
20

Applied Computer Science, vol. 14, no. 2, pp. 20–37
doi:10.23743/acs-2018-10

Submitted: 2018-03-22
Revised: 2018-06-01

Accepted: 2018-06-21

graphical representations, Petri nets, Control Flow Graph,

Concurrent Process Systems, multithreaded applications

Damian GIEBAS*, Rafał WOJSZCZYK*

GRAPHICAL REPRESENTATIONS

OF MULTITHREADED APPLICATIONS

Abstract

This article contains a brief description of existing graphical methods for

presenting multithreaded applications, i.e. Control Flow Graph and Petri

nets. These methods will be discussed, and then a way to represent multi-

threaded applications using the concurrent process system model will be

presented. All these methods will be used to present the idea of a multi-

threaded application that includes the race condition phenomenon. In the

summary, all three methods will be compared and subjected to the evaluation,

which will depend on whether the given representation will allow to find

the mentioned phenomenon.

1. INTRODUCTION

Applications written for modern computers are characterized by diversity

and are used in almost every area of life. Many of these applications are single-

threaded programs that perform tasks one by one. Along with the development

of computer hardware and the introduction of processors enabling concurrent

performance of tasks, multithreaded applications began to appear. Some pro-

gramming languages, as in C and C++, were not created for multithreading.

To complement these gaps for C language, a pthreads library was created in line

with the constantly evolving standard (ISO/IEC, 2003). The C++ language has

received support for multithreading in the form of an extension of the standard

library, with the introduction of the C++ 11 standard (Hinnant, Dawes, Crowl,

Garland & Williams, 2007).

* Faculty of Electronics and Computer Science, Koszalin University of Technology,

75-453 Koszalin, Śniadeckich 2, Poland, +48 94 34 78 706, damian.giebas@gmail.com;

+48 94 3478 710, rafal.wojszczyk@tu.koszalin.pl

21

As there is a multitude of software created in these languages on the market

and a lot of such software is still created, the mentioned languages have been

selected to present examples of multithreaded programs.

Compared to previously used single-threaded programming, multithreaded

programming has a number of advantages and a number of disadvantages (Torp,

2001). The most important of them are presented below:

Advantages

 Responsiveness – in the case of long tasks in programs with a graphical

user interface, single-threaded programs undergo the so-called freezing.

This problem does not occur in multi-threaded applications, as such tasks

can be delegated to separate threads.

 Resource sharing – threads that run as part of a single process share

computer resources. Everything happens within one address space. In the

case of single threaded programs, tasks had to be delegated to separate

processes and communication was done by copying values from one

address space to another.

 Savings – multithreaded programs consume less memory than solutions

that use several single-threaded applications.

 Scalability – multithreaded applications make much better use of the

hardware capabilities of multithreading processors than a set of single-

threaded applications that perform the same task together. At the same

time, machines for multithreaded application states are much less

complicated than machines of an analogous state of solution composed of

single-threaded applications.

Disadvantages

 Complex application code – each application start-up may look different and

depends on the current state of other system components. The programmer

never knows how much time the scheduler has allocated to a given thread and

does not know the order of their work. This state of affairs also affects:

 Debugging of such applications is very difficult because the debugging

process itself can affect the behavior of the application.

 Testing the application is very difficult, because it is extremely hard to

predict all possible states in which applications will be found.

 Deadlock – this phenomenon is also called jamming or blocking. A situation

in which a process or thread in case of multithreaded applications orders

access to resources and goes into a waiting state. It is possible that

the pending process or thread will never change its state, because the

resources it procures are held by other waiting processes (Silberschatz,

Galvin & Gagne, 2005).

Deadlock and race condition were known before, as they occur not only

in multithreaded applications but also in solutions in which single-threaded

applications use shared resources.

22

Other known phenomena occurring in multithreaded applications are described

in chapter 4 on atomicity violation and order violation (Lu, Park, Seo & Zhou,

2016), and the last one is not analyzed in this work. This work focuses on

graphical representation of multithreaded applications, which will allow, above

all, to reveal places where race condition is present. Control Flow Graph discussed

in chapter 1 is the most well-known graphical representation that allowed to develop

methods and build tools for error detection of multithreaded applications. Petri nets

discussed in chapter 2 are another popular graphic representation. The graphic

representations used today have a number of limitations, which affect the developed

methods and tools that use them. These tools include:

 Helgrind – a tool from the Valgrind's Tool Suite to securely debug

multithreaded programs that can detect any kind of problems related to

parallel access to resources. On the creators' site there is information that

they do not guarantee the correct operation of the application. Despite all the

advantages, Helgrind does not have the possibility of remote debugging,

which is necessary to work in a very large number of environments where C

and C++ languages are used, e.g. in embedded systems. For more about

Valgrind's Tool Suite go to http://valgrind.org/info/tools.html#others

 ThreadSanitizer – Google's tool based on Helgrind and also having its

limitations. Both tools use the algorithm described in the Helgrind

documentation. ThreadSanitizer is a tool included in the LLVM / Clang

and GCC compilers package for the x86 platform. This tool, like Helgrind,

is in beta phase and its authors do not guarantee correct operation. For more

about ThreadSanitizer go to https://clang.llvm.org/docs/ThreadSanitizer.html

 RacerX – a tool to detect race condition and deadlock phenomena

described in the paper (Engler & Ashcraft, 2003) using static code

analysis. Detection is carried out by creating a Control Flow Graf for

the analyzed application and enriching it with a list of function calls,

global variables used, pointers to variables passed as a parameter, and

optionally a list of all local variables. This tool is currently not publicly

available to anyone according to https://goo.gl/DgYzt5

 Relay – a tool created at the University of California, San Diego for static

code analysis to detect race condition. This tool worked on a similar

principle to RacerX as described in the work (Voung, Jhala & Lerner,

2007). This tool was used to analyze the Linux kernel code version

2.6.15. The analysis was carried out on the number of 4.5 million of

the code line and showed the presence of 53 places where the race

condition occurred. This is the only such a detailed report on Linux

kernel code analysis by static code analysis for this phenomenon.

Although the tool is publicly available, it has not been developed since

2010.

23

The first two tools for error detection use dynamic techniques, i.e. they work

with the compiled application code, while the next two work tools require the

source code of the application, because they use static techniques by analyzing

the source code. The use of Concurrent Processing Systems (CPS) for the

detection of race condition and deadlock phenomena is an example of a static

approach. The main advantage of the methods that analyze the source code is the

fact that they are independent of the platform on which the application code

is written, but they are unable to take into account the phenomena caused by

aggressive optimization of the compiler (resulting, for example, in changing the

variable's contents by a numerical constant). The phenomena caused by

aggressive optimization are detected thanks to dynamic techniques, however

tools using dynamic techniques are strongly related to the platform, and, for

example, all aspects of Helgrind can be used only on x86 and AMD64 platforms.

C and C++ languages have already been expanded to allow for parallel work.

The Cilk extension (“A Brief History of Cilk”, 2017) for C and C++ was created

in 1990 at MIT and commercialized as Cilk ++, and then sold to Intel, which

develops them as CilkPlus. This extension has not gained much popularity and

will only be used until 2018. Intel proposes migrating from CilkPlus to OpenMP

framework or Intel Threading Building Block (“Intel Threading Building Blocks

Documentation”, 2017).

The mentioned OpenMP framework (Bull, Reid & McDonnell, 2012)

was created for Fortran and C languages and then expanded for C++ 98 and is

supported by the largest companies in the IT sector. The program is parallelized

with OpenMP by using the appropriate preprocessor directives, which increase

the complexity of the code and do not cooperate with the latest versions of C++.

Competitive solution for OpenMP, i.e. the Intel TBB library (“Intel

Threading Building Blocks Documentation”, 2017) for C++ is much better

adapted to work with the latest versions of this language. Unfortunately, when

using Intel TBB, a lot of code must be rewritten using its elements.

Charm++ (“Introduction to Charm++ Concepts”, 2017) is a dedicated C++

language framework for creating applications with parallel processing.

It introduces a new paradigm, i.e. object-oriented asynchronous message passing

parallel programming paradigm, which decomposes the program into chares that

communicate using objects called messages. The disadvantages of this solution

were presented in the presentation “Charm++” (Aiken, 2017). The biggest

disadvantage concerns easy to omit synchronization of chares work, which is

required to avoid race condition. Another big disadvantage of Charm++ is

making the programmer manage message memory. Wrong management can lead

to very serious memory leaks when resources are allocated and they are not

released.

The above solutions for C and C++ languages have one undesirable feature,

i.e. a high level of code complexity written with their use. In the case of using

the pthread library or the C++ 11 standard, this code is much more readable.

24

The next part of the work concerns the location of the race condition

phenomenon found in the program code shown in Listing No. 1 by means of

graphical representation of multithreaded applications. The program was written

in C language using the pthreads library. The aim of the program from the listing

below is to perform a million incrementing operations of the balance variable by

each of the application threads. The result of the action should be a two million

value. Unfortunately, incrementing operations on a shared resource are not syn-

chronized, resulting in a race condition in the program. Synchronization should

be done by using synchronization mechanisms called the mutexes provided with

the pthreads library. Mutexes are abstract structures that use the mechanism of

mutual exclusion to synchronize work on selected resources. The word mutex is

derived from the English words mutual exclusion.

Listing. 1. Multithreaded application code containing the race condition phenomenon

25

Although it is possible to write multithreaded programs in C language, the lack

of native language support causes that these programs often include race

condition or deadlock phenomena. The following application code containing

the race condition phenomenon will be transformed into subsequent graphical

representations in which this phenomenon should be exposed, because graphic

representations do not have C language limitations and are better adapted to

presenting high-level ideas.

The use of graphic methods results from the need for a universal tool that will

allow for code analysis and detection of the occurrence of the discussed

phenomena. As already mentioned, the graphic methods are better for presenting

high-level ideas than the C programming language. In addition, converting

the source code into a graphical representation is a platform-independent

solution to which the code is to be compiled. This transformation of the source

code for graphical representation is part of the static code analysis.

2. CONTROL FLOW GRAPH

Control Flow Graph (CFG) is nothing more than a directed graph, which

is one of the possible graphical representation of a multi-threaded application.

CFG presented in the work (Allen, 1970) consists of nodes and edges that

correspond to the next blocks of code and determine the order in which they are

executed. CFG assumes the existence of 3 types of nodes. The first type of node

is the entry node, which is characterized by the fact that it does not have an

ancestor, but it has descendants. The second type of node is the exit node, which,

similarly to the entry node, does not have descendants, but it has ancestors. The

third type of nodes are nodes having both ancestors and descendants. These

nodes can have at least one ancestor and at least one descendant. Ancestors and

descendants can be both direct and indirect nodes. In other words, CFG is

a directed G graph being a pair (B, E) where B is a set of nodes b1, b2, b3, …, bn

while E is a subset of the set of all possible edges {(b1, b2), (b1, b3), …, (bm, bn)}

occurring between these nodes.

Figure 1 presents CFG for an application whose code is on Listing 1. The code

is divided into 4 logical blocks that allow its easy conversion into CFG. Block A

is a fragment of the code preparing the application for working on threads, while

block D is a fragment of the code terminating work on threads and ending the

work of the application. Blocks B and C are a fragment of the application

executed in parallel, therefore to emphasize this aspect of the application on CFG

for one thread they have been labeled as B and C and for the other as B' and C'.

In addition, block C is contained in block B and its work is repeated

a million times.

26

With the exception of the main function, every logical block, i.e. any other

function, the body of a loop, the body of control instructions, or any other block

enclosed in braces will have its reflection in the form of a node. The main

function in the C and C++ languages is the place of beginning and end of the

application work, therefore it has been broken into the above-mentioned blocks

A and D.

Figure 1 shows the CFG of the application whose code is on Listing 1. The dia-

gram starts with node A in the main function. It precedes the creation of two

application threads, which are represented as nodes B and B'.

Nodes C and C' are the nodes corresponding to the body of the for loop,

so until the loop condition is always true, the block will still be executed,

as indicated by the presence of edges (C, C) and edges (C', C'). After completing

the loop operation, the control returns to the main body of the function, i.e.

to blocks B and B'. The program already has only the D block responsible for the

end of work and the corresponding node D finishes the graph.

Fig. 1. Control Flow Graph of application from Listing 1

The created CFG reflects exactly the order of the blocks of code executed,

however, the information about operations on shared resources cannot be read

out of it. These operations occurring in block C of the application do not show

their graphical representation, therefore the CFG diagram will be identical for

both a properly functioning application and the one in which the race condition

phenomenon is located. Hence, CFG is not a good enough notation to detect race

condition and deadlock phenomena.

Another disadvantage is the fact that CFG does not allow showing blocks'

nesting. Without an exact description, one can get the impression that after the

block C exit and returning to block B, it is possible to return to block C again,

which is not possible in the application.

27

Information that a given block is executed in two independent threads allows

for the presumption that this is the place where the race condition may occur.

In the case of systems where threads do not share any resources, it would also

be necessary to check all such places. In a situation where the resource is shared

by two threads that do not have common blocks, this mechanism is insufficient

to locate the race condition phenomenon.

Control Flow Graf is used in tools to detect these phenomena, e.g. in the

RacerX tool, each of the CFG nodes created by this tool is additionally enriched

with lists of function calls, global variables used, pointers to variables passed

as a parameter, and optionally a list of all local variables. Only when there is a set of

all this information it is possible to detect the phenomenon of race condition.

3. PETRI NET

Petri Net (PN) is a formal information flow model designed to describe

asynchronous systems in which tasks are carried out in parallel. Petri nets consist

of places and transitions connected by directed edges (Peterson, 1977). The flow

of information is demonstrated by moving tokens between places by passing

through the edges. On the edges there are transitions, which are responsible for

the permission to make the transition, and this happens when there are tokens

at all the entry points of the transition. The simplest example of PN is shown

in Figure 2. There are two places on it, p1 and p2 and one transition t1. The token

located in place p1 will be moved along the edges to the place p2, because the

transition condition is met, i.e. place p1 is the only entry point of the t1 transition

and it has a token.

Fig. 2. Example of Petri net

Unlike CFG, PN is not built only on logical blocks of code. The construction

should take into account such things as the initial state of some elements, i.e.

the place reflecting the loop counter should have as many tokens as the iterations

will be made by the loop, or information about the order of execution of indi-

vidual tasks in case they can be done in parallel. Net from figure 3 showing

the application of the mutual exclusion mechanism, which imposes the order

of tokens shifting from place p1 through the transitions t1 and t2 is the example

of the above.

28

Fig. 3. Example Petri net with the mechanism of mutual exclusion

The possibility of using mutual exclusion mechanisms (it consists of the

transitions t1, t2 and places p2, p3 in the above example) allows to control token

shifts in the net and simulate application multithreading. However, it is not

a realistic representation. In the case of multithreaded applications whose main

purpose is the speed of the operation, the programmer does not impose their

execution order. It is the scheduler to decide which thread is currently working

while the situation of alternating thread work, as shown in the figure above,

is unlikely.

In Figure 4, the Petri net is presented for the application under consideration.

This net is built from 6 places and 4 transitions. Place p1 corresponds to block A

of the selected application and means its start. Place p2 is the equivalent of the

moment of starting both threads of the application. In the case of the Petri net,

we can simulate the operation of the for loop, so block C in this case will consist

of places (p3, p5, p8) and transitions (t2, t3) for the first thread, as well as places

(p3, p4, p8) and transitions (t2, t4) for the second thread. Place p3 is a loop

count, which should have a million tokens, because so many iterations are executed

by each loop in the threads. This will enable every branch of the net to perform

a million times as in every thread a million operations are performed on a shared

resource.

Fig. 4. Petri net of multithreaded application from Listing No. 1

29

Place p8 is the equivalent of application block D and ends the whole network,

and the number of tokens corresponds to the value of the balance variable. If there

were one million tokens in place p3, i.e. the maximum number of iterations of the

loop in block C, then after the simulation there will be 2 million in the place p8.

The structure of the net does not allow the occurrence of a situation in which

the race condition occurs, therefore the result of the net operation will be

consistent with the expected result of the application but not with its real operation.

An additional disadvantage of such representation is that many net models

can be built into one and the same application code. This situation causes that

when a net model for the application is created, one can never be sure that all

necessary information can be read from it to locate the information one is

looking for.

In the case of using the mutual exclusion mechanisms in the net, it should

always be determined which transition will have a priority resulting in a pre-

determined order of operation of the transition. This is not the case in applications.

The programmer is never sure which thread will be given access to the resource

first, because the work of the threads is set to execute tasks as quickly as pos-

sible and they are executed immediately when the scheduler assigns the processor

time to the thread. Unlike nets, the mechanisms of mutual exclusion provided

with the C language do not enforce the order of threads.

4. FORMULATING THE PROBLEM

The presented analysis of two widely known graphical representations of multi-

threaded applications allows to conclude that using them to find the location of

the race condition phenomenon is very complex and in many cases requires the

use of additional (redundant) control mechanisms.

A multithreaded application code written in C language using the pthreads

library is available.

The limitations result from the syntax of the C language, its grammar and the

fact that the calculations must be performed in parallel.

Therefore, the question is as follows: is the application code correct, i.e. are

there no phenomena like:

 deadlock,

 race condition?

The two previously discussed graphical representations did not allow to de-

termine whether the code on Listing 1 is free from these phenomena. In item 4,

a representation using models of concurrent processes for this purpose will be

presented. Two representations will be shown, where the phenomenon of race

condition will be visible on the first one and the second one will present

a solution to eliminate this phenomenon.

30

5. SYSTEM OF CONCURRENT PROCESSES (Polish: SWP)

 FOR MULTITHREADED APPLICATIONS

The process system is a set of processes P={Pi |i=1, …, ln} performing

operations based on a set of shared resources R={Rk |k=1, …, lm}. Concurrent

execution of processes means that each successive operation of one process

begins before the end of another process operation and is associated with limited

access to shared resources (Banaszak, Majdzik & Wójcik, 2008). A specific case

refers to the systems in which processes are carried out cyclically (i.e. process

operations are repeated many times over fixed time periods). In this approach,

the System of Concurrent Cyclic Processes (Polish: SWPC) is understood

as a set of concurrent cyclic processes that are related to each other through the

use of shared resources (Bocewicz, Banaszak & Wójcik, 2006; Bocewicz, 2013).

When talking about SWPC one should mention the conflicts of resource

demands, which are a consequence of the occurrence of, among others, such

phenomena as starvation and blockade. Similar phenomena can be found in multi-

threaded applications. Starvation occurs when one of the threads of the application

over its entire duration does not release the specified resource and thus prevents

access to other threads. Deadlock, on the other hand, occurs when two threads

(or more) attempt to gain access to the resources they occupy, and so-called

resource request cycle occurs. This situation causes that each thread waits for the

remaining ones to release their resources, which never happens.

Another specific phenomenon of multithreaded applications refers to the race

condition - a situation in which the status of a shared resource (e.g. the value of

a variable represented by this resource) is changed by one of the threads when

other threads perform operations with an already obsolete resource value. The con-

sequence of such a phenomenon is the possibility of obtaining various results

of applications (often difficult to predict) depending on the order of access of

threads to shared resources.

Similarly to the CFG and PN models discussed in the previous sections,

systems of concurrent cyclic processes can also be used to represent multithreaded

applications. A set of graphic elements is used for its purpose (Figure 5),

consisting of:

 shared resources representing an instance of any type that is shared among

threads, e.g. by means of a pointer or as a global variable,

 internal resources of threads, which like resources are shared by instances

of any type, and their period of life lasts as long as the life span of threads,

 cyclical processes representing the threads of the application,

 synchronization mechanism (mutex) ensuring mutual exclusion of proc-

esses on resources. In C language, a mutex is an algorithm implemented

in the form of an object on which blocking and releasing operations can

be performed.

31

Fig. 5. SWPC elements used for multithreaded application modeling

Both resources and mutexes can be a base for cyclic processes performed

(the names of these operations are given inside the resource).

These are, e.g.:

 Inc – resource increment operation,

 Lock – operation of placing a lock on a mutex object,

 Unlock – the operation of releasing the lock from the mutex object.

The proposed SWPC model (using the proposed set of elements), unlike the

Petri net and CFG, hides many implementation details. It will highlight only those

features of the application that are important to assess its correctness (in terms

of the occurrence of phenomena leading to conflicts of resource demands). This

approach should allow for accurate reproduction of the application from the

model and at the same time indicate the places where race condition or deadlock

can occur.

Fig no. 6 presents SWPC for the application from Listing No. 1. It differs

significantly from the Petri net and CFG. The system includes a pair of processes

(A, B) corresponding to both threads of the application under consideration.

The A and B processes are within one set, as both threads work within one

application. Both processes perform the operation of increasing the value of

a shared resource called balance or increase the value of their internal resources

in a similar way to the threads of the sample application. The remaining

elements of the application, i.e. displaying information on the standard output,

initializing variables or terminating the work of threads are hidden, because they

are unnecessary in the process of detecting the phenomenon of race condition.

32

Fig. 6. SWPC model of a multi-threaded application from Listing No. 1

Although very general. the presented SWPC has the necessary information

regarding the reconstruction of the application under consideration. The pro-

grammer receives a set of information that allows to recreate its code. It is easy

to see in the figure that work on a shared resource is not synchronized, i.e. there

is no mutex that ensures mutual exclusion of processes on a shared resource.

This means that race condition on this resource may occur.

Fig. 7. The SWPC model of Listing 1 application without race condition error

Hiding unnecessary details about threads implemented in the application

makes the model very clear. Omitting the implementation details does not affect

the assessment of the correctness of the application. In contrast to PN and CFG,

the SWPC model enhances the sensitive elements of the application, which

translates into a better presentation of how the application works and allows

to locate places where potential errors may occur.

Eliminating the error resulting from the occurrence of race condition is possible

as a result of adding synchronization elements. Figure 7 shows the SWPC model

with mutexes that eliminate race condition. In the presented solution, processes

before sharing a shared resource block access to it (Lock (myMutex)) and then

release it (Unlock (myMutex)) after completing operations on this resource.

33

Fig. 8. Sample SWPC model of the exemplary application without synchronization elements

The application from Listing No. 1 is an example for which SWPC is not

complicated. Figure 8 includes SWPC model for an exemplary application with

four threads. The application has four shared resources R1, R2, R3 and R4, and

each thread works with two of them and with its own internal resource.

Additionally, in the B-thread, the operation on the R3 resource is dependent on

the new R1 resource value (this relationship is expressed by the R3 = Op (R1)

equation included in the graphic element). The figure clearly shows that the

operations carried out on the shared resources are not synchronized, therefore,

a race condition may occur. In addition to race condition, atomic violation is also

present in the application. This phenomenon is a consequence of the relationship

between R1 and R3. The state of the resource R1 affects the state of the resource

R3. Before process B performs an operation on resource R3, the state of resource

R1 can be changed by process A.

The elimination of the race condition comes down to placing 4 mutexes:

mutex1, mutex2, mutex3, and mutex4 in application in order to ensure mutual

exclusion of processes on shared resources – the appropriate SWPC is shown

in Figure 9. Before each operation, a lock action on the corresponding mutex

is performed on the shared resource, and after its execution, this mutex is released.

34

Fig. 9. An example of the SWPC model of an exemplary atomic violation application

Unfortunately, this approach does not eliminate the phenomenon of atomicity

violation. This phenomenon is still present because thread B, after releasing

mutex1, goes to the mutex3 blocking operation and unsecured by thread B R1

resource can be changed by thread A. One of the acceptable ways to eliminate

this phenomenon is to introduce an additional mutex, which in the B-thread will

control working on both resources, and in the A-thread it will control only

operations on the R1 resource. A model with such a mutex is presented in Figure

10. Eliminating the phenomenon by adding another mutex increases the risk of

blocking but there is a better solution, i.e. without adding mutex5.

The solution that will eliminate the phenomenon of atomicity violation

without adding mutex5 is shown in Figure 11. The role of the element synchro-

nizing the work of the B thread was received by mutex1 so that the excess mutex

could be removed. The moment thread B starts work, it blocks the possibility of

working on shared resources for threads A and D until it finishes the work.

35

Fig. 10. An example of the SWPC model of an exemplary application

with atomic violation over redundant mutex

Fig. 11. An example of the SWPC model of an exemplary application with a solution for

atomicity violation with a minimum number of mutexes

36

The models presented for the example application show that thanks to SWP,

it is very easy to locate not only the phenomenon of race condition but also the

phenomenon of atomicity violation. An additional advantage of SWP lies its

readability, which allowed for the optimization consisting in the removal of the

excess mutex. This operation will affect the speed of the application, as there are

less blocking and unblocking operations, which can be very expensive.

6. CONCLUSION

All three presented representations have their advantages and disadvantages.

In terms of multithreaded applications, CFG should be used when the objects of

interest include the number of logical blocks and the order in which they are

executed. Unfortunately, CFG is a very general graphical representation and is

not suitable for analyzing relationships between threads without additional

information about individual code blocks that are presented as nodes.

Petri nets are a much more sophisticated tool. They show the mechanism of

mutual exclusion and the flow of information. However, the complexity of the net

will increase with the complexity of the application, and an attempt to optimize

it may hide important details. For each multithreaded application, it is also

possible to create many different PNs. Each of the nets can work exactly as

assumed by the multi-threaded application concept, while none of them will

work as a real application when the application has race condition.

The method using SWP models seems to be a much better solution than the

two previous methods. It hides most of the implementation details, highlighting

those places where race condition, atomicity violation or deadlock may occur,

which like atomicity violation is a phenomenon resulting from incorrect setting

of mutexes. Interpretation of the SWP model is much simpler than in the case of

PN or CFG and the extension of the notation allowed to locate the place of the

race condition error in the example application. In addition, a small change in

the SWP model showed how to solve the race condition in the example

application or atomic violation in the example application in chapter 4. The

method using SWP models is disadvantageous because they were not created for

multithreaded applications. For the purposes of this article, it was necessary to

extend the standard notation so that it could express all the necessary elements of

a multithreaded application.

37

REFERENCES

A Brief History of Cilk. (n.d.). Retrieved September 16, 2017, from https://www.cilkplus.org/cilk-

history

Aiken, A. (October 28, 2017). Charm++. Retrieved from https://web.stanford.edu/class/cs315b/

lectures/lecture11.pdf

Allen, F. E. (1970). Control Flow Analisys. Retrieved July 5, 2017, from http://sumanj.info/secure

_sw_devel/p1-allen.pdf

Banaszak, Z., Majdzik, P., & Wójcik, R. (2008). Procesy współbieżne. Modele efektywności

funkcjonowania. Koszalin: Wydawnictwo Uczelniane Politechniki Koszalińskiej.

Bocewicz, G. (2013). Modele multimodalnych procesów cyklicznych. Koszalin: Wydawnictwo

Uczelniane Politechniki Koszalińskiej.

Bocewicz, G., Wójcik, R., & Banaszak, Z. (2006). Harmonogramowane pracy wózków samojezdnych

w warunkach ograniczonego dostępu do współdzielonych zasobów ESW (Model logiczno-

algebraiczny). In Postępy robotyki: Systemy i współdziałanie robotów. Warszawa: WKiŁ.

Bull, J. M., Reid, F., & McDonnell, N. (2012). A Microbenchmark Suite for OpenMP Tasks. In: B.

M. Chapman, F. Massaioli, M.S. Müller, M. Rorro (Eds), OpenMP in a Heterogeneous

World. IWOMP 2012. Lecture Notes in Computer Science (271–274). Berlin, Heidelberg:

Springer.

Engler, D., & Ashcraft, K. (2003). RacerX: effective, static detection of race conditions and deadlocks.

ACM SIGOPS Operating Systems Review, 37(5), 237–252. doi:10.1145/1165389.945468

Hinnant, H. E., Dawes, B., Crowl, L., Garland, J., & Williams, A. (June 24, 2007). Multi-threading

Library for Standard C++. Retrieved from http://www.open-std.org/jtc1/sc22/wg21/docs/

papers/2007/n2320.html

Intel Threading Building Blocks Documentation. (n.d.). Retrieved September 16, 2017, from

https://software.intel.com/en-us/tbb-documentation

Introduction to Charm++ Concepts (n.d.). Retrieved September 16, 2017, from

http://charmplusplus.org/tutorial/CharmConcepts.html

ISO/IEC. (2003). Information technology - Portable Operating System Interface (POSIX) – Part 1:

Base Definitions (9945-1:2003).

Lu, S., Park, S., Seo, E., & Zhou, Y. (2008). Learning from mistakes: a comprehensive study on

real world concurrency bug characteristics. In Proceedings of the 13th International

Conference on Architectural Support for Programming Languages and Operating Systems

(ASPLOS-XIII) (pp. 329–339). New York: ACM.

Peterson, J. L. (1977). Petrie Nets. ACM Computing Surveys (CSUR), 9(3), 223-252.

Silberschatz, A., Galvin, P. B., & Gagne, G. (2005). Operating System Concepts. USA: John Wiley

& Sons

Torp, K. (November 19, 2001). Multithreading. Retrieved from http://people.cs.aau.dk/~torp/

Teaching/E02/OOP/handouts/multithreading.pdf

Voung, J. W., Jhala, R., & Lerner, S. (2007). RELAY: static race detection on millions of lines

of code. In Proceedings of the the 6th joint meeting of the European software engineering

conference and the ACM SIGSOFT symposium on The foundations of software

engineering (pp. 205–214). New York: ACM.

