paper (Engler & Ashcraft, 2003) using static code 

analysis. Detection is carried out by creating a Control Flow Graf for 

the analyzed application and enriching it with a list of function calls, 

global variables used, pointers to variables passed as a parameter, and 

optionally a list of all local variables. This tool is currently not publicly 

available to anyone according to https://goo.gl/DgYzt5 

 Relay – a tool created at the University of California, San Diego for static 

code analysis to detect race condition. This tool worked on a similar 

principle to RacerX as described in the work (Voung, Jhala & Lerner, 

2007). This tool was used to analyze the Linux kernel code version 

2.6.15. The analysis was carried out on the number of 4.5 million of 

the code line and showed the presence of 53 places where the race 

condition occurred. This is the only such a detailed report on Linux 

kernel code analysis by static code analysis for this phenomenon. 

Although the tool is publicly available, it has not been developed since 

2010. 
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The first two tools for error detection use dynamic techniques, i.e. they work 

with the compiled application code, while the next two work tools require the 

source code of the application, because they use static techniques by analyzing 

the source code. The use of Concurrent Processing Systems (CPS) for the 

detection of race condition and deadlock phenomena is an example of a static 

approach. The main advantage of the methods that analyze the source code is the 

fact that they are independent of the platform on which the application code  

is written, but they are unable to take into account the phenomena caused by 

aggressive optimization of the compiler (resulting, for example, in changing the 

variable's contents by a numerical constant). The phenomena caused by 

aggressive optimization are detected thanks to dynamic techniques, however 

tools using dynamic techniques are strongly related to the platform, and, for 

example, all aspects of Helgrind can be used only on x86 and AMD64 platforms. 

C and C++ languages have already been expanded to allow for parallel work. 

The Cilk extension (“A Brief History of Cilk”, 2017) for C and C++ was created 

in 1990 at MIT and commercialized as Cilk ++, and then sold to Intel, which 

develops them as CilkPlus. This extension has not gained much popularity and 

will only be used until 2018. Intel proposes migrating from CilkPlus to OpenMP 

framework or Intel Threading Building Block (“Intel Threading Building Blocks 

Documentation”, 2017). 

The mentioned OpenMP framework (Bull, Reid & McDonnell, 2012)  

was created for Fortran and C languages and then expanded for C++ 98 and is 

supported by the largest companies in the IT sector. The program is parallelized 

with OpenMP by using the appropriate preprocessor directives, which increase 

the complexity of the code and do not cooperate with the latest versions of C++. 

Competitive solution for OpenMP, i.e. the Intel TBB library (“Intel 

Threading Building Blocks Documentation”, 2017) for C++ is much better 

adapted to work with the latest versions of this language. Unfortunately, when 

using Intel TBB, a lot of code must be rewritten using its elements. 

Charm++ (“Introduction to Charm++ Concepts”, 2017) is a dedicated C++ 

language framework for creating applications with parallel processing.  

It introduces a new paradigm, i.e. object-oriented asynchronous message passing 

parallel programming paradigm, which decomposes the program into chares that 

communicate using objects called messages. The disadvantages of this solution 

were presented in the presentation “Charm++” (Aiken, 2017). The biggest 

disadvantage concerns easy to omit synchronization of chares work, which is 

required to avoid race condition. Another big disadvantage of Charm++ is 

making the programmer manage message memory. Wrong management can lead 

to very serious memory leaks when resources are allocated and they are not 

released. 

The above solutions for C and C++ languages have one undesirable feature, 

i.e. a high level of code complexity written with their use. In the case of using 

the pthread library or the C++ 11 standard, this code is much more readable. 
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The next part of the work concerns the location of the race condition 

phenomenon found in the program code shown in Listing No. 1 by means of 

graphical representation of multithreaded applications. The program was written 

in C language using the pthreads library. The aim of the program from the listing 

below is to perform a million incrementing operations of the balance variable by 

each of the application threads. The result of the action should be a two million 

value. Unfortunately, incrementing operations on a shared resource are not syn-

chronized, resulting in a race condition in the program. Synchronization should 

be done by using synchronization mechanisms called the mutexes provided with 

the pthreads library. Mutexes are abstract structures that use the mechanism of 

mutual exclusion to synchronize work on selected resources. The word mutex is 

derived from the English words mutual exclusion. 

 

 

Listing. 1. Multithreaded application code containing the race condition phenomenon 
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Although it is possible to write multithreaded programs in C language, the lack 

of native language support causes that these programs often include race 

condition or deadlock phenomena. The following application code containing 

the race condition phenomenon will be transformed into subsequent graphical 

representations in which this phenomenon should be exposed, because graphic 

representations do not have C language limitations and are better adapted to 

presenting high-level ideas. 

The use of graphic methods results from the need for a universal tool that will 

allow for code analysis and detection of the occurrence of the discussed 

phenomena. As already mentioned, the graphic methods are better for presenting 

high-level ideas than the C programming language. In addition, converting  

the source code into a graphical representation is a platform-independent 

solution to which the code is to be compiled. This transformation of the source 

code for graphical representation is part of the static code analysis. 

 

 

2. CONTROL FLOW GRAPH 

 

Control Flow Graph (CFG) is nothing more than a directed graph, which  

is one of the possible graphical representation of a multi-threaded application. 

CFG presented in the work (Allen, 1970) consists of nodes and edges that 

correspond to the next blocks of code and determine the order in which they are 

executed. CFG assumes the existence of 3 types of nodes. The first type of node 

is the entry node, which is characterized by the fact that it does not have an 

ancestor, but it has descendants. The second type of node is the exit node, which, 

similarly to the entry node, does not have descendants, but it has ancestors. The 

third type of nodes are nodes having both ancestors and descendants. These 

nodes can have at least one ancestor and at least one descendant. Ancestors and 

descendants can be both direct and indirect nodes. In other words, CFG is  

a directed G graph being a pair (B, E) where B is a set of nodes b1, b2, b3, …, bn 

while E is a subset of the set of all possible edges {(b1, b2), (b1, b3), …, (bm, bn)} 

occurring between these nodes. 

Figure 1 presents CFG for an application whose code is on Listing 1. The code  

is divided into 4 logical blocks that allow its easy conversion into CFG. Block A 

is a fragment of the code preparing the application for working on threads, while 

block D is a fragment of the code terminating work on threads and ending the 

work of the application. Blocks B and C are a fragment of the application 

executed in parallel, therefore to emphasize this aspect of the application on CFG 

for one thread they have been labeled as B and C and for the other as B' and C'. 

In addition, block C is contained in block B and its work is repeated  

a million times. 
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With the exception of the main function, every logical block, i.e. any other 

function, the body of a loop, the body of control instructions, or any other block 

enclosed in braces will have its reflection in the form of a node. The main 

function in the C and C++ languages is the place of beginning and end of the 

application work, therefore it has been broken into the above-mentioned blocks 

A and D. 

Figure 1 shows the CFG of the application whose code is on Listing 1. The dia-

gram starts with node A in the main function. It precedes the creation of two 

application threads, which are represented as nodes B and B'. 

Nodes C and C' are the nodes corresponding to the body of the for loop,  

so until the loop condition is always true, the block will still be executed,  

as indicated by the presence of edges (C, C) and edges (C', C'). After completing 

the loop operation, the control returns to the main body of the function, i.e. 

to blocks B and B'. The program already has only the D block responsible for the 

end of work and the corresponding node D finishes the graph. 

 

 

Fig. 1. Control Flow Graph of application from Listing 1 
 

The created CFG reflects exactly the order of the blocks of code executed, 

however, the information about operations on shared resources cannot be read 

out of it. These operations occurring in block C of the application do not show 

their graphical representation, therefore the CFG diagram will be identical for 

both a properly functioning application and the one in which the race condition 

phenomenon is located. Hence, CFG is not a good enough notation to detect race 

condition and deadlock phenomena. 

Another disadvantage is the fact that CFG does not allow showing blocks' 

nesting. Without an exact description, one can get the impression that after the 

block C exit and returning to block B, it is possible to return to block C again, 

which is not possible  in the application. 
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Information that a given block is executed in two independent threads allows 

for the presumption that this is the place where the race condition may occur.  

In the case of systems where threads do not share any resources, it would also  

be necessary to check all such places. In a situation where the resource is shared 

by two threads that do not have common blocks, this mechanism is insufficient 

to locate the race condition phenomenon. 

Control Flow Graf is used in tools to detect these phenomena, e.g. in the 

RacerX tool, each of the CFG nodes created by this tool is additionally enriched 

with lists of function calls, global variables used, pointers to variables passed  

as a parameter, and optionally a list of all local variables. Only when there is a set of 

all this information it is possible to detect the phenomenon of race condition. 

 

 

3. PETRI NET 

 

Petri Net (PN) is a formal information flow model designed to describe 

asynchronous systems in which tasks are carried out in parallel. Petri nets consist 

of places and transitions connected by directed edges (Peterson, 1977). The flow 

of information is demonstrated by moving tokens between places by passing 

through the edges. On the edges there are transitions, which are responsible for 

the permission to make the transition, and this happens when there are tokens  

at all the entry points of the transition. The simplest example of PN is shown  

in Figure 2. There are two places on it, p1 and p2 and one transition t1. The token 

located in place p1 will be moved along the edges to the place p2, because the 

transition condition is met, i.e. place p1 is the only entry point of the t1 transition 

and it has a token. 

 

 

Fig. 2. Example of Petri net 

 

Unlike CFG, PN is not built only on logical blocks of code. The construction 

should take into account such things as the initial state of some elements, i.e.  

the place reflecting the loop counter should have as many tokens as the iterations 

will be made by the loop, or information about the order of execution of indi-

vidual tasks in case they can be done in parallel. Net from figure 3 showing  

the application of the mutual exclusion mechanism, which imposes the order  

of tokens shifting from place p1 through the transitions t1 and t2 is the example 

of the above.  
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Fig. 3. Example Petri net with the mechanism of mutual exclusion 
 

The possibility of using mutual exclusion mechanisms (it consists of the 

transitions t1, t2 and places p2, p3 in the above example) allows to control token 

shifts in the net and simulate application multithreading. However, it is not  

a realistic representation. In the case of multithreaded applications whose main 

purpose is the speed of the operation, the programmer does not impose their 

execution order. It is the scheduler to decide which thread is currently working 

while the situation of alternating thread work, as shown in the figure above,  

is unlikely. 

In Figure 4, the Petri net is presented for the application under consideration. 

This net is built from 6 places and 4 transitions. Place p1 corresponds to block A 

of the selected application and means its start. Place p2 is the equivalent of the 

moment of starting both threads of the application. In the case of the Petri net, 

we can simulate the operation of the for loop, so block C in this case will consist 

of places (p3, p5, p8) and transitions (t2, t3) for the first thread, as well as places 

(p3, p4, p8) and transitions (t2, t4) for the second thread. Place p3 is a loop 

count, which should have a million tokens, because so many iterations are executed 

by each loop in the threads. This will enable every branch of the net to perform  

a million times as in every thread a million operations are performed on a shared 

resource. 

 
Fig. 4. Petri net of multithreaded application from Listing No. 1 
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Place p8 is the equivalent of application block D and ends the whole network, 

and the number of tokens corresponds to the value of the balance variable. If there 

were one million tokens in place p3, i.e. the maximum number of iterations of the 

loop in block C, then after the simulation there will be 2 million in the place p8. 

The structure of the net does not allow the occurrence of a situation in which 

the race condition occurs, therefore the result of the net operation will be 

consistent with the expected result of the application but not with its real operation. 

An additional disadvantage of such representation is that many net models 

can be built into one and the same application code. This situation causes that 

when a net model for the application is created, one can never be sure that all 

necessary information can be read from it to locate the information one is 

looking for. 

In the case of using the mutual exclusion mechanisms in the net, it should 

always be determined which transition will have a priority resulting in a pre-

determined order of operation of the transition. This is not the case in applications. 

The programmer is never sure which thread will be given access to the resource 

first, because the work of the threads is set to execute tasks as quickly as pos-

sible and they are executed immediately when the scheduler assigns the processor 

time to the thread. Unlike nets, the mechanisms of mutual exclusion provided 

with the C language do not enforce the order of threads. 
 

 

4. FORMULATING THE PROBLEM 

 

The presented analysis of two widely known graphical representations of multi-

threaded applications allows to conclude that using them to find the location of 

the race condition phenomenon is very complex and in many cases requires the 

use of additional (redundant) control mechanisms. 

A multithreaded application code written in C language using the pthreads 

library is available. 

The limitations result from the syntax of the C language, its grammar and the 

fact that the calculations must be performed in parallel. 

Therefore, the question is as follows: is the application code correct, i.e. are 

there no phenomena like: 

 deadlock, 

 race condition? 

 

The two previously discussed graphical representations did not allow to de-

termine whether the code on Listing 1 is free from these phenomena. In item 4,  

a representation using models of concurrent processes for this purpose will be 

presented. Two representations will be shown, where the phenomenon of race 

condition will be visible on the first one and the second one will present  

a solution to eliminate this phenomenon. 
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5.  SYSTEM OF CONCURRENT PROCESSES (Polish: SWP)  

  FOR MULTITHREADED APPLICATIONS 

 

The process system is a set of processes P={Pi |i=1, …, ln} performing 

operations based on a set of shared resources R={Rk |k=1, …, lm}. Concurrent 

execution of processes means that each successive operation of one process 

begins before the end of another process operation and is associated with limited 

access to shared resources (Banaszak, Majdzik & Wójcik, 2008). A specific case 

refers to the systems in which processes are carried out cyclically (i.e. process 

operations are repeated many times over fixed time periods). In this approach, 

the System of Concurrent Cyclic Processes (Polish: SWPC) is understood  

as a set of concurrent cyclic processes that are related to each other through the 

use of shared resources (Bocewicz, Banaszak & Wójcik, 2006; Bocewicz, 2013). 

When talking about SWPC one should mention the conflicts of resource 

demands, which are a consequence of the occurrence of, among others, such 

phenomena as starvation and blockade. Similar phenomena can be found in multi-

threaded applications. Starvation occurs when one of the threads of the application 

over its entire duration does not release the specified resource and thus prevents 

access to other threads. Deadlock, on the other hand, occurs when two threads 

(or more) attempt to gain access to the resources they occupy, and so-called 

resource request cycle occurs. This situation causes that each thread waits for the 

remaining ones to release their resources, which never happens. 

Another specific phenomenon of multithreaded applications refers to the race 

condition - a situation in which the status of a shared resource (e.g. the value of  

a variable represented by this resource) is changed by one of the threads when 

other threads perform operations with an already obsolete resource value. The con-

sequence of such a phenomenon is the possibility of obtaining various results  

of applications (often difficult to predict) depending on the order of access of 

threads to shared resources. 

Similarly to the CFG and PN models discussed in the previous sections, 

systems of concurrent cyclic processes can also be used to represent multithreaded 

applications. A set of graphic elements is used for its purpose (Figure 5), 

consisting of: 

 shared resources representing an instance of any type that is shared among 

threads, e.g. by means of a pointer or as a global variable, 

 internal resources of threads, which like resources are shared by instances 

of any type, and their period of life lasts as long as the life span of threads, 

 cyclical processes representing the threads of the application, 

 synchronization mechanism (mutex) ensuring mutual exclusion of proc-

esses on resources. In C language, a mutex is an algorithm implemented  

in the form of an object on which blocking and releasing operations can 

be performed. 
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Fig. 5. SWPC elements used for multithreaded application modeling 
 

Both resources and mutexes can be a base for cyclic processes performed  

(the names of these operations are given inside the resource).  

These are, e.g.: 

 Inc – resource increment operation, 

 Lock – operation of placing a lock on a mutex object, 

 Unlock – the operation of releasing the lock from the mutex object. 

 

The proposed SWPC model (using the proposed set of elements), unlike the 

Petri net and CFG, hides many implementation details. It will highlight only those 

features of the application that are important to assess its correctness (in terms  

of the occurrence of phenomena leading to conflicts of resource demands). This 

approach should allow for accurate reproduction of the application from the 

model and at the same time indicate the places where race condition or deadlock 

can occur. 

Fig no. 6 presents SWPC for the application from Listing No. 1. It differs 

significantly from the Petri net and CFG. The system includes a pair of processes 

(A, B) corresponding to both threads of the application under consideration.  

The A and B processes are within one set, as both threads work within one 

application. Both processes perform the operation of increasing the value of  

a shared resource called balance or increase the value of their internal resources 

in a similar way to the threads of the sample application. The remaining 

elements of the application, i.e. displaying information on the standard output, 

initializing variables or terminating the work of threads are hidden, because they 

are unnecessary in the process of detecting the phenomenon of race condition. 
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Fig. 6. SWPC model of a multi-threaded application from Listing No. 1 
 

Although very general. the presented SWPC has the necessary information 

regarding the reconstruction of the application under consideration. The pro-

grammer receives a set of information that allows to recreate its code. It is easy 

to see in the figure that work on a shared resource is not synchronized, i.e. there 

is no mutex that ensures mutual exclusion of processes on a shared resource. 

This means that race condition on this resource may occur.   

 

 

Fig. 7. The SWPC model of Listing 1 application without race condition error 
 

Hiding unnecessary details about threads implemented in the application 

makes the model very clear. Omitting the implementation details does not affect 

the assessment of the correctness of the application. In contrast to PN and CFG, 

the SWPC model enhances the sensitive elements of the application, which 

translates into a better presentation of how the application works and allows  

to locate places where potential errors may occur. 

Eliminating the error resulting from the occurrence of race condition is possible 

as a result of adding synchronization elements. Figure 7 shows the SWPC model 

with mutexes that eliminate race condition. In the presented solution, processes 

before sharing a shared resource block access to it (Lock (myMutex)) and then 

release it (Unlock (myMutex)) after completing operations on this resource. 
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Fig. 8. Sample SWPC model of the exemplary application without synchronization elements 
 

The application from Listing No. 1 is an example for which SWPC is not 

complicated. Figure 8 includes SWPC model for an exemplary application with 

four threads. The application has four shared resources R1, R2, R3 and R4, and 

each thread works with two of them and with its own internal resource. 

Additionally, in the B-thread, the operation on the R3 resource is dependent on 

the new R1 resource value (this relationship is expressed by the R3 = Op (R1) 

equation included in the graphic element). The figure clearly shows that the 

operations carried out on the shared resources are not synchronized, therefore,  

a race condition may occur. In addition to race condition, atomic violation is also 

present in the application. This phenomenon is a consequence of the relationship 

between R1 and R3. The state of the resource R1 affects the state of the resource 

R3. Before process B performs an operation on resource R3, the state of resource 

R1 can be changed by process A. 

The elimination of the race condition comes down to placing 4 mutexes: 

mutex1, mutex2, mutex3, and mutex4 in application in order to ensure mutual 

exclusion of processes on shared resources – the appropriate SWPC is shown  

in Figure 9. Before each operation, a lock action on the corresponding mutex  

is performed on the shared resource, and after its execution, this mutex is released. 
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Fig. 9. An example of the SWPC model of an exemplary atomic violation application 
 

Unfortunately, this approach does not eliminate the phenomenon of atomicity 

violation. This phenomenon is still present because thread B, after releasing 

mutex1, goes to the mutex3 blocking operation and unsecured by thread B R1 

resource can be changed by thread A. One of the acceptable ways to eliminate 

this phenomenon is to introduce an additional mutex, which in the B-thread will 

control working on both resources, and in the A-thread it will control only 

operations on the R1 resource. A model with such a mutex is presented in Figure 

10. Eliminating the phenomenon by adding another mutex increases the risk of 

blocking but there is a better solution, i.e. without adding mutex5.  

The solution that will eliminate the phenomenon of atomicity violation 

without adding mutex5 is shown in Figure 11. The role of the element synchro-

nizing the work of the B thread was received by mutex1 so that the excess mutex 

could be removed. The moment thread B starts work, it blocks the possibility of 

working on shared resources for threads A and D until it finishes the work. 
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Fig. 10. An example of the SWPC model of an exemplary application  

with atomic violation over redundant mutex 
 

 

Fig. 11. An example of the SWPC model of an exemplary application with a solution for 

atomicity violation with a minimum number of mutexes 
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The models presented for the example application show that thanks to SWP, 

it is very easy to locate not only the phenomenon of race condition but also the 

phenomenon of atomicity violation. An additional advantage of SWP lies its 

readability, which allowed for the optimization consisting in the removal of the 

excess mutex. This operation will affect the speed of the application, as there are 

less blocking and unblocking operations, which can be very expensive. 

 

 

6. CONCLUSION 

 

All three presented representations have their advantages and disadvantages. 

In terms of multithreaded applications, CFG should be used when the objects of 

interest include the number of logical blocks and the order in which they are 

executed. Unfortunately, CFG is a very general graphical representation and is 

not suitable for analyzing relationships between threads without additional 

information about individual code blocks that are presented as nodes. 

Petri nets are a much more sophisticated tool. They show the mechanism of 

mutual exclusion and the flow of information. However, the complexity of the net 

will increase with the complexity of the application, and an attempt to optimize 

it may hide important details. For each multithreaded application, it is also 

possible to create many different PNs. Each of the nets can work exactly as 

assumed by the multi-threaded application concept, while none of them will 

work as a real application when the application has race condition. 

The method using SWP models seems to be a much better solution than the 

two previous methods. It hides most of the implementation details, highlighting 

those places where race condition, atomicity violation or deadlock may occur, 

which like atomicity violation is a phenomenon resulting from incorrect setting 

of mutexes. Interpretation of the SWP model is much simpler than in the case of 

PN or CFG and the extension of the notation allowed to locate the place of the 

race condition error in the example application. In addition, a small change in 

the SWP model showed how to solve the race condition in the example 

application or atomic violation in the example application in chapter 4. The 

method using SWP models is disadvantageous because they were not created for 

multithreaded applications. For the purposes of this article, it was necessary to 

extend the standard notation so that it could express all the necessary elements of 

a multithreaded application. 
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